xref: /linux-6.15/include/linux/mm.h (revision 2f2b73a2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for architectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129  * instrumented C code with jump table addresses. Architectures that
130  * support CFI can define this macro to return the actual function address
131  * when needed.
132  */
133 #ifndef function_nocfi
134 #define function_nocfi(x) (x)
135 #endif
136 
137 /*
138  * To prevent common memory management code establishing
139  * a zero page mapping on a read fault.
140  * This macro should be defined within <asm/pgtable.h>.
141  * s390 does this to prevent multiplexing of hardware bits
142  * related to the physical page in case of virtualization.
143  */
144 #ifndef mm_forbids_zeropage
145 #define mm_forbids_zeropage(X)	(0)
146 #endif
147 
148 /*
149  * On some architectures it is expensive to call memset() for small sizes.
150  * If an architecture decides to implement their own version of
151  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152  * define their own version of this macro in <asm/pgtable.h>
153  */
154 #if BITS_PER_LONG == 64
155 /* This function must be updated when the size of struct page grows above 80
156  * or reduces below 56. The idea that compiler optimizes out switch()
157  * statement, and only leaves move/store instructions. Also the compiler can
158  * combine write statments if they are both assignments and can be reordered,
159  * this can result in several of the writes here being dropped.
160  */
161 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162 static inline void __mm_zero_struct_page(struct page *page)
163 {
164 	unsigned long *_pp = (void *)page;
165 
166 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 	BUILD_BUG_ON(sizeof(struct page) & 7);
168 	BUILD_BUG_ON(sizeof(struct page) < 56);
169 	BUILD_BUG_ON(sizeof(struct page) > 80);
170 
171 	switch (sizeof(struct page)) {
172 	case 80:
173 		_pp[9] = 0;
174 		fallthrough;
175 	case 72:
176 		_pp[8] = 0;
177 		fallthrough;
178 	case 64:
179 		_pp[7] = 0;
180 		fallthrough;
181 	case 56:
182 		_pp[6] = 0;
183 		_pp[5] = 0;
184 		_pp[4] = 0;
185 		_pp[3] = 0;
186 		_pp[2] = 0;
187 		_pp[1] = 0;
188 		_pp[0] = 0;
189 	}
190 }
191 #else
192 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
193 #endif
194 
195 /*
196  * Default maximum number of active map areas, this limits the number of vmas
197  * per mm struct. Users can overwrite this number by sysctl but there is a
198  * problem.
199  *
200  * When a program's coredump is generated as ELF format, a section is created
201  * per a vma. In ELF, the number of sections is represented in unsigned short.
202  * This means the number of sections should be smaller than 65535 at coredump.
203  * Because the kernel adds some informative sections to a image of program at
204  * generating coredump, we need some margin. The number of extra sections is
205  * 1-3 now and depends on arch. We use "5" as safe margin, here.
206  *
207  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208  * not a hard limit any more. Although some userspace tools can be surprised by
209  * that.
210  */
211 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
212 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213 
214 extern int sysctl_max_map_count;
215 
216 extern unsigned long sysctl_user_reserve_kbytes;
217 extern unsigned long sysctl_admin_reserve_kbytes;
218 
219 extern int sysctl_overcommit_memory;
220 extern int sysctl_overcommit_ratio;
221 extern unsigned long sysctl_overcommit_kbytes;
222 
223 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 		loff_t *);
225 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 		loff_t *);
227 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 		loff_t *);
229 /*
230  * Any attempt to mark this function as static leads to build failure
231  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232  * is referred to by BPF code. This must be visible for error injection.
233  */
234 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 		pgoff_t index, gfp_t gfp, void **shadowp);
236 
237 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
238 
239 /* to align the pointer to the (next) page boundary */
240 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
241 
242 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
243 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
244 
245 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
246 
247 /*
248  * Linux kernel virtual memory manager primitives.
249  * The idea being to have a "virtual" mm in the same way
250  * we have a virtual fs - giving a cleaner interface to the
251  * mm details, and allowing different kinds of memory mappings
252  * (from shared memory to executable loading to arbitrary
253  * mmap() functions).
254  */
255 
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 
260 #ifndef CONFIG_MMU
261 extern struct rb_root nommu_region_tree;
262 extern struct rw_semaphore nommu_region_sem;
263 
264 extern unsigned int kobjsize(const void *objp);
265 #endif
266 
267 /*
268  * vm_flags in vm_area_struct, see mm_types.h.
269  * When changing, update also include/trace/events/mmflags.h
270  */
271 #define VM_NONE		0x00000000
272 
273 #define VM_READ		0x00000001	/* currently active flags */
274 #define VM_WRITE	0x00000002
275 #define VM_EXEC		0x00000004
276 #define VM_SHARED	0x00000008
277 
278 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
279 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
280 #define VM_MAYWRITE	0x00000020
281 #define VM_MAYEXEC	0x00000040
282 #define VM_MAYSHARE	0x00000080
283 
284 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
285 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
286 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
287 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
288 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
289 
290 #define VM_LOCKED	0x00002000
291 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
292 
293 					/* Used by sys_madvise() */
294 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
295 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
296 
297 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
298 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
299 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
300 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
301 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
302 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
303 #define VM_SYNC		0x00800000	/* Synchronous page faults */
304 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
305 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
306 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
307 
308 #ifdef CONFIG_MEM_SOFT_DIRTY
309 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
310 #else
311 # define VM_SOFTDIRTY	0
312 #endif
313 
314 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
315 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
316 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
317 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
318 
319 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
320 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
326 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
327 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
328 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
329 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #if defined(CONFIG_X86)
346 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
347 #elif defined(CONFIG_PPC)
348 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
349 #elif defined(CONFIG_PARISC)
350 # define VM_GROWSUP	VM_ARCH_1
351 #elif defined(CONFIG_IA64)
352 # define VM_GROWSUP	VM_ARCH_1
353 #elif defined(CONFIG_SPARC64)
354 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
355 # define VM_ARCH_CLEAR	VM_SPARC_ADI
356 #elif defined(CONFIG_ARM64)
357 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
358 # define VM_ARCH_CLEAR	VM_ARM64_BTI
359 #elif !defined(CONFIG_MMU)
360 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
361 #endif
362 
363 #if defined(CONFIG_ARM64_MTE)
364 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
365 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
366 #else
367 # define VM_MTE		VM_NONE
368 # define VM_MTE_ALLOWED	VM_NONE
369 #endif
370 
371 #ifndef VM_GROWSUP
372 # define VM_GROWSUP	VM_NONE
373 #endif
374 
375 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
376 # define VM_UFFD_MINOR_BIT	37
377 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
378 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379 # define VM_UFFD_MINOR		VM_NONE
380 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
381 
382 /* Bits set in the VMA until the stack is in its final location */
383 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
384 
385 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
386 
387 /* Common data flag combinations */
388 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
389 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
391 				 VM_MAYWRITE | VM_MAYEXEC)
392 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
393 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394 
395 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
396 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
397 #endif
398 
399 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
400 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
401 #endif
402 
403 #ifdef CONFIG_STACK_GROWSUP
404 #define VM_STACK	VM_GROWSUP
405 #else
406 #define VM_STACK	VM_GROWSDOWN
407 #endif
408 
409 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
410 
411 /* VMA basic access permission flags */
412 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
413 
414 
415 /*
416  * Special vmas that are non-mergable, non-mlock()able.
417  */
418 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
419 
420 /* This mask prevents VMA from being scanned with khugepaged */
421 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
422 
423 /* This mask defines which mm->def_flags a process can inherit its parent */
424 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
425 
426 /* This mask is used to clear all the VMA flags used by mlock */
427 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
428 
429 /* Arch-specific flags to clear when updating VM flags on protection change */
430 #ifndef VM_ARCH_CLEAR
431 # define VM_ARCH_CLEAR	VM_NONE
432 #endif
433 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
434 
435 /*
436  * mapping from the currently active vm_flags protection bits (the
437  * low four bits) to a page protection mask..
438  */
439 extern pgprot_t protection_map[16];
440 
441 /**
442  * enum fault_flag - Fault flag definitions.
443  * @FAULT_FLAG_WRITE: Fault was a write fault.
444  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
445  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
446  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
447  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
448  * @FAULT_FLAG_TRIED: The fault has been tried once.
449  * @FAULT_FLAG_USER: The fault originated in userspace.
450  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
451  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
452  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
453  *
454  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
455  * whether we would allow page faults to retry by specifying these two
456  * fault flags correctly.  Currently there can be three legal combinations:
457  *
458  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
459  *                              this is the first try
460  *
461  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
462  *                              we've already tried at least once
463  *
464  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
465  *
466  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
467  * be used.  Note that page faults can be allowed to retry for multiple times,
468  * in which case we'll have an initial fault with flags (a) then later on
469  * continuous faults with flags (b).  We should always try to detect pending
470  * signals before a retry to make sure the continuous page faults can still be
471  * interrupted if necessary.
472  */
473 enum fault_flag {
474 	FAULT_FLAG_WRITE =		1 << 0,
475 	FAULT_FLAG_MKWRITE =		1 << 1,
476 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
477 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
478 	FAULT_FLAG_KILLABLE =		1 << 4,
479 	FAULT_FLAG_TRIED = 		1 << 5,
480 	FAULT_FLAG_USER =		1 << 6,
481 	FAULT_FLAG_REMOTE =		1 << 7,
482 	FAULT_FLAG_INSTRUCTION =	1 << 8,
483 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
484 };
485 
486 /*
487  * The default fault flags that should be used by most of the
488  * arch-specific page fault handlers.
489  */
490 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
491 			     FAULT_FLAG_KILLABLE | \
492 			     FAULT_FLAG_INTERRUPTIBLE)
493 
494 /**
495  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
496  * @flags: Fault flags.
497  *
498  * This is mostly used for places where we want to try to avoid taking
499  * the mmap_lock for too long a time when waiting for another condition
500  * to change, in which case we can try to be polite to release the
501  * mmap_lock in the first round to avoid potential starvation of other
502  * processes that would also want the mmap_lock.
503  *
504  * Return: true if the page fault allows retry and this is the first
505  * attempt of the fault handling; false otherwise.
506  */
507 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
508 {
509 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
510 	    (!(flags & FAULT_FLAG_TRIED));
511 }
512 
513 #define FAULT_FLAG_TRACE \
514 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
515 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
516 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
517 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
518 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
519 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
520 	{ FAULT_FLAG_USER,		"USER" }, \
521 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
522 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
523 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
524 
525 /*
526  * vm_fault is filled by the pagefault handler and passed to the vma's
527  * ->fault function. The vma's ->fault is responsible for returning a bitmask
528  * of VM_FAULT_xxx flags that give details about how the fault was handled.
529  *
530  * MM layer fills up gfp_mask for page allocations but fault handler might
531  * alter it if its implementation requires a different allocation context.
532  *
533  * pgoff should be used in favour of virtual_address, if possible.
534  */
535 struct vm_fault {
536 	const struct {
537 		struct vm_area_struct *vma;	/* Target VMA */
538 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
539 		pgoff_t pgoff;			/* Logical page offset based on vma */
540 		unsigned long address;		/* Faulting virtual address */
541 	};
542 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
543 					 * XXX: should really be 'const' */
544 	pmd_t *pmd;			/* Pointer to pmd entry matching
545 					 * the 'address' */
546 	pud_t *pud;			/* Pointer to pud entry matching
547 					 * the 'address'
548 					 */
549 	pte_t orig_pte;			/* Value of PTE at the time of fault */
550 
551 	struct page *cow_page;		/* Page handler may use for COW fault */
552 	struct page *page;		/* ->fault handlers should return a
553 					 * page here, unless VM_FAULT_NOPAGE
554 					 * is set (which is also implied by
555 					 * VM_FAULT_ERROR).
556 					 */
557 	/* These three entries are valid only while holding ptl lock */
558 	pte_t *pte;			/* Pointer to pte entry matching
559 					 * the 'address'. NULL if the page
560 					 * table hasn't been allocated.
561 					 */
562 	spinlock_t *ptl;		/* Page table lock.
563 					 * Protects pte page table if 'pte'
564 					 * is not NULL, otherwise pmd.
565 					 */
566 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
567 					 * vm_ops->map_pages() sets up a page
568 					 * table from atomic context.
569 					 * do_fault_around() pre-allocates
570 					 * page table to avoid allocation from
571 					 * atomic context.
572 					 */
573 };
574 
575 /* page entry size for vm->huge_fault() */
576 enum page_entry_size {
577 	PE_SIZE_PTE = 0,
578 	PE_SIZE_PMD,
579 	PE_SIZE_PUD,
580 };
581 
582 /*
583  * These are the virtual MM functions - opening of an area, closing and
584  * unmapping it (needed to keep files on disk up-to-date etc), pointer
585  * to the functions called when a no-page or a wp-page exception occurs.
586  */
587 struct vm_operations_struct {
588 	void (*open)(struct vm_area_struct * area);
589 	void (*close)(struct vm_area_struct * area);
590 	/* Called any time before splitting to check if it's allowed */
591 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
592 	int (*mremap)(struct vm_area_struct *area);
593 	/*
594 	 * Called by mprotect() to make driver-specific permission
595 	 * checks before mprotect() is finalised.   The VMA must not
596 	 * be modified.  Returns 0 if eprotect() can proceed.
597 	 */
598 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
599 			unsigned long end, unsigned long newflags);
600 	vm_fault_t (*fault)(struct vm_fault *vmf);
601 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
602 			enum page_entry_size pe_size);
603 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 			pgoff_t start_pgoff, pgoff_t end_pgoff);
605 	unsigned long (*pagesize)(struct vm_area_struct * area);
606 
607 	/* notification that a previously read-only page is about to become
608 	 * writable, if an error is returned it will cause a SIGBUS */
609 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610 
611 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613 
614 	/* called by access_process_vm when get_user_pages() fails, typically
615 	 * for use by special VMAs. See also generic_access_phys() for a generic
616 	 * implementation useful for any iomem mapping.
617 	 */
618 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 		      void *buf, int len, int write);
620 
621 	/* Called by the /proc/PID/maps code to ask the vma whether it
622 	 * has a special name.  Returning non-NULL will also cause this
623 	 * vma to be dumped unconditionally. */
624 	const char *(*name)(struct vm_area_struct *vma);
625 
626 #ifdef CONFIG_NUMA
627 	/*
628 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 	 * to hold the policy upon return.  Caller should pass NULL @new to
630 	 * remove a policy and fall back to surrounding context--i.e. do not
631 	 * install a MPOL_DEFAULT policy, nor the task or system default
632 	 * mempolicy.
633 	 */
634 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 
636 	/*
637 	 * get_policy() op must add reference [mpol_get()] to any policy at
638 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
639 	 * in mm/mempolicy.c will do this automatically.
640 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 	 * must return NULL--i.e., do not "fallback" to task or system default
644 	 * policy.
645 	 */
646 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 					unsigned long addr);
648 #endif
649 	/*
650 	 * Called by vm_normal_page() for special PTEs to find the
651 	 * page for @addr.  This is useful if the default behavior
652 	 * (using pte_page()) would not find the correct page.
653 	 */
654 	struct page *(*find_special_page)(struct vm_area_struct *vma,
655 					  unsigned long addr);
656 };
657 
658 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
659 {
660 	static const struct vm_operations_struct dummy_vm_ops = {};
661 
662 	memset(vma, 0, sizeof(*vma));
663 	vma->vm_mm = mm;
664 	vma->vm_ops = &dummy_vm_ops;
665 	INIT_LIST_HEAD(&vma->anon_vma_chain);
666 }
667 
668 static inline void vma_set_anonymous(struct vm_area_struct *vma)
669 {
670 	vma->vm_ops = NULL;
671 }
672 
673 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
674 {
675 	return !vma->vm_ops;
676 }
677 
678 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
679 {
680 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
681 
682 	if (!maybe_stack)
683 		return false;
684 
685 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
686 						VM_STACK_INCOMPLETE_SETUP)
687 		return true;
688 
689 	return false;
690 }
691 
692 static inline bool vma_is_foreign(struct vm_area_struct *vma)
693 {
694 	if (!current->mm)
695 		return true;
696 
697 	if (current->mm != vma->vm_mm)
698 		return true;
699 
700 	return false;
701 }
702 
703 static inline bool vma_is_accessible(struct vm_area_struct *vma)
704 {
705 	return vma->vm_flags & VM_ACCESS_FLAGS;
706 }
707 
708 #ifdef CONFIG_SHMEM
709 /*
710  * The vma_is_shmem is not inline because it is used only by slow
711  * paths in userfault.
712  */
713 bool vma_is_shmem(struct vm_area_struct *vma);
714 #else
715 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
716 #endif
717 
718 int vma_is_stack_for_current(struct vm_area_struct *vma);
719 
720 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
721 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
722 
723 struct mmu_gather;
724 struct inode;
725 
726 #include <linux/huge_mm.h>
727 
728 /*
729  * Methods to modify the page usage count.
730  *
731  * What counts for a page usage:
732  * - cache mapping   (page->mapping)
733  * - private data    (page->private)
734  * - page mapped in a task's page tables, each mapping
735  *   is counted separately
736  *
737  * Also, many kernel routines increase the page count before a critical
738  * routine so they can be sure the page doesn't go away from under them.
739  */
740 
741 /*
742  * Drop a ref, return true if the refcount fell to zero (the page has no users)
743  */
744 static inline int put_page_testzero(struct page *page)
745 {
746 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
747 	return page_ref_dec_and_test(page);
748 }
749 
750 /*
751  * Try to grab a ref unless the page has a refcount of zero, return false if
752  * that is the case.
753  * This can be called when MMU is off so it must not access
754  * any of the virtual mappings.
755  */
756 static inline int get_page_unless_zero(struct page *page)
757 {
758 	return page_ref_add_unless(page, 1, 0);
759 }
760 
761 extern int page_is_ram(unsigned long pfn);
762 
763 enum {
764 	REGION_INTERSECTS,
765 	REGION_DISJOINT,
766 	REGION_MIXED,
767 };
768 
769 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
770 		      unsigned long desc);
771 
772 /* Support for virtually mapped pages */
773 struct page *vmalloc_to_page(const void *addr);
774 unsigned long vmalloc_to_pfn(const void *addr);
775 
776 /*
777  * Determine if an address is within the vmalloc range
778  *
779  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
780  * is no special casing required.
781  */
782 
783 #ifndef is_ioremap_addr
784 #define is_ioremap_addr(x) is_vmalloc_addr(x)
785 #endif
786 
787 #ifdef CONFIG_MMU
788 extern bool is_vmalloc_addr(const void *x);
789 extern int is_vmalloc_or_module_addr(const void *x);
790 #else
791 static inline bool is_vmalloc_addr(const void *x)
792 {
793 	return false;
794 }
795 static inline int is_vmalloc_or_module_addr(const void *x)
796 {
797 	return 0;
798 }
799 #endif
800 
801 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
802 static inline void *kvmalloc(size_t size, gfp_t flags)
803 {
804 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
805 }
806 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
807 {
808 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
809 }
810 static inline void *kvzalloc(size_t size, gfp_t flags)
811 {
812 	return kvmalloc(size, flags | __GFP_ZERO);
813 }
814 
815 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
816 {
817 	size_t bytes;
818 
819 	if (unlikely(check_mul_overflow(n, size, &bytes)))
820 		return NULL;
821 
822 	return kvmalloc(bytes, flags);
823 }
824 
825 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
826 {
827 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
828 }
829 
830 extern void kvfree(const void *addr);
831 extern void kvfree_sensitive(const void *addr, size_t len);
832 
833 static inline int head_compound_mapcount(struct page *head)
834 {
835 	return atomic_read(compound_mapcount_ptr(head)) + 1;
836 }
837 
838 /*
839  * Mapcount of compound page as a whole, does not include mapped sub-pages.
840  *
841  * Must be called only for compound pages or any their tail sub-pages.
842  */
843 static inline int compound_mapcount(struct page *page)
844 {
845 	VM_BUG_ON_PAGE(!PageCompound(page), page);
846 	page = compound_head(page);
847 	return head_compound_mapcount(page);
848 }
849 
850 /*
851  * The atomic page->_mapcount, starts from -1: so that transitions
852  * both from it and to it can be tracked, using atomic_inc_and_test
853  * and atomic_add_negative(-1).
854  */
855 static inline void page_mapcount_reset(struct page *page)
856 {
857 	atomic_set(&(page)->_mapcount, -1);
858 }
859 
860 int __page_mapcount(struct page *page);
861 
862 /*
863  * Mapcount of 0-order page; when compound sub-page, includes
864  * compound_mapcount().
865  *
866  * Result is undefined for pages which cannot be mapped into userspace.
867  * For example SLAB or special types of pages. See function page_has_type().
868  * They use this place in struct page differently.
869  */
870 static inline int page_mapcount(struct page *page)
871 {
872 	if (unlikely(PageCompound(page)))
873 		return __page_mapcount(page);
874 	return atomic_read(&page->_mapcount) + 1;
875 }
876 
877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
878 int total_mapcount(struct page *page);
879 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
880 #else
881 static inline int total_mapcount(struct page *page)
882 {
883 	return page_mapcount(page);
884 }
885 static inline int page_trans_huge_mapcount(struct page *page,
886 					   int *total_mapcount)
887 {
888 	int mapcount = page_mapcount(page);
889 	if (total_mapcount)
890 		*total_mapcount = mapcount;
891 	return mapcount;
892 }
893 #endif
894 
895 static inline struct page *virt_to_head_page(const void *x)
896 {
897 	struct page *page = virt_to_page(x);
898 
899 	return compound_head(page);
900 }
901 
902 void __put_page(struct page *page);
903 
904 void put_pages_list(struct list_head *pages);
905 
906 void split_page(struct page *page, unsigned int order);
907 
908 /*
909  * Compound pages have a destructor function.  Provide a
910  * prototype for that function and accessor functions.
911  * These are _only_ valid on the head of a compound page.
912  */
913 typedef void compound_page_dtor(struct page *);
914 
915 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916 enum compound_dtor_id {
917 	NULL_COMPOUND_DTOR,
918 	COMPOUND_PAGE_DTOR,
919 #ifdef CONFIG_HUGETLB_PAGE
920 	HUGETLB_PAGE_DTOR,
921 #endif
922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
923 	TRANSHUGE_PAGE_DTOR,
924 #endif
925 	NR_COMPOUND_DTORS,
926 };
927 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
928 
929 static inline void set_compound_page_dtor(struct page *page,
930 		enum compound_dtor_id compound_dtor)
931 {
932 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
933 	page[1].compound_dtor = compound_dtor;
934 }
935 
936 static inline void destroy_compound_page(struct page *page)
937 {
938 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
939 	compound_page_dtors[page[1].compound_dtor](page);
940 }
941 
942 static inline unsigned int compound_order(struct page *page)
943 {
944 	if (!PageHead(page))
945 		return 0;
946 	return page[1].compound_order;
947 }
948 
949 static inline bool hpage_pincount_available(struct page *page)
950 {
951 	/*
952 	 * Can the page->hpage_pinned_refcount field be used? That field is in
953 	 * the 3rd page of the compound page, so the smallest (2-page) compound
954 	 * pages cannot support it.
955 	 */
956 	page = compound_head(page);
957 	return PageCompound(page) && compound_order(page) > 1;
958 }
959 
960 static inline int head_compound_pincount(struct page *head)
961 {
962 	return atomic_read(compound_pincount_ptr(head));
963 }
964 
965 static inline int compound_pincount(struct page *page)
966 {
967 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968 	page = compound_head(page);
969 	return head_compound_pincount(page);
970 }
971 
972 static inline void set_compound_order(struct page *page, unsigned int order)
973 {
974 	page[1].compound_order = order;
975 	page[1].compound_nr = 1U << order;
976 }
977 
978 /* Returns the number of pages in this potentially compound page. */
979 static inline unsigned long compound_nr(struct page *page)
980 {
981 	if (!PageHead(page))
982 		return 1;
983 	return page[1].compound_nr;
984 }
985 
986 /* Returns the number of bytes in this potentially compound page. */
987 static inline unsigned long page_size(struct page *page)
988 {
989 	return PAGE_SIZE << compound_order(page);
990 }
991 
992 /* Returns the number of bits needed for the number of bytes in a page */
993 static inline unsigned int page_shift(struct page *page)
994 {
995 	return PAGE_SHIFT + compound_order(page);
996 }
997 
998 void free_compound_page(struct page *page);
999 
1000 #ifdef CONFIG_MMU
1001 /*
1002  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1003  * servicing faults for write access.  In the normal case, do always want
1004  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1005  * that do not have writing enabled, when used by access_process_vm.
1006  */
1007 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1008 {
1009 	if (likely(vma->vm_flags & VM_WRITE))
1010 		pte = pte_mkwrite(pte);
1011 	return pte;
1012 }
1013 
1014 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1015 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1016 
1017 vm_fault_t finish_fault(struct vm_fault *vmf);
1018 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1019 #endif
1020 
1021 /*
1022  * Multiple processes may "see" the same page. E.g. for untouched
1023  * mappings of /dev/null, all processes see the same page full of
1024  * zeroes, and text pages of executables and shared libraries have
1025  * only one copy in memory, at most, normally.
1026  *
1027  * For the non-reserved pages, page_count(page) denotes a reference count.
1028  *   page_count() == 0 means the page is free. page->lru is then used for
1029  *   freelist management in the buddy allocator.
1030  *   page_count() > 0  means the page has been allocated.
1031  *
1032  * Pages are allocated by the slab allocator in order to provide memory
1033  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035  * unless a particular usage is carefully commented. (the responsibility of
1036  * freeing the kmalloc memory is the caller's, of course).
1037  *
1038  * A page may be used by anyone else who does a __get_free_page().
1039  * In this case, page_count still tracks the references, and should only
1040  * be used through the normal accessor functions. The top bits of page->flags
1041  * and page->virtual store page management information, but all other fields
1042  * are unused and could be used privately, carefully. The management of this
1043  * page is the responsibility of the one who allocated it, and those who have
1044  * subsequently been given references to it.
1045  *
1046  * The other pages (we may call them "pagecache pages") are completely
1047  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048  * The following discussion applies only to them.
1049  *
1050  * A pagecache page contains an opaque `private' member, which belongs to the
1051  * page's address_space. Usually, this is the address of a circular list of
1052  * the page's disk buffers. PG_private must be set to tell the VM to call
1053  * into the filesystem to release these pages.
1054  *
1055  * A page may belong to an inode's memory mapping. In this case, page->mapping
1056  * is the pointer to the inode, and page->index is the file offset of the page,
1057  * in units of PAGE_SIZE.
1058  *
1059  * If pagecache pages are not associated with an inode, they are said to be
1060  * anonymous pages. These may become associated with the swapcache, and in that
1061  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1062  *
1063  * In either case (swapcache or inode backed), the pagecache itself holds one
1064  * reference to the page. Setting PG_private should also increment the
1065  * refcount. The each user mapping also has a reference to the page.
1066  *
1067  * The pagecache pages are stored in a per-mapping radix tree, which is
1068  * rooted at mapping->i_pages, and indexed by offset.
1069  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1071  *
1072  * All pagecache pages may be subject to I/O:
1073  * - inode pages may need to be read from disk,
1074  * - inode pages which have been modified and are MAP_SHARED may need
1075  *   to be written back to the inode on disk,
1076  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077  *   modified may need to be swapped out to swap space and (later) to be read
1078  *   back into memory.
1079  */
1080 
1081 /*
1082  * The zone field is never updated after free_area_init_core()
1083  * sets it, so none of the operations on it need to be atomic.
1084  */
1085 
1086 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1087 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1088 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1089 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1090 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1091 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1092 
1093 /*
1094  * Define the bit shifts to access each section.  For non-existent
1095  * sections we define the shift as 0; that plus a 0 mask ensures
1096  * the compiler will optimise away reference to them.
1097  */
1098 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1100 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1101 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1102 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1103 
1104 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105 #ifdef NODE_NOT_IN_PAGE_FLAGS
1106 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1107 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1108 						SECTIONS_PGOFF : ZONES_PGOFF)
1109 #else
1110 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1111 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1112 						NODES_PGOFF : ZONES_PGOFF)
1113 #endif
1114 
1115 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1116 
1117 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1118 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1119 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1120 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1121 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1122 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1123 
1124 static inline enum zone_type page_zonenum(const struct page *page)
1125 {
1126 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1127 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1128 }
1129 
1130 #ifdef CONFIG_ZONE_DEVICE
1131 static inline bool is_zone_device_page(const struct page *page)
1132 {
1133 	return page_zonenum(page) == ZONE_DEVICE;
1134 }
1135 extern void memmap_init_zone_device(struct zone *, unsigned long,
1136 				    unsigned long, struct dev_pagemap *);
1137 #else
1138 static inline bool is_zone_device_page(const struct page *page)
1139 {
1140 	return false;
1141 }
1142 #endif
1143 
1144 static inline bool is_zone_movable_page(const struct page *page)
1145 {
1146 	return page_zonenum(page) == ZONE_MOVABLE;
1147 }
1148 
1149 #ifdef CONFIG_DEV_PAGEMAP_OPS
1150 void free_devmap_managed_page(struct page *page);
1151 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1152 
1153 static inline bool page_is_devmap_managed(struct page *page)
1154 {
1155 	if (!static_branch_unlikely(&devmap_managed_key))
1156 		return false;
1157 	if (!is_zone_device_page(page))
1158 		return false;
1159 	switch (page->pgmap->type) {
1160 	case MEMORY_DEVICE_PRIVATE:
1161 	case MEMORY_DEVICE_FS_DAX:
1162 		return true;
1163 	default:
1164 		break;
1165 	}
1166 	return false;
1167 }
1168 
1169 void put_devmap_managed_page(struct page *page);
1170 
1171 #else /* CONFIG_DEV_PAGEMAP_OPS */
1172 static inline bool page_is_devmap_managed(struct page *page)
1173 {
1174 	return false;
1175 }
1176 
1177 static inline void put_devmap_managed_page(struct page *page)
1178 {
1179 }
1180 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1181 
1182 static inline bool is_device_private_page(const struct page *page)
1183 {
1184 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1185 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1186 		is_zone_device_page(page) &&
1187 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1188 }
1189 
1190 static inline bool is_pci_p2pdma_page(const struct page *page)
1191 {
1192 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1193 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1194 		is_zone_device_page(page) &&
1195 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1196 }
1197 
1198 /* 127: arbitrary random number, small enough to assemble well */
1199 #define page_ref_zero_or_close_to_overflow(page) \
1200 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1201 
1202 static inline void get_page(struct page *page)
1203 {
1204 	page = compound_head(page);
1205 	/*
1206 	 * Getting a normal page or the head of a compound page
1207 	 * requires to already have an elevated page->_refcount.
1208 	 */
1209 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1210 	page_ref_inc(page);
1211 }
1212 
1213 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1214 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1215 						   unsigned int flags);
1216 
1217 
1218 static inline __must_check bool try_get_page(struct page *page)
1219 {
1220 	page = compound_head(page);
1221 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1222 		return false;
1223 	page_ref_inc(page);
1224 	return true;
1225 }
1226 
1227 static inline void put_page(struct page *page)
1228 {
1229 	page = compound_head(page);
1230 
1231 	/*
1232 	 * For devmap managed pages we need to catch refcount transition from
1233 	 * 2 to 1, when refcount reach one it means the page is free and we
1234 	 * need to inform the device driver through callback. See
1235 	 * include/linux/memremap.h and HMM for details.
1236 	 */
1237 	if (page_is_devmap_managed(page)) {
1238 		put_devmap_managed_page(page);
1239 		return;
1240 	}
1241 
1242 	if (put_page_testzero(page))
1243 		__put_page(page);
1244 }
1245 
1246 /*
1247  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1248  * the page's refcount so that two separate items are tracked: the original page
1249  * reference count, and also a new count of how many pin_user_pages() calls were
1250  * made against the page. ("gup-pinned" is another term for the latter).
1251  *
1252  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1253  * distinct from normal pages. As such, the unpin_user_page() call (and its
1254  * variants) must be used in order to release gup-pinned pages.
1255  *
1256  * Choice of value:
1257  *
1258  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1259  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1260  * simpler, due to the fact that adding an even power of two to the page
1261  * refcount has the effect of using only the upper N bits, for the code that
1262  * counts up using the bias value. This means that the lower bits are left for
1263  * the exclusive use of the original code that increments and decrements by one
1264  * (or at least, by much smaller values than the bias value).
1265  *
1266  * Of course, once the lower bits overflow into the upper bits (and this is
1267  * OK, because subtraction recovers the original values), then visual inspection
1268  * no longer suffices to directly view the separate counts. However, for normal
1269  * applications that don't have huge page reference counts, this won't be an
1270  * issue.
1271  *
1272  * Locking: the lockless algorithm described in page_cache_get_speculative()
1273  * and page_cache_gup_pin_speculative() provides safe operation for
1274  * get_user_pages and page_mkclean and other calls that race to set up page
1275  * table entries.
1276  */
1277 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1278 
1279 void unpin_user_page(struct page *page);
1280 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1281 				 bool make_dirty);
1282 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1283 				      bool make_dirty);
1284 void unpin_user_pages(struct page **pages, unsigned long npages);
1285 
1286 /**
1287  * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1288  * @page: The page.
1289  *
1290  * This function checks if a page has been pinned via a call to
1291  * a function in the pin_user_pages() family.
1292  *
1293  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1294  * because it means "definitely not pinned for DMA", but true means "probably
1295  * pinned for DMA, but possibly a false positive due to having at least
1296  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1297  *
1298  * False positives are OK, because: a) it's unlikely for a page to get that many
1299  * refcounts, and b) all the callers of this routine are expected to be able to
1300  * deal gracefully with a false positive.
1301  *
1302  * For huge pages, the result will be exactly correct. That's because we have
1303  * more tracking data available: the 3rd struct page in the compound page is
1304  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1305  * scheme).
1306  *
1307  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1308  *
1309  * Return: True, if it is likely that the page has been "dma-pinned".
1310  * False, if the page is definitely not dma-pinned.
1311  */
1312 static inline bool page_maybe_dma_pinned(struct page *page)
1313 {
1314 	if (hpage_pincount_available(page))
1315 		return compound_pincount(page) > 0;
1316 
1317 	/*
1318 	 * page_ref_count() is signed. If that refcount overflows, then
1319 	 * page_ref_count() returns a negative value, and callers will avoid
1320 	 * further incrementing the refcount.
1321 	 *
1322 	 * Here, for that overflow case, use the signed bit to count a little
1323 	 * bit higher via unsigned math, and thus still get an accurate result.
1324 	 */
1325 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1326 		GUP_PIN_COUNTING_BIAS;
1327 }
1328 
1329 static inline bool is_cow_mapping(vm_flags_t flags)
1330 {
1331 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1332 }
1333 
1334 /*
1335  * This should most likely only be called during fork() to see whether we
1336  * should break the cow immediately for a page on the src mm.
1337  */
1338 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1339 					  struct page *page)
1340 {
1341 	if (!is_cow_mapping(vma->vm_flags))
1342 		return false;
1343 
1344 	if (!atomic_read(&vma->vm_mm->has_pinned))
1345 		return false;
1346 
1347 	return page_maybe_dma_pinned(page);
1348 }
1349 
1350 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1351 #define SECTION_IN_PAGE_FLAGS
1352 #endif
1353 
1354 /*
1355  * The identification function is mainly used by the buddy allocator for
1356  * determining if two pages could be buddies. We are not really identifying
1357  * the zone since we could be using the section number id if we do not have
1358  * node id available in page flags.
1359  * We only guarantee that it will return the same value for two combinable
1360  * pages in a zone.
1361  */
1362 static inline int page_zone_id(struct page *page)
1363 {
1364 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1365 }
1366 
1367 #ifdef NODE_NOT_IN_PAGE_FLAGS
1368 extern int page_to_nid(const struct page *page);
1369 #else
1370 static inline int page_to_nid(const struct page *page)
1371 {
1372 	struct page *p = (struct page *)page;
1373 
1374 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1375 }
1376 #endif
1377 
1378 #ifdef CONFIG_NUMA_BALANCING
1379 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1380 {
1381 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1382 }
1383 
1384 static inline int cpupid_to_pid(int cpupid)
1385 {
1386 	return cpupid & LAST__PID_MASK;
1387 }
1388 
1389 static inline int cpupid_to_cpu(int cpupid)
1390 {
1391 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1392 }
1393 
1394 static inline int cpupid_to_nid(int cpupid)
1395 {
1396 	return cpu_to_node(cpupid_to_cpu(cpupid));
1397 }
1398 
1399 static inline bool cpupid_pid_unset(int cpupid)
1400 {
1401 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1402 }
1403 
1404 static inline bool cpupid_cpu_unset(int cpupid)
1405 {
1406 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1407 }
1408 
1409 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1410 {
1411 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1412 }
1413 
1414 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1415 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1416 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1417 {
1418 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1419 }
1420 
1421 static inline int page_cpupid_last(struct page *page)
1422 {
1423 	return page->_last_cpupid;
1424 }
1425 static inline void page_cpupid_reset_last(struct page *page)
1426 {
1427 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1428 }
1429 #else
1430 static inline int page_cpupid_last(struct page *page)
1431 {
1432 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1433 }
1434 
1435 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1436 
1437 static inline void page_cpupid_reset_last(struct page *page)
1438 {
1439 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1440 }
1441 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1442 #else /* !CONFIG_NUMA_BALANCING */
1443 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1444 {
1445 	return page_to_nid(page); /* XXX */
1446 }
1447 
1448 static inline int page_cpupid_last(struct page *page)
1449 {
1450 	return page_to_nid(page); /* XXX */
1451 }
1452 
1453 static inline int cpupid_to_nid(int cpupid)
1454 {
1455 	return -1;
1456 }
1457 
1458 static inline int cpupid_to_pid(int cpupid)
1459 {
1460 	return -1;
1461 }
1462 
1463 static inline int cpupid_to_cpu(int cpupid)
1464 {
1465 	return -1;
1466 }
1467 
1468 static inline int cpu_pid_to_cpupid(int nid, int pid)
1469 {
1470 	return -1;
1471 }
1472 
1473 static inline bool cpupid_pid_unset(int cpupid)
1474 {
1475 	return true;
1476 }
1477 
1478 static inline void page_cpupid_reset_last(struct page *page)
1479 {
1480 }
1481 
1482 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1483 {
1484 	return false;
1485 }
1486 #endif /* CONFIG_NUMA_BALANCING */
1487 
1488 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1489 
1490 /*
1491  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1492  * setting tags for all pages to native kernel tag value 0xff, as the default
1493  * value 0x00 maps to 0xff.
1494  */
1495 
1496 static inline u8 page_kasan_tag(const struct page *page)
1497 {
1498 	u8 tag = 0xff;
1499 
1500 	if (kasan_enabled()) {
1501 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1502 		tag ^= 0xff;
1503 	}
1504 
1505 	return tag;
1506 }
1507 
1508 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1509 {
1510 	if (kasan_enabled()) {
1511 		tag ^= 0xff;
1512 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1513 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1514 	}
1515 }
1516 
1517 static inline void page_kasan_tag_reset(struct page *page)
1518 {
1519 	if (kasan_enabled())
1520 		page_kasan_tag_set(page, 0xff);
1521 }
1522 
1523 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1524 
1525 static inline u8 page_kasan_tag(const struct page *page)
1526 {
1527 	return 0xff;
1528 }
1529 
1530 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1531 static inline void page_kasan_tag_reset(struct page *page) { }
1532 
1533 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1534 
1535 static inline struct zone *page_zone(const struct page *page)
1536 {
1537 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1538 }
1539 
1540 static inline pg_data_t *page_pgdat(const struct page *page)
1541 {
1542 	return NODE_DATA(page_to_nid(page));
1543 }
1544 
1545 #ifdef SECTION_IN_PAGE_FLAGS
1546 static inline void set_page_section(struct page *page, unsigned long section)
1547 {
1548 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1549 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1550 }
1551 
1552 static inline unsigned long page_to_section(const struct page *page)
1553 {
1554 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1555 }
1556 #endif
1557 
1558 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1559 #ifdef CONFIG_MIGRATION
1560 static inline bool is_pinnable_page(struct page *page)
1561 {
1562 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1563 		is_zero_pfn(page_to_pfn(page));
1564 }
1565 #else
1566 static inline bool is_pinnable_page(struct page *page)
1567 {
1568 	return true;
1569 }
1570 #endif
1571 
1572 static inline void set_page_zone(struct page *page, enum zone_type zone)
1573 {
1574 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1575 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1576 }
1577 
1578 static inline void set_page_node(struct page *page, unsigned long node)
1579 {
1580 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1581 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1582 }
1583 
1584 static inline void set_page_links(struct page *page, enum zone_type zone,
1585 	unsigned long node, unsigned long pfn)
1586 {
1587 	set_page_zone(page, zone);
1588 	set_page_node(page, node);
1589 #ifdef SECTION_IN_PAGE_FLAGS
1590 	set_page_section(page, pfn_to_section_nr(pfn));
1591 #endif
1592 }
1593 
1594 /*
1595  * Some inline functions in vmstat.h depend on page_zone()
1596  */
1597 #include <linux/vmstat.h>
1598 
1599 static __always_inline void *lowmem_page_address(const struct page *page)
1600 {
1601 	return page_to_virt(page);
1602 }
1603 
1604 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1605 #define HASHED_PAGE_VIRTUAL
1606 #endif
1607 
1608 #if defined(WANT_PAGE_VIRTUAL)
1609 static inline void *page_address(const struct page *page)
1610 {
1611 	return page->virtual;
1612 }
1613 static inline void set_page_address(struct page *page, void *address)
1614 {
1615 	page->virtual = address;
1616 }
1617 #define page_address_init()  do { } while(0)
1618 #endif
1619 
1620 #if defined(HASHED_PAGE_VIRTUAL)
1621 void *page_address(const struct page *page);
1622 void set_page_address(struct page *page, void *virtual);
1623 void page_address_init(void);
1624 #endif
1625 
1626 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1627 #define page_address(page) lowmem_page_address(page)
1628 #define set_page_address(page, address)  do { } while(0)
1629 #define page_address_init()  do { } while(0)
1630 #endif
1631 
1632 extern void *page_rmapping(struct page *page);
1633 extern struct anon_vma *page_anon_vma(struct page *page);
1634 extern struct address_space *page_mapping(struct page *page);
1635 
1636 extern struct address_space *__page_file_mapping(struct page *);
1637 
1638 static inline
1639 struct address_space *page_file_mapping(struct page *page)
1640 {
1641 	if (unlikely(PageSwapCache(page)))
1642 		return __page_file_mapping(page);
1643 
1644 	return page->mapping;
1645 }
1646 
1647 extern pgoff_t __page_file_index(struct page *page);
1648 
1649 /*
1650  * Return the pagecache index of the passed page.  Regular pagecache pages
1651  * use ->index whereas swapcache pages use swp_offset(->private)
1652  */
1653 static inline pgoff_t page_index(struct page *page)
1654 {
1655 	if (unlikely(PageSwapCache(page)))
1656 		return __page_file_index(page);
1657 	return page->index;
1658 }
1659 
1660 bool page_mapped(struct page *page);
1661 struct address_space *page_mapping(struct page *page);
1662 
1663 /*
1664  * Return true only if the page has been allocated with
1665  * ALLOC_NO_WATERMARKS and the low watermark was not
1666  * met implying that the system is under some pressure.
1667  */
1668 static inline bool page_is_pfmemalloc(const struct page *page)
1669 {
1670 	/*
1671 	 * Page index cannot be this large so this must be
1672 	 * a pfmemalloc page.
1673 	 */
1674 	return page->index == -1UL;
1675 }
1676 
1677 /*
1678  * Only to be called by the page allocator on a freshly allocated
1679  * page.
1680  */
1681 static inline void set_page_pfmemalloc(struct page *page)
1682 {
1683 	page->index = -1UL;
1684 }
1685 
1686 static inline void clear_page_pfmemalloc(struct page *page)
1687 {
1688 	page->index = 0;
1689 }
1690 
1691 /*
1692  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1693  */
1694 extern void pagefault_out_of_memory(void);
1695 
1696 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1697 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1698 
1699 /*
1700  * Flags passed to show_mem() and show_free_areas() to suppress output in
1701  * various contexts.
1702  */
1703 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1704 
1705 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1706 
1707 #ifdef CONFIG_MMU
1708 extern bool can_do_mlock(void);
1709 #else
1710 static inline bool can_do_mlock(void) { return false; }
1711 #endif
1712 extern int user_shm_lock(size_t, struct ucounts *);
1713 extern void user_shm_unlock(size_t, struct ucounts *);
1714 
1715 /*
1716  * Parameter block passed down to zap_pte_range in exceptional cases.
1717  */
1718 struct zap_details {
1719 	struct address_space *check_mapping;	/* Check page->mapping if set */
1720 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1721 	pgoff_t last_index;			/* Highest page->index to unmap */
1722 	struct page *single_page;		/* Locked page to be unmapped */
1723 };
1724 
1725 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1726 			     pte_t pte);
1727 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1728 				pmd_t pmd);
1729 
1730 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1731 		  unsigned long size);
1732 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1733 		    unsigned long size);
1734 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1735 		unsigned long start, unsigned long end);
1736 
1737 struct mmu_notifier_range;
1738 
1739 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1740 		unsigned long end, unsigned long floor, unsigned long ceiling);
1741 int
1742 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1743 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1744 			  struct mmu_notifier_range *range, pte_t **ptepp,
1745 			  pmd_t **pmdpp, spinlock_t **ptlp);
1746 int follow_pte(struct mm_struct *mm, unsigned long address,
1747 	       pte_t **ptepp, spinlock_t **ptlp);
1748 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1749 	unsigned long *pfn);
1750 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1751 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1752 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1753 			void *buf, int len, int write);
1754 
1755 extern void truncate_pagecache(struct inode *inode, loff_t new);
1756 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1757 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1758 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1759 int truncate_inode_page(struct address_space *mapping, struct page *page);
1760 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1761 int invalidate_inode_page(struct page *page);
1762 
1763 #ifdef CONFIG_MMU
1764 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1765 				  unsigned long address, unsigned int flags,
1766 				  struct pt_regs *regs);
1767 extern int fixup_user_fault(struct mm_struct *mm,
1768 			    unsigned long address, unsigned int fault_flags,
1769 			    bool *unlocked);
1770 void unmap_mapping_page(struct page *page);
1771 void unmap_mapping_pages(struct address_space *mapping,
1772 		pgoff_t start, pgoff_t nr, bool even_cows);
1773 void unmap_mapping_range(struct address_space *mapping,
1774 		loff_t const holebegin, loff_t const holelen, int even_cows);
1775 #else
1776 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1777 					 unsigned long address, unsigned int flags,
1778 					 struct pt_regs *regs)
1779 {
1780 	/* should never happen if there's no MMU */
1781 	BUG();
1782 	return VM_FAULT_SIGBUS;
1783 }
1784 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1785 		unsigned int fault_flags, bool *unlocked)
1786 {
1787 	/* should never happen if there's no MMU */
1788 	BUG();
1789 	return -EFAULT;
1790 }
1791 static inline void unmap_mapping_page(struct page *page) { }
1792 static inline void unmap_mapping_pages(struct address_space *mapping,
1793 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1794 static inline void unmap_mapping_range(struct address_space *mapping,
1795 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1796 #endif
1797 
1798 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1799 		loff_t const holebegin, loff_t const holelen)
1800 {
1801 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1802 }
1803 
1804 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1805 		void *buf, int len, unsigned int gup_flags);
1806 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1807 		void *buf, int len, unsigned int gup_flags);
1808 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1809 			      void *buf, int len, unsigned int gup_flags);
1810 
1811 long get_user_pages_remote(struct mm_struct *mm,
1812 			    unsigned long start, unsigned long nr_pages,
1813 			    unsigned int gup_flags, struct page **pages,
1814 			    struct vm_area_struct **vmas, int *locked);
1815 long pin_user_pages_remote(struct mm_struct *mm,
1816 			   unsigned long start, unsigned long nr_pages,
1817 			   unsigned int gup_flags, struct page **pages,
1818 			   struct vm_area_struct **vmas, int *locked);
1819 long get_user_pages(unsigned long start, unsigned long nr_pages,
1820 			    unsigned int gup_flags, struct page **pages,
1821 			    struct vm_area_struct **vmas);
1822 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1823 		    unsigned int gup_flags, struct page **pages,
1824 		    struct vm_area_struct **vmas);
1825 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1826 		    unsigned int gup_flags, struct page **pages, int *locked);
1827 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1828 		    unsigned int gup_flags, struct page **pages, int *locked);
1829 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1830 		    struct page **pages, unsigned int gup_flags);
1831 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1832 		    struct page **pages, unsigned int gup_flags);
1833 
1834 int get_user_pages_fast(unsigned long start, int nr_pages,
1835 			unsigned int gup_flags, struct page **pages);
1836 int pin_user_pages_fast(unsigned long start, int nr_pages,
1837 			unsigned int gup_flags, struct page **pages);
1838 
1839 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1840 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1841 			struct task_struct *task, bool bypass_rlim);
1842 
1843 struct kvec;
1844 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1845 			struct page **pages);
1846 int get_kernel_page(unsigned long start, int write, struct page **pages);
1847 struct page *get_dump_page(unsigned long addr);
1848 
1849 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1850 extern void do_invalidatepage(struct page *page, unsigned int offset,
1851 			      unsigned int length);
1852 
1853 void __set_page_dirty(struct page *, struct address_space *, int warn);
1854 int __set_page_dirty_nobuffers(struct page *page);
1855 int __set_page_dirty_no_writeback(struct page *page);
1856 int redirty_page_for_writepage(struct writeback_control *wbc,
1857 				struct page *page);
1858 void account_page_dirtied(struct page *page, struct address_space *mapping);
1859 void account_page_cleaned(struct page *page, struct address_space *mapping,
1860 			  struct bdi_writeback *wb);
1861 int set_page_dirty(struct page *page);
1862 int set_page_dirty_lock(struct page *page);
1863 void __cancel_dirty_page(struct page *page);
1864 static inline void cancel_dirty_page(struct page *page)
1865 {
1866 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1867 	if (PageDirty(page))
1868 		__cancel_dirty_page(page);
1869 }
1870 int clear_page_dirty_for_io(struct page *page);
1871 
1872 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1873 
1874 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1875 		unsigned long old_addr, struct vm_area_struct *new_vma,
1876 		unsigned long new_addr, unsigned long len,
1877 		bool need_rmap_locks);
1878 
1879 /*
1880  * Flags used by change_protection().  For now we make it a bitmap so
1881  * that we can pass in multiple flags just like parameters.  However
1882  * for now all the callers are only use one of the flags at the same
1883  * time.
1884  */
1885 /* Whether we should allow dirty bit accounting */
1886 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1887 /* Whether this protection change is for NUMA hints */
1888 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1889 /* Whether this change is for write protecting */
1890 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1891 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1892 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1893 					    MM_CP_UFFD_WP_RESOLVE)
1894 
1895 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1896 			      unsigned long end, pgprot_t newprot,
1897 			      unsigned long cp_flags);
1898 extern int mprotect_fixup(struct vm_area_struct *vma,
1899 			  struct vm_area_struct **pprev, unsigned long start,
1900 			  unsigned long end, unsigned long newflags);
1901 
1902 /*
1903  * doesn't attempt to fault and will return short.
1904  */
1905 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1906 			     unsigned int gup_flags, struct page **pages);
1907 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1908 			     unsigned int gup_flags, struct page **pages);
1909 
1910 static inline bool get_user_page_fast_only(unsigned long addr,
1911 			unsigned int gup_flags, struct page **pagep)
1912 {
1913 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1914 }
1915 /*
1916  * per-process(per-mm_struct) statistics.
1917  */
1918 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1919 {
1920 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1921 
1922 #ifdef SPLIT_RSS_COUNTING
1923 	/*
1924 	 * counter is updated in asynchronous manner and may go to minus.
1925 	 * But it's never be expected number for users.
1926 	 */
1927 	if (val < 0)
1928 		val = 0;
1929 #endif
1930 	return (unsigned long)val;
1931 }
1932 
1933 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1934 
1935 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1936 {
1937 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1938 
1939 	mm_trace_rss_stat(mm, member, count);
1940 }
1941 
1942 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1943 {
1944 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1945 
1946 	mm_trace_rss_stat(mm, member, count);
1947 }
1948 
1949 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1950 {
1951 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1952 
1953 	mm_trace_rss_stat(mm, member, count);
1954 }
1955 
1956 /* Optimized variant when page is already known not to be PageAnon */
1957 static inline int mm_counter_file(struct page *page)
1958 {
1959 	if (PageSwapBacked(page))
1960 		return MM_SHMEMPAGES;
1961 	return MM_FILEPAGES;
1962 }
1963 
1964 static inline int mm_counter(struct page *page)
1965 {
1966 	if (PageAnon(page))
1967 		return MM_ANONPAGES;
1968 	return mm_counter_file(page);
1969 }
1970 
1971 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972 {
1973 	return get_mm_counter(mm, MM_FILEPAGES) +
1974 		get_mm_counter(mm, MM_ANONPAGES) +
1975 		get_mm_counter(mm, MM_SHMEMPAGES);
1976 }
1977 
1978 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1979 {
1980 	return max(mm->hiwater_rss, get_mm_rss(mm));
1981 }
1982 
1983 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1984 {
1985 	return max(mm->hiwater_vm, mm->total_vm);
1986 }
1987 
1988 static inline void update_hiwater_rss(struct mm_struct *mm)
1989 {
1990 	unsigned long _rss = get_mm_rss(mm);
1991 
1992 	if ((mm)->hiwater_rss < _rss)
1993 		(mm)->hiwater_rss = _rss;
1994 }
1995 
1996 static inline void update_hiwater_vm(struct mm_struct *mm)
1997 {
1998 	if (mm->hiwater_vm < mm->total_vm)
1999 		mm->hiwater_vm = mm->total_vm;
2000 }
2001 
2002 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2003 {
2004 	mm->hiwater_rss = get_mm_rss(mm);
2005 }
2006 
2007 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2008 					 struct mm_struct *mm)
2009 {
2010 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2011 
2012 	if (*maxrss < hiwater_rss)
2013 		*maxrss = hiwater_rss;
2014 }
2015 
2016 #if defined(SPLIT_RSS_COUNTING)
2017 void sync_mm_rss(struct mm_struct *mm);
2018 #else
2019 static inline void sync_mm_rss(struct mm_struct *mm)
2020 {
2021 }
2022 #endif
2023 
2024 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2025 static inline int pte_special(pte_t pte)
2026 {
2027 	return 0;
2028 }
2029 
2030 static inline pte_t pte_mkspecial(pte_t pte)
2031 {
2032 	return pte;
2033 }
2034 #endif
2035 
2036 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2037 static inline int pte_devmap(pte_t pte)
2038 {
2039 	return 0;
2040 }
2041 #endif
2042 
2043 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2044 
2045 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2046 			       spinlock_t **ptl);
2047 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2048 				    spinlock_t **ptl)
2049 {
2050 	pte_t *ptep;
2051 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2052 	return ptep;
2053 }
2054 
2055 #ifdef __PAGETABLE_P4D_FOLDED
2056 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2057 						unsigned long address)
2058 {
2059 	return 0;
2060 }
2061 #else
2062 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2063 #endif
2064 
2065 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2066 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2067 						unsigned long address)
2068 {
2069 	return 0;
2070 }
2071 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2072 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2073 
2074 #else
2075 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2076 
2077 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2078 {
2079 	if (mm_pud_folded(mm))
2080 		return;
2081 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2082 }
2083 
2084 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2085 {
2086 	if (mm_pud_folded(mm))
2087 		return;
2088 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2089 }
2090 #endif
2091 
2092 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2093 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2094 						unsigned long address)
2095 {
2096 	return 0;
2097 }
2098 
2099 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2100 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2101 
2102 #else
2103 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2104 
2105 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2106 {
2107 	if (mm_pmd_folded(mm))
2108 		return;
2109 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2110 }
2111 
2112 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2113 {
2114 	if (mm_pmd_folded(mm))
2115 		return;
2116 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2117 }
2118 #endif
2119 
2120 #ifdef CONFIG_MMU
2121 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2122 {
2123 	atomic_long_set(&mm->pgtables_bytes, 0);
2124 }
2125 
2126 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2127 {
2128 	return atomic_long_read(&mm->pgtables_bytes);
2129 }
2130 
2131 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2132 {
2133 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2134 }
2135 
2136 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2137 {
2138 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2139 }
2140 #else
2141 
2142 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2143 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2144 {
2145 	return 0;
2146 }
2147 
2148 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2149 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2150 #endif
2151 
2152 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2153 int __pte_alloc_kernel(pmd_t *pmd);
2154 
2155 #if defined(CONFIG_MMU)
2156 
2157 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2158 		unsigned long address)
2159 {
2160 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2161 		NULL : p4d_offset(pgd, address);
2162 }
2163 
2164 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2165 		unsigned long address)
2166 {
2167 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2168 		NULL : pud_offset(p4d, address);
2169 }
2170 
2171 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2172 {
2173 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2174 		NULL: pmd_offset(pud, address);
2175 }
2176 #endif /* CONFIG_MMU */
2177 
2178 #if USE_SPLIT_PTE_PTLOCKS
2179 #if ALLOC_SPLIT_PTLOCKS
2180 void __init ptlock_cache_init(void);
2181 extern bool ptlock_alloc(struct page *page);
2182 extern void ptlock_free(struct page *page);
2183 
2184 static inline spinlock_t *ptlock_ptr(struct page *page)
2185 {
2186 	return page->ptl;
2187 }
2188 #else /* ALLOC_SPLIT_PTLOCKS */
2189 static inline void ptlock_cache_init(void)
2190 {
2191 }
2192 
2193 static inline bool ptlock_alloc(struct page *page)
2194 {
2195 	return true;
2196 }
2197 
2198 static inline void ptlock_free(struct page *page)
2199 {
2200 }
2201 
2202 static inline spinlock_t *ptlock_ptr(struct page *page)
2203 {
2204 	return &page->ptl;
2205 }
2206 #endif /* ALLOC_SPLIT_PTLOCKS */
2207 
2208 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2209 {
2210 	return ptlock_ptr(pmd_page(*pmd));
2211 }
2212 
2213 static inline bool ptlock_init(struct page *page)
2214 {
2215 	/*
2216 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2217 	 * with 0. Make sure nobody took it in use in between.
2218 	 *
2219 	 * It can happen if arch try to use slab for page table allocation:
2220 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2221 	 */
2222 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2223 	if (!ptlock_alloc(page))
2224 		return false;
2225 	spin_lock_init(ptlock_ptr(page));
2226 	return true;
2227 }
2228 
2229 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2230 /*
2231  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2232  */
2233 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2234 {
2235 	return &mm->page_table_lock;
2236 }
2237 static inline void ptlock_cache_init(void) {}
2238 static inline bool ptlock_init(struct page *page) { return true; }
2239 static inline void ptlock_free(struct page *page) {}
2240 #endif /* USE_SPLIT_PTE_PTLOCKS */
2241 
2242 static inline void pgtable_init(void)
2243 {
2244 	ptlock_cache_init();
2245 	pgtable_cache_init();
2246 }
2247 
2248 static inline bool pgtable_pte_page_ctor(struct page *page)
2249 {
2250 	if (!ptlock_init(page))
2251 		return false;
2252 	__SetPageTable(page);
2253 	inc_lruvec_page_state(page, NR_PAGETABLE);
2254 	return true;
2255 }
2256 
2257 static inline void pgtable_pte_page_dtor(struct page *page)
2258 {
2259 	ptlock_free(page);
2260 	__ClearPageTable(page);
2261 	dec_lruvec_page_state(page, NR_PAGETABLE);
2262 }
2263 
2264 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2265 ({							\
2266 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2267 	pte_t *__pte = pte_offset_map(pmd, address);	\
2268 	*(ptlp) = __ptl;				\
2269 	spin_lock(__ptl);				\
2270 	__pte;						\
2271 })
2272 
2273 #define pte_unmap_unlock(pte, ptl)	do {		\
2274 	spin_unlock(ptl);				\
2275 	pte_unmap(pte);					\
2276 } while (0)
2277 
2278 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2279 
2280 #define pte_alloc_map(mm, pmd, address)			\
2281 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2282 
2283 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2284 	(pte_alloc(mm, pmd) ?			\
2285 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2286 
2287 #define pte_alloc_kernel(pmd, address)			\
2288 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2289 		NULL: pte_offset_kernel(pmd, address))
2290 
2291 #if USE_SPLIT_PMD_PTLOCKS
2292 
2293 static struct page *pmd_to_page(pmd_t *pmd)
2294 {
2295 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2296 	return virt_to_page((void *)((unsigned long) pmd & mask));
2297 }
2298 
2299 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2300 {
2301 	return ptlock_ptr(pmd_to_page(pmd));
2302 }
2303 
2304 static inline bool pmd_ptlock_init(struct page *page)
2305 {
2306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2307 	page->pmd_huge_pte = NULL;
2308 #endif
2309 	return ptlock_init(page);
2310 }
2311 
2312 static inline void pmd_ptlock_free(struct page *page)
2313 {
2314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2315 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2316 #endif
2317 	ptlock_free(page);
2318 }
2319 
2320 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2321 
2322 #else
2323 
2324 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325 {
2326 	return &mm->page_table_lock;
2327 }
2328 
2329 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2330 static inline void pmd_ptlock_free(struct page *page) {}
2331 
2332 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2333 
2334 #endif
2335 
2336 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2337 {
2338 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2339 	spin_lock(ptl);
2340 	return ptl;
2341 }
2342 
2343 static inline bool pgtable_pmd_page_ctor(struct page *page)
2344 {
2345 	if (!pmd_ptlock_init(page))
2346 		return false;
2347 	__SetPageTable(page);
2348 	inc_lruvec_page_state(page, NR_PAGETABLE);
2349 	return true;
2350 }
2351 
2352 static inline void pgtable_pmd_page_dtor(struct page *page)
2353 {
2354 	pmd_ptlock_free(page);
2355 	__ClearPageTable(page);
2356 	dec_lruvec_page_state(page, NR_PAGETABLE);
2357 }
2358 
2359 /*
2360  * No scalability reason to split PUD locks yet, but follow the same pattern
2361  * as the PMD locks to make it easier if we decide to.  The VM should not be
2362  * considered ready to switch to split PUD locks yet; there may be places
2363  * which need to be converted from page_table_lock.
2364  */
2365 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2366 {
2367 	return &mm->page_table_lock;
2368 }
2369 
2370 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2371 {
2372 	spinlock_t *ptl = pud_lockptr(mm, pud);
2373 
2374 	spin_lock(ptl);
2375 	return ptl;
2376 }
2377 
2378 extern void __init pagecache_init(void);
2379 extern void __init free_area_init_memoryless_node(int nid);
2380 extern void free_initmem(void);
2381 
2382 /*
2383  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2384  * into the buddy system. The freed pages will be poisoned with pattern
2385  * "poison" if it's within range [0, UCHAR_MAX].
2386  * Return pages freed into the buddy system.
2387  */
2388 extern unsigned long free_reserved_area(void *start, void *end,
2389 					int poison, const char *s);
2390 
2391 extern void adjust_managed_page_count(struct page *page, long count);
2392 extern void mem_init_print_info(void);
2393 
2394 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2395 
2396 /* Free the reserved page into the buddy system, so it gets managed. */
2397 static inline void free_reserved_page(struct page *page)
2398 {
2399 	ClearPageReserved(page);
2400 	init_page_count(page);
2401 	__free_page(page);
2402 	adjust_managed_page_count(page, 1);
2403 }
2404 #define free_highmem_page(page) free_reserved_page(page)
2405 
2406 static inline void mark_page_reserved(struct page *page)
2407 {
2408 	SetPageReserved(page);
2409 	adjust_managed_page_count(page, -1);
2410 }
2411 
2412 /*
2413  * Default method to free all the __init memory into the buddy system.
2414  * The freed pages will be poisoned with pattern "poison" if it's within
2415  * range [0, UCHAR_MAX].
2416  * Return pages freed into the buddy system.
2417  */
2418 static inline unsigned long free_initmem_default(int poison)
2419 {
2420 	extern char __init_begin[], __init_end[];
2421 
2422 	return free_reserved_area(&__init_begin, &__init_end,
2423 				  poison, "unused kernel");
2424 }
2425 
2426 static inline unsigned long get_num_physpages(void)
2427 {
2428 	int nid;
2429 	unsigned long phys_pages = 0;
2430 
2431 	for_each_online_node(nid)
2432 		phys_pages += node_present_pages(nid);
2433 
2434 	return phys_pages;
2435 }
2436 
2437 /*
2438  * Using memblock node mappings, an architecture may initialise its
2439  * zones, allocate the backing mem_map and account for memory holes in an
2440  * architecture independent manner.
2441  *
2442  * An architecture is expected to register range of page frames backed by
2443  * physical memory with memblock_add[_node]() before calling
2444  * free_area_init() passing in the PFN each zone ends at. At a basic
2445  * usage, an architecture is expected to do something like
2446  *
2447  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2448  * 							 max_highmem_pfn};
2449  * for_each_valid_physical_page_range()
2450  * 	memblock_add_node(base, size, nid)
2451  * free_area_init(max_zone_pfns);
2452  */
2453 void free_area_init(unsigned long *max_zone_pfn);
2454 unsigned long node_map_pfn_alignment(void);
2455 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2456 						unsigned long end_pfn);
2457 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2458 						unsigned long end_pfn);
2459 extern void get_pfn_range_for_nid(unsigned int nid,
2460 			unsigned long *start_pfn, unsigned long *end_pfn);
2461 extern unsigned long find_min_pfn_with_active_regions(void);
2462 
2463 #ifndef CONFIG_NEED_MULTIPLE_NODES
2464 static inline int early_pfn_to_nid(unsigned long pfn)
2465 {
2466 	return 0;
2467 }
2468 #else
2469 /* please see mm/page_alloc.c */
2470 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2471 #endif
2472 
2473 extern void set_dma_reserve(unsigned long new_dma_reserve);
2474 extern void memmap_init_range(unsigned long, int, unsigned long,
2475 		unsigned long, unsigned long, enum meminit_context,
2476 		struct vmem_altmap *, int migratetype);
2477 extern void memmap_init_zone(struct zone *zone);
2478 extern void setup_per_zone_wmarks(void);
2479 extern int __meminit init_per_zone_wmark_min(void);
2480 extern void mem_init(void);
2481 extern void __init mmap_init(void);
2482 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2483 extern long si_mem_available(void);
2484 extern void si_meminfo(struct sysinfo * val);
2485 extern void si_meminfo_node(struct sysinfo *val, int nid);
2486 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2487 extern unsigned long arch_reserved_kernel_pages(void);
2488 #endif
2489 
2490 extern __printf(3, 4)
2491 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2492 
2493 extern void setup_per_cpu_pageset(void);
2494 
2495 /* page_alloc.c */
2496 extern int min_free_kbytes;
2497 extern int watermark_boost_factor;
2498 extern int watermark_scale_factor;
2499 extern bool arch_has_descending_max_zone_pfns(void);
2500 
2501 /* nommu.c */
2502 extern atomic_long_t mmap_pages_allocated;
2503 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2504 
2505 /* interval_tree.c */
2506 void vma_interval_tree_insert(struct vm_area_struct *node,
2507 			      struct rb_root_cached *root);
2508 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2509 				    struct vm_area_struct *prev,
2510 				    struct rb_root_cached *root);
2511 void vma_interval_tree_remove(struct vm_area_struct *node,
2512 			      struct rb_root_cached *root);
2513 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2514 				unsigned long start, unsigned long last);
2515 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2516 				unsigned long start, unsigned long last);
2517 
2518 #define vma_interval_tree_foreach(vma, root, start, last)		\
2519 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2520 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2521 
2522 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2523 				   struct rb_root_cached *root);
2524 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2525 				   struct rb_root_cached *root);
2526 struct anon_vma_chain *
2527 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2528 				  unsigned long start, unsigned long last);
2529 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2530 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2531 #ifdef CONFIG_DEBUG_VM_RB
2532 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2533 #endif
2534 
2535 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2536 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2537 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2538 
2539 /* mmap.c */
2540 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2541 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2542 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2543 	struct vm_area_struct *expand);
2544 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2545 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2546 {
2547 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2548 }
2549 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2550 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2551 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2552 	struct mempolicy *, struct vm_userfaultfd_ctx);
2553 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2554 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2555 	unsigned long addr, int new_below);
2556 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2557 	unsigned long addr, int new_below);
2558 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2559 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2560 	struct rb_node **, struct rb_node *);
2561 extern void unlink_file_vma(struct vm_area_struct *);
2562 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2563 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2564 	bool *need_rmap_locks);
2565 extern void exit_mmap(struct mm_struct *);
2566 
2567 static inline int check_data_rlimit(unsigned long rlim,
2568 				    unsigned long new,
2569 				    unsigned long start,
2570 				    unsigned long end_data,
2571 				    unsigned long start_data)
2572 {
2573 	if (rlim < RLIM_INFINITY) {
2574 		if (((new - start) + (end_data - start_data)) > rlim)
2575 			return -ENOSPC;
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 extern int mm_take_all_locks(struct mm_struct *mm);
2582 extern void mm_drop_all_locks(struct mm_struct *mm);
2583 
2584 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2585 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2586 extern struct file *get_task_exe_file(struct task_struct *task);
2587 
2588 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2589 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2590 
2591 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2592 				   const struct vm_special_mapping *sm);
2593 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2594 				   unsigned long addr, unsigned long len,
2595 				   unsigned long flags,
2596 				   const struct vm_special_mapping *spec);
2597 /* This is an obsolete alternative to _install_special_mapping. */
2598 extern int install_special_mapping(struct mm_struct *mm,
2599 				   unsigned long addr, unsigned long len,
2600 				   unsigned long flags, struct page **pages);
2601 
2602 unsigned long randomize_stack_top(unsigned long stack_top);
2603 
2604 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2605 
2606 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2607 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2608 	struct list_head *uf);
2609 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2610 	unsigned long len, unsigned long prot, unsigned long flags,
2611 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2612 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2613 		       struct list_head *uf, bool downgrade);
2614 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2615 		     struct list_head *uf);
2616 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2617 
2618 #ifdef CONFIG_MMU
2619 extern int __mm_populate(unsigned long addr, unsigned long len,
2620 			 int ignore_errors);
2621 static inline void mm_populate(unsigned long addr, unsigned long len)
2622 {
2623 	/* Ignore errors */
2624 	(void) __mm_populate(addr, len, 1);
2625 }
2626 #else
2627 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2628 #endif
2629 
2630 /* These take the mm semaphore themselves */
2631 extern int __must_check vm_brk(unsigned long, unsigned long);
2632 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2633 extern int vm_munmap(unsigned long, size_t);
2634 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2635         unsigned long, unsigned long,
2636         unsigned long, unsigned long);
2637 
2638 struct vm_unmapped_area_info {
2639 #define VM_UNMAPPED_AREA_TOPDOWN 1
2640 	unsigned long flags;
2641 	unsigned long length;
2642 	unsigned long low_limit;
2643 	unsigned long high_limit;
2644 	unsigned long align_mask;
2645 	unsigned long align_offset;
2646 };
2647 
2648 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2649 
2650 /* truncate.c */
2651 extern void truncate_inode_pages(struct address_space *, loff_t);
2652 extern void truncate_inode_pages_range(struct address_space *,
2653 				       loff_t lstart, loff_t lend);
2654 extern void truncate_inode_pages_final(struct address_space *);
2655 
2656 /* generic vm_area_ops exported for stackable file systems */
2657 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2658 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2659 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2660 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2661 
2662 /* mm/page-writeback.c */
2663 int __must_check write_one_page(struct page *page);
2664 void task_dirty_inc(struct task_struct *tsk);
2665 
2666 extern unsigned long stack_guard_gap;
2667 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2668 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2669 
2670 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2671 extern int expand_downwards(struct vm_area_struct *vma,
2672 		unsigned long address);
2673 #if VM_GROWSUP
2674 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2675 #else
2676   #define expand_upwards(vma, address) (0)
2677 #endif
2678 
2679 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2680 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2681 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2682 					     struct vm_area_struct **pprev);
2683 
2684 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2685    NULL if none.  Assume start_addr < end_addr. */
2686 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2687 {
2688 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2689 
2690 	if (vma && end_addr <= vma->vm_start)
2691 		vma = NULL;
2692 	return vma;
2693 }
2694 
2695 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2696 {
2697 	unsigned long vm_start = vma->vm_start;
2698 
2699 	if (vma->vm_flags & VM_GROWSDOWN) {
2700 		vm_start -= stack_guard_gap;
2701 		if (vm_start > vma->vm_start)
2702 			vm_start = 0;
2703 	}
2704 	return vm_start;
2705 }
2706 
2707 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2708 {
2709 	unsigned long vm_end = vma->vm_end;
2710 
2711 	if (vma->vm_flags & VM_GROWSUP) {
2712 		vm_end += stack_guard_gap;
2713 		if (vm_end < vma->vm_end)
2714 			vm_end = -PAGE_SIZE;
2715 	}
2716 	return vm_end;
2717 }
2718 
2719 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2720 {
2721 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2722 }
2723 
2724 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2725 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2726 				unsigned long vm_start, unsigned long vm_end)
2727 {
2728 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2729 
2730 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2731 		vma = NULL;
2732 
2733 	return vma;
2734 }
2735 
2736 static inline bool range_in_vma(struct vm_area_struct *vma,
2737 				unsigned long start, unsigned long end)
2738 {
2739 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2740 }
2741 
2742 #ifdef CONFIG_MMU
2743 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2744 void vma_set_page_prot(struct vm_area_struct *vma);
2745 #else
2746 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2747 {
2748 	return __pgprot(0);
2749 }
2750 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2751 {
2752 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2753 }
2754 #endif
2755 
2756 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2757 
2758 #ifdef CONFIG_NUMA_BALANCING
2759 unsigned long change_prot_numa(struct vm_area_struct *vma,
2760 			unsigned long start, unsigned long end);
2761 #endif
2762 
2763 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2764 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2765 			unsigned long pfn, unsigned long size, pgprot_t);
2766 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2767 		unsigned long pfn, unsigned long size, pgprot_t prot);
2768 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2769 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2770 			struct page **pages, unsigned long *num);
2771 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2772 				unsigned long num);
2773 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2774 				unsigned long num);
2775 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2776 			unsigned long pfn);
2777 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2778 			unsigned long pfn, pgprot_t pgprot);
2779 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2780 			pfn_t pfn);
2781 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2782 			pfn_t pfn, pgprot_t pgprot);
2783 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2784 		unsigned long addr, pfn_t pfn);
2785 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2786 
2787 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2788 				unsigned long addr, struct page *page)
2789 {
2790 	int err = vm_insert_page(vma, addr, page);
2791 
2792 	if (err == -ENOMEM)
2793 		return VM_FAULT_OOM;
2794 	if (err < 0 && err != -EBUSY)
2795 		return VM_FAULT_SIGBUS;
2796 
2797 	return VM_FAULT_NOPAGE;
2798 }
2799 
2800 #ifndef io_remap_pfn_range
2801 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2802 				     unsigned long addr, unsigned long pfn,
2803 				     unsigned long size, pgprot_t prot)
2804 {
2805 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2806 }
2807 #endif
2808 
2809 static inline vm_fault_t vmf_error(int err)
2810 {
2811 	if (err == -ENOMEM)
2812 		return VM_FAULT_OOM;
2813 	return VM_FAULT_SIGBUS;
2814 }
2815 
2816 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2817 			 unsigned int foll_flags);
2818 
2819 #define FOLL_WRITE	0x01	/* check pte is writable */
2820 #define FOLL_TOUCH	0x02	/* mark page accessed */
2821 #define FOLL_GET	0x04	/* do get_page on page */
2822 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2823 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2824 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2825 				 * and return without waiting upon it */
2826 #define FOLL_POPULATE	0x40	/* fault in page */
2827 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2828 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2829 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2830 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2831 #define FOLL_MLOCK	0x1000	/* lock present pages */
2832 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2833 #define FOLL_COW	0x4000	/* internal GUP flag */
2834 #define FOLL_ANON	0x8000	/* don't do file mappings */
2835 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2836 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2837 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2838 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2839 
2840 /*
2841  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2842  * other. Here is what they mean, and how to use them:
2843  *
2844  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2845  * period _often_ under userspace control.  This is in contrast to
2846  * iov_iter_get_pages(), whose usages are transient.
2847  *
2848  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2849  * lifetime enforced by the filesystem and we need guarantees that longterm
2850  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2851  * the filesystem.  Ideas for this coordination include revoking the longterm
2852  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2853  * added after the problem with filesystems was found FS DAX VMAs are
2854  * specifically failed.  Filesystem pages are still subject to bugs and use of
2855  * FOLL_LONGTERM should be avoided on those pages.
2856  *
2857  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2858  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2859  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2860  * is due to an incompatibility with the FS DAX check and
2861  * FAULT_FLAG_ALLOW_RETRY.
2862  *
2863  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2864  * that region.  And so, CMA attempts to migrate the page before pinning, when
2865  * FOLL_LONGTERM is specified.
2866  *
2867  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2868  * but an additional pin counting system) will be invoked. This is intended for
2869  * anything that gets a page reference and then touches page data (for example,
2870  * Direct IO). This lets the filesystem know that some non-file-system entity is
2871  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2872  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2873  * a call to unpin_user_page().
2874  *
2875  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2876  * and separate refcounting mechanisms, however, and that means that each has
2877  * its own acquire and release mechanisms:
2878  *
2879  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2880  *
2881  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2882  *
2883  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2884  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2885  * calls applied to them, and that's perfectly OK. This is a constraint on the
2886  * callers, not on the pages.)
2887  *
2888  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2889  * directly by the caller. That's in order to help avoid mismatches when
2890  * releasing pages: get_user_pages*() pages must be released via put_page(),
2891  * while pin_user_pages*() pages must be released via unpin_user_page().
2892  *
2893  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2894  */
2895 
2896 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2897 {
2898 	if (vm_fault & VM_FAULT_OOM)
2899 		return -ENOMEM;
2900 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2901 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2902 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2903 		return -EFAULT;
2904 	return 0;
2905 }
2906 
2907 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2908 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2909 			       unsigned long size, pte_fn_t fn, void *data);
2910 extern int apply_to_existing_page_range(struct mm_struct *mm,
2911 				   unsigned long address, unsigned long size,
2912 				   pte_fn_t fn, void *data);
2913 
2914 extern void init_mem_debugging_and_hardening(void);
2915 #ifdef CONFIG_PAGE_POISONING
2916 extern void __kernel_poison_pages(struct page *page, int numpages);
2917 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2918 extern bool _page_poisoning_enabled_early;
2919 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2920 static inline bool page_poisoning_enabled(void)
2921 {
2922 	return _page_poisoning_enabled_early;
2923 }
2924 /*
2925  * For use in fast paths after init_mem_debugging() has run, or when a
2926  * false negative result is not harmful when called too early.
2927  */
2928 static inline bool page_poisoning_enabled_static(void)
2929 {
2930 	return static_branch_unlikely(&_page_poisoning_enabled);
2931 }
2932 static inline void kernel_poison_pages(struct page *page, int numpages)
2933 {
2934 	if (page_poisoning_enabled_static())
2935 		__kernel_poison_pages(page, numpages);
2936 }
2937 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2938 {
2939 	if (page_poisoning_enabled_static())
2940 		__kernel_unpoison_pages(page, numpages);
2941 }
2942 #else
2943 static inline bool page_poisoning_enabled(void) { return false; }
2944 static inline bool page_poisoning_enabled_static(void) { return false; }
2945 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2946 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2947 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2948 #endif
2949 
2950 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2951 static inline bool want_init_on_alloc(gfp_t flags)
2952 {
2953 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2954 				&init_on_alloc))
2955 		return true;
2956 	return flags & __GFP_ZERO;
2957 }
2958 
2959 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2960 static inline bool want_init_on_free(void)
2961 {
2962 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2963 				   &init_on_free);
2964 }
2965 
2966 extern bool _debug_pagealloc_enabled_early;
2967 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2968 
2969 static inline bool debug_pagealloc_enabled(void)
2970 {
2971 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2972 		_debug_pagealloc_enabled_early;
2973 }
2974 
2975 /*
2976  * For use in fast paths after init_debug_pagealloc() has run, or when a
2977  * false negative result is not harmful when called too early.
2978  */
2979 static inline bool debug_pagealloc_enabled_static(void)
2980 {
2981 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2982 		return false;
2983 
2984 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2985 }
2986 
2987 #ifdef CONFIG_DEBUG_PAGEALLOC
2988 /*
2989  * To support DEBUG_PAGEALLOC architecture must ensure that
2990  * __kernel_map_pages() never fails
2991  */
2992 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2993 
2994 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2995 {
2996 	if (debug_pagealloc_enabled_static())
2997 		__kernel_map_pages(page, numpages, 1);
2998 }
2999 
3000 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3001 {
3002 	if (debug_pagealloc_enabled_static())
3003 		__kernel_map_pages(page, numpages, 0);
3004 }
3005 #else	/* CONFIG_DEBUG_PAGEALLOC */
3006 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3007 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3008 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3009 
3010 #ifdef __HAVE_ARCH_GATE_AREA
3011 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3012 extern int in_gate_area_no_mm(unsigned long addr);
3013 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3014 #else
3015 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3016 {
3017 	return NULL;
3018 }
3019 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3020 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3021 {
3022 	return 0;
3023 }
3024 #endif	/* __HAVE_ARCH_GATE_AREA */
3025 
3026 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3027 
3028 #ifdef CONFIG_SYSCTL
3029 extern int sysctl_drop_caches;
3030 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3031 		loff_t *);
3032 #endif
3033 
3034 void drop_slab(void);
3035 void drop_slab_node(int nid);
3036 
3037 #ifndef CONFIG_MMU
3038 #define randomize_va_space 0
3039 #else
3040 extern int randomize_va_space;
3041 #endif
3042 
3043 const char * arch_vma_name(struct vm_area_struct *vma);
3044 #ifdef CONFIG_MMU
3045 void print_vma_addr(char *prefix, unsigned long rip);
3046 #else
3047 static inline void print_vma_addr(char *prefix, unsigned long rip)
3048 {
3049 }
3050 #endif
3051 
3052 void *sparse_buffer_alloc(unsigned long size);
3053 struct page * __populate_section_memmap(unsigned long pfn,
3054 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3055 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3056 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3057 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3058 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3059 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3060 			    struct vmem_altmap *altmap);
3061 void *vmemmap_alloc_block(unsigned long size, int node);
3062 struct vmem_altmap;
3063 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3064 			      struct vmem_altmap *altmap);
3065 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3066 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3067 			       int node, struct vmem_altmap *altmap);
3068 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3069 		struct vmem_altmap *altmap);
3070 void vmemmap_populate_print_last(void);
3071 #ifdef CONFIG_MEMORY_HOTPLUG
3072 void vmemmap_free(unsigned long start, unsigned long end,
3073 		struct vmem_altmap *altmap);
3074 #endif
3075 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3076 				  unsigned long nr_pages);
3077 
3078 enum mf_flags {
3079 	MF_COUNT_INCREASED = 1 << 0,
3080 	MF_ACTION_REQUIRED = 1 << 1,
3081 	MF_MUST_KILL = 1 << 2,
3082 	MF_SOFT_OFFLINE = 1 << 3,
3083 };
3084 extern int memory_failure(unsigned long pfn, int flags);
3085 extern void memory_failure_queue(unsigned long pfn, int flags);
3086 extern void memory_failure_queue_kick(int cpu);
3087 extern int unpoison_memory(unsigned long pfn);
3088 extern int sysctl_memory_failure_early_kill;
3089 extern int sysctl_memory_failure_recovery;
3090 extern void shake_page(struct page *p, int access);
3091 extern atomic_long_t num_poisoned_pages __read_mostly;
3092 extern int soft_offline_page(unsigned long pfn, int flags);
3093 
3094 
3095 /*
3096  * Error handlers for various types of pages.
3097  */
3098 enum mf_result {
3099 	MF_IGNORED,	/* Error: cannot be handled */
3100 	MF_FAILED,	/* Error: handling failed */
3101 	MF_DELAYED,	/* Will be handled later */
3102 	MF_RECOVERED,	/* Successfully recovered */
3103 };
3104 
3105 enum mf_action_page_type {
3106 	MF_MSG_KERNEL,
3107 	MF_MSG_KERNEL_HIGH_ORDER,
3108 	MF_MSG_SLAB,
3109 	MF_MSG_DIFFERENT_COMPOUND,
3110 	MF_MSG_POISONED_HUGE,
3111 	MF_MSG_HUGE,
3112 	MF_MSG_FREE_HUGE,
3113 	MF_MSG_NON_PMD_HUGE,
3114 	MF_MSG_UNMAP_FAILED,
3115 	MF_MSG_DIRTY_SWAPCACHE,
3116 	MF_MSG_CLEAN_SWAPCACHE,
3117 	MF_MSG_DIRTY_MLOCKED_LRU,
3118 	MF_MSG_CLEAN_MLOCKED_LRU,
3119 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3120 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3121 	MF_MSG_DIRTY_LRU,
3122 	MF_MSG_CLEAN_LRU,
3123 	MF_MSG_TRUNCATED_LRU,
3124 	MF_MSG_BUDDY,
3125 	MF_MSG_BUDDY_2ND,
3126 	MF_MSG_DAX,
3127 	MF_MSG_UNSPLIT_THP,
3128 	MF_MSG_UNKNOWN,
3129 };
3130 
3131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3132 extern void clear_huge_page(struct page *page,
3133 			    unsigned long addr_hint,
3134 			    unsigned int pages_per_huge_page);
3135 extern void copy_user_huge_page(struct page *dst, struct page *src,
3136 				unsigned long addr_hint,
3137 				struct vm_area_struct *vma,
3138 				unsigned int pages_per_huge_page);
3139 extern long copy_huge_page_from_user(struct page *dst_page,
3140 				const void __user *usr_src,
3141 				unsigned int pages_per_huge_page,
3142 				bool allow_pagefault);
3143 
3144 /**
3145  * vma_is_special_huge - Are transhuge page-table entries considered special?
3146  * @vma: Pointer to the struct vm_area_struct to consider
3147  *
3148  * Whether transhuge page-table entries are considered "special" following
3149  * the definition in vm_normal_page().
3150  *
3151  * Return: true if transhuge page-table entries should be considered special,
3152  * false otherwise.
3153  */
3154 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3155 {
3156 	return vma_is_dax(vma) || (vma->vm_file &&
3157 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3158 }
3159 
3160 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3161 
3162 #ifdef CONFIG_DEBUG_PAGEALLOC
3163 extern unsigned int _debug_guardpage_minorder;
3164 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3165 
3166 static inline unsigned int debug_guardpage_minorder(void)
3167 {
3168 	return _debug_guardpage_minorder;
3169 }
3170 
3171 static inline bool debug_guardpage_enabled(void)
3172 {
3173 	return static_branch_unlikely(&_debug_guardpage_enabled);
3174 }
3175 
3176 static inline bool page_is_guard(struct page *page)
3177 {
3178 	if (!debug_guardpage_enabled())
3179 		return false;
3180 
3181 	return PageGuard(page);
3182 }
3183 #else
3184 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3185 static inline bool debug_guardpage_enabled(void) { return false; }
3186 static inline bool page_is_guard(struct page *page) { return false; }
3187 #endif /* CONFIG_DEBUG_PAGEALLOC */
3188 
3189 #if MAX_NUMNODES > 1
3190 void __init setup_nr_node_ids(void);
3191 #else
3192 static inline void setup_nr_node_ids(void) {}
3193 #endif
3194 
3195 extern int memcmp_pages(struct page *page1, struct page *page2);
3196 
3197 static inline int pages_identical(struct page *page1, struct page *page2)
3198 {
3199 	return !memcmp_pages(page1, page2);
3200 }
3201 
3202 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3203 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3204 						pgoff_t first_index, pgoff_t nr,
3205 						pgoff_t bitmap_pgoff,
3206 						unsigned long *bitmap,
3207 						pgoff_t *start,
3208 						pgoff_t *end);
3209 
3210 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3211 				      pgoff_t first_index, pgoff_t nr);
3212 #endif
3213 
3214 extern int sysctl_nr_trim_pages;
3215 
3216 #ifdef CONFIG_PRINTK
3217 void mem_dump_obj(void *object);
3218 #else
3219 static inline void mem_dump_obj(void *object) {}
3220 #endif
3221 
3222 /**
3223  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3224  * @seals: the seals to check
3225  * @vma: the vma to operate on
3226  *
3227  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3228  * the vma flags.  Return 0 if check pass, or <0 for errors.
3229  */
3230 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3231 {
3232 	if (seals & F_SEAL_FUTURE_WRITE) {
3233 		/*
3234 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3235 		 * "future write" seal active.
3236 		 */
3237 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3238 			return -EPERM;
3239 
3240 		/*
3241 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3242 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3243 		 * revert protections on such mappings. Do this only for shared
3244 		 * mappings. For private mappings, don't need to mask
3245 		 * VM_MAYWRITE as we still want them to be COW-writable.
3246 		 */
3247 		if (vma->vm_flags & VM_SHARED)
3248 			vma->vm_flags &= ~(VM_MAYWRITE);
3249 	}
3250 
3251 	return 0;
3252 }
3253 
3254 #endif /* __KERNEL__ */
3255 #endif /* _LINUX_MM_H */
3256