1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #ifndef PHYSMEM_END 101 # ifdef MAX_PHYSMEM_BITS 102 # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 103 # else 104 # define PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 105 # endif 106 #endif 107 108 #include <asm/page.h> 109 #include <asm/processor.h> 110 111 #ifndef __pa_symbol 112 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 113 #endif 114 115 #ifndef page_to_virt 116 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 117 #endif 118 119 #ifndef lm_alias 120 #define lm_alias(x) __va(__pa_symbol(x)) 121 #endif 122 123 /* 124 * To prevent common memory management code establishing 125 * a zero page mapping on a read fault. 126 * This macro should be defined within <asm/pgtable.h>. 127 * s390 does this to prevent multiplexing of hardware bits 128 * related to the physical page in case of virtualization. 129 */ 130 #ifndef mm_forbids_zeropage 131 #define mm_forbids_zeropage(X) (0) 132 #endif 133 134 /* 135 * On some architectures it is expensive to call memset() for small sizes. 136 * If an architecture decides to implement their own version of 137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 138 * define their own version of this macro in <asm/pgtable.h> 139 */ 140 #if BITS_PER_LONG == 64 141 /* This function must be updated when the size of struct page grows above 96 142 * or reduces below 56. The idea that compiler optimizes out switch() 143 * statement, and only leaves move/store instructions. Also the compiler can 144 * combine write statements if they are both assignments and can be reordered, 145 * this can result in several of the writes here being dropped. 146 */ 147 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 148 static inline void __mm_zero_struct_page(struct page *page) 149 { 150 unsigned long *_pp = (void *)page; 151 152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 153 BUILD_BUG_ON(sizeof(struct page) & 7); 154 BUILD_BUG_ON(sizeof(struct page) < 56); 155 BUILD_BUG_ON(sizeof(struct page) > 96); 156 157 switch (sizeof(struct page)) { 158 case 96: 159 _pp[11] = 0; 160 fallthrough; 161 case 88: 162 _pp[10] = 0; 163 fallthrough; 164 case 80: 165 _pp[9] = 0; 166 fallthrough; 167 case 72: 168 _pp[8] = 0; 169 fallthrough; 170 case 64: 171 _pp[7] = 0; 172 fallthrough; 173 case 56: 174 _pp[6] = 0; 175 _pp[5] = 0; 176 _pp[4] = 0; 177 _pp[3] = 0; 178 _pp[2] = 0; 179 _pp[1] = 0; 180 _pp[0] = 0; 181 } 182 } 183 #else 184 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 185 #endif 186 187 /* 188 * Default maximum number of active map areas, this limits the number of vmas 189 * per mm struct. Users can overwrite this number by sysctl but there is a 190 * problem. 191 * 192 * When a program's coredump is generated as ELF format, a section is created 193 * per a vma. In ELF, the number of sections is represented in unsigned short. 194 * This means the number of sections should be smaller than 65535 at coredump. 195 * Because the kernel adds some informative sections to a image of program at 196 * generating coredump, we need some margin. The number of extra sections is 197 * 1-3 now and depends on arch. We use "5" as safe margin, here. 198 * 199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 200 * not a hard limit any more. Although some userspace tools can be surprised by 201 * that. 202 */ 203 #define MAPCOUNT_ELF_CORE_MARGIN (5) 204 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 205 206 extern int sysctl_max_map_count; 207 208 extern unsigned long sysctl_user_reserve_kbytes; 209 extern unsigned long sysctl_admin_reserve_kbytes; 210 211 extern int sysctl_overcommit_memory; 212 extern int sysctl_overcommit_ratio; 213 extern unsigned long sysctl_overcommit_kbytes; 214 215 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 220 loff_t *); 221 222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 224 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 225 #else 226 #define nth_page(page,n) ((page) + (n)) 227 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 228 #endif 229 230 /* to align the pointer to the (next) page boundary */ 231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 232 233 /* to align the pointer to the (prev) page boundary */ 234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 235 236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 239 static inline struct folio *lru_to_folio(struct list_head *head) 240 { 241 return list_entry((head)->prev, struct folio, lru); 242 } 243 244 void setup_initial_init_mm(void *start_code, void *end_code, 245 void *end_data, void *brk); 246 247 /* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258 void vm_area_free(struct vm_area_struct *); 259 /* Use only if VMA has no other users */ 260 void __vm_area_free(struct vm_area_struct *vma); 261 262 #ifndef CONFIG_MMU 263 extern struct rb_root nommu_region_tree; 264 extern struct rw_semaphore nommu_region_sem; 265 266 extern unsigned int kobjsize(const void *objp); 267 #endif 268 269 /* 270 * vm_flags in vm_area_struct, see mm_types.h. 271 * When changing, update also include/trace/events/mmflags.h 272 */ 273 #define VM_NONE 0x00000000 274 275 #define VM_READ 0x00000001 /* currently active flags */ 276 #define VM_WRITE 0x00000002 277 #define VM_EXEC 0x00000004 278 #define VM_SHARED 0x00000008 279 280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 281 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 282 #define VM_MAYWRITE 0x00000020 283 #define VM_MAYEXEC 0x00000040 284 #define VM_MAYSHARE 0x00000080 285 286 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 287 #ifdef CONFIG_MMU 288 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 289 #else /* CONFIG_MMU */ 290 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 291 #define VM_UFFD_MISSING 0 292 #endif /* CONFIG_MMU */ 293 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 294 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 295 296 #define VM_LOCKED 0x00002000 297 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 298 299 /* Used by sys_madvise() */ 300 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 301 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 302 303 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 304 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 305 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 306 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 307 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 308 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 309 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 310 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 311 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 312 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 313 314 #ifdef CONFIG_MEM_SOFT_DIRTY 315 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 316 #else 317 # define VM_SOFTDIRTY 0 318 #endif 319 320 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 321 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 322 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 323 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 324 325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 326 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 327 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 328 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 329 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 330 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 331 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 332 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 333 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 334 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 335 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 336 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 337 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 338 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 339 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 340 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 341 342 #ifdef CONFIG_ARCH_HAS_PKEYS 343 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 344 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 345 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 346 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 347 #if CONFIG_ARCH_PKEY_BITS > 3 348 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 349 #else 350 # define VM_PKEY_BIT3 0 351 #endif 352 #if CONFIG_ARCH_PKEY_BITS > 4 353 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 354 #else 355 # define VM_PKEY_BIT4 0 356 #endif 357 #endif /* CONFIG_ARCH_HAS_PKEYS */ 358 359 #ifdef CONFIG_X86_USER_SHADOW_STACK 360 /* 361 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 362 * support core mm. 363 * 364 * These VMAs will get a single end guard page. This helps userspace protect 365 * itself from attacks. A single page is enough for current shadow stack archs 366 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 367 * for more details on the guard size. 368 */ 369 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 370 #endif 371 372 #if defined(CONFIG_ARM64_GCS) 373 /* 374 * arm64's Guarded Control Stack implements similar functionality and 375 * has similar constraints to shadow stacks. 376 */ 377 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 378 #endif 379 380 #ifndef VM_SHADOW_STACK 381 # define VM_SHADOW_STACK VM_NONE 382 #endif 383 384 #if defined(CONFIG_X86) 385 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 386 #elif defined(CONFIG_PPC64) 387 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 388 #elif defined(CONFIG_PARISC) 389 # define VM_GROWSUP VM_ARCH_1 390 #elif defined(CONFIG_SPARC64) 391 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 392 # define VM_ARCH_CLEAR VM_SPARC_ADI 393 #elif defined(CONFIG_ARM64) 394 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 395 # define VM_ARCH_CLEAR VM_ARM64_BTI 396 #elif !defined(CONFIG_MMU) 397 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 398 #endif 399 400 #if defined(CONFIG_ARM64_MTE) 401 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 402 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 403 #else 404 # define VM_MTE VM_NONE 405 # define VM_MTE_ALLOWED VM_NONE 406 #endif 407 408 #ifndef VM_GROWSUP 409 # define VM_GROWSUP VM_NONE 410 #endif 411 412 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 413 # define VM_UFFD_MINOR_BIT 38 414 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 415 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 416 # define VM_UFFD_MINOR VM_NONE 417 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 418 419 /* 420 * This flag is used to connect VFIO to arch specific KVM code. It 421 * indicates that the memory under this VMA is safe for use with any 422 * non-cachable memory type inside KVM. Some VFIO devices, on some 423 * platforms, are thought to be unsafe and can cause machine crashes 424 * if KVM does not lock down the memory type. 425 */ 426 #ifdef CONFIG_64BIT 427 #define VM_ALLOW_ANY_UNCACHED_BIT 39 428 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 429 #else 430 #define VM_ALLOW_ANY_UNCACHED VM_NONE 431 #endif 432 433 #ifdef CONFIG_64BIT 434 #define VM_DROPPABLE_BIT 40 435 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 436 #elif defined(CONFIG_PPC32) 437 #define VM_DROPPABLE VM_ARCH_1 438 #else 439 #define VM_DROPPABLE VM_NONE 440 #endif 441 442 #ifdef CONFIG_64BIT 443 /* VM is sealed, in vm_flags */ 444 #define VM_SEALED _BITUL(63) 445 #endif 446 447 /* Bits set in the VMA until the stack is in its final location */ 448 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 449 450 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 451 452 /* Common data flag combinations */ 453 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 454 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 455 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 456 VM_MAYWRITE | VM_MAYEXEC) 457 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 458 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 459 460 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 461 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 462 #endif 463 464 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 465 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 466 #endif 467 468 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 469 470 #ifdef CONFIG_STACK_GROWSUP 471 #define VM_STACK VM_GROWSUP 472 #define VM_STACK_EARLY VM_GROWSDOWN 473 #else 474 #define VM_STACK VM_GROWSDOWN 475 #define VM_STACK_EARLY 0 476 #endif 477 478 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 479 480 /* VMA basic access permission flags */ 481 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 482 483 484 /* 485 * Special vmas that are non-mergable, non-mlock()able. 486 */ 487 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 488 489 /* This mask prevents VMA from being scanned with khugepaged */ 490 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 491 492 /* This mask defines which mm->def_flags a process can inherit its parent */ 493 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 494 495 /* This mask represents all the VMA flag bits used by mlock */ 496 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 497 498 /* Arch-specific flags to clear when updating VM flags on protection change */ 499 #ifndef VM_ARCH_CLEAR 500 # define VM_ARCH_CLEAR VM_NONE 501 #endif 502 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 503 504 /* 505 * mapping from the currently active vm_flags protection bits (the 506 * low four bits) to a page protection mask.. 507 */ 508 509 /* 510 * The default fault flags that should be used by most of the 511 * arch-specific page fault handlers. 512 */ 513 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 514 FAULT_FLAG_KILLABLE | \ 515 FAULT_FLAG_INTERRUPTIBLE) 516 517 /** 518 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 519 * @flags: Fault flags. 520 * 521 * This is mostly used for places where we want to try to avoid taking 522 * the mmap_lock for too long a time when waiting for another condition 523 * to change, in which case we can try to be polite to release the 524 * mmap_lock in the first round to avoid potential starvation of other 525 * processes that would also want the mmap_lock. 526 * 527 * Return: true if the page fault allows retry and this is the first 528 * attempt of the fault handling; false otherwise. 529 */ 530 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 531 { 532 return (flags & FAULT_FLAG_ALLOW_RETRY) && 533 (!(flags & FAULT_FLAG_TRIED)); 534 } 535 536 #define FAULT_FLAG_TRACE \ 537 { FAULT_FLAG_WRITE, "WRITE" }, \ 538 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 539 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 540 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 541 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 542 { FAULT_FLAG_TRIED, "TRIED" }, \ 543 { FAULT_FLAG_USER, "USER" }, \ 544 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 545 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 546 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 547 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 548 549 /* 550 * vm_fault is filled by the pagefault handler and passed to the vma's 551 * ->fault function. The vma's ->fault is responsible for returning a bitmask 552 * of VM_FAULT_xxx flags that give details about how the fault was handled. 553 * 554 * MM layer fills up gfp_mask for page allocations but fault handler might 555 * alter it if its implementation requires a different allocation context. 556 * 557 * pgoff should be used in favour of virtual_address, if possible. 558 */ 559 struct vm_fault { 560 const struct { 561 struct vm_area_struct *vma; /* Target VMA */ 562 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 563 pgoff_t pgoff; /* Logical page offset based on vma */ 564 unsigned long address; /* Faulting virtual address - masked */ 565 unsigned long real_address; /* Faulting virtual address - unmasked */ 566 }; 567 enum fault_flag flags; /* FAULT_FLAG_xxx flags 568 * XXX: should really be 'const' */ 569 pmd_t *pmd; /* Pointer to pmd entry matching 570 * the 'address' */ 571 pud_t *pud; /* Pointer to pud entry matching 572 * the 'address' 573 */ 574 union { 575 pte_t orig_pte; /* Value of PTE at the time of fault */ 576 pmd_t orig_pmd; /* Value of PMD at the time of fault, 577 * used by PMD fault only. 578 */ 579 }; 580 581 struct page *cow_page; /* Page handler may use for COW fault */ 582 struct page *page; /* ->fault handlers should return a 583 * page here, unless VM_FAULT_NOPAGE 584 * is set (which is also implied by 585 * VM_FAULT_ERROR). 586 */ 587 /* These three entries are valid only while holding ptl lock */ 588 pte_t *pte; /* Pointer to pte entry matching 589 * the 'address'. NULL if the page 590 * table hasn't been allocated. 591 */ 592 spinlock_t *ptl; /* Page table lock. 593 * Protects pte page table if 'pte' 594 * is not NULL, otherwise pmd. 595 */ 596 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 597 * vm_ops->map_pages() sets up a page 598 * table from atomic context. 599 * do_fault_around() pre-allocates 600 * page table to avoid allocation from 601 * atomic context. 602 */ 603 }; 604 605 /* 606 * These are the virtual MM functions - opening of an area, closing and 607 * unmapping it (needed to keep files on disk up-to-date etc), pointer 608 * to the functions called when a no-page or a wp-page exception occurs. 609 */ 610 struct vm_operations_struct { 611 void (*open)(struct vm_area_struct * area); 612 /** 613 * @close: Called when the VMA is being removed from the MM. 614 * Context: User context. May sleep. Caller holds mmap_lock. 615 */ 616 void (*close)(struct vm_area_struct * area); 617 /* Called any time before splitting to check if it's allowed */ 618 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 619 int (*mremap)(struct vm_area_struct *area); 620 /* 621 * Called by mprotect() to make driver-specific permission 622 * checks before mprotect() is finalised. The VMA must not 623 * be modified. Returns 0 if mprotect() can proceed. 624 */ 625 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 626 unsigned long end, unsigned long newflags); 627 vm_fault_t (*fault)(struct vm_fault *vmf); 628 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 629 vm_fault_t (*map_pages)(struct vm_fault *vmf, 630 pgoff_t start_pgoff, pgoff_t end_pgoff); 631 unsigned long (*pagesize)(struct vm_area_struct * area); 632 633 /* notification that a previously read-only page is about to become 634 * writable, if an error is returned it will cause a SIGBUS */ 635 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 636 637 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 638 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 639 640 /* called by access_process_vm when get_user_pages() fails, typically 641 * for use by special VMAs. See also generic_access_phys() for a generic 642 * implementation useful for any iomem mapping. 643 */ 644 int (*access)(struct vm_area_struct *vma, unsigned long addr, 645 void *buf, int len, int write); 646 647 /* Called by the /proc/PID/maps code to ask the vma whether it 648 * has a special name. Returning non-NULL will also cause this 649 * vma to be dumped unconditionally. */ 650 const char *(*name)(struct vm_area_struct *vma); 651 652 #ifdef CONFIG_NUMA 653 /* 654 * set_policy() op must add a reference to any non-NULL @new mempolicy 655 * to hold the policy upon return. Caller should pass NULL @new to 656 * remove a policy and fall back to surrounding context--i.e. do not 657 * install a MPOL_DEFAULT policy, nor the task or system default 658 * mempolicy. 659 */ 660 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 661 662 /* 663 * get_policy() op must add reference [mpol_get()] to any policy at 664 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 665 * in mm/mempolicy.c will do this automatically. 666 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 667 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 668 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 669 * must return NULL--i.e., do not "fallback" to task or system default 670 * policy. 671 */ 672 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 673 unsigned long addr, pgoff_t *ilx); 674 #endif 675 /* 676 * Called by vm_normal_page() for special PTEs to find the 677 * page for @addr. This is useful if the default behavior 678 * (using pte_page()) would not find the correct page. 679 */ 680 struct page *(*find_special_page)(struct vm_area_struct *vma, 681 unsigned long addr); 682 }; 683 684 #ifdef CONFIG_NUMA_BALANCING 685 static inline void vma_numab_state_init(struct vm_area_struct *vma) 686 { 687 vma->numab_state = NULL; 688 } 689 static inline void vma_numab_state_free(struct vm_area_struct *vma) 690 { 691 kfree(vma->numab_state); 692 } 693 #else 694 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 695 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 696 #endif /* CONFIG_NUMA_BALANCING */ 697 698 #ifdef CONFIG_PER_VMA_LOCK 699 /* 700 * Try to read-lock a vma. The function is allowed to occasionally yield false 701 * locked result to avoid performance overhead, in which case we fall back to 702 * using mmap_lock. The function should never yield false unlocked result. 703 */ 704 static inline bool vma_start_read(struct vm_area_struct *vma) 705 { 706 /* 707 * Check before locking. A race might cause false locked result. 708 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 709 * ACQUIRE semantics, because this is just a lockless check whose result 710 * we don't rely on for anything - the mm_lock_seq read against which we 711 * need ordering is below. 712 */ 713 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 714 return false; 715 716 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 717 return false; 718 719 /* 720 * Overflow might produce false locked result. 721 * False unlocked result is impossible because we modify and check 722 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 723 * modification invalidates all existing locks. 724 * 725 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 726 * racing with vma_end_write_all(), we only start reading from the VMA 727 * after it has been unlocked. 728 * This pairs with RELEASE semantics in vma_end_write_all(). 729 */ 730 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 731 up_read(&vma->vm_lock->lock); 732 return false; 733 } 734 return true; 735 } 736 737 static inline void vma_end_read(struct vm_area_struct *vma) 738 { 739 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 740 up_read(&vma->vm_lock->lock); 741 rcu_read_unlock(); 742 } 743 744 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 745 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 746 { 747 mmap_assert_write_locked(vma->vm_mm); 748 749 /* 750 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 751 * mm->mm_lock_seq can't be concurrently modified. 752 */ 753 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 754 return (vma->vm_lock_seq == *mm_lock_seq); 755 } 756 757 /* 758 * Begin writing to a VMA. 759 * Exclude concurrent readers under the per-VMA lock until the currently 760 * write-locked mmap_lock is dropped or downgraded. 761 */ 762 static inline void vma_start_write(struct vm_area_struct *vma) 763 { 764 int mm_lock_seq; 765 766 if (__is_vma_write_locked(vma, &mm_lock_seq)) 767 return; 768 769 down_write(&vma->vm_lock->lock); 770 /* 771 * We should use WRITE_ONCE() here because we can have concurrent reads 772 * from the early lockless pessimistic check in vma_start_read(). 773 * We don't really care about the correctness of that early check, but 774 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 775 */ 776 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 777 up_write(&vma->vm_lock->lock); 778 } 779 780 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 781 { 782 int mm_lock_seq; 783 784 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 785 } 786 787 static inline void vma_assert_locked(struct vm_area_struct *vma) 788 { 789 if (!rwsem_is_locked(&vma->vm_lock->lock)) 790 vma_assert_write_locked(vma); 791 } 792 793 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 794 { 795 /* When detaching vma should be write-locked */ 796 if (detached) 797 vma_assert_write_locked(vma); 798 vma->detached = detached; 799 } 800 801 static inline void release_fault_lock(struct vm_fault *vmf) 802 { 803 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 804 vma_end_read(vmf->vma); 805 else 806 mmap_read_unlock(vmf->vma->vm_mm); 807 } 808 809 static inline void assert_fault_locked(struct vm_fault *vmf) 810 { 811 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 812 vma_assert_locked(vmf->vma); 813 else 814 mmap_assert_locked(vmf->vma->vm_mm); 815 } 816 817 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 818 unsigned long address); 819 820 #else /* CONFIG_PER_VMA_LOCK */ 821 822 static inline bool vma_start_read(struct vm_area_struct *vma) 823 { return false; } 824 static inline void vma_end_read(struct vm_area_struct *vma) {} 825 static inline void vma_start_write(struct vm_area_struct *vma) {} 826 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 827 { mmap_assert_write_locked(vma->vm_mm); } 828 static inline void vma_mark_detached(struct vm_area_struct *vma, 829 bool detached) {} 830 831 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 832 unsigned long address) 833 { 834 return NULL; 835 } 836 837 static inline void vma_assert_locked(struct vm_area_struct *vma) 838 { 839 mmap_assert_locked(vma->vm_mm); 840 } 841 842 static inline void release_fault_lock(struct vm_fault *vmf) 843 { 844 mmap_read_unlock(vmf->vma->vm_mm); 845 } 846 847 static inline void assert_fault_locked(struct vm_fault *vmf) 848 { 849 mmap_assert_locked(vmf->vma->vm_mm); 850 } 851 852 #endif /* CONFIG_PER_VMA_LOCK */ 853 854 extern const struct vm_operations_struct vma_dummy_vm_ops; 855 856 /* 857 * WARNING: vma_init does not initialize vma->vm_lock. 858 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 859 */ 860 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 861 { 862 memset(vma, 0, sizeof(*vma)); 863 vma->vm_mm = mm; 864 vma->vm_ops = &vma_dummy_vm_ops; 865 INIT_LIST_HEAD(&vma->anon_vma_chain); 866 vma_mark_detached(vma, false); 867 vma_numab_state_init(vma); 868 } 869 870 /* Use when VMA is not part of the VMA tree and needs no locking */ 871 static inline void vm_flags_init(struct vm_area_struct *vma, 872 vm_flags_t flags) 873 { 874 ACCESS_PRIVATE(vma, __vm_flags) = flags; 875 } 876 877 /* 878 * Use when VMA is part of the VMA tree and modifications need coordination 879 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 880 * it should be locked explicitly beforehand. 881 */ 882 static inline void vm_flags_reset(struct vm_area_struct *vma, 883 vm_flags_t flags) 884 { 885 vma_assert_write_locked(vma); 886 vm_flags_init(vma, flags); 887 } 888 889 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 890 vm_flags_t flags) 891 { 892 vma_assert_write_locked(vma); 893 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 894 } 895 896 static inline void vm_flags_set(struct vm_area_struct *vma, 897 vm_flags_t flags) 898 { 899 vma_start_write(vma); 900 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 901 } 902 903 static inline void vm_flags_clear(struct vm_area_struct *vma, 904 vm_flags_t flags) 905 { 906 vma_start_write(vma); 907 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 908 } 909 910 /* 911 * Use only if VMA is not part of the VMA tree or has no other users and 912 * therefore needs no locking. 913 */ 914 static inline void __vm_flags_mod(struct vm_area_struct *vma, 915 vm_flags_t set, vm_flags_t clear) 916 { 917 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 918 } 919 920 /* 921 * Use only when the order of set/clear operations is unimportant, otherwise 922 * use vm_flags_{set|clear} explicitly. 923 */ 924 static inline void vm_flags_mod(struct vm_area_struct *vma, 925 vm_flags_t set, vm_flags_t clear) 926 { 927 vma_start_write(vma); 928 __vm_flags_mod(vma, set, clear); 929 } 930 931 static inline void vma_set_anonymous(struct vm_area_struct *vma) 932 { 933 vma->vm_ops = NULL; 934 } 935 936 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 937 { 938 return !vma->vm_ops; 939 } 940 941 /* 942 * Indicate if the VMA is a heap for the given task; for 943 * /proc/PID/maps that is the heap of the main task. 944 */ 945 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 946 { 947 return vma->vm_start < vma->vm_mm->brk && 948 vma->vm_end > vma->vm_mm->start_brk; 949 } 950 951 /* 952 * Indicate if the VMA is a stack for the given task; for 953 * /proc/PID/maps that is the stack of the main task. 954 */ 955 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 956 { 957 /* 958 * We make no effort to guess what a given thread considers to be 959 * its "stack". It's not even well-defined for programs written 960 * languages like Go. 961 */ 962 return vma->vm_start <= vma->vm_mm->start_stack && 963 vma->vm_end >= vma->vm_mm->start_stack; 964 } 965 966 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 967 { 968 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 969 970 if (!maybe_stack) 971 return false; 972 973 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 974 VM_STACK_INCOMPLETE_SETUP) 975 return true; 976 977 return false; 978 } 979 980 static inline bool vma_is_foreign(struct vm_area_struct *vma) 981 { 982 if (!current->mm) 983 return true; 984 985 if (current->mm != vma->vm_mm) 986 return true; 987 988 return false; 989 } 990 991 static inline bool vma_is_accessible(struct vm_area_struct *vma) 992 { 993 return vma->vm_flags & VM_ACCESS_FLAGS; 994 } 995 996 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 997 { 998 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 999 (VM_SHARED | VM_MAYWRITE); 1000 } 1001 1002 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1003 { 1004 return is_shared_maywrite(vma->vm_flags); 1005 } 1006 1007 static inline 1008 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1009 { 1010 return mas_find(&vmi->mas, max - 1); 1011 } 1012 1013 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1014 { 1015 /* 1016 * Uses mas_find() to get the first VMA when the iterator starts. 1017 * Calling mas_next() could skip the first entry. 1018 */ 1019 return mas_find(&vmi->mas, ULONG_MAX); 1020 } 1021 1022 static inline 1023 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1024 { 1025 return mas_next_range(&vmi->mas, ULONG_MAX); 1026 } 1027 1028 1029 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1030 { 1031 return mas_prev(&vmi->mas, 0); 1032 } 1033 1034 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1035 unsigned long start, unsigned long end, gfp_t gfp) 1036 { 1037 __mas_set_range(&vmi->mas, start, end - 1); 1038 mas_store_gfp(&vmi->mas, NULL, gfp); 1039 if (unlikely(mas_is_err(&vmi->mas))) 1040 return -ENOMEM; 1041 1042 return 0; 1043 } 1044 1045 /* Free any unused preallocations */ 1046 static inline void vma_iter_free(struct vma_iterator *vmi) 1047 { 1048 mas_destroy(&vmi->mas); 1049 } 1050 1051 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1052 struct vm_area_struct *vma) 1053 { 1054 vmi->mas.index = vma->vm_start; 1055 vmi->mas.last = vma->vm_end - 1; 1056 mas_store(&vmi->mas, vma); 1057 if (unlikely(mas_is_err(&vmi->mas))) 1058 return -ENOMEM; 1059 1060 return 0; 1061 } 1062 1063 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1064 { 1065 mas_pause(&vmi->mas); 1066 } 1067 1068 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1069 { 1070 mas_set(&vmi->mas, addr); 1071 } 1072 1073 #define for_each_vma(__vmi, __vma) \ 1074 while (((__vma) = vma_next(&(__vmi))) != NULL) 1075 1076 /* The MM code likes to work with exclusive end addresses */ 1077 #define for_each_vma_range(__vmi, __vma, __end) \ 1078 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1079 1080 #ifdef CONFIG_SHMEM 1081 /* 1082 * The vma_is_shmem is not inline because it is used only by slow 1083 * paths in userfault. 1084 */ 1085 bool vma_is_shmem(struct vm_area_struct *vma); 1086 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1087 #else 1088 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1089 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1090 #endif 1091 1092 int vma_is_stack_for_current(struct vm_area_struct *vma); 1093 1094 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1095 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1096 1097 struct mmu_gather; 1098 struct inode; 1099 1100 /* 1101 * compound_order() can be called without holding a reference, which means 1102 * that niceties like page_folio() don't work. These callers should be 1103 * prepared to handle wild return values. For example, PG_head may be 1104 * set before the order is initialised, or this may be a tail page. 1105 * See compaction.c for some good examples. 1106 */ 1107 static inline unsigned int compound_order(struct page *page) 1108 { 1109 struct folio *folio = (struct folio *)page; 1110 1111 if (!test_bit(PG_head, &folio->flags)) 1112 return 0; 1113 return folio->_flags_1 & 0xff; 1114 } 1115 1116 /** 1117 * folio_order - The allocation order of a folio. 1118 * @folio: The folio. 1119 * 1120 * A folio is composed of 2^order pages. See get_order() for the definition 1121 * of order. 1122 * 1123 * Return: The order of the folio. 1124 */ 1125 static inline unsigned int folio_order(const struct folio *folio) 1126 { 1127 if (!folio_test_large(folio)) 1128 return 0; 1129 return folio->_flags_1 & 0xff; 1130 } 1131 1132 #include <linux/huge_mm.h> 1133 1134 /* 1135 * Methods to modify the page usage count. 1136 * 1137 * What counts for a page usage: 1138 * - cache mapping (page->mapping) 1139 * - private data (page->private) 1140 * - page mapped in a task's page tables, each mapping 1141 * is counted separately 1142 * 1143 * Also, many kernel routines increase the page count before a critical 1144 * routine so they can be sure the page doesn't go away from under them. 1145 */ 1146 1147 /* 1148 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1149 */ 1150 static inline int put_page_testzero(struct page *page) 1151 { 1152 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1153 return page_ref_dec_and_test(page); 1154 } 1155 1156 static inline int folio_put_testzero(struct folio *folio) 1157 { 1158 return put_page_testzero(&folio->page); 1159 } 1160 1161 /* 1162 * Try to grab a ref unless the page has a refcount of zero, return false if 1163 * that is the case. 1164 * This can be called when MMU is off so it must not access 1165 * any of the virtual mappings. 1166 */ 1167 static inline bool get_page_unless_zero(struct page *page) 1168 { 1169 return page_ref_add_unless(page, 1, 0); 1170 } 1171 1172 static inline struct folio *folio_get_nontail_page(struct page *page) 1173 { 1174 if (unlikely(!get_page_unless_zero(page))) 1175 return NULL; 1176 return (struct folio *)page; 1177 } 1178 1179 extern int page_is_ram(unsigned long pfn); 1180 1181 enum { 1182 REGION_INTERSECTS, 1183 REGION_DISJOINT, 1184 REGION_MIXED, 1185 }; 1186 1187 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1188 unsigned long desc); 1189 1190 /* Support for virtually mapped pages */ 1191 struct page *vmalloc_to_page(const void *addr); 1192 unsigned long vmalloc_to_pfn(const void *addr); 1193 1194 /* 1195 * Determine if an address is within the vmalloc range 1196 * 1197 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1198 * is no special casing required. 1199 */ 1200 #ifdef CONFIG_MMU 1201 extern bool is_vmalloc_addr(const void *x); 1202 extern int is_vmalloc_or_module_addr(const void *x); 1203 #else 1204 static inline bool is_vmalloc_addr(const void *x) 1205 { 1206 return false; 1207 } 1208 static inline int is_vmalloc_or_module_addr(const void *x) 1209 { 1210 return 0; 1211 } 1212 #endif 1213 1214 /* 1215 * How many times the entire folio is mapped as a single unit (eg by a 1216 * PMD or PUD entry). This is probably not what you want, except for 1217 * debugging purposes or implementation of other core folio_*() primitives. 1218 */ 1219 static inline int folio_entire_mapcount(const struct folio *folio) 1220 { 1221 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1222 return atomic_read(&folio->_entire_mapcount) + 1; 1223 } 1224 1225 static inline int folio_large_mapcount(const struct folio *folio) 1226 { 1227 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1228 return atomic_read(&folio->_large_mapcount) + 1; 1229 } 1230 1231 /** 1232 * folio_mapcount() - Number of mappings of this folio. 1233 * @folio: The folio. 1234 * 1235 * The folio mapcount corresponds to the number of present user page table 1236 * entries that reference any part of a folio. Each such present user page 1237 * table entry must be paired with exactly on folio reference. 1238 * 1239 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1240 * exactly once. 1241 * 1242 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1243 * references the entire folio counts exactly once, even when such special 1244 * page table entries are comprised of multiple ordinary page table entries. 1245 * 1246 * Will report 0 for pages which cannot be mapped into userspace, such as 1247 * slab, page tables and similar. 1248 * 1249 * Return: The number of times this folio is mapped. 1250 */ 1251 static inline int folio_mapcount(const struct folio *folio) 1252 { 1253 int mapcount; 1254 1255 if (likely(!folio_test_large(folio))) { 1256 mapcount = atomic_read(&folio->_mapcount) + 1; 1257 if (page_mapcount_is_type(mapcount)) 1258 mapcount = 0; 1259 return mapcount; 1260 } 1261 return folio_large_mapcount(folio); 1262 } 1263 1264 /** 1265 * folio_mapped - Is this folio mapped into userspace? 1266 * @folio: The folio. 1267 * 1268 * Return: True if any page in this folio is referenced by user page tables. 1269 */ 1270 static inline bool folio_mapped(const struct folio *folio) 1271 { 1272 return folio_mapcount(folio) >= 1; 1273 } 1274 1275 /* 1276 * Return true if this page is mapped into pagetables. 1277 * For compound page it returns true if any sub-page of compound page is mapped, 1278 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1279 */ 1280 static inline bool page_mapped(const struct page *page) 1281 { 1282 return folio_mapped(page_folio(page)); 1283 } 1284 1285 static inline struct page *virt_to_head_page(const void *x) 1286 { 1287 struct page *page = virt_to_page(x); 1288 1289 return compound_head(page); 1290 } 1291 1292 static inline struct folio *virt_to_folio(const void *x) 1293 { 1294 struct page *page = virt_to_page(x); 1295 1296 return page_folio(page); 1297 } 1298 1299 void __folio_put(struct folio *folio); 1300 1301 void put_pages_list(struct list_head *pages); 1302 1303 void split_page(struct page *page, unsigned int order); 1304 void folio_copy(struct folio *dst, struct folio *src); 1305 int folio_mc_copy(struct folio *dst, struct folio *src); 1306 1307 unsigned long nr_free_buffer_pages(void); 1308 1309 /* Returns the number of bytes in this potentially compound page. */ 1310 static inline unsigned long page_size(struct page *page) 1311 { 1312 return PAGE_SIZE << compound_order(page); 1313 } 1314 1315 /* Returns the number of bits needed for the number of bytes in a page */ 1316 static inline unsigned int page_shift(struct page *page) 1317 { 1318 return PAGE_SHIFT + compound_order(page); 1319 } 1320 1321 /** 1322 * thp_order - Order of a transparent huge page. 1323 * @page: Head page of a transparent huge page. 1324 */ 1325 static inline unsigned int thp_order(struct page *page) 1326 { 1327 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1328 return compound_order(page); 1329 } 1330 1331 /** 1332 * thp_size - Size of a transparent huge page. 1333 * @page: Head page of a transparent huge page. 1334 * 1335 * Return: Number of bytes in this page. 1336 */ 1337 static inline unsigned long thp_size(struct page *page) 1338 { 1339 return PAGE_SIZE << thp_order(page); 1340 } 1341 1342 #ifdef CONFIG_MMU 1343 /* 1344 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1345 * servicing faults for write access. In the normal case, do always want 1346 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1347 * that do not have writing enabled, when used by access_process_vm. 1348 */ 1349 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1350 { 1351 if (likely(vma->vm_flags & VM_WRITE)) 1352 pte = pte_mkwrite(pte, vma); 1353 return pte; 1354 } 1355 1356 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1357 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1358 struct page *page, unsigned int nr, unsigned long addr); 1359 1360 vm_fault_t finish_fault(struct vm_fault *vmf); 1361 #endif 1362 1363 /* 1364 * Multiple processes may "see" the same page. E.g. for untouched 1365 * mappings of /dev/null, all processes see the same page full of 1366 * zeroes, and text pages of executables and shared libraries have 1367 * only one copy in memory, at most, normally. 1368 * 1369 * For the non-reserved pages, page_count(page) denotes a reference count. 1370 * page_count() == 0 means the page is free. page->lru is then used for 1371 * freelist management in the buddy allocator. 1372 * page_count() > 0 means the page has been allocated. 1373 * 1374 * Pages are allocated by the slab allocator in order to provide memory 1375 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1376 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1377 * unless a particular usage is carefully commented. (the responsibility of 1378 * freeing the kmalloc memory is the caller's, of course). 1379 * 1380 * A page may be used by anyone else who does a __get_free_page(). 1381 * In this case, page_count still tracks the references, and should only 1382 * be used through the normal accessor functions. The top bits of page->flags 1383 * and page->virtual store page management information, but all other fields 1384 * are unused and could be used privately, carefully. The management of this 1385 * page is the responsibility of the one who allocated it, and those who have 1386 * subsequently been given references to it. 1387 * 1388 * The other pages (we may call them "pagecache pages") are completely 1389 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1390 * The following discussion applies only to them. 1391 * 1392 * A pagecache page contains an opaque `private' member, which belongs to the 1393 * page's address_space. Usually, this is the address of a circular list of 1394 * the page's disk buffers. PG_private must be set to tell the VM to call 1395 * into the filesystem to release these pages. 1396 * 1397 * A page may belong to an inode's memory mapping. In this case, page->mapping 1398 * is the pointer to the inode, and page->index is the file offset of the page, 1399 * in units of PAGE_SIZE. 1400 * 1401 * If pagecache pages are not associated with an inode, they are said to be 1402 * anonymous pages. These may become associated with the swapcache, and in that 1403 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1404 * 1405 * In either case (swapcache or inode backed), the pagecache itself holds one 1406 * reference to the page. Setting PG_private should also increment the 1407 * refcount. The each user mapping also has a reference to the page. 1408 * 1409 * The pagecache pages are stored in a per-mapping radix tree, which is 1410 * rooted at mapping->i_pages, and indexed by offset. 1411 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1412 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1413 * 1414 * All pagecache pages may be subject to I/O: 1415 * - inode pages may need to be read from disk, 1416 * - inode pages which have been modified and are MAP_SHARED may need 1417 * to be written back to the inode on disk, 1418 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1419 * modified may need to be swapped out to swap space and (later) to be read 1420 * back into memory. 1421 */ 1422 1423 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1424 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1425 1426 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1427 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1428 { 1429 if (!static_branch_unlikely(&devmap_managed_key)) 1430 return false; 1431 if (!folio_is_zone_device(folio)) 1432 return false; 1433 return __put_devmap_managed_folio_refs(folio, refs); 1434 } 1435 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1436 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1437 { 1438 return false; 1439 } 1440 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1441 1442 /* 127: arbitrary random number, small enough to assemble well */ 1443 #define folio_ref_zero_or_close_to_overflow(folio) \ 1444 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1445 1446 /** 1447 * folio_get - Increment the reference count on a folio. 1448 * @folio: The folio. 1449 * 1450 * Context: May be called in any context, as long as you know that 1451 * you have a refcount on the folio. If you do not already have one, 1452 * folio_try_get() may be the right interface for you to use. 1453 */ 1454 static inline void folio_get(struct folio *folio) 1455 { 1456 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1457 folio_ref_inc(folio); 1458 } 1459 1460 static inline void get_page(struct page *page) 1461 { 1462 folio_get(page_folio(page)); 1463 } 1464 1465 static inline __must_check bool try_get_page(struct page *page) 1466 { 1467 page = compound_head(page); 1468 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1469 return false; 1470 page_ref_inc(page); 1471 return true; 1472 } 1473 1474 /** 1475 * folio_put - Decrement the reference count on a folio. 1476 * @folio: The folio. 1477 * 1478 * If the folio's reference count reaches zero, the memory will be 1479 * released back to the page allocator and may be used by another 1480 * allocation immediately. Do not access the memory or the struct folio 1481 * after calling folio_put() unless you can be sure that it wasn't the 1482 * last reference. 1483 * 1484 * Context: May be called in process or interrupt context, but not in NMI 1485 * context. May be called while holding a spinlock. 1486 */ 1487 static inline void folio_put(struct folio *folio) 1488 { 1489 if (folio_put_testzero(folio)) 1490 __folio_put(folio); 1491 } 1492 1493 /** 1494 * folio_put_refs - Reduce the reference count on a folio. 1495 * @folio: The folio. 1496 * @refs: The amount to subtract from the folio's reference count. 1497 * 1498 * If the folio's reference count reaches zero, the memory will be 1499 * released back to the page allocator and may be used by another 1500 * allocation immediately. Do not access the memory or the struct folio 1501 * after calling folio_put_refs() unless you can be sure that these weren't 1502 * the last references. 1503 * 1504 * Context: May be called in process or interrupt context, but not in NMI 1505 * context. May be called while holding a spinlock. 1506 */ 1507 static inline void folio_put_refs(struct folio *folio, int refs) 1508 { 1509 if (folio_ref_sub_and_test(folio, refs)) 1510 __folio_put(folio); 1511 } 1512 1513 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1514 1515 /* 1516 * union release_pages_arg - an array of pages or folios 1517 * 1518 * release_pages() releases a simple array of multiple pages, and 1519 * accepts various different forms of said page array: either 1520 * a regular old boring array of pages, an array of folios, or 1521 * an array of encoded page pointers. 1522 * 1523 * The transparent union syntax for this kind of "any of these 1524 * argument types" is all kinds of ugly, so look away. 1525 */ 1526 typedef union { 1527 struct page **pages; 1528 struct folio **folios; 1529 struct encoded_page **encoded_pages; 1530 } release_pages_arg __attribute__ ((__transparent_union__)); 1531 1532 void release_pages(release_pages_arg, int nr); 1533 1534 /** 1535 * folios_put - Decrement the reference count on an array of folios. 1536 * @folios: The folios. 1537 * 1538 * Like folio_put(), but for a batch of folios. This is more efficient 1539 * than writing the loop yourself as it will optimise the locks which need 1540 * to be taken if the folios are freed. The folios batch is returned 1541 * empty and ready to be reused for another batch; there is no need to 1542 * reinitialise it. 1543 * 1544 * Context: May be called in process or interrupt context, but not in NMI 1545 * context. May be called while holding a spinlock. 1546 */ 1547 static inline void folios_put(struct folio_batch *folios) 1548 { 1549 folios_put_refs(folios, NULL); 1550 } 1551 1552 static inline void put_page(struct page *page) 1553 { 1554 struct folio *folio = page_folio(page); 1555 1556 /* 1557 * For some devmap managed pages we need to catch refcount transition 1558 * from 2 to 1: 1559 */ 1560 if (put_devmap_managed_folio_refs(folio, 1)) 1561 return; 1562 folio_put(folio); 1563 } 1564 1565 /* 1566 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1567 * the page's refcount so that two separate items are tracked: the original page 1568 * reference count, and also a new count of how many pin_user_pages() calls were 1569 * made against the page. ("gup-pinned" is another term for the latter). 1570 * 1571 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1572 * distinct from normal pages. As such, the unpin_user_page() call (and its 1573 * variants) must be used in order to release gup-pinned pages. 1574 * 1575 * Choice of value: 1576 * 1577 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1578 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1579 * simpler, due to the fact that adding an even power of two to the page 1580 * refcount has the effect of using only the upper N bits, for the code that 1581 * counts up using the bias value. This means that the lower bits are left for 1582 * the exclusive use of the original code that increments and decrements by one 1583 * (or at least, by much smaller values than the bias value). 1584 * 1585 * Of course, once the lower bits overflow into the upper bits (and this is 1586 * OK, because subtraction recovers the original values), then visual inspection 1587 * no longer suffices to directly view the separate counts. However, for normal 1588 * applications that don't have huge page reference counts, this won't be an 1589 * issue. 1590 * 1591 * Locking: the lockless algorithm described in folio_try_get_rcu() 1592 * provides safe operation for get_user_pages(), folio_mkclean() and 1593 * other calls that race to set up page table entries. 1594 */ 1595 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1596 1597 void unpin_user_page(struct page *page); 1598 void unpin_folio(struct folio *folio); 1599 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1600 bool make_dirty); 1601 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1602 bool make_dirty); 1603 void unpin_user_pages(struct page **pages, unsigned long npages); 1604 void unpin_user_folio(struct folio *folio, unsigned long npages); 1605 void unpin_folios(struct folio **folios, unsigned long nfolios); 1606 1607 static inline bool is_cow_mapping(vm_flags_t flags) 1608 { 1609 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1610 } 1611 1612 #ifndef CONFIG_MMU 1613 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1614 { 1615 /* 1616 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1617 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1618 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1619 * underlying memory if ptrace is active, so this is only possible if 1620 * ptrace does not apply. Note that there is no mprotect() to upgrade 1621 * write permissions later. 1622 */ 1623 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1624 } 1625 #endif 1626 1627 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1628 #define SECTION_IN_PAGE_FLAGS 1629 #endif 1630 1631 /* 1632 * The identification function is mainly used by the buddy allocator for 1633 * determining if two pages could be buddies. We are not really identifying 1634 * the zone since we could be using the section number id if we do not have 1635 * node id available in page flags. 1636 * We only guarantee that it will return the same value for two combinable 1637 * pages in a zone. 1638 */ 1639 static inline int page_zone_id(struct page *page) 1640 { 1641 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1642 } 1643 1644 #ifdef NODE_NOT_IN_PAGE_FLAGS 1645 int page_to_nid(const struct page *page); 1646 #else 1647 static inline int page_to_nid(const struct page *page) 1648 { 1649 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1650 } 1651 #endif 1652 1653 static inline int folio_nid(const struct folio *folio) 1654 { 1655 return page_to_nid(&folio->page); 1656 } 1657 1658 #ifdef CONFIG_NUMA_BALANCING 1659 /* page access time bits needs to hold at least 4 seconds */ 1660 #define PAGE_ACCESS_TIME_MIN_BITS 12 1661 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1662 #define PAGE_ACCESS_TIME_BUCKETS \ 1663 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1664 #else 1665 #define PAGE_ACCESS_TIME_BUCKETS 0 1666 #endif 1667 1668 #define PAGE_ACCESS_TIME_MASK \ 1669 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1670 1671 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1672 { 1673 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1674 } 1675 1676 static inline int cpupid_to_pid(int cpupid) 1677 { 1678 return cpupid & LAST__PID_MASK; 1679 } 1680 1681 static inline int cpupid_to_cpu(int cpupid) 1682 { 1683 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1684 } 1685 1686 static inline int cpupid_to_nid(int cpupid) 1687 { 1688 return cpu_to_node(cpupid_to_cpu(cpupid)); 1689 } 1690 1691 static inline bool cpupid_pid_unset(int cpupid) 1692 { 1693 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1694 } 1695 1696 static inline bool cpupid_cpu_unset(int cpupid) 1697 { 1698 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1699 } 1700 1701 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1702 { 1703 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1704 } 1705 1706 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1707 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1708 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1709 { 1710 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1711 } 1712 1713 static inline int folio_last_cpupid(struct folio *folio) 1714 { 1715 return folio->_last_cpupid; 1716 } 1717 static inline void page_cpupid_reset_last(struct page *page) 1718 { 1719 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1720 } 1721 #else 1722 static inline int folio_last_cpupid(struct folio *folio) 1723 { 1724 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1725 } 1726 1727 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1728 1729 static inline void page_cpupid_reset_last(struct page *page) 1730 { 1731 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1732 } 1733 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1734 1735 static inline int folio_xchg_access_time(struct folio *folio, int time) 1736 { 1737 int last_time; 1738 1739 last_time = folio_xchg_last_cpupid(folio, 1740 time >> PAGE_ACCESS_TIME_BUCKETS); 1741 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1742 } 1743 1744 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1745 { 1746 unsigned int pid_bit; 1747 1748 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1749 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1750 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1751 } 1752 } 1753 1754 bool folio_use_access_time(struct folio *folio); 1755 #else /* !CONFIG_NUMA_BALANCING */ 1756 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1757 { 1758 return folio_nid(folio); /* XXX */ 1759 } 1760 1761 static inline int folio_xchg_access_time(struct folio *folio, int time) 1762 { 1763 return 0; 1764 } 1765 1766 static inline int folio_last_cpupid(struct folio *folio) 1767 { 1768 return folio_nid(folio); /* XXX */ 1769 } 1770 1771 static inline int cpupid_to_nid(int cpupid) 1772 { 1773 return -1; 1774 } 1775 1776 static inline int cpupid_to_pid(int cpupid) 1777 { 1778 return -1; 1779 } 1780 1781 static inline int cpupid_to_cpu(int cpupid) 1782 { 1783 return -1; 1784 } 1785 1786 static inline int cpu_pid_to_cpupid(int nid, int pid) 1787 { 1788 return -1; 1789 } 1790 1791 static inline bool cpupid_pid_unset(int cpupid) 1792 { 1793 return true; 1794 } 1795 1796 static inline void page_cpupid_reset_last(struct page *page) 1797 { 1798 } 1799 1800 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1801 { 1802 return false; 1803 } 1804 1805 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1806 { 1807 } 1808 static inline bool folio_use_access_time(struct folio *folio) 1809 { 1810 return false; 1811 } 1812 #endif /* CONFIG_NUMA_BALANCING */ 1813 1814 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1815 1816 /* 1817 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1818 * setting tags for all pages to native kernel tag value 0xff, as the default 1819 * value 0x00 maps to 0xff. 1820 */ 1821 1822 static inline u8 page_kasan_tag(const struct page *page) 1823 { 1824 u8 tag = KASAN_TAG_KERNEL; 1825 1826 if (kasan_enabled()) { 1827 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1828 tag ^= 0xff; 1829 } 1830 1831 return tag; 1832 } 1833 1834 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1835 { 1836 unsigned long old_flags, flags; 1837 1838 if (!kasan_enabled()) 1839 return; 1840 1841 tag ^= 0xff; 1842 old_flags = READ_ONCE(page->flags); 1843 do { 1844 flags = old_flags; 1845 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1846 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1847 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1848 } 1849 1850 static inline void page_kasan_tag_reset(struct page *page) 1851 { 1852 if (kasan_enabled()) 1853 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1854 } 1855 1856 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1857 1858 static inline u8 page_kasan_tag(const struct page *page) 1859 { 1860 return 0xff; 1861 } 1862 1863 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1864 static inline void page_kasan_tag_reset(struct page *page) { } 1865 1866 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1867 1868 static inline struct zone *page_zone(const struct page *page) 1869 { 1870 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1871 } 1872 1873 static inline pg_data_t *page_pgdat(const struct page *page) 1874 { 1875 return NODE_DATA(page_to_nid(page)); 1876 } 1877 1878 static inline struct zone *folio_zone(const struct folio *folio) 1879 { 1880 return page_zone(&folio->page); 1881 } 1882 1883 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1884 { 1885 return page_pgdat(&folio->page); 1886 } 1887 1888 #ifdef SECTION_IN_PAGE_FLAGS 1889 static inline void set_page_section(struct page *page, unsigned long section) 1890 { 1891 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1892 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1893 } 1894 1895 static inline unsigned long page_to_section(const struct page *page) 1896 { 1897 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1898 } 1899 #endif 1900 1901 /** 1902 * folio_pfn - Return the Page Frame Number of a folio. 1903 * @folio: The folio. 1904 * 1905 * A folio may contain multiple pages. The pages have consecutive 1906 * Page Frame Numbers. 1907 * 1908 * Return: The Page Frame Number of the first page in the folio. 1909 */ 1910 static inline unsigned long folio_pfn(struct folio *folio) 1911 { 1912 return page_to_pfn(&folio->page); 1913 } 1914 1915 static inline struct folio *pfn_folio(unsigned long pfn) 1916 { 1917 return page_folio(pfn_to_page(pfn)); 1918 } 1919 1920 /** 1921 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1922 * @folio: The folio. 1923 * 1924 * This function checks if a folio has been pinned via a call to 1925 * a function in the pin_user_pages() family. 1926 * 1927 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1928 * because it means "definitely not pinned for DMA", but true means "probably 1929 * pinned for DMA, but possibly a false positive due to having at least 1930 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1931 * 1932 * False positives are OK, because: a) it's unlikely for a folio to 1933 * get that many refcounts, and b) all the callers of this routine are 1934 * expected to be able to deal gracefully with a false positive. 1935 * 1936 * For large folios, the result will be exactly correct. That's because 1937 * we have more tracking data available: the _pincount field is used 1938 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1939 * 1940 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1941 * 1942 * Return: True, if it is likely that the folio has been "dma-pinned". 1943 * False, if the folio is definitely not dma-pinned. 1944 */ 1945 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1946 { 1947 if (folio_test_large(folio)) 1948 return atomic_read(&folio->_pincount) > 0; 1949 1950 /* 1951 * folio_ref_count() is signed. If that refcount overflows, then 1952 * folio_ref_count() returns a negative value, and callers will avoid 1953 * further incrementing the refcount. 1954 * 1955 * Here, for that overflow case, use the sign bit to count a little 1956 * bit higher via unsigned math, and thus still get an accurate result. 1957 */ 1958 return ((unsigned int)folio_ref_count(folio)) >= 1959 GUP_PIN_COUNTING_BIAS; 1960 } 1961 1962 /* 1963 * This should most likely only be called during fork() to see whether we 1964 * should break the cow immediately for an anon page on the src mm. 1965 * 1966 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1967 */ 1968 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1969 struct folio *folio) 1970 { 1971 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1972 1973 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1974 return false; 1975 1976 return folio_maybe_dma_pinned(folio); 1977 } 1978 1979 /** 1980 * is_zero_page - Query if a page is a zero page 1981 * @page: The page to query 1982 * 1983 * This returns true if @page is one of the permanent zero pages. 1984 */ 1985 static inline bool is_zero_page(const struct page *page) 1986 { 1987 return is_zero_pfn(page_to_pfn(page)); 1988 } 1989 1990 /** 1991 * is_zero_folio - Query if a folio is a zero page 1992 * @folio: The folio to query 1993 * 1994 * This returns true if @folio is one of the permanent zero pages. 1995 */ 1996 static inline bool is_zero_folio(const struct folio *folio) 1997 { 1998 return is_zero_page(&folio->page); 1999 } 2000 2001 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2002 #ifdef CONFIG_MIGRATION 2003 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2004 { 2005 #ifdef CONFIG_CMA 2006 int mt = folio_migratetype(folio); 2007 2008 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2009 return false; 2010 #endif 2011 /* The zero page can be "pinned" but gets special handling. */ 2012 if (is_zero_folio(folio)) 2013 return true; 2014 2015 /* Coherent device memory must always allow eviction. */ 2016 if (folio_is_device_coherent(folio)) 2017 return false; 2018 2019 /* Otherwise, non-movable zone folios can be pinned. */ 2020 return !folio_is_zone_movable(folio); 2021 2022 } 2023 #else 2024 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2025 { 2026 return true; 2027 } 2028 #endif 2029 2030 static inline void set_page_zone(struct page *page, enum zone_type zone) 2031 { 2032 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2033 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2034 } 2035 2036 static inline void set_page_node(struct page *page, unsigned long node) 2037 { 2038 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2039 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2040 } 2041 2042 static inline void set_page_links(struct page *page, enum zone_type zone, 2043 unsigned long node, unsigned long pfn) 2044 { 2045 set_page_zone(page, zone); 2046 set_page_node(page, node); 2047 #ifdef SECTION_IN_PAGE_FLAGS 2048 set_page_section(page, pfn_to_section_nr(pfn)); 2049 #endif 2050 } 2051 2052 /** 2053 * folio_nr_pages - The number of pages in the folio. 2054 * @folio: The folio. 2055 * 2056 * Return: A positive power of two. 2057 */ 2058 static inline long folio_nr_pages(const struct folio *folio) 2059 { 2060 if (!folio_test_large(folio)) 2061 return 1; 2062 #ifdef CONFIG_64BIT 2063 return folio->_folio_nr_pages; 2064 #else 2065 return 1L << (folio->_flags_1 & 0xff); 2066 #endif 2067 } 2068 2069 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2070 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2071 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2072 #else 2073 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2074 #endif 2075 2076 /* 2077 * compound_nr() returns the number of pages in this potentially compound 2078 * page. compound_nr() can be called on a tail page, and is defined to 2079 * return 1 in that case. 2080 */ 2081 static inline unsigned long compound_nr(struct page *page) 2082 { 2083 struct folio *folio = (struct folio *)page; 2084 2085 if (!test_bit(PG_head, &folio->flags)) 2086 return 1; 2087 #ifdef CONFIG_64BIT 2088 return folio->_folio_nr_pages; 2089 #else 2090 return 1L << (folio->_flags_1 & 0xff); 2091 #endif 2092 } 2093 2094 /** 2095 * thp_nr_pages - The number of regular pages in this huge page. 2096 * @page: The head page of a huge page. 2097 */ 2098 static inline int thp_nr_pages(struct page *page) 2099 { 2100 return folio_nr_pages((struct folio *)page); 2101 } 2102 2103 /** 2104 * folio_next - Move to the next physical folio. 2105 * @folio: The folio we're currently operating on. 2106 * 2107 * If you have physically contiguous memory which may span more than 2108 * one folio (eg a &struct bio_vec), use this function to move from one 2109 * folio to the next. Do not use it if the memory is only virtually 2110 * contiguous as the folios are almost certainly not adjacent to each 2111 * other. This is the folio equivalent to writing ``page++``. 2112 * 2113 * Context: We assume that the folios are refcounted and/or locked at a 2114 * higher level and do not adjust the reference counts. 2115 * Return: The next struct folio. 2116 */ 2117 static inline struct folio *folio_next(struct folio *folio) 2118 { 2119 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2120 } 2121 2122 /** 2123 * folio_shift - The size of the memory described by this folio. 2124 * @folio: The folio. 2125 * 2126 * A folio represents a number of bytes which is a power-of-two in size. 2127 * This function tells you which power-of-two the folio is. See also 2128 * folio_size() and folio_order(). 2129 * 2130 * Context: The caller should have a reference on the folio to prevent 2131 * it from being split. It is not necessary for the folio to be locked. 2132 * Return: The base-2 logarithm of the size of this folio. 2133 */ 2134 static inline unsigned int folio_shift(const struct folio *folio) 2135 { 2136 return PAGE_SHIFT + folio_order(folio); 2137 } 2138 2139 /** 2140 * folio_size - The number of bytes in a folio. 2141 * @folio: The folio. 2142 * 2143 * Context: The caller should have a reference on the folio to prevent 2144 * it from being split. It is not necessary for the folio to be locked. 2145 * Return: The number of bytes in this folio. 2146 */ 2147 static inline size_t folio_size(const struct folio *folio) 2148 { 2149 return PAGE_SIZE << folio_order(folio); 2150 } 2151 2152 /** 2153 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2154 * tables of more than one MM 2155 * @folio: The folio. 2156 * 2157 * This function checks if the folio is currently mapped into more than one 2158 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2159 * ("mapped exclusively"). 2160 * 2161 * For KSM folios, this function also returns "mapped shared" when a folio is 2162 * mapped multiple times into the same MM, because the individual page mappings 2163 * are independent. 2164 * 2165 * As precise information is not easily available for all folios, this function 2166 * estimates the number of MMs ("sharers") that are currently mapping a folio 2167 * using the number of times the first page of the folio is currently mapped 2168 * into page tables. 2169 * 2170 * For small anonymous folios and anonymous hugetlb folios, the return 2171 * value will be exactly correct: non-KSM folios can only be mapped at most once 2172 * into an MM, and they cannot be partially mapped. KSM folios are 2173 * considered shared even if mapped multiple times into the same MM. 2174 * 2175 * For other folios, the result can be fuzzy: 2176 * #. For partially-mappable large folios (THP), the return value can wrongly 2177 * indicate "mapped exclusively" (false negative) when the folio is 2178 * only partially mapped into at least one MM. 2179 * #. For pagecache folios (including hugetlb), the return value can wrongly 2180 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2181 * cover the same file range. 2182 * 2183 * Further, this function only considers current page table mappings that 2184 * are tracked using the folio mapcount(s). 2185 * 2186 * This function does not consider: 2187 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2188 * pagecache, temporary unmapping for migration). 2189 * #. If the folio is mapped differently (VM_PFNMAP). 2190 * #. If hugetlb page table sharing applies. Callers might want to check 2191 * hugetlb_pmd_shared(). 2192 * 2193 * Return: Whether the folio is estimated to be mapped into more than one MM. 2194 */ 2195 static inline bool folio_likely_mapped_shared(struct folio *folio) 2196 { 2197 int mapcount = folio_mapcount(folio); 2198 2199 /* Only partially-mappable folios require more care. */ 2200 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2201 return mapcount > 1; 2202 2203 /* A single mapping implies "mapped exclusively". */ 2204 if (mapcount <= 1) 2205 return false; 2206 2207 /* If any page is mapped more than once we treat it "mapped shared". */ 2208 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2209 return true; 2210 2211 /* Let's guess based on the first subpage. */ 2212 return atomic_read(&folio->_mapcount) > 0; 2213 } 2214 2215 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2216 static inline int arch_make_folio_accessible(struct folio *folio) 2217 { 2218 return 0; 2219 } 2220 #endif 2221 2222 /* 2223 * Some inline functions in vmstat.h depend on page_zone() 2224 */ 2225 #include <linux/vmstat.h> 2226 2227 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2228 #define HASHED_PAGE_VIRTUAL 2229 #endif 2230 2231 #if defined(WANT_PAGE_VIRTUAL) 2232 static inline void *page_address(const struct page *page) 2233 { 2234 return page->virtual; 2235 } 2236 static inline void set_page_address(struct page *page, void *address) 2237 { 2238 page->virtual = address; 2239 } 2240 #define page_address_init() do { } while(0) 2241 #endif 2242 2243 #if defined(HASHED_PAGE_VIRTUAL) 2244 void *page_address(const struct page *page); 2245 void set_page_address(struct page *page, void *virtual); 2246 void page_address_init(void); 2247 #endif 2248 2249 static __always_inline void *lowmem_page_address(const struct page *page) 2250 { 2251 return page_to_virt(page); 2252 } 2253 2254 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2255 #define page_address(page) lowmem_page_address(page) 2256 #define set_page_address(page, address) do { } while(0) 2257 #define page_address_init() do { } while(0) 2258 #endif 2259 2260 static inline void *folio_address(const struct folio *folio) 2261 { 2262 return page_address(&folio->page); 2263 } 2264 2265 /* 2266 * Return true only if the page has been allocated with 2267 * ALLOC_NO_WATERMARKS and the low watermark was not 2268 * met implying that the system is under some pressure. 2269 */ 2270 static inline bool page_is_pfmemalloc(const struct page *page) 2271 { 2272 /* 2273 * lru.next has bit 1 set if the page is allocated from the 2274 * pfmemalloc reserves. Callers may simply overwrite it if 2275 * they do not need to preserve that information. 2276 */ 2277 return (uintptr_t)page->lru.next & BIT(1); 2278 } 2279 2280 /* 2281 * Return true only if the folio has been allocated with 2282 * ALLOC_NO_WATERMARKS and the low watermark was not 2283 * met implying that the system is under some pressure. 2284 */ 2285 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2286 { 2287 /* 2288 * lru.next has bit 1 set if the page is allocated from the 2289 * pfmemalloc reserves. Callers may simply overwrite it if 2290 * they do not need to preserve that information. 2291 */ 2292 return (uintptr_t)folio->lru.next & BIT(1); 2293 } 2294 2295 /* 2296 * Only to be called by the page allocator on a freshly allocated 2297 * page. 2298 */ 2299 static inline void set_page_pfmemalloc(struct page *page) 2300 { 2301 page->lru.next = (void *)BIT(1); 2302 } 2303 2304 static inline void clear_page_pfmemalloc(struct page *page) 2305 { 2306 page->lru.next = NULL; 2307 } 2308 2309 /* 2310 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2311 */ 2312 extern void pagefault_out_of_memory(void); 2313 2314 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2315 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2316 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2317 2318 /* 2319 * Parameter block passed down to zap_pte_range in exceptional cases. 2320 */ 2321 struct zap_details { 2322 struct folio *single_folio; /* Locked folio to be unmapped */ 2323 bool even_cows; /* Zap COWed private pages too? */ 2324 zap_flags_t zap_flags; /* Extra flags for zapping */ 2325 }; 2326 2327 /* 2328 * Whether to drop the pte markers, for example, the uffd-wp information for 2329 * file-backed memory. This should only be specified when we will completely 2330 * drop the page in the mm, either by truncation or unmapping of the vma. By 2331 * default, the flag is not set. 2332 */ 2333 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2334 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2335 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2336 2337 #ifdef CONFIG_SCHED_MM_CID 2338 void sched_mm_cid_before_execve(struct task_struct *t); 2339 void sched_mm_cid_after_execve(struct task_struct *t); 2340 void sched_mm_cid_fork(struct task_struct *t); 2341 void sched_mm_cid_exit_signals(struct task_struct *t); 2342 static inline int task_mm_cid(struct task_struct *t) 2343 { 2344 return t->mm_cid; 2345 } 2346 #else 2347 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2348 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2349 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2350 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2351 static inline int task_mm_cid(struct task_struct *t) 2352 { 2353 /* 2354 * Use the processor id as a fall-back when the mm cid feature is 2355 * disabled. This provides functional per-cpu data structure accesses 2356 * in user-space, althrough it won't provide the memory usage benefits. 2357 */ 2358 return raw_smp_processor_id(); 2359 } 2360 #endif 2361 2362 #ifdef CONFIG_MMU 2363 extern bool can_do_mlock(void); 2364 #else 2365 static inline bool can_do_mlock(void) { return false; } 2366 #endif 2367 extern int user_shm_lock(size_t, struct ucounts *); 2368 extern void user_shm_unlock(size_t, struct ucounts *); 2369 2370 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2371 pte_t pte); 2372 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2373 pte_t pte); 2374 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2375 unsigned long addr, pmd_t pmd); 2376 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2377 pmd_t pmd); 2378 2379 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2380 unsigned long size); 2381 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2382 unsigned long size, struct zap_details *details); 2383 static inline void zap_vma_pages(struct vm_area_struct *vma) 2384 { 2385 zap_page_range_single(vma, vma->vm_start, 2386 vma->vm_end - vma->vm_start, NULL); 2387 } 2388 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2389 struct vm_area_struct *start_vma, unsigned long start, 2390 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2391 2392 struct mmu_notifier_range; 2393 2394 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2395 unsigned long end, unsigned long floor, unsigned long ceiling); 2396 int 2397 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2398 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2399 void *buf, int len, int write); 2400 2401 struct follow_pfnmap_args { 2402 /** 2403 * Inputs: 2404 * @vma: Pointer to @vm_area_struct struct 2405 * @address: the virtual address to walk 2406 */ 2407 struct vm_area_struct *vma; 2408 unsigned long address; 2409 /** 2410 * Internals: 2411 * 2412 * The caller shouldn't touch any of these. 2413 */ 2414 spinlock_t *lock; 2415 pte_t *ptep; 2416 /** 2417 * Outputs: 2418 * 2419 * @pfn: the PFN of the address 2420 * @pgprot: the pgprot_t of the mapping 2421 * @writable: whether the mapping is writable 2422 * @special: whether the mapping is a special mapping (real PFN maps) 2423 */ 2424 unsigned long pfn; 2425 pgprot_t pgprot; 2426 bool writable; 2427 bool special; 2428 }; 2429 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2430 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2431 2432 extern void truncate_pagecache(struct inode *inode, loff_t new); 2433 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2434 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2435 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2436 int generic_error_remove_folio(struct address_space *mapping, 2437 struct folio *folio); 2438 2439 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2440 unsigned long address, struct pt_regs *regs); 2441 2442 #ifdef CONFIG_MMU 2443 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2444 unsigned long address, unsigned int flags, 2445 struct pt_regs *regs); 2446 extern int fixup_user_fault(struct mm_struct *mm, 2447 unsigned long address, unsigned int fault_flags, 2448 bool *unlocked); 2449 void unmap_mapping_pages(struct address_space *mapping, 2450 pgoff_t start, pgoff_t nr, bool even_cows); 2451 void unmap_mapping_range(struct address_space *mapping, 2452 loff_t const holebegin, loff_t const holelen, int even_cows); 2453 #else 2454 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2455 unsigned long address, unsigned int flags, 2456 struct pt_regs *regs) 2457 { 2458 /* should never happen if there's no MMU */ 2459 BUG(); 2460 return VM_FAULT_SIGBUS; 2461 } 2462 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2463 unsigned int fault_flags, bool *unlocked) 2464 { 2465 /* should never happen if there's no MMU */ 2466 BUG(); 2467 return -EFAULT; 2468 } 2469 static inline void unmap_mapping_pages(struct address_space *mapping, 2470 pgoff_t start, pgoff_t nr, bool even_cows) { } 2471 static inline void unmap_mapping_range(struct address_space *mapping, 2472 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2473 #endif 2474 2475 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2476 loff_t const holebegin, loff_t const holelen) 2477 { 2478 unmap_mapping_range(mapping, holebegin, holelen, 0); 2479 } 2480 2481 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2482 unsigned long addr); 2483 2484 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2485 void *buf, int len, unsigned int gup_flags); 2486 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2487 void *buf, int len, unsigned int gup_flags); 2488 2489 long get_user_pages_remote(struct mm_struct *mm, 2490 unsigned long start, unsigned long nr_pages, 2491 unsigned int gup_flags, struct page **pages, 2492 int *locked); 2493 long pin_user_pages_remote(struct mm_struct *mm, 2494 unsigned long start, unsigned long nr_pages, 2495 unsigned int gup_flags, struct page **pages, 2496 int *locked); 2497 2498 /* 2499 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2500 */ 2501 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2502 unsigned long addr, 2503 int gup_flags, 2504 struct vm_area_struct **vmap) 2505 { 2506 struct page *page; 2507 struct vm_area_struct *vma; 2508 int got; 2509 2510 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2511 return ERR_PTR(-EINVAL); 2512 2513 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2514 2515 if (got < 0) 2516 return ERR_PTR(got); 2517 2518 vma = vma_lookup(mm, addr); 2519 if (WARN_ON_ONCE(!vma)) { 2520 put_page(page); 2521 return ERR_PTR(-EINVAL); 2522 } 2523 2524 *vmap = vma; 2525 return page; 2526 } 2527 2528 long get_user_pages(unsigned long start, unsigned long nr_pages, 2529 unsigned int gup_flags, struct page **pages); 2530 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2531 unsigned int gup_flags, struct page **pages); 2532 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2533 struct page **pages, unsigned int gup_flags); 2534 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2535 struct page **pages, unsigned int gup_flags); 2536 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2537 struct folio **folios, unsigned int max_folios, 2538 pgoff_t *offset); 2539 int folio_add_pins(struct folio *folio, unsigned int pins); 2540 2541 int get_user_pages_fast(unsigned long start, int nr_pages, 2542 unsigned int gup_flags, struct page **pages); 2543 int pin_user_pages_fast(unsigned long start, int nr_pages, 2544 unsigned int gup_flags, struct page **pages); 2545 void folio_add_pin(struct folio *folio); 2546 2547 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2548 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2549 struct task_struct *task, bool bypass_rlim); 2550 2551 struct kvec; 2552 struct page *get_dump_page(unsigned long addr); 2553 2554 bool folio_mark_dirty(struct folio *folio); 2555 bool set_page_dirty(struct page *page); 2556 int set_page_dirty_lock(struct page *page); 2557 2558 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2559 2560 /* 2561 * Flags used by change_protection(). For now we make it a bitmap so 2562 * that we can pass in multiple flags just like parameters. However 2563 * for now all the callers are only use one of the flags at the same 2564 * time. 2565 */ 2566 /* 2567 * Whether we should manually check if we can map individual PTEs writable, 2568 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2569 * PTEs automatically in a writable mapping. 2570 */ 2571 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2572 /* Whether this protection change is for NUMA hints */ 2573 #define MM_CP_PROT_NUMA (1UL << 1) 2574 /* Whether this change is for write protecting */ 2575 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2576 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2577 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2578 MM_CP_UFFD_WP_RESOLVE) 2579 2580 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2581 pte_t pte); 2582 extern long change_protection(struct mmu_gather *tlb, 2583 struct vm_area_struct *vma, unsigned long start, 2584 unsigned long end, unsigned long cp_flags); 2585 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2586 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2587 unsigned long start, unsigned long end, unsigned long newflags); 2588 2589 /* 2590 * doesn't attempt to fault and will return short. 2591 */ 2592 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2593 unsigned int gup_flags, struct page **pages); 2594 2595 static inline bool get_user_page_fast_only(unsigned long addr, 2596 unsigned int gup_flags, struct page **pagep) 2597 { 2598 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2599 } 2600 /* 2601 * per-process(per-mm_struct) statistics. 2602 */ 2603 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2604 { 2605 return percpu_counter_read_positive(&mm->rss_stat[member]); 2606 } 2607 2608 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2609 2610 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2611 { 2612 percpu_counter_add(&mm->rss_stat[member], value); 2613 2614 mm_trace_rss_stat(mm, member); 2615 } 2616 2617 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2618 { 2619 percpu_counter_inc(&mm->rss_stat[member]); 2620 2621 mm_trace_rss_stat(mm, member); 2622 } 2623 2624 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2625 { 2626 percpu_counter_dec(&mm->rss_stat[member]); 2627 2628 mm_trace_rss_stat(mm, member); 2629 } 2630 2631 /* Optimized variant when folio is already known not to be anon */ 2632 static inline int mm_counter_file(struct folio *folio) 2633 { 2634 if (folio_test_swapbacked(folio)) 2635 return MM_SHMEMPAGES; 2636 return MM_FILEPAGES; 2637 } 2638 2639 static inline int mm_counter(struct folio *folio) 2640 { 2641 if (folio_test_anon(folio)) 2642 return MM_ANONPAGES; 2643 return mm_counter_file(folio); 2644 } 2645 2646 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2647 { 2648 return get_mm_counter(mm, MM_FILEPAGES) + 2649 get_mm_counter(mm, MM_ANONPAGES) + 2650 get_mm_counter(mm, MM_SHMEMPAGES); 2651 } 2652 2653 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2654 { 2655 return max(mm->hiwater_rss, get_mm_rss(mm)); 2656 } 2657 2658 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2659 { 2660 return max(mm->hiwater_vm, mm->total_vm); 2661 } 2662 2663 static inline void update_hiwater_rss(struct mm_struct *mm) 2664 { 2665 unsigned long _rss = get_mm_rss(mm); 2666 2667 if ((mm)->hiwater_rss < _rss) 2668 (mm)->hiwater_rss = _rss; 2669 } 2670 2671 static inline void update_hiwater_vm(struct mm_struct *mm) 2672 { 2673 if (mm->hiwater_vm < mm->total_vm) 2674 mm->hiwater_vm = mm->total_vm; 2675 } 2676 2677 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2678 { 2679 mm->hiwater_rss = get_mm_rss(mm); 2680 } 2681 2682 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2683 struct mm_struct *mm) 2684 { 2685 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2686 2687 if (*maxrss < hiwater_rss) 2688 *maxrss = hiwater_rss; 2689 } 2690 2691 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2692 static inline int pte_special(pte_t pte) 2693 { 2694 return 0; 2695 } 2696 2697 static inline pte_t pte_mkspecial(pte_t pte) 2698 { 2699 return pte; 2700 } 2701 #endif 2702 2703 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2704 static inline bool pmd_special(pmd_t pmd) 2705 { 2706 return false; 2707 } 2708 2709 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2710 { 2711 return pmd; 2712 } 2713 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2714 2715 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2716 static inline bool pud_special(pud_t pud) 2717 { 2718 return false; 2719 } 2720 2721 static inline pud_t pud_mkspecial(pud_t pud) 2722 { 2723 return pud; 2724 } 2725 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2726 2727 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2728 static inline int pte_devmap(pte_t pte) 2729 { 2730 return 0; 2731 } 2732 #endif 2733 2734 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2735 spinlock_t **ptl); 2736 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2737 spinlock_t **ptl) 2738 { 2739 pte_t *ptep; 2740 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2741 return ptep; 2742 } 2743 2744 #ifdef __PAGETABLE_P4D_FOLDED 2745 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2746 unsigned long address) 2747 { 2748 return 0; 2749 } 2750 #else 2751 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2752 #endif 2753 2754 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2755 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2756 unsigned long address) 2757 { 2758 return 0; 2759 } 2760 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2761 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2762 2763 #else 2764 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2765 2766 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2767 { 2768 if (mm_pud_folded(mm)) 2769 return; 2770 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2771 } 2772 2773 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2774 { 2775 if (mm_pud_folded(mm)) 2776 return; 2777 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2778 } 2779 #endif 2780 2781 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2782 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2783 unsigned long address) 2784 { 2785 return 0; 2786 } 2787 2788 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2789 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2790 2791 #else 2792 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2793 2794 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2795 { 2796 if (mm_pmd_folded(mm)) 2797 return; 2798 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2799 } 2800 2801 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2802 { 2803 if (mm_pmd_folded(mm)) 2804 return; 2805 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2806 } 2807 #endif 2808 2809 #ifdef CONFIG_MMU 2810 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2811 { 2812 atomic_long_set(&mm->pgtables_bytes, 0); 2813 } 2814 2815 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2816 { 2817 return atomic_long_read(&mm->pgtables_bytes); 2818 } 2819 2820 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2821 { 2822 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2823 } 2824 2825 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2826 { 2827 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2828 } 2829 #else 2830 2831 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2832 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2833 { 2834 return 0; 2835 } 2836 2837 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2838 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2839 #endif 2840 2841 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2842 int __pte_alloc_kernel(pmd_t *pmd); 2843 2844 #if defined(CONFIG_MMU) 2845 2846 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2847 unsigned long address) 2848 { 2849 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2850 NULL : p4d_offset(pgd, address); 2851 } 2852 2853 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2854 unsigned long address) 2855 { 2856 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2857 NULL : pud_offset(p4d, address); 2858 } 2859 2860 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2861 { 2862 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2863 NULL: pmd_offset(pud, address); 2864 } 2865 #endif /* CONFIG_MMU */ 2866 2867 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2868 { 2869 return page_ptdesc(virt_to_page(x)); 2870 } 2871 2872 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2873 { 2874 return page_to_virt(ptdesc_page(pt)); 2875 } 2876 2877 static inline void *ptdesc_address(const struct ptdesc *pt) 2878 { 2879 return folio_address(ptdesc_folio(pt)); 2880 } 2881 2882 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2883 { 2884 return folio_test_reserved(ptdesc_folio(pt)); 2885 } 2886 2887 /** 2888 * pagetable_alloc - Allocate pagetables 2889 * @gfp: GFP flags 2890 * @order: desired pagetable order 2891 * 2892 * pagetable_alloc allocates memory for page tables as well as a page table 2893 * descriptor to describe that memory. 2894 * 2895 * Return: The ptdesc describing the allocated page tables. 2896 */ 2897 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2898 { 2899 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2900 2901 return page_ptdesc(page); 2902 } 2903 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2904 2905 /** 2906 * pagetable_free - Free pagetables 2907 * @pt: The page table descriptor 2908 * 2909 * pagetable_free frees the memory of all page tables described by a page 2910 * table descriptor and the memory for the descriptor itself. 2911 */ 2912 static inline void pagetable_free(struct ptdesc *pt) 2913 { 2914 struct page *page = ptdesc_page(pt); 2915 2916 __free_pages(page, compound_order(page)); 2917 } 2918 2919 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2920 #if ALLOC_SPLIT_PTLOCKS 2921 void __init ptlock_cache_init(void); 2922 bool ptlock_alloc(struct ptdesc *ptdesc); 2923 void ptlock_free(struct ptdesc *ptdesc); 2924 2925 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2926 { 2927 return ptdesc->ptl; 2928 } 2929 #else /* ALLOC_SPLIT_PTLOCKS */ 2930 static inline void ptlock_cache_init(void) 2931 { 2932 } 2933 2934 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2935 { 2936 return true; 2937 } 2938 2939 static inline void ptlock_free(struct ptdesc *ptdesc) 2940 { 2941 } 2942 2943 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2944 { 2945 return &ptdesc->ptl; 2946 } 2947 #endif /* ALLOC_SPLIT_PTLOCKS */ 2948 2949 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2950 { 2951 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2952 } 2953 2954 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2955 { 2956 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2957 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2958 return ptlock_ptr(virt_to_ptdesc(pte)); 2959 } 2960 2961 static inline bool ptlock_init(struct ptdesc *ptdesc) 2962 { 2963 /* 2964 * prep_new_page() initialize page->private (and therefore page->ptl) 2965 * with 0. Make sure nobody took it in use in between. 2966 * 2967 * It can happen if arch try to use slab for page table allocation: 2968 * slab code uses page->slab_cache, which share storage with page->ptl. 2969 */ 2970 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2971 if (!ptlock_alloc(ptdesc)) 2972 return false; 2973 spin_lock_init(ptlock_ptr(ptdesc)); 2974 return true; 2975 } 2976 2977 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2978 /* 2979 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2980 */ 2981 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2982 { 2983 return &mm->page_table_lock; 2984 } 2985 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2986 { 2987 return &mm->page_table_lock; 2988 } 2989 static inline void ptlock_cache_init(void) {} 2990 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2991 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2992 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2993 2994 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2995 { 2996 struct folio *folio = ptdesc_folio(ptdesc); 2997 2998 if (!ptlock_init(ptdesc)) 2999 return false; 3000 __folio_set_pgtable(folio); 3001 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3002 return true; 3003 } 3004 3005 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 3006 { 3007 struct folio *folio = ptdesc_folio(ptdesc); 3008 3009 ptlock_free(ptdesc); 3010 __folio_clear_pgtable(folio); 3011 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3012 } 3013 3014 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3015 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3016 { 3017 return __pte_offset_map(pmd, addr, NULL); 3018 } 3019 3020 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3021 unsigned long addr, spinlock_t **ptlp); 3022 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3023 unsigned long addr, spinlock_t **ptlp) 3024 { 3025 pte_t *pte; 3026 3027 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3028 return pte; 3029 } 3030 3031 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3032 unsigned long addr, spinlock_t **ptlp); 3033 3034 #define pte_unmap_unlock(pte, ptl) do { \ 3035 spin_unlock(ptl); \ 3036 pte_unmap(pte); \ 3037 } while (0) 3038 3039 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3040 3041 #define pte_alloc_map(mm, pmd, address) \ 3042 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3043 3044 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3045 (pte_alloc(mm, pmd) ? \ 3046 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3047 3048 #define pte_alloc_kernel(pmd, address) \ 3049 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3050 NULL: pte_offset_kernel(pmd, address)) 3051 3052 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3053 3054 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3055 { 3056 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3057 return virt_to_page((void *)((unsigned long) pmd & mask)); 3058 } 3059 3060 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3061 { 3062 return page_ptdesc(pmd_pgtable_page(pmd)); 3063 } 3064 3065 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3066 { 3067 return ptlock_ptr(pmd_ptdesc(pmd)); 3068 } 3069 3070 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3071 { 3072 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3073 ptdesc->pmd_huge_pte = NULL; 3074 #endif 3075 return ptlock_init(ptdesc); 3076 } 3077 3078 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3079 { 3080 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3081 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3082 #endif 3083 ptlock_free(ptdesc); 3084 } 3085 3086 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3087 3088 #else 3089 3090 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3091 { 3092 return &mm->page_table_lock; 3093 } 3094 3095 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3096 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3097 3098 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3099 3100 #endif 3101 3102 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3103 { 3104 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3105 spin_lock(ptl); 3106 return ptl; 3107 } 3108 3109 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3110 { 3111 struct folio *folio = ptdesc_folio(ptdesc); 3112 3113 if (!pmd_ptlock_init(ptdesc)) 3114 return false; 3115 __folio_set_pgtable(folio); 3116 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3117 return true; 3118 } 3119 3120 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3121 { 3122 struct folio *folio = ptdesc_folio(ptdesc); 3123 3124 pmd_ptlock_free(ptdesc); 3125 __folio_clear_pgtable(folio); 3126 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3127 } 3128 3129 /* 3130 * No scalability reason to split PUD locks yet, but follow the same pattern 3131 * as the PMD locks to make it easier if we decide to. The VM should not be 3132 * considered ready to switch to split PUD locks yet; there may be places 3133 * which need to be converted from page_table_lock. 3134 */ 3135 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3136 { 3137 return &mm->page_table_lock; 3138 } 3139 3140 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3141 { 3142 spinlock_t *ptl = pud_lockptr(mm, pud); 3143 3144 spin_lock(ptl); 3145 return ptl; 3146 } 3147 3148 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3149 { 3150 struct folio *folio = ptdesc_folio(ptdesc); 3151 3152 __folio_set_pgtable(folio); 3153 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3154 } 3155 3156 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3157 { 3158 struct folio *folio = ptdesc_folio(ptdesc); 3159 3160 __folio_clear_pgtable(folio); 3161 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3162 } 3163 3164 extern void __init pagecache_init(void); 3165 extern void free_initmem(void); 3166 3167 /* 3168 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3169 * into the buddy system. The freed pages will be poisoned with pattern 3170 * "poison" if it's within range [0, UCHAR_MAX]. 3171 * Return pages freed into the buddy system. 3172 */ 3173 extern unsigned long free_reserved_area(void *start, void *end, 3174 int poison, const char *s); 3175 3176 extern void adjust_managed_page_count(struct page *page, long count); 3177 3178 extern void reserve_bootmem_region(phys_addr_t start, 3179 phys_addr_t end, int nid); 3180 3181 /* Free the reserved page into the buddy system, so it gets managed. */ 3182 void free_reserved_page(struct page *page); 3183 #define free_highmem_page(page) free_reserved_page(page) 3184 3185 static inline void mark_page_reserved(struct page *page) 3186 { 3187 SetPageReserved(page); 3188 adjust_managed_page_count(page, -1); 3189 } 3190 3191 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3192 { 3193 free_reserved_page(ptdesc_page(pt)); 3194 } 3195 3196 /* 3197 * Default method to free all the __init memory into the buddy system. 3198 * The freed pages will be poisoned with pattern "poison" if it's within 3199 * range [0, UCHAR_MAX]. 3200 * Return pages freed into the buddy system. 3201 */ 3202 static inline unsigned long free_initmem_default(int poison) 3203 { 3204 extern char __init_begin[], __init_end[]; 3205 3206 return free_reserved_area(&__init_begin, &__init_end, 3207 poison, "unused kernel image (initmem)"); 3208 } 3209 3210 static inline unsigned long get_num_physpages(void) 3211 { 3212 int nid; 3213 unsigned long phys_pages = 0; 3214 3215 for_each_online_node(nid) 3216 phys_pages += node_present_pages(nid); 3217 3218 return phys_pages; 3219 } 3220 3221 /* 3222 * Using memblock node mappings, an architecture may initialise its 3223 * zones, allocate the backing mem_map and account for memory holes in an 3224 * architecture independent manner. 3225 * 3226 * An architecture is expected to register range of page frames backed by 3227 * physical memory with memblock_add[_node]() before calling 3228 * free_area_init() passing in the PFN each zone ends at. At a basic 3229 * usage, an architecture is expected to do something like 3230 * 3231 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3232 * max_highmem_pfn}; 3233 * for_each_valid_physical_page_range() 3234 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3235 * free_area_init(max_zone_pfns); 3236 */ 3237 void free_area_init(unsigned long *max_zone_pfn); 3238 unsigned long node_map_pfn_alignment(void); 3239 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3240 unsigned long end_pfn); 3241 extern void get_pfn_range_for_nid(unsigned int nid, 3242 unsigned long *start_pfn, unsigned long *end_pfn); 3243 3244 #ifndef CONFIG_NUMA 3245 static inline int early_pfn_to_nid(unsigned long pfn) 3246 { 3247 return 0; 3248 } 3249 #else 3250 /* please see mm/page_alloc.c */ 3251 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3252 #endif 3253 3254 extern void mem_init(void); 3255 extern void __init mmap_init(void); 3256 3257 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3258 static inline void show_mem(void) 3259 { 3260 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3261 } 3262 extern long si_mem_available(void); 3263 extern void si_meminfo(struct sysinfo * val); 3264 extern void si_meminfo_node(struct sysinfo *val, int nid); 3265 3266 extern __printf(3, 4) 3267 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3268 3269 extern void setup_per_cpu_pageset(void); 3270 3271 /* nommu.c */ 3272 extern atomic_long_t mmap_pages_allocated; 3273 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3274 3275 /* interval_tree.c */ 3276 void vma_interval_tree_insert(struct vm_area_struct *node, 3277 struct rb_root_cached *root); 3278 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3279 struct vm_area_struct *prev, 3280 struct rb_root_cached *root); 3281 void vma_interval_tree_remove(struct vm_area_struct *node, 3282 struct rb_root_cached *root); 3283 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3284 unsigned long start, unsigned long last); 3285 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3286 unsigned long start, unsigned long last); 3287 3288 #define vma_interval_tree_foreach(vma, root, start, last) \ 3289 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3290 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3291 3292 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3293 struct rb_root_cached *root); 3294 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3295 struct rb_root_cached *root); 3296 struct anon_vma_chain * 3297 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3298 unsigned long start, unsigned long last); 3299 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3300 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3301 #ifdef CONFIG_DEBUG_VM_RB 3302 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3303 #endif 3304 3305 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3306 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3307 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3308 3309 /* mmap.c */ 3310 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3311 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3312 extern void exit_mmap(struct mm_struct *); 3313 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3314 3315 static inline int check_data_rlimit(unsigned long rlim, 3316 unsigned long new, 3317 unsigned long start, 3318 unsigned long end_data, 3319 unsigned long start_data) 3320 { 3321 if (rlim < RLIM_INFINITY) { 3322 if (((new - start) + (end_data - start_data)) > rlim) 3323 return -ENOSPC; 3324 } 3325 3326 return 0; 3327 } 3328 3329 extern int mm_take_all_locks(struct mm_struct *mm); 3330 extern void mm_drop_all_locks(struct mm_struct *mm); 3331 3332 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3333 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3334 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3335 extern struct file *get_task_exe_file(struct task_struct *task); 3336 3337 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3338 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3339 3340 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3341 const struct vm_special_mapping *sm); 3342 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3343 unsigned long addr, unsigned long len, 3344 unsigned long flags, 3345 const struct vm_special_mapping *spec); 3346 3347 unsigned long randomize_stack_top(unsigned long stack_top); 3348 unsigned long randomize_page(unsigned long start, unsigned long range); 3349 3350 unsigned long 3351 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3352 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3353 3354 static inline unsigned long 3355 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3356 unsigned long pgoff, unsigned long flags) 3357 { 3358 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3359 } 3360 3361 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3362 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3363 struct list_head *uf); 3364 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3365 unsigned long len, unsigned long prot, unsigned long flags, 3366 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3367 struct list_head *uf); 3368 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3369 unsigned long start, size_t len, struct list_head *uf, 3370 bool unlock); 3371 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3372 struct mm_struct *mm, unsigned long start, 3373 unsigned long end, struct list_head *uf, bool unlock); 3374 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3375 struct list_head *uf); 3376 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3377 3378 #ifdef CONFIG_MMU 3379 extern int __mm_populate(unsigned long addr, unsigned long len, 3380 int ignore_errors); 3381 static inline void mm_populate(unsigned long addr, unsigned long len) 3382 { 3383 /* Ignore errors */ 3384 (void) __mm_populate(addr, len, 1); 3385 } 3386 #else 3387 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3388 #endif 3389 3390 /* This takes the mm semaphore itself */ 3391 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3392 extern int vm_munmap(unsigned long, size_t); 3393 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3394 unsigned long, unsigned long, 3395 unsigned long, unsigned long); 3396 3397 struct vm_unmapped_area_info { 3398 #define VM_UNMAPPED_AREA_TOPDOWN 1 3399 unsigned long flags; 3400 unsigned long length; 3401 unsigned long low_limit; 3402 unsigned long high_limit; 3403 unsigned long align_mask; 3404 unsigned long align_offset; 3405 unsigned long start_gap; 3406 }; 3407 3408 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3409 3410 /* truncate.c */ 3411 extern void truncate_inode_pages(struct address_space *, loff_t); 3412 extern void truncate_inode_pages_range(struct address_space *, 3413 loff_t lstart, loff_t lend); 3414 extern void truncate_inode_pages_final(struct address_space *); 3415 3416 /* generic vm_area_ops exported for stackable file systems */ 3417 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3418 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3419 pgoff_t start_pgoff, pgoff_t end_pgoff); 3420 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3421 3422 extern unsigned long stack_guard_gap; 3423 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3424 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3425 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3426 3427 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3428 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3429 3430 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3431 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3432 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3433 struct vm_area_struct **pprev); 3434 3435 /* 3436 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3437 * NULL if none. Assume start_addr < end_addr. 3438 */ 3439 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3440 unsigned long start_addr, unsigned long end_addr); 3441 3442 /** 3443 * vma_lookup() - Find a VMA at a specific address 3444 * @mm: The process address space. 3445 * @addr: The user address. 3446 * 3447 * Return: The vm_area_struct at the given address, %NULL otherwise. 3448 */ 3449 static inline 3450 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3451 { 3452 return mtree_load(&mm->mm_mt, addr); 3453 } 3454 3455 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3456 { 3457 if (vma->vm_flags & VM_GROWSDOWN) 3458 return stack_guard_gap; 3459 3460 /* See reasoning around the VM_SHADOW_STACK definition */ 3461 if (vma->vm_flags & VM_SHADOW_STACK) 3462 return PAGE_SIZE; 3463 3464 return 0; 3465 } 3466 3467 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3468 { 3469 unsigned long gap = stack_guard_start_gap(vma); 3470 unsigned long vm_start = vma->vm_start; 3471 3472 vm_start -= gap; 3473 if (vm_start > vma->vm_start) 3474 vm_start = 0; 3475 return vm_start; 3476 } 3477 3478 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3479 { 3480 unsigned long vm_end = vma->vm_end; 3481 3482 if (vma->vm_flags & VM_GROWSUP) { 3483 vm_end += stack_guard_gap; 3484 if (vm_end < vma->vm_end) 3485 vm_end = -PAGE_SIZE; 3486 } 3487 return vm_end; 3488 } 3489 3490 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3491 { 3492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3493 } 3494 3495 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3496 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3497 unsigned long vm_start, unsigned long vm_end) 3498 { 3499 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3500 3501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3502 vma = NULL; 3503 3504 return vma; 3505 } 3506 3507 static inline bool range_in_vma(struct vm_area_struct *vma, 3508 unsigned long start, unsigned long end) 3509 { 3510 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3511 } 3512 3513 #ifdef CONFIG_MMU 3514 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3515 void vma_set_page_prot(struct vm_area_struct *vma); 3516 #else 3517 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3518 { 3519 return __pgprot(0); 3520 } 3521 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3522 { 3523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3524 } 3525 #endif 3526 3527 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3528 3529 #ifdef CONFIG_NUMA_BALANCING 3530 unsigned long change_prot_numa(struct vm_area_struct *vma, 3531 unsigned long start, unsigned long end); 3532 #endif 3533 3534 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3535 unsigned long addr); 3536 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3537 unsigned long pfn, unsigned long size, pgprot_t); 3538 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3539 unsigned long pfn, unsigned long size, pgprot_t prot); 3540 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3541 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3542 struct page **pages, unsigned long *num); 3543 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3544 unsigned long num); 3545 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3546 unsigned long num); 3547 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3548 unsigned long pfn); 3549 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3550 unsigned long pfn, pgprot_t pgprot); 3551 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3552 pfn_t pfn); 3553 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3554 unsigned long addr, pfn_t pfn); 3555 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3556 3557 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3558 unsigned long addr, struct page *page) 3559 { 3560 int err = vm_insert_page(vma, addr, page); 3561 3562 if (err == -ENOMEM) 3563 return VM_FAULT_OOM; 3564 if (err < 0 && err != -EBUSY) 3565 return VM_FAULT_SIGBUS; 3566 3567 return VM_FAULT_NOPAGE; 3568 } 3569 3570 #ifndef io_remap_pfn_range 3571 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3572 unsigned long addr, unsigned long pfn, 3573 unsigned long size, pgprot_t prot) 3574 { 3575 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3576 } 3577 #endif 3578 3579 static inline vm_fault_t vmf_error(int err) 3580 { 3581 if (err == -ENOMEM) 3582 return VM_FAULT_OOM; 3583 else if (err == -EHWPOISON) 3584 return VM_FAULT_HWPOISON; 3585 return VM_FAULT_SIGBUS; 3586 } 3587 3588 /* 3589 * Convert errno to return value for ->page_mkwrite() calls. 3590 * 3591 * This should eventually be merged with vmf_error() above, but will need a 3592 * careful audit of all vmf_error() callers. 3593 */ 3594 static inline vm_fault_t vmf_fs_error(int err) 3595 { 3596 if (err == 0) 3597 return VM_FAULT_LOCKED; 3598 if (err == -EFAULT || err == -EAGAIN) 3599 return VM_FAULT_NOPAGE; 3600 if (err == -ENOMEM) 3601 return VM_FAULT_OOM; 3602 /* -ENOSPC, -EDQUOT, -EIO ... */ 3603 return VM_FAULT_SIGBUS; 3604 } 3605 3606 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3607 { 3608 if (vm_fault & VM_FAULT_OOM) 3609 return -ENOMEM; 3610 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3611 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3612 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3613 return -EFAULT; 3614 return 0; 3615 } 3616 3617 /* 3618 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3619 * a (NUMA hinting) fault is required. 3620 */ 3621 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3622 unsigned int flags) 3623 { 3624 /* 3625 * If callers don't want to honor NUMA hinting faults, no need to 3626 * determine if we would actually have to trigger a NUMA hinting fault. 3627 */ 3628 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3629 return true; 3630 3631 /* 3632 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3633 * 3634 * Requiring a fault here even for inaccessible VMAs would mean that 3635 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3636 * refuses to process NUMA hinting faults in inaccessible VMAs. 3637 */ 3638 return !vma_is_accessible(vma); 3639 } 3640 3641 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3642 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3643 unsigned long size, pte_fn_t fn, void *data); 3644 extern int apply_to_existing_page_range(struct mm_struct *mm, 3645 unsigned long address, unsigned long size, 3646 pte_fn_t fn, void *data); 3647 3648 #ifdef CONFIG_PAGE_POISONING 3649 extern void __kernel_poison_pages(struct page *page, int numpages); 3650 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3651 extern bool _page_poisoning_enabled_early; 3652 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3653 static inline bool page_poisoning_enabled(void) 3654 { 3655 return _page_poisoning_enabled_early; 3656 } 3657 /* 3658 * For use in fast paths after init_mem_debugging() has run, or when a 3659 * false negative result is not harmful when called too early. 3660 */ 3661 static inline bool page_poisoning_enabled_static(void) 3662 { 3663 return static_branch_unlikely(&_page_poisoning_enabled); 3664 } 3665 static inline void kernel_poison_pages(struct page *page, int numpages) 3666 { 3667 if (page_poisoning_enabled_static()) 3668 __kernel_poison_pages(page, numpages); 3669 } 3670 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3671 { 3672 if (page_poisoning_enabled_static()) 3673 __kernel_unpoison_pages(page, numpages); 3674 } 3675 #else 3676 static inline bool page_poisoning_enabled(void) { return false; } 3677 static inline bool page_poisoning_enabled_static(void) { return false; } 3678 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3679 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3680 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3681 #endif 3682 3683 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3684 static inline bool want_init_on_alloc(gfp_t flags) 3685 { 3686 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3687 &init_on_alloc)) 3688 return true; 3689 return flags & __GFP_ZERO; 3690 } 3691 3692 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3693 static inline bool want_init_on_free(void) 3694 { 3695 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3696 &init_on_free); 3697 } 3698 3699 extern bool _debug_pagealloc_enabled_early; 3700 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3701 3702 static inline bool debug_pagealloc_enabled(void) 3703 { 3704 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3705 _debug_pagealloc_enabled_early; 3706 } 3707 3708 /* 3709 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3710 * or when a false negative result is not harmful when called too early. 3711 */ 3712 static inline bool debug_pagealloc_enabled_static(void) 3713 { 3714 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3715 return false; 3716 3717 return static_branch_unlikely(&_debug_pagealloc_enabled); 3718 } 3719 3720 /* 3721 * To support DEBUG_PAGEALLOC architecture must ensure that 3722 * __kernel_map_pages() never fails 3723 */ 3724 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3725 #ifdef CONFIG_DEBUG_PAGEALLOC 3726 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3727 { 3728 if (debug_pagealloc_enabled_static()) 3729 __kernel_map_pages(page, numpages, 1); 3730 } 3731 3732 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3733 { 3734 if (debug_pagealloc_enabled_static()) 3735 __kernel_map_pages(page, numpages, 0); 3736 } 3737 3738 extern unsigned int _debug_guardpage_minorder; 3739 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3740 3741 static inline unsigned int debug_guardpage_minorder(void) 3742 { 3743 return _debug_guardpage_minorder; 3744 } 3745 3746 static inline bool debug_guardpage_enabled(void) 3747 { 3748 return static_branch_unlikely(&_debug_guardpage_enabled); 3749 } 3750 3751 static inline bool page_is_guard(struct page *page) 3752 { 3753 if (!debug_guardpage_enabled()) 3754 return false; 3755 3756 return PageGuard(page); 3757 } 3758 3759 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3760 static inline bool set_page_guard(struct zone *zone, struct page *page, 3761 unsigned int order) 3762 { 3763 if (!debug_guardpage_enabled()) 3764 return false; 3765 return __set_page_guard(zone, page, order); 3766 } 3767 3768 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3769 static inline void clear_page_guard(struct zone *zone, struct page *page, 3770 unsigned int order) 3771 { 3772 if (!debug_guardpage_enabled()) 3773 return; 3774 __clear_page_guard(zone, page, order); 3775 } 3776 3777 #else /* CONFIG_DEBUG_PAGEALLOC */ 3778 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3779 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3780 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3781 static inline bool debug_guardpage_enabled(void) { return false; } 3782 static inline bool page_is_guard(struct page *page) { return false; } 3783 static inline bool set_page_guard(struct zone *zone, struct page *page, 3784 unsigned int order) { return false; } 3785 static inline void clear_page_guard(struct zone *zone, struct page *page, 3786 unsigned int order) {} 3787 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3788 3789 #ifdef __HAVE_ARCH_GATE_AREA 3790 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3791 extern int in_gate_area_no_mm(unsigned long addr); 3792 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3793 #else 3794 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3795 { 3796 return NULL; 3797 } 3798 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3799 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3800 { 3801 return 0; 3802 } 3803 #endif /* __HAVE_ARCH_GATE_AREA */ 3804 3805 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3806 3807 #ifdef CONFIG_SYSCTL 3808 extern int sysctl_drop_caches; 3809 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3810 loff_t *); 3811 #endif 3812 3813 void drop_slab(void); 3814 3815 #ifndef CONFIG_MMU 3816 #define randomize_va_space 0 3817 #else 3818 extern int randomize_va_space; 3819 #endif 3820 3821 const char * arch_vma_name(struct vm_area_struct *vma); 3822 #ifdef CONFIG_MMU 3823 void print_vma_addr(char *prefix, unsigned long rip); 3824 #else 3825 static inline void print_vma_addr(char *prefix, unsigned long rip) 3826 { 3827 } 3828 #endif 3829 3830 void *sparse_buffer_alloc(unsigned long size); 3831 struct page * __populate_section_memmap(unsigned long pfn, 3832 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3833 struct dev_pagemap *pgmap); 3834 void pud_init(void *addr); 3835 void pmd_init(void *addr); 3836 void kernel_pte_init(void *addr); 3837 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3838 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3839 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3840 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3841 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3842 struct vmem_altmap *altmap, struct page *reuse); 3843 void *vmemmap_alloc_block(unsigned long size, int node); 3844 struct vmem_altmap; 3845 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3846 struct vmem_altmap *altmap); 3847 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3848 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3849 unsigned long addr, unsigned long next); 3850 int vmemmap_check_pmd(pmd_t *pmd, int node, 3851 unsigned long addr, unsigned long next); 3852 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3853 int node, struct vmem_altmap *altmap); 3854 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3855 int node, struct vmem_altmap *altmap); 3856 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3857 struct vmem_altmap *altmap); 3858 void vmemmap_populate_print_last(void); 3859 #ifdef CONFIG_MEMORY_HOTPLUG 3860 void vmemmap_free(unsigned long start, unsigned long end, 3861 struct vmem_altmap *altmap); 3862 #endif 3863 3864 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3865 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3866 { 3867 /* number of pfns from base where pfn_to_page() is valid */ 3868 if (altmap) 3869 return altmap->reserve + altmap->free; 3870 return 0; 3871 } 3872 3873 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3874 unsigned long nr_pfns) 3875 { 3876 altmap->alloc -= nr_pfns; 3877 } 3878 #else 3879 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3880 { 3881 return 0; 3882 } 3883 3884 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3885 unsigned long nr_pfns) 3886 { 3887 } 3888 #endif 3889 3890 #define VMEMMAP_RESERVE_NR 2 3891 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3892 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3893 struct dev_pagemap *pgmap) 3894 { 3895 unsigned long nr_pages; 3896 unsigned long nr_vmemmap_pages; 3897 3898 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3899 return false; 3900 3901 nr_pages = pgmap_vmemmap_nr(pgmap); 3902 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3903 /* 3904 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3905 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3906 */ 3907 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3908 } 3909 /* 3910 * If we don't have an architecture override, use the generic rule 3911 */ 3912 #ifndef vmemmap_can_optimize 3913 #define vmemmap_can_optimize __vmemmap_can_optimize 3914 #endif 3915 3916 #else 3917 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3918 struct dev_pagemap *pgmap) 3919 { 3920 return false; 3921 } 3922 #endif 3923 3924 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3925 unsigned long nr_pages); 3926 3927 enum mf_flags { 3928 MF_COUNT_INCREASED = 1 << 0, 3929 MF_ACTION_REQUIRED = 1 << 1, 3930 MF_MUST_KILL = 1 << 2, 3931 MF_SOFT_OFFLINE = 1 << 3, 3932 MF_UNPOISON = 1 << 4, 3933 MF_SW_SIMULATED = 1 << 5, 3934 MF_NO_RETRY = 1 << 6, 3935 MF_MEM_PRE_REMOVE = 1 << 7, 3936 }; 3937 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3938 unsigned long count, int mf_flags); 3939 extern int memory_failure(unsigned long pfn, int flags); 3940 extern void memory_failure_queue_kick(int cpu); 3941 extern int unpoison_memory(unsigned long pfn); 3942 extern atomic_long_t num_poisoned_pages __read_mostly; 3943 extern int soft_offline_page(unsigned long pfn, int flags); 3944 #ifdef CONFIG_MEMORY_FAILURE 3945 /* 3946 * Sysfs entries for memory failure handling statistics. 3947 */ 3948 extern const struct attribute_group memory_failure_attr_group; 3949 extern void memory_failure_queue(unsigned long pfn, int flags); 3950 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3951 bool *migratable_cleared); 3952 void num_poisoned_pages_inc(unsigned long pfn); 3953 void num_poisoned_pages_sub(unsigned long pfn, long i); 3954 #else 3955 static inline void memory_failure_queue(unsigned long pfn, int flags) 3956 { 3957 } 3958 3959 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3960 bool *migratable_cleared) 3961 { 3962 return 0; 3963 } 3964 3965 static inline void num_poisoned_pages_inc(unsigned long pfn) 3966 { 3967 } 3968 3969 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3970 { 3971 } 3972 #endif 3973 3974 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3975 extern void memblk_nr_poison_inc(unsigned long pfn); 3976 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3977 #else 3978 static inline void memblk_nr_poison_inc(unsigned long pfn) 3979 { 3980 } 3981 3982 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3983 { 3984 } 3985 #endif 3986 3987 #ifndef arch_memory_failure 3988 static inline int arch_memory_failure(unsigned long pfn, int flags) 3989 { 3990 return -ENXIO; 3991 } 3992 #endif 3993 3994 #ifndef arch_is_platform_page 3995 static inline bool arch_is_platform_page(u64 paddr) 3996 { 3997 return false; 3998 } 3999 #endif 4000 4001 /* 4002 * Error handlers for various types of pages. 4003 */ 4004 enum mf_result { 4005 MF_IGNORED, /* Error: cannot be handled */ 4006 MF_FAILED, /* Error: handling failed */ 4007 MF_DELAYED, /* Will be handled later */ 4008 MF_RECOVERED, /* Successfully recovered */ 4009 }; 4010 4011 enum mf_action_page_type { 4012 MF_MSG_KERNEL, 4013 MF_MSG_KERNEL_HIGH_ORDER, 4014 MF_MSG_DIFFERENT_COMPOUND, 4015 MF_MSG_HUGE, 4016 MF_MSG_FREE_HUGE, 4017 MF_MSG_GET_HWPOISON, 4018 MF_MSG_UNMAP_FAILED, 4019 MF_MSG_DIRTY_SWAPCACHE, 4020 MF_MSG_CLEAN_SWAPCACHE, 4021 MF_MSG_DIRTY_MLOCKED_LRU, 4022 MF_MSG_CLEAN_MLOCKED_LRU, 4023 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4024 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4025 MF_MSG_DIRTY_LRU, 4026 MF_MSG_CLEAN_LRU, 4027 MF_MSG_TRUNCATED_LRU, 4028 MF_MSG_BUDDY, 4029 MF_MSG_DAX, 4030 MF_MSG_UNSPLIT_THP, 4031 MF_MSG_ALREADY_POISONED, 4032 MF_MSG_UNKNOWN, 4033 }; 4034 4035 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4036 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4037 int copy_user_large_folio(struct folio *dst, struct folio *src, 4038 unsigned long addr_hint, 4039 struct vm_area_struct *vma); 4040 long copy_folio_from_user(struct folio *dst_folio, 4041 const void __user *usr_src, 4042 bool allow_pagefault); 4043 4044 /** 4045 * vma_is_special_huge - Are transhuge page-table entries considered special? 4046 * @vma: Pointer to the struct vm_area_struct to consider 4047 * 4048 * Whether transhuge page-table entries are considered "special" following 4049 * the definition in vm_normal_page(). 4050 * 4051 * Return: true if transhuge page-table entries should be considered special, 4052 * false otherwise. 4053 */ 4054 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4055 { 4056 return vma_is_dax(vma) || (vma->vm_file && 4057 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4058 } 4059 4060 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4061 4062 #if MAX_NUMNODES > 1 4063 void __init setup_nr_node_ids(void); 4064 #else 4065 static inline void setup_nr_node_ids(void) {} 4066 #endif 4067 4068 extern int memcmp_pages(struct page *page1, struct page *page2); 4069 4070 static inline int pages_identical(struct page *page1, struct page *page2) 4071 { 4072 return !memcmp_pages(page1, page2); 4073 } 4074 4075 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4076 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4077 pgoff_t first_index, pgoff_t nr, 4078 pgoff_t bitmap_pgoff, 4079 unsigned long *bitmap, 4080 pgoff_t *start, 4081 pgoff_t *end); 4082 4083 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4084 pgoff_t first_index, pgoff_t nr); 4085 #endif 4086 4087 extern int sysctl_nr_trim_pages; 4088 4089 #ifdef CONFIG_PRINTK 4090 void mem_dump_obj(void *object); 4091 #else 4092 static inline void mem_dump_obj(void *object) {} 4093 #endif 4094 4095 /** 4096 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4097 * handle them. 4098 * @seals: the seals to check 4099 * @vma: the vma to operate on 4100 * 4101 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4102 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4103 */ 4104 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4105 { 4106 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4107 /* 4108 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4109 * write seals are active. 4110 */ 4111 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4112 return -EPERM; 4113 4114 /* 4115 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4116 * MAP_SHARED and read-only, take care to not allow mprotect to 4117 * revert protections on such mappings. Do this only for shared 4118 * mappings. For private mappings, don't need to mask 4119 * VM_MAYWRITE as we still want them to be COW-writable. 4120 */ 4121 if (vma->vm_flags & VM_SHARED) 4122 vm_flags_clear(vma, VM_MAYWRITE); 4123 } 4124 4125 return 0; 4126 } 4127 4128 #ifdef CONFIG_ANON_VMA_NAME 4129 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4130 unsigned long len_in, 4131 struct anon_vma_name *anon_name); 4132 #else 4133 static inline int 4134 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4135 unsigned long len_in, struct anon_vma_name *anon_name) { 4136 return 0; 4137 } 4138 #endif 4139 4140 #ifdef CONFIG_UNACCEPTED_MEMORY 4141 4142 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4143 void accept_memory(phys_addr_t start, unsigned long size); 4144 4145 #else 4146 4147 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4148 unsigned long size) 4149 { 4150 return false; 4151 } 4152 4153 static inline void accept_memory(phys_addr_t start, unsigned long size) 4154 { 4155 } 4156 4157 #endif 4158 4159 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4160 { 4161 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4162 } 4163 4164 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4165 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4166 4167 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4168 4169 #ifdef CONFIG_64BIT 4170 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4171 #else 4172 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4173 { 4174 /* noop on 32 bit */ 4175 return 0; 4176 } 4177 #endif 4178 4179 #ifdef CONFIG_MEM_ALLOC_PROFILING 4180 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4181 { 4182 int i; 4183 struct alloc_tag *tag; 4184 unsigned int nr_pages = 1 << new_order; 4185 4186 if (!mem_alloc_profiling_enabled()) 4187 return; 4188 4189 tag = pgalloc_tag_get(&folio->page); 4190 if (!tag) 4191 return; 4192 4193 for (i = nr_pages; i < (1 << old_order); i += nr_pages) { 4194 union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i)); 4195 4196 if (ref) { 4197 /* Set new reference to point to the original tag */ 4198 alloc_tag_ref_set(ref, tag); 4199 put_page_tag_ref(ref); 4200 } 4201 } 4202 } 4203 4204 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4205 { 4206 struct alloc_tag *tag; 4207 union codetag_ref *ref; 4208 4209 tag = pgalloc_tag_get(&old->page); 4210 if (!tag) 4211 return; 4212 4213 ref = get_page_tag_ref(&new->page); 4214 if (!ref) 4215 return; 4216 4217 /* Clear the old ref to the original allocation tag. */ 4218 clear_page_tag_ref(&old->page); 4219 /* Decrement the counters of the tag on get_new_folio. */ 4220 alloc_tag_sub(ref, folio_nr_pages(new)); 4221 4222 __alloc_tag_ref_set(ref, tag); 4223 4224 put_page_tag_ref(ref); 4225 } 4226 #else /* !CONFIG_MEM_ALLOC_PROFILING */ 4227 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4228 { 4229 } 4230 4231 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4232 { 4233 } 4234 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 4235 4236 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4237 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4238 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4239 4240 #endif /* _LINUX_MM_H */ 4241