xref: /linux-6.15/include/linux/mm.h (revision 2cd5769f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 #include <linux/rcuwait.h>
36 
37 struct mempolicy;
38 struct anon_vma;
39 struct anon_vma_chain;
40 struct user_struct;
41 struct pt_regs;
42 struct folio_batch;
43 
44 void arch_mm_preinit(void);
45 void mm_core_init(void);
46 void init_mm_internals(void);
47 
48 extern atomic_long_t _totalram_pages;
49 static inline unsigned long totalram_pages(void)
50 {
51 	return (unsigned long)atomic_long_read(&_totalram_pages);
52 }
53 
54 static inline void totalram_pages_inc(void)
55 {
56 	atomic_long_inc(&_totalram_pages);
57 }
58 
59 static inline void totalram_pages_dec(void)
60 {
61 	atomic_long_dec(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_add(long count)
65 {
66 	atomic_long_add(count, &_totalram_pages);
67 }
68 
69 extern void * high_memory;
70 
71 #ifdef CONFIG_SYSCTL
72 extern int sysctl_legacy_va_layout;
73 #else
74 #define sysctl_legacy_va_layout 0
75 #endif
76 
77 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
78 extern const int mmap_rnd_bits_min;
79 extern int mmap_rnd_bits_max __ro_after_init;
80 extern int mmap_rnd_bits __read_mostly;
81 #endif
82 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
83 extern const int mmap_rnd_compat_bits_min;
84 extern const int mmap_rnd_compat_bits_max;
85 extern int mmap_rnd_compat_bits __read_mostly;
86 #endif
87 
88 #ifndef DIRECT_MAP_PHYSMEM_END
89 # ifdef MAX_PHYSMEM_BITS
90 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
91 # else
92 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
93 # endif
94 #endif
95 
96 #include <asm/page.h>
97 #include <asm/processor.h>
98 
99 #ifndef __pa_symbol
100 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
101 #endif
102 
103 #ifndef page_to_virt
104 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
105 #endif
106 
107 #ifndef lm_alias
108 #define lm_alias(x)	__va(__pa_symbol(x))
109 #endif
110 
111 /*
112  * To prevent common memory management code establishing
113  * a zero page mapping on a read fault.
114  * This macro should be defined within <asm/pgtable.h>.
115  * s390 does this to prevent multiplexing of hardware bits
116  * related to the physical page in case of virtualization.
117  */
118 #ifndef mm_forbids_zeropage
119 #define mm_forbids_zeropage(X)	(0)
120 #endif
121 
122 /*
123  * On some architectures it is expensive to call memset() for small sizes.
124  * If an architecture decides to implement their own version of
125  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
126  * define their own version of this macro in <asm/pgtable.h>
127  */
128 #if BITS_PER_LONG == 64
129 /* This function must be updated when the size of struct page grows above 96
130  * or reduces below 56. The idea that compiler optimizes out switch()
131  * statement, and only leaves move/store instructions. Also the compiler can
132  * combine write statements if they are both assignments and can be reordered,
133  * this can result in several of the writes here being dropped.
134  */
135 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
136 static inline void __mm_zero_struct_page(struct page *page)
137 {
138 	unsigned long *_pp = (void *)page;
139 
140 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
141 	BUILD_BUG_ON(sizeof(struct page) & 7);
142 	BUILD_BUG_ON(sizeof(struct page) < 56);
143 	BUILD_BUG_ON(sizeof(struct page) > 96);
144 
145 	switch (sizeof(struct page)) {
146 	case 96:
147 		_pp[11] = 0;
148 		fallthrough;
149 	case 88:
150 		_pp[10] = 0;
151 		fallthrough;
152 	case 80:
153 		_pp[9] = 0;
154 		fallthrough;
155 	case 72:
156 		_pp[8] = 0;
157 		fallthrough;
158 	case 64:
159 		_pp[7] = 0;
160 		fallthrough;
161 	case 56:
162 		_pp[6] = 0;
163 		_pp[5] = 0;
164 		_pp[4] = 0;
165 		_pp[3] = 0;
166 		_pp[2] = 0;
167 		_pp[1] = 0;
168 		_pp[0] = 0;
169 	}
170 }
171 #else
172 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
173 #endif
174 
175 /*
176  * Default maximum number of active map areas, this limits the number of vmas
177  * per mm struct. Users can overwrite this number by sysctl but there is a
178  * problem.
179  *
180  * When a program's coredump is generated as ELF format, a section is created
181  * per a vma. In ELF, the number of sections is represented in unsigned short.
182  * This means the number of sections should be smaller than 65535 at coredump.
183  * Because the kernel adds some informative sections to a image of program at
184  * generating coredump, we need some margin. The number of extra sections is
185  * 1-3 now and depends on arch. We use "5" as safe margin, here.
186  *
187  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
188  * not a hard limit any more. Although some userspace tools can be surprised by
189  * that.
190  */
191 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
192 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
193 
194 extern int sysctl_max_map_count;
195 
196 extern unsigned long sysctl_user_reserve_kbytes;
197 extern unsigned long sysctl_admin_reserve_kbytes;
198 
199 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
200 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
201 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
202 #else
203 #define nth_page(page,n) ((page) + (n))
204 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
205 #endif
206 
207 /* to align the pointer to the (next) page boundary */
208 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
209 
210 /* to align the pointer to the (prev) page boundary */
211 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
212 
213 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
214 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
215 
216 static inline struct folio *lru_to_folio(struct list_head *head)
217 {
218 	return list_entry((head)->prev, struct folio, lru);
219 }
220 
221 void setup_initial_init_mm(void *start_code, void *end_code,
222 			   void *end_data, void *brk);
223 
224 /*
225  * Linux kernel virtual memory manager primitives.
226  * The idea being to have a "virtual" mm in the same way
227  * we have a virtual fs - giving a cleaner interface to the
228  * mm details, and allowing different kinds of memory mappings
229  * (from shared memory to executable loading to arbitrary
230  * mmap() functions).
231  */
232 
233 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
234 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
235 void vm_area_free(struct vm_area_struct *);
236 
237 #ifndef CONFIG_MMU
238 extern struct rb_root nommu_region_tree;
239 extern struct rw_semaphore nommu_region_sem;
240 
241 extern unsigned int kobjsize(const void *objp);
242 #endif
243 
244 /*
245  * vm_flags in vm_area_struct, see mm_types.h.
246  * When changing, update also include/trace/events/mmflags.h
247  */
248 #define VM_NONE		0x00000000
249 
250 #define VM_READ		0x00000001	/* currently active flags */
251 #define VM_WRITE	0x00000002
252 #define VM_EXEC		0x00000004
253 #define VM_SHARED	0x00000008
254 
255 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
256 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
257 #define VM_MAYWRITE	0x00000020
258 #define VM_MAYEXEC	0x00000040
259 #define VM_MAYSHARE	0x00000080
260 
261 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
262 #ifdef CONFIG_MMU
263 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
264 #else /* CONFIG_MMU */
265 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
266 #define VM_UFFD_MISSING	0
267 #endif /* CONFIG_MMU */
268 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
270 
271 #define VM_LOCKED	0x00002000
272 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
273 
274 					/* Used by sys_madvise() */
275 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
276 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
277 
278 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
279 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
280 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
281 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
282 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
283 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
284 #define VM_SYNC		0x00800000	/* Synchronous page faults */
285 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
286 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
287 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
288 
289 #ifdef CONFIG_MEM_SOFT_DIRTY
290 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
291 #else
292 # define VM_SOFTDIRTY	0
293 #endif
294 
295 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
296 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
297 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
298 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
299 
300 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
301 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
302 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
309 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
310 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
311 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
312 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
313 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
314 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
315 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
316 
317 #ifdef CONFIG_ARCH_HAS_PKEYS
318 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
319 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
320 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
321 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
322 #if CONFIG_ARCH_PKEY_BITS > 3
323 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
324 #else
325 # define VM_PKEY_BIT3  0
326 #endif
327 #if CONFIG_ARCH_PKEY_BITS > 4
328 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
329 #else
330 # define VM_PKEY_BIT4  0
331 #endif
332 #endif /* CONFIG_ARCH_HAS_PKEYS */
333 
334 #ifdef CONFIG_X86_USER_SHADOW_STACK
335 /*
336  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
337  * support core mm.
338  *
339  * These VMAs will get a single end guard page. This helps userspace protect
340  * itself from attacks. A single page is enough for current shadow stack archs
341  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
342  * for more details on the guard size.
343  */
344 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
345 #endif
346 
347 #if defined(CONFIG_ARM64_GCS)
348 /*
349  * arm64's Guarded Control Stack implements similar functionality and
350  * has similar constraints to shadow stacks.
351  */
352 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
353 #endif
354 
355 #ifndef VM_SHADOW_STACK
356 # define VM_SHADOW_STACK	VM_NONE
357 #endif
358 
359 #if defined(CONFIG_X86)
360 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC64)
362 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP	VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR	VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR	VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
373 #endif
374 
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
378 #else
379 # define VM_MTE		VM_NONE
380 # define VM_MTE_ALLOWED	VM_NONE
381 #endif
382 
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP	VM_NONE
385 #endif
386 
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT	38
389 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR		VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393 
394 /*
395  * This flag is used to connect VFIO to arch specific KVM code. It
396  * indicates that the memory under this VMA is safe for use with any
397  * non-cachable memory type inside KVM. Some VFIO devices, on some
398  * platforms, are thought to be unsafe and can cause machine crashes
399  * if KVM does not lock down the memory type.
400  */
401 #ifdef CONFIG_64BIT
402 #define VM_ALLOW_ANY_UNCACHED_BIT	39
403 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404 #else
405 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
406 #endif
407 
408 #ifdef CONFIG_64BIT
409 #define VM_DROPPABLE_BIT	40
410 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
411 #elif defined(CONFIG_PPC32)
412 #define VM_DROPPABLE		VM_ARCH_1
413 #else
414 #define VM_DROPPABLE		VM_NONE
415 #endif
416 
417 #ifdef CONFIG_64BIT
418 /* VM is sealed, in vm_flags */
419 #define VM_SEALED	_BITUL(63)
420 #endif
421 
422 /* Bits set in the VMA until the stack is in its final location */
423 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
424 
425 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
426 
427 /* Common data flag combinations */
428 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
429 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
430 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
431 				 VM_MAYWRITE | VM_MAYEXEC)
432 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
433 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
434 
435 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
436 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
437 #endif
438 
439 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
440 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
441 #endif
442 
443 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
444 
445 #ifdef CONFIG_STACK_GROWSUP
446 #define VM_STACK	VM_GROWSUP
447 #define VM_STACK_EARLY	VM_GROWSDOWN
448 #else
449 #define VM_STACK	VM_GROWSDOWN
450 #define VM_STACK_EARLY	0
451 #endif
452 
453 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
454 
455 /* VMA basic access permission flags */
456 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
457 
458 
459 /*
460  * Special vmas that are non-mergable, non-mlock()able.
461  */
462 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
463 
464 /* This mask prevents VMA from being scanned with khugepaged */
465 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
466 
467 /* This mask defines which mm->def_flags a process can inherit its parent */
468 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
469 
470 /* This mask represents all the VMA flag bits used by mlock */
471 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
472 
473 /* Arch-specific flags to clear when updating VM flags on protection change */
474 #ifndef VM_ARCH_CLEAR
475 # define VM_ARCH_CLEAR	VM_NONE
476 #endif
477 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
478 
479 /*
480  * mapping from the currently active vm_flags protection bits (the
481  * low four bits) to a page protection mask..
482  */
483 
484 /*
485  * The default fault flags that should be used by most of the
486  * arch-specific page fault handlers.
487  */
488 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
489 			     FAULT_FLAG_KILLABLE | \
490 			     FAULT_FLAG_INTERRUPTIBLE)
491 
492 /**
493  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
494  * @flags: Fault flags.
495  *
496  * This is mostly used for places where we want to try to avoid taking
497  * the mmap_lock for too long a time when waiting for another condition
498  * to change, in which case we can try to be polite to release the
499  * mmap_lock in the first round to avoid potential starvation of other
500  * processes that would also want the mmap_lock.
501  *
502  * Return: true if the page fault allows retry and this is the first
503  * attempt of the fault handling; false otherwise.
504  */
505 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
506 {
507 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
508 	    (!(flags & FAULT_FLAG_TRIED));
509 }
510 
511 #define FAULT_FLAG_TRACE \
512 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
513 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
514 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
515 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
516 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
517 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
518 	{ FAULT_FLAG_USER,		"USER" }, \
519 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
520 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
521 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
522 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
523 
524 /*
525  * vm_fault is filled by the pagefault handler and passed to the vma's
526  * ->fault function. The vma's ->fault is responsible for returning a bitmask
527  * of VM_FAULT_xxx flags that give details about how the fault was handled.
528  *
529  * MM layer fills up gfp_mask for page allocations but fault handler might
530  * alter it if its implementation requires a different allocation context.
531  *
532  * pgoff should be used in favour of virtual_address, if possible.
533  */
534 struct vm_fault {
535 	const struct {
536 		struct vm_area_struct *vma;	/* Target VMA */
537 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
538 		pgoff_t pgoff;			/* Logical page offset based on vma */
539 		unsigned long address;		/* Faulting virtual address - masked */
540 		unsigned long real_address;	/* Faulting virtual address - unmasked */
541 	};
542 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
543 					 * XXX: should really be 'const' */
544 	pmd_t *pmd;			/* Pointer to pmd entry matching
545 					 * the 'address' */
546 	pud_t *pud;			/* Pointer to pud entry matching
547 					 * the 'address'
548 					 */
549 	union {
550 		pte_t orig_pte;		/* Value of PTE at the time of fault */
551 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
552 					 * used by PMD fault only.
553 					 */
554 	};
555 
556 	struct page *cow_page;		/* Page handler may use for COW fault */
557 	struct page *page;		/* ->fault handlers should return a
558 					 * page here, unless VM_FAULT_NOPAGE
559 					 * is set (which is also implied by
560 					 * VM_FAULT_ERROR).
561 					 */
562 	/* These three entries are valid only while holding ptl lock */
563 	pte_t *pte;			/* Pointer to pte entry matching
564 					 * the 'address'. NULL if the page
565 					 * table hasn't been allocated.
566 					 */
567 	spinlock_t *ptl;		/* Page table lock.
568 					 * Protects pte page table if 'pte'
569 					 * is not NULL, otherwise pmd.
570 					 */
571 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
572 					 * vm_ops->map_pages() sets up a page
573 					 * table from atomic context.
574 					 * do_fault_around() pre-allocates
575 					 * page table to avoid allocation from
576 					 * atomic context.
577 					 */
578 };
579 
580 /*
581  * These are the virtual MM functions - opening of an area, closing and
582  * unmapping it (needed to keep files on disk up-to-date etc), pointer
583  * to the functions called when a no-page or a wp-page exception occurs.
584  */
585 struct vm_operations_struct {
586 	void (*open)(struct vm_area_struct * area);
587 	/**
588 	 * @close: Called when the VMA is being removed from the MM.
589 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
590 	 */
591 	void (*close)(struct vm_area_struct * area);
592 	/* Called any time before splitting to check if it's allowed */
593 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
594 	int (*mremap)(struct vm_area_struct *area);
595 	/*
596 	 * Called by mprotect() to make driver-specific permission
597 	 * checks before mprotect() is finalised.   The VMA must not
598 	 * be modified.  Returns 0 if mprotect() can proceed.
599 	 */
600 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
601 			unsigned long end, unsigned long newflags);
602 	vm_fault_t (*fault)(struct vm_fault *vmf);
603 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
604 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
605 			pgoff_t start_pgoff, pgoff_t end_pgoff);
606 	unsigned long (*pagesize)(struct vm_area_struct * area);
607 
608 	/* notification that a previously read-only page is about to become
609 	 * writable, if an error is returned it will cause a SIGBUS */
610 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611 
612 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
613 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614 
615 	/* called by access_process_vm when get_user_pages() fails, typically
616 	 * for use by special VMAs. See also generic_access_phys() for a generic
617 	 * implementation useful for any iomem mapping.
618 	 */
619 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 		      void *buf, int len, int write);
621 
622 	/* Called by the /proc/PID/maps code to ask the vma whether it
623 	 * has a special name.  Returning non-NULL will also cause this
624 	 * vma to be dumped unconditionally. */
625 	const char *(*name)(struct vm_area_struct *vma);
626 
627 #ifdef CONFIG_NUMA
628 	/*
629 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 	 * to hold the policy upon return.  Caller should pass NULL @new to
631 	 * remove a policy and fall back to surrounding context--i.e. do not
632 	 * install a MPOL_DEFAULT policy, nor the task or system default
633 	 * mempolicy.
634 	 */
635 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
636 
637 	/*
638 	 * get_policy() op must add reference [mpol_get()] to any policy at
639 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
640 	 * in mm/mempolicy.c will do this automatically.
641 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
642 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
643 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 	 * must return NULL--i.e., do not "fallback" to task or system default
645 	 * policy.
646 	 */
647 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 					unsigned long addr, pgoff_t *ilx);
649 #endif
650 	/*
651 	 * Called by vm_normal_page() for special PTEs to find the
652 	 * page for @addr.  This is useful if the default behavior
653 	 * (using pte_page()) would not find the correct page.
654 	 */
655 	struct page *(*find_special_page)(struct vm_area_struct *vma,
656 					  unsigned long addr);
657 };
658 
659 #ifdef CONFIG_NUMA_BALANCING
660 static inline void vma_numab_state_init(struct vm_area_struct *vma)
661 {
662 	vma->numab_state = NULL;
663 }
664 static inline void vma_numab_state_free(struct vm_area_struct *vma)
665 {
666 	kfree(vma->numab_state);
667 }
668 #else
669 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
670 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
671 #endif /* CONFIG_NUMA_BALANCING */
672 
673 #ifdef CONFIG_PER_VMA_LOCK
674 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
675 {
676 #ifdef CONFIG_DEBUG_LOCK_ALLOC
677 	static struct lock_class_key lockdep_key;
678 
679 	lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0);
680 #endif
681 	if (reset_refcnt)
682 		refcount_set(&vma->vm_refcnt, 0);
683 	vma->vm_lock_seq = UINT_MAX;
684 }
685 
686 static inline bool is_vma_writer_only(int refcnt)
687 {
688 	/*
689 	 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma
690 	 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on
691 	 * a detached vma happens only in vma_mark_detached() and is a rare
692 	 * case, therefore most of the time there will be no unnecessary wakeup.
693 	 */
694 	return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1;
695 }
696 
697 static inline void vma_refcount_put(struct vm_area_struct *vma)
698 {
699 	/* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */
700 	struct mm_struct *mm = vma->vm_mm;
701 	int oldcnt;
702 
703 	rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
704 	if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) {
705 
706 		if (is_vma_writer_only(oldcnt - 1))
707 			rcuwait_wake_up(&mm->vma_writer_wait);
708 	}
709 }
710 
711 /*
712  * Try to read-lock a vma. The function is allowed to occasionally yield false
713  * locked result to avoid performance overhead, in which case we fall back to
714  * using mmap_lock. The function should never yield false unlocked result.
715  * False locked result is possible if mm_lock_seq overflows or if vma gets
716  * reused and attached to a different mm before we lock it.
717  * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got
718  * detached.
719  */
720 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
721 						    struct vm_area_struct *vma)
722 {
723 	int oldcnt;
724 
725 	/*
726 	 * Check before locking. A race might cause false locked result.
727 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
728 	 * ACQUIRE semantics, because this is just a lockless check whose result
729 	 * we don't rely on for anything - the mm_lock_seq read against which we
730 	 * need ordering is below.
731 	 */
732 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence))
733 		return NULL;
734 
735 	/*
736 	 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire()
737 	 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET.
738 	 * Acquire fence is required here to avoid reordering against later
739 	 * vm_lock_seq check and checks inside lock_vma_under_rcu().
740 	 */
741 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
742 							      VMA_REF_LIMIT))) {
743 		/* return EAGAIN if vma got detached from under us */
744 		return oldcnt ? NULL : ERR_PTR(-EAGAIN);
745 	}
746 
747 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
748 	/*
749 	 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result.
750 	 * False unlocked result is impossible because we modify and check
751 	 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq
752 	 * modification invalidates all existing locks.
753 	 *
754 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
755 	 * racing with vma_end_write_all(), we only start reading from the VMA
756 	 * after it has been unlocked.
757 	 * This pairs with RELEASE semantics in vma_end_write_all().
758 	 */
759 	if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) {
760 		vma_refcount_put(vma);
761 		return NULL;
762 	}
763 
764 	return vma;
765 }
766 
767 /*
768  * Use only while holding mmap read lock which guarantees that locking will not
769  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
770  * not be used in such cases because it might fail due to mm_lock_seq overflow.
771  * This functionality is used to obtain vma read lock and drop the mmap read lock.
772  */
773 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass)
774 {
775 	int oldcnt;
776 
777 	mmap_assert_locked(vma->vm_mm);
778 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
779 							      VMA_REF_LIMIT)))
780 		return false;
781 
782 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
783 	return true;
784 }
785 
786 /*
787  * Use only while holding mmap read lock which guarantees that locking will not
788  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
789  * not be used in such cases because it might fail due to mm_lock_seq overflow.
790  * This functionality is used to obtain vma read lock and drop the mmap read lock.
791  */
792 static inline bool vma_start_read_locked(struct vm_area_struct *vma)
793 {
794 	return vma_start_read_locked_nested(vma, 0);
795 }
796 
797 static inline void vma_end_read(struct vm_area_struct *vma)
798 {
799 	vma_refcount_put(vma);
800 }
801 
802 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
803 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
804 {
805 	mmap_assert_write_locked(vma->vm_mm);
806 
807 	/*
808 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
809 	 * mm->mm_lock_seq can't be concurrently modified.
810 	 */
811 	*mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
812 	return (vma->vm_lock_seq == *mm_lock_seq);
813 }
814 
815 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq);
816 
817 /*
818  * Begin writing to a VMA.
819  * Exclude concurrent readers under the per-VMA lock until the currently
820  * write-locked mmap_lock is dropped or downgraded.
821  */
822 static inline void vma_start_write(struct vm_area_struct *vma)
823 {
824 	unsigned int mm_lock_seq;
825 
826 	if (__is_vma_write_locked(vma, &mm_lock_seq))
827 		return;
828 
829 	__vma_start_write(vma, mm_lock_seq);
830 }
831 
832 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
833 {
834 	unsigned int mm_lock_seq;
835 
836 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
837 }
838 
839 static inline void vma_assert_locked(struct vm_area_struct *vma)
840 {
841 	unsigned int mm_lock_seq;
842 
843 	VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 &&
844 		      !__is_vma_write_locked(vma, &mm_lock_seq), vma);
845 }
846 
847 /*
848  * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
849  * assertions should be made either under mmap_write_lock or when the object
850  * has been isolated under mmap_write_lock, ensuring no competing writers.
851  */
852 static inline void vma_assert_attached(struct vm_area_struct *vma)
853 {
854 	WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
855 }
856 
857 static inline void vma_assert_detached(struct vm_area_struct *vma)
858 {
859 	WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
860 }
861 
862 static inline void vma_mark_attached(struct vm_area_struct *vma)
863 {
864 	vma_assert_write_locked(vma);
865 	vma_assert_detached(vma);
866 	refcount_set_release(&vma->vm_refcnt, 1);
867 }
868 
869 void vma_mark_detached(struct vm_area_struct *vma);
870 
871 static inline void release_fault_lock(struct vm_fault *vmf)
872 {
873 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
874 		vma_end_read(vmf->vma);
875 	else
876 		mmap_read_unlock(vmf->vma->vm_mm);
877 }
878 
879 static inline void assert_fault_locked(struct vm_fault *vmf)
880 {
881 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
882 		vma_assert_locked(vmf->vma);
883 	else
884 		mmap_assert_locked(vmf->vma->vm_mm);
885 }
886 
887 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
888 					  unsigned long address);
889 
890 #else /* CONFIG_PER_VMA_LOCK */
891 
892 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {}
893 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
894 						    struct vm_area_struct *vma)
895 		{ return NULL; }
896 static inline void vma_end_read(struct vm_area_struct *vma) {}
897 static inline void vma_start_write(struct vm_area_struct *vma) {}
898 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
899 		{ mmap_assert_write_locked(vma->vm_mm); }
900 static inline void vma_assert_attached(struct vm_area_struct *vma) {}
901 static inline void vma_assert_detached(struct vm_area_struct *vma) {}
902 static inline void vma_mark_attached(struct vm_area_struct *vma) {}
903 static inline void vma_mark_detached(struct vm_area_struct *vma) {}
904 
905 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
906 		unsigned long address)
907 {
908 	return NULL;
909 }
910 
911 static inline void vma_assert_locked(struct vm_area_struct *vma)
912 {
913 	mmap_assert_locked(vma->vm_mm);
914 }
915 
916 static inline void release_fault_lock(struct vm_fault *vmf)
917 {
918 	mmap_read_unlock(vmf->vma->vm_mm);
919 }
920 
921 static inline void assert_fault_locked(struct vm_fault *vmf)
922 {
923 	mmap_assert_locked(vmf->vma->vm_mm);
924 }
925 
926 #endif /* CONFIG_PER_VMA_LOCK */
927 
928 extern const struct vm_operations_struct vma_dummy_vm_ops;
929 
930 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
931 {
932 	memset(vma, 0, sizeof(*vma));
933 	vma->vm_mm = mm;
934 	vma->vm_ops = &vma_dummy_vm_ops;
935 	INIT_LIST_HEAD(&vma->anon_vma_chain);
936 	vma_lock_init(vma, false);
937 }
938 
939 /* Use when VMA is not part of the VMA tree and needs no locking */
940 static inline void vm_flags_init(struct vm_area_struct *vma,
941 				 vm_flags_t flags)
942 {
943 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
944 }
945 
946 /*
947  * Use when VMA is part of the VMA tree and modifications need coordination
948  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
949  * it should be locked explicitly beforehand.
950  */
951 static inline void vm_flags_reset(struct vm_area_struct *vma,
952 				  vm_flags_t flags)
953 {
954 	vma_assert_write_locked(vma);
955 	vm_flags_init(vma, flags);
956 }
957 
958 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
959 				       vm_flags_t flags)
960 {
961 	vma_assert_write_locked(vma);
962 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
963 }
964 
965 static inline void vm_flags_set(struct vm_area_struct *vma,
966 				vm_flags_t flags)
967 {
968 	vma_start_write(vma);
969 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
970 }
971 
972 static inline void vm_flags_clear(struct vm_area_struct *vma,
973 				  vm_flags_t flags)
974 {
975 	vma_start_write(vma);
976 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
977 }
978 
979 /*
980  * Use only if VMA is not part of the VMA tree or has no other users and
981  * therefore needs no locking.
982  */
983 static inline void __vm_flags_mod(struct vm_area_struct *vma,
984 				  vm_flags_t set, vm_flags_t clear)
985 {
986 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
987 }
988 
989 /*
990  * Use only when the order of set/clear operations is unimportant, otherwise
991  * use vm_flags_{set|clear} explicitly.
992  */
993 static inline void vm_flags_mod(struct vm_area_struct *vma,
994 				vm_flags_t set, vm_flags_t clear)
995 {
996 	vma_start_write(vma);
997 	__vm_flags_mod(vma, set, clear);
998 }
999 
1000 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1001 {
1002 	vma->vm_ops = NULL;
1003 }
1004 
1005 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1006 {
1007 	return !vma->vm_ops;
1008 }
1009 
1010 /*
1011  * Indicate if the VMA is a heap for the given task; for
1012  * /proc/PID/maps that is the heap of the main task.
1013  */
1014 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1015 {
1016 	return vma->vm_start < vma->vm_mm->brk &&
1017 		vma->vm_end > vma->vm_mm->start_brk;
1018 }
1019 
1020 /*
1021  * Indicate if the VMA is a stack for the given task; for
1022  * /proc/PID/maps that is the stack of the main task.
1023  */
1024 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1025 {
1026 	/*
1027 	 * We make no effort to guess what a given thread considers to be
1028 	 * its "stack".  It's not even well-defined for programs written
1029 	 * languages like Go.
1030 	 */
1031 	return vma->vm_start <= vma->vm_mm->start_stack &&
1032 		vma->vm_end >= vma->vm_mm->start_stack;
1033 }
1034 
1035 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
1036 {
1037 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1038 
1039 	if (!maybe_stack)
1040 		return false;
1041 
1042 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1043 						VM_STACK_INCOMPLETE_SETUP)
1044 		return true;
1045 
1046 	return false;
1047 }
1048 
1049 static inline bool vma_is_foreign(struct vm_area_struct *vma)
1050 {
1051 	if (!current->mm)
1052 		return true;
1053 
1054 	if (current->mm != vma->vm_mm)
1055 		return true;
1056 
1057 	return false;
1058 }
1059 
1060 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1061 {
1062 	return vma->vm_flags & VM_ACCESS_FLAGS;
1063 }
1064 
1065 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1066 {
1067 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1068 		(VM_SHARED | VM_MAYWRITE);
1069 }
1070 
1071 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1072 {
1073 	return is_shared_maywrite(vma->vm_flags);
1074 }
1075 
1076 static inline
1077 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1078 {
1079 	return mas_find(&vmi->mas, max - 1);
1080 }
1081 
1082 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1083 {
1084 	/*
1085 	 * Uses mas_find() to get the first VMA when the iterator starts.
1086 	 * Calling mas_next() could skip the first entry.
1087 	 */
1088 	return mas_find(&vmi->mas, ULONG_MAX);
1089 }
1090 
1091 static inline
1092 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1093 {
1094 	return mas_next_range(&vmi->mas, ULONG_MAX);
1095 }
1096 
1097 
1098 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1099 {
1100 	return mas_prev(&vmi->mas, 0);
1101 }
1102 
1103 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1104 			unsigned long start, unsigned long end, gfp_t gfp)
1105 {
1106 	__mas_set_range(&vmi->mas, start, end - 1);
1107 	mas_store_gfp(&vmi->mas, NULL, gfp);
1108 	if (unlikely(mas_is_err(&vmi->mas)))
1109 		return -ENOMEM;
1110 
1111 	return 0;
1112 }
1113 
1114 /* Free any unused preallocations */
1115 static inline void vma_iter_free(struct vma_iterator *vmi)
1116 {
1117 	mas_destroy(&vmi->mas);
1118 }
1119 
1120 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1121 				      struct vm_area_struct *vma)
1122 {
1123 	vmi->mas.index = vma->vm_start;
1124 	vmi->mas.last = vma->vm_end - 1;
1125 	mas_store(&vmi->mas, vma);
1126 	if (unlikely(mas_is_err(&vmi->mas)))
1127 		return -ENOMEM;
1128 
1129 	vma_mark_attached(vma);
1130 	return 0;
1131 }
1132 
1133 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1134 {
1135 	mas_pause(&vmi->mas);
1136 }
1137 
1138 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1139 {
1140 	mas_set(&vmi->mas, addr);
1141 }
1142 
1143 #define for_each_vma(__vmi, __vma)					\
1144 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1145 
1146 /* The MM code likes to work with exclusive end addresses */
1147 #define for_each_vma_range(__vmi, __vma, __end)				\
1148 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1149 
1150 #ifdef CONFIG_SHMEM
1151 /*
1152  * The vma_is_shmem is not inline because it is used only by slow
1153  * paths in userfault.
1154  */
1155 bool vma_is_shmem(struct vm_area_struct *vma);
1156 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1157 #else
1158 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1159 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1160 #endif
1161 
1162 int vma_is_stack_for_current(struct vm_area_struct *vma);
1163 
1164 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1165 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1166 
1167 struct mmu_gather;
1168 struct inode;
1169 
1170 extern void prep_compound_page(struct page *page, unsigned int order);
1171 
1172 static inline unsigned int folio_large_order(const struct folio *folio)
1173 {
1174 	return folio->_flags_1 & 0xff;
1175 }
1176 
1177 #ifdef NR_PAGES_IN_LARGE_FOLIO
1178 static inline long folio_large_nr_pages(const struct folio *folio)
1179 {
1180 	return folio->_nr_pages;
1181 }
1182 #else
1183 static inline long folio_large_nr_pages(const struct folio *folio)
1184 {
1185 	return 1L << folio_large_order(folio);
1186 }
1187 #endif
1188 
1189 /*
1190  * compound_order() can be called without holding a reference, which means
1191  * that niceties like page_folio() don't work.  These callers should be
1192  * prepared to handle wild return values.  For example, PG_head may be
1193  * set before the order is initialised, or this may be a tail page.
1194  * See compaction.c for some good examples.
1195  */
1196 static inline unsigned int compound_order(struct page *page)
1197 {
1198 	struct folio *folio = (struct folio *)page;
1199 
1200 	if (!test_bit(PG_head, &folio->flags))
1201 		return 0;
1202 	return folio_large_order(folio);
1203 }
1204 
1205 /**
1206  * folio_order - The allocation order of a folio.
1207  * @folio: The folio.
1208  *
1209  * A folio is composed of 2^order pages.  See get_order() for the definition
1210  * of order.
1211  *
1212  * Return: The order of the folio.
1213  */
1214 static inline unsigned int folio_order(const struct folio *folio)
1215 {
1216 	if (!folio_test_large(folio))
1217 		return 0;
1218 	return folio_large_order(folio);
1219 }
1220 
1221 #include <linux/huge_mm.h>
1222 
1223 /*
1224  * Methods to modify the page usage count.
1225  *
1226  * What counts for a page usage:
1227  * - cache mapping   (page->mapping)
1228  * - private data    (page->private)
1229  * - page mapped in a task's page tables, each mapping
1230  *   is counted separately
1231  *
1232  * Also, many kernel routines increase the page count before a critical
1233  * routine so they can be sure the page doesn't go away from under them.
1234  */
1235 
1236 /*
1237  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1238  */
1239 static inline int put_page_testzero(struct page *page)
1240 {
1241 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1242 	return page_ref_dec_and_test(page);
1243 }
1244 
1245 static inline int folio_put_testzero(struct folio *folio)
1246 {
1247 	return put_page_testzero(&folio->page);
1248 }
1249 
1250 /*
1251  * Try to grab a ref unless the page has a refcount of zero, return false if
1252  * that is the case.
1253  * This can be called when MMU is off so it must not access
1254  * any of the virtual mappings.
1255  */
1256 static inline bool get_page_unless_zero(struct page *page)
1257 {
1258 	return page_ref_add_unless(page, 1, 0);
1259 }
1260 
1261 static inline struct folio *folio_get_nontail_page(struct page *page)
1262 {
1263 	if (unlikely(!get_page_unless_zero(page)))
1264 		return NULL;
1265 	return (struct folio *)page;
1266 }
1267 
1268 extern int page_is_ram(unsigned long pfn);
1269 
1270 enum {
1271 	REGION_INTERSECTS,
1272 	REGION_DISJOINT,
1273 	REGION_MIXED,
1274 };
1275 
1276 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1277 		      unsigned long desc);
1278 
1279 /* Support for virtually mapped pages */
1280 struct page *vmalloc_to_page(const void *addr);
1281 unsigned long vmalloc_to_pfn(const void *addr);
1282 
1283 /*
1284  * Determine if an address is within the vmalloc range
1285  *
1286  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1287  * is no special casing required.
1288  */
1289 #ifdef CONFIG_MMU
1290 extern bool is_vmalloc_addr(const void *x);
1291 extern int is_vmalloc_or_module_addr(const void *x);
1292 #else
1293 static inline bool is_vmalloc_addr(const void *x)
1294 {
1295 	return false;
1296 }
1297 static inline int is_vmalloc_or_module_addr(const void *x)
1298 {
1299 	return 0;
1300 }
1301 #endif
1302 
1303 /*
1304  * How many times the entire folio is mapped as a single unit (eg by a
1305  * PMD or PUD entry).  This is probably not what you want, except for
1306  * debugging purposes or implementation of other core folio_*() primitives.
1307  */
1308 static inline int folio_entire_mapcount(const struct folio *folio)
1309 {
1310 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1311 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1312 		return 0;
1313 	return atomic_read(&folio->_entire_mapcount) + 1;
1314 }
1315 
1316 static inline int folio_large_mapcount(const struct folio *folio)
1317 {
1318 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1319 	return atomic_read(&folio->_large_mapcount) + 1;
1320 }
1321 
1322 /**
1323  * folio_mapcount() - Number of mappings of this folio.
1324  * @folio: The folio.
1325  *
1326  * The folio mapcount corresponds to the number of present user page table
1327  * entries that reference any part of a folio. Each such present user page
1328  * table entry must be paired with exactly on folio reference.
1329  *
1330  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1331  * exactly once.
1332  *
1333  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1334  * references the entire folio counts exactly once, even when such special
1335  * page table entries are comprised of multiple ordinary page table entries.
1336  *
1337  * Will report 0 for pages which cannot be mapped into userspace, such as
1338  * slab, page tables and similar.
1339  *
1340  * Return: The number of times this folio is mapped.
1341  */
1342 static inline int folio_mapcount(const struct folio *folio)
1343 {
1344 	int mapcount;
1345 
1346 	if (likely(!folio_test_large(folio))) {
1347 		mapcount = atomic_read(&folio->_mapcount) + 1;
1348 		if (page_mapcount_is_type(mapcount))
1349 			mapcount = 0;
1350 		return mapcount;
1351 	}
1352 	return folio_large_mapcount(folio);
1353 }
1354 
1355 /**
1356  * folio_mapped - Is this folio mapped into userspace?
1357  * @folio: The folio.
1358  *
1359  * Return: True if any page in this folio is referenced by user page tables.
1360  */
1361 static inline bool folio_mapped(const struct folio *folio)
1362 {
1363 	return folio_mapcount(folio) >= 1;
1364 }
1365 
1366 /*
1367  * Return true if this page is mapped into pagetables.
1368  * For compound page it returns true if any sub-page of compound page is mapped,
1369  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1370  */
1371 static inline bool page_mapped(const struct page *page)
1372 {
1373 	return folio_mapped(page_folio(page));
1374 }
1375 
1376 static inline struct page *virt_to_head_page(const void *x)
1377 {
1378 	struct page *page = virt_to_page(x);
1379 
1380 	return compound_head(page);
1381 }
1382 
1383 static inline struct folio *virt_to_folio(const void *x)
1384 {
1385 	struct page *page = virt_to_page(x);
1386 
1387 	return page_folio(page);
1388 }
1389 
1390 void __folio_put(struct folio *folio);
1391 
1392 void split_page(struct page *page, unsigned int order);
1393 void folio_copy(struct folio *dst, struct folio *src);
1394 int folio_mc_copy(struct folio *dst, struct folio *src);
1395 
1396 unsigned long nr_free_buffer_pages(void);
1397 
1398 /* Returns the number of bytes in this potentially compound page. */
1399 static inline unsigned long page_size(struct page *page)
1400 {
1401 	return PAGE_SIZE << compound_order(page);
1402 }
1403 
1404 /* Returns the number of bits needed for the number of bytes in a page */
1405 static inline unsigned int page_shift(struct page *page)
1406 {
1407 	return PAGE_SHIFT + compound_order(page);
1408 }
1409 
1410 /**
1411  * thp_order - Order of a transparent huge page.
1412  * @page: Head page of a transparent huge page.
1413  */
1414 static inline unsigned int thp_order(struct page *page)
1415 {
1416 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1417 	return compound_order(page);
1418 }
1419 
1420 /**
1421  * thp_size - Size of a transparent huge page.
1422  * @page: Head page of a transparent huge page.
1423  *
1424  * Return: Number of bytes in this page.
1425  */
1426 static inline unsigned long thp_size(struct page *page)
1427 {
1428 	return PAGE_SIZE << thp_order(page);
1429 }
1430 
1431 #ifdef CONFIG_MMU
1432 /*
1433  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1434  * servicing faults for write access.  In the normal case, do always want
1435  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1436  * that do not have writing enabled, when used by access_process_vm.
1437  */
1438 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1439 {
1440 	if (likely(vma->vm_flags & VM_WRITE))
1441 		pte = pte_mkwrite(pte, vma);
1442 	return pte;
1443 }
1444 
1445 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1446 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1447 		struct page *page, unsigned int nr, unsigned long addr);
1448 
1449 vm_fault_t finish_fault(struct vm_fault *vmf);
1450 #endif
1451 
1452 /*
1453  * Multiple processes may "see" the same page. E.g. for untouched
1454  * mappings of /dev/null, all processes see the same page full of
1455  * zeroes, and text pages of executables and shared libraries have
1456  * only one copy in memory, at most, normally.
1457  *
1458  * For the non-reserved pages, page_count(page) denotes a reference count.
1459  *   page_count() == 0 means the page is free. page->lru is then used for
1460  *   freelist management in the buddy allocator.
1461  *   page_count() > 0  means the page has been allocated.
1462  *
1463  * Pages are allocated by the slab allocator in order to provide memory
1464  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1465  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1466  * unless a particular usage is carefully commented. (the responsibility of
1467  * freeing the kmalloc memory is the caller's, of course).
1468  *
1469  * A page may be used by anyone else who does a __get_free_page().
1470  * In this case, page_count still tracks the references, and should only
1471  * be used through the normal accessor functions. The top bits of page->flags
1472  * and page->virtual store page management information, but all other fields
1473  * are unused and could be used privately, carefully. The management of this
1474  * page is the responsibility of the one who allocated it, and those who have
1475  * subsequently been given references to it.
1476  *
1477  * The other pages (we may call them "pagecache pages") are completely
1478  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1479  * The following discussion applies only to them.
1480  *
1481  * A pagecache page contains an opaque `private' member, which belongs to the
1482  * page's address_space. Usually, this is the address of a circular list of
1483  * the page's disk buffers. PG_private must be set to tell the VM to call
1484  * into the filesystem to release these pages.
1485  *
1486  * A page may belong to an inode's memory mapping. In this case, page->mapping
1487  * is the pointer to the inode, and page->index is the file offset of the page,
1488  * in units of PAGE_SIZE.
1489  *
1490  * If pagecache pages are not associated with an inode, they are said to be
1491  * anonymous pages. These may become associated with the swapcache, and in that
1492  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1493  *
1494  * In either case (swapcache or inode backed), the pagecache itself holds one
1495  * reference to the page. Setting PG_private should also increment the
1496  * refcount. The each user mapping also has a reference to the page.
1497  *
1498  * The pagecache pages are stored in a per-mapping radix tree, which is
1499  * rooted at mapping->i_pages, and indexed by offset.
1500  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1501  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1502  *
1503  * All pagecache pages may be subject to I/O:
1504  * - inode pages may need to be read from disk,
1505  * - inode pages which have been modified and are MAP_SHARED may need
1506  *   to be written back to the inode on disk,
1507  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1508  *   modified may need to be swapped out to swap space and (later) to be read
1509  *   back into memory.
1510  */
1511 
1512 /* 127: arbitrary random number, small enough to assemble well */
1513 #define folio_ref_zero_or_close_to_overflow(folio) \
1514 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1515 
1516 /**
1517  * folio_get - Increment the reference count on a folio.
1518  * @folio: The folio.
1519  *
1520  * Context: May be called in any context, as long as you know that
1521  * you have a refcount on the folio.  If you do not already have one,
1522  * folio_try_get() may be the right interface for you to use.
1523  */
1524 static inline void folio_get(struct folio *folio)
1525 {
1526 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1527 	folio_ref_inc(folio);
1528 }
1529 
1530 static inline void get_page(struct page *page)
1531 {
1532 	struct folio *folio = page_folio(page);
1533 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1534 		return;
1535 	folio_get(folio);
1536 }
1537 
1538 static inline __must_check bool try_get_page(struct page *page)
1539 {
1540 	page = compound_head(page);
1541 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1542 		return false;
1543 	page_ref_inc(page);
1544 	return true;
1545 }
1546 
1547 /**
1548  * folio_put - Decrement the reference count on a folio.
1549  * @folio: The folio.
1550  *
1551  * If the folio's reference count reaches zero, the memory will be
1552  * released back to the page allocator and may be used by another
1553  * allocation immediately.  Do not access the memory or the struct folio
1554  * after calling folio_put() unless you can be sure that it wasn't the
1555  * last reference.
1556  *
1557  * Context: May be called in process or interrupt context, but not in NMI
1558  * context.  May be called while holding a spinlock.
1559  */
1560 static inline void folio_put(struct folio *folio)
1561 {
1562 	if (folio_put_testzero(folio))
1563 		__folio_put(folio);
1564 }
1565 
1566 /**
1567  * folio_put_refs - Reduce the reference count on a folio.
1568  * @folio: The folio.
1569  * @refs: The amount to subtract from the folio's reference count.
1570  *
1571  * If the folio's reference count reaches zero, the memory will be
1572  * released back to the page allocator and may be used by another
1573  * allocation immediately.  Do not access the memory or the struct folio
1574  * after calling folio_put_refs() unless you can be sure that these weren't
1575  * the last references.
1576  *
1577  * Context: May be called in process or interrupt context, but not in NMI
1578  * context.  May be called while holding a spinlock.
1579  */
1580 static inline void folio_put_refs(struct folio *folio, int refs)
1581 {
1582 	if (folio_ref_sub_and_test(folio, refs))
1583 		__folio_put(folio);
1584 }
1585 
1586 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1587 
1588 /*
1589  * union release_pages_arg - an array of pages or folios
1590  *
1591  * release_pages() releases a simple array of multiple pages, and
1592  * accepts various different forms of said page array: either
1593  * a regular old boring array of pages, an array of folios, or
1594  * an array of encoded page pointers.
1595  *
1596  * The transparent union syntax for this kind of "any of these
1597  * argument types" is all kinds of ugly, so look away.
1598  */
1599 typedef union {
1600 	struct page **pages;
1601 	struct folio **folios;
1602 	struct encoded_page **encoded_pages;
1603 } release_pages_arg __attribute__ ((__transparent_union__));
1604 
1605 void release_pages(release_pages_arg, int nr);
1606 
1607 /**
1608  * folios_put - Decrement the reference count on an array of folios.
1609  * @folios: The folios.
1610  *
1611  * Like folio_put(), but for a batch of folios.  This is more efficient
1612  * than writing the loop yourself as it will optimise the locks which need
1613  * to be taken if the folios are freed.  The folios batch is returned
1614  * empty and ready to be reused for another batch; there is no need to
1615  * reinitialise it.
1616  *
1617  * Context: May be called in process or interrupt context, but not in NMI
1618  * context.  May be called while holding a spinlock.
1619  */
1620 static inline void folios_put(struct folio_batch *folios)
1621 {
1622 	folios_put_refs(folios, NULL);
1623 }
1624 
1625 static inline void put_page(struct page *page)
1626 {
1627 	struct folio *folio = page_folio(page);
1628 
1629 	if (folio_test_slab(folio))
1630 		return;
1631 
1632 	folio_put(folio);
1633 }
1634 
1635 /*
1636  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1637  * the page's refcount so that two separate items are tracked: the original page
1638  * reference count, and also a new count of how many pin_user_pages() calls were
1639  * made against the page. ("gup-pinned" is another term for the latter).
1640  *
1641  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1642  * distinct from normal pages. As such, the unpin_user_page() call (and its
1643  * variants) must be used in order to release gup-pinned pages.
1644  *
1645  * Choice of value:
1646  *
1647  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1648  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1649  * simpler, due to the fact that adding an even power of two to the page
1650  * refcount has the effect of using only the upper N bits, for the code that
1651  * counts up using the bias value. This means that the lower bits are left for
1652  * the exclusive use of the original code that increments and decrements by one
1653  * (or at least, by much smaller values than the bias value).
1654  *
1655  * Of course, once the lower bits overflow into the upper bits (and this is
1656  * OK, because subtraction recovers the original values), then visual inspection
1657  * no longer suffices to directly view the separate counts. However, for normal
1658  * applications that don't have huge page reference counts, this won't be an
1659  * issue.
1660  *
1661  * Locking: the lockless algorithm described in folio_try_get_rcu()
1662  * provides safe operation for get_user_pages(), folio_mkclean() and
1663  * other calls that race to set up page table entries.
1664  */
1665 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1666 
1667 void unpin_user_page(struct page *page);
1668 void unpin_folio(struct folio *folio);
1669 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1670 				 bool make_dirty);
1671 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1672 				      bool make_dirty);
1673 void unpin_user_pages(struct page **pages, unsigned long npages);
1674 void unpin_user_folio(struct folio *folio, unsigned long npages);
1675 void unpin_folios(struct folio **folios, unsigned long nfolios);
1676 
1677 static inline bool is_cow_mapping(vm_flags_t flags)
1678 {
1679 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1680 }
1681 
1682 #ifndef CONFIG_MMU
1683 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1684 {
1685 	/*
1686 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1687 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1688 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1689 	 * underlying memory if ptrace is active, so this is only possible if
1690 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1691 	 * write permissions later.
1692 	 */
1693 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1694 }
1695 #endif
1696 
1697 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1698 #define SECTION_IN_PAGE_FLAGS
1699 #endif
1700 
1701 /*
1702  * The identification function is mainly used by the buddy allocator for
1703  * determining if two pages could be buddies. We are not really identifying
1704  * the zone since we could be using the section number id if we do not have
1705  * node id available in page flags.
1706  * We only guarantee that it will return the same value for two combinable
1707  * pages in a zone.
1708  */
1709 static inline int page_zone_id(struct page *page)
1710 {
1711 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1712 }
1713 
1714 #ifdef NODE_NOT_IN_PAGE_FLAGS
1715 int page_to_nid(const struct page *page);
1716 #else
1717 static inline int page_to_nid(const struct page *page)
1718 {
1719 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1720 }
1721 #endif
1722 
1723 static inline int folio_nid(const struct folio *folio)
1724 {
1725 	return page_to_nid(&folio->page);
1726 }
1727 
1728 #ifdef CONFIG_NUMA_BALANCING
1729 /* page access time bits needs to hold at least 4 seconds */
1730 #define PAGE_ACCESS_TIME_MIN_BITS	12
1731 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1732 #define PAGE_ACCESS_TIME_BUCKETS				\
1733 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1734 #else
1735 #define PAGE_ACCESS_TIME_BUCKETS	0
1736 #endif
1737 
1738 #define PAGE_ACCESS_TIME_MASK				\
1739 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1740 
1741 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1742 {
1743 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1744 }
1745 
1746 static inline int cpupid_to_pid(int cpupid)
1747 {
1748 	return cpupid & LAST__PID_MASK;
1749 }
1750 
1751 static inline int cpupid_to_cpu(int cpupid)
1752 {
1753 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1754 }
1755 
1756 static inline int cpupid_to_nid(int cpupid)
1757 {
1758 	return cpu_to_node(cpupid_to_cpu(cpupid));
1759 }
1760 
1761 static inline bool cpupid_pid_unset(int cpupid)
1762 {
1763 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1764 }
1765 
1766 static inline bool cpupid_cpu_unset(int cpupid)
1767 {
1768 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1769 }
1770 
1771 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1772 {
1773 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1774 }
1775 
1776 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1777 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1778 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1779 {
1780 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1781 }
1782 
1783 static inline int folio_last_cpupid(struct folio *folio)
1784 {
1785 	return folio->_last_cpupid;
1786 }
1787 static inline void page_cpupid_reset_last(struct page *page)
1788 {
1789 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1790 }
1791 #else
1792 static inline int folio_last_cpupid(struct folio *folio)
1793 {
1794 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1795 }
1796 
1797 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1798 
1799 static inline void page_cpupid_reset_last(struct page *page)
1800 {
1801 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1802 }
1803 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1804 
1805 static inline int folio_xchg_access_time(struct folio *folio, int time)
1806 {
1807 	int last_time;
1808 
1809 	last_time = folio_xchg_last_cpupid(folio,
1810 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1811 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1812 }
1813 
1814 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1815 {
1816 	unsigned int pid_bit;
1817 
1818 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1819 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1820 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1821 	}
1822 }
1823 
1824 bool folio_use_access_time(struct folio *folio);
1825 #else /* !CONFIG_NUMA_BALANCING */
1826 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1827 {
1828 	return folio_nid(folio); /* XXX */
1829 }
1830 
1831 static inline int folio_xchg_access_time(struct folio *folio, int time)
1832 {
1833 	return 0;
1834 }
1835 
1836 static inline int folio_last_cpupid(struct folio *folio)
1837 {
1838 	return folio_nid(folio); /* XXX */
1839 }
1840 
1841 static inline int cpupid_to_nid(int cpupid)
1842 {
1843 	return -1;
1844 }
1845 
1846 static inline int cpupid_to_pid(int cpupid)
1847 {
1848 	return -1;
1849 }
1850 
1851 static inline int cpupid_to_cpu(int cpupid)
1852 {
1853 	return -1;
1854 }
1855 
1856 static inline int cpu_pid_to_cpupid(int nid, int pid)
1857 {
1858 	return -1;
1859 }
1860 
1861 static inline bool cpupid_pid_unset(int cpupid)
1862 {
1863 	return true;
1864 }
1865 
1866 static inline void page_cpupid_reset_last(struct page *page)
1867 {
1868 }
1869 
1870 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1871 {
1872 	return false;
1873 }
1874 
1875 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1876 {
1877 }
1878 static inline bool folio_use_access_time(struct folio *folio)
1879 {
1880 	return false;
1881 }
1882 #endif /* CONFIG_NUMA_BALANCING */
1883 
1884 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1885 
1886 /*
1887  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1888  * setting tags for all pages to native kernel tag value 0xff, as the default
1889  * value 0x00 maps to 0xff.
1890  */
1891 
1892 static inline u8 page_kasan_tag(const struct page *page)
1893 {
1894 	u8 tag = KASAN_TAG_KERNEL;
1895 
1896 	if (kasan_enabled()) {
1897 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1898 		tag ^= 0xff;
1899 	}
1900 
1901 	return tag;
1902 }
1903 
1904 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1905 {
1906 	unsigned long old_flags, flags;
1907 
1908 	if (!kasan_enabled())
1909 		return;
1910 
1911 	tag ^= 0xff;
1912 	old_flags = READ_ONCE(page->flags);
1913 	do {
1914 		flags = old_flags;
1915 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1916 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1917 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1918 }
1919 
1920 static inline void page_kasan_tag_reset(struct page *page)
1921 {
1922 	if (kasan_enabled())
1923 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1924 }
1925 
1926 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1927 
1928 static inline u8 page_kasan_tag(const struct page *page)
1929 {
1930 	return 0xff;
1931 }
1932 
1933 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1934 static inline void page_kasan_tag_reset(struct page *page) { }
1935 
1936 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1937 
1938 static inline struct zone *page_zone(const struct page *page)
1939 {
1940 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1941 }
1942 
1943 static inline pg_data_t *page_pgdat(const struct page *page)
1944 {
1945 	return NODE_DATA(page_to_nid(page));
1946 }
1947 
1948 static inline struct zone *folio_zone(const struct folio *folio)
1949 {
1950 	return page_zone(&folio->page);
1951 }
1952 
1953 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1954 {
1955 	return page_pgdat(&folio->page);
1956 }
1957 
1958 #ifdef SECTION_IN_PAGE_FLAGS
1959 static inline void set_page_section(struct page *page, unsigned long section)
1960 {
1961 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1962 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1963 }
1964 
1965 static inline unsigned long page_to_section(const struct page *page)
1966 {
1967 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1968 }
1969 #endif
1970 
1971 /**
1972  * folio_pfn - Return the Page Frame Number of a folio.
1973  * @folio: The folio.
1974  *
1975  * A folio may contain multiple pages.  The pages have consecutive
1976  * Page Frame Numbers.
1977  *
1978  * Return: The Page Frame Number of the first page in the folio.
1979  */
1980 static inline unsigned long folio_pfn(const struct folio *folio)
1981 {
1982 	return page_to_pfn(&folio->page);
1983 }
1984 
1985 static inline struct folio *pfn_folio(unsigned long pfn)
1986 {
1987 	return page_folio(pfn_to_page(pfn));
1988 }
1989 
1990 static inline bool folio_has_pincount(const struct folio *folio)
1991 {
1992 	if (IS_ENABLED(CONFIG_64BIT))
1993 		return folio_test_large(folio);
1994 	return folio_order(folio) > 1;
1995 }
1996 
1997 /**
1998  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1999  * @folio: The folio.
2000  *
2001  * This function checks if a folio has been pinned via a call to
2002  * a function in the pin_user_pages() family.
2003  *
2004  * For small folios, the return value is partially fuzzy: false is not fuzzy,
2005  * because it means "definitely not pinned for DMA", but true means "probably
2006  * pinned for DMA, but possibly a false positive due to having at least
2007  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2008  *
2009  * False positives are OK, because: a) it's unlikely for a folio to
2010  * get that many refcounts, and b) all the callers of this routine are
2011  * expected to be able to deal gracefully with a false positive.
2012  *
2013  * For most large folios, the result will be exactly correct. That's because
2014  * we have more tracking data available: the _pincount field is used
2015  * instead of the GUP_PIN_COUNTING_BIAS scheme.
2016  *
2017  * For more information, please see Documentation/core-api/pin_user_pages.rst.
2018  *
2019  * Return: True, if it is likely that the folio has been "dma-pinned".
2020  * False, if the folio is definitely not dma-pinned.
2021  */
2022 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2023 {
2024 	if (folio_has_pincount(folio))
2025 		return atomic_read(&folio->_pincount) > 0;
2026 
2027 	/*
2028 	 * folio_ref_count() is signed. If that refcount overflows, then
2029 	 * folio_ref_count() returns a negative value, and callers will avoid
2030 	 * further incrementing the refcount.
2031 	 *
2032 	 * Here, for that overflow case, use the sign bit to count a little
2033 	 * bit higher via unsigned math, and thus still get an accurate result.
2034 	 */
2035 	return ((unsigned int)folio_ref_count(folio)) >=
2036 		GUP_PIN_COUNTING_BIAS;
2037 }
2038 
2039 /*
2040  * This should most likely only be called during fork() to see whether we
2041  * should break the cow immediately for an anon page on the src mm.
2042  *
2043  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2044  */
2045 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2046 					  struct folio *folio)
2047 {
2048 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2049 
2050 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
2051 		return false;
2052 
2053 	return folio_maybe_dma_pinned(folio);
2054 }
2055 
2056 /**
2057  * is_zero_page - Query if a page is a zero page
2058  * @page: The page to query
2059  *
2060  * This returns true if @page is one of the permanent zero pages.
2061  */
2062 static inline bool is_zero_page(const struct page *page)
2063 {
2064 	return is_zero_pfn(page_to_pfn(page));
2065 }
2066 
2067 /**
2068  * is_zero_folio - Query if a folio is a zero page
2069  * @folio: The folio to query
2070  *
2071  * This returns true if @folio is one of the permanent zero pages.
2072  */
2073 static inline bool is_zero_folio(const struct folio *folio)
2074 {
2075 	return is_zero_page(&folio->page);
2076 }
2077 
2078 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2079 #ifdef CONFIG_MIGRATION
2080 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2081 {
2082 #ifdef CONFIG_CMA
2083 	int mt = folio_migratetype(folio);
2084 
2085 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2086 		return false;
2087 #endif
2088 	/* The zero page can be "pinned" but gets special handling. */
2089 	if (is_zero_folio(folio))
2090 		return true;
2091 
2092 	/* Coherent device memory must always allow eviction. */
2093 	if (folio_is_device_coherent(folio))
2094 		return false;
2095 
2096 	/*
2097 	 * Filesystems can only tolerate transient delays to truncate and
2098 	 * hole-punch operations
2099 	 */
2100 	if (folio_is_fsdax(folio))
2101 		return false;
2102 
2103 	/* Otherwise, non-movable zone folios can be pinned. */
2104 	return !folio_is_zone_movable(folio);
2105 
2106 }
2107 #else
2108 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2109 {
2110 	return true;
2111 }
2112 #endif
2113 
2114 static inline void set_page_zone(struct page *page, enum zone_type zone)
2115 {
2116 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2117 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2118 }
2119 
2120 static inline void set_page_node(struct page *page, unsigned long node)
2121 {
2122 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2123 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2124 }
2125 
2126 static inline void set_page_links(struct page *page, enum zone_type zone,
2127 	unsigned long node, unsigned long pfn)
2128 {
2129 	set_page_zone(page, zone);
2130 	set_page_node(page, node);
2131 #ifdef SECTION_IN_PAGE_FLAGS
2132 	set_page_section(page, pfn_to_section_nr(pfn));
2133 #endif
2134 }
2135 
2136 /**
2137  * folio_nr_pages - The number of pages in the folio.
2138  * @folio: The folio.
2139  *
2140  * Return: A positive power of two.
2141  */
2142 static inline long folio_nr_pages(const struct folio *folio)
2143 {
2144 	if (!folio_test_large(folio))
2145 		return 1;
2146 	return folio_large_nr_pages(folio);
2147 }
2148 
2149 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2150 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2151 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2152 #else
2153 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2154 #endif
2155 
2156 /*
2157  * compound_nr() returns the number of pages in this potentially compound
2158  * page.  compound_nr() can be called on a tail page, and is defined to
2159  * return 1 in that case.
2160  */
2161 static inline long compound_nr(struct page *page)
2162 {
2163 	struct folio *folio = (struct folio *)page;
2164 
2165 	if (!test_bit(PG_head, &folio->flags))
2166 		return 1;
2167 	return folio_large_nr_pages(folio);
2168 }
2169 
2170 /**
2171  * thp_nr_pages - The number of regular pages in this huge page.
2172  * @page: The head page of a huge page.
2173  */
2174 static inline long thp_nr_pages(struct page *page)
2175 {
2176 	return folio_nr_pages((struct folio *)page);
2177 }
2178 
2179 /**
2180  * folio_next - Move to the next physical folio.
2181  * @folio: The folio we're currently operating on.
2182  *
2183  * If you have physically contiguous memory which may span more than
2184  * one folio (eg a &struct bio_vec), use this function to move from one
2185  * folio to the next.  Do not use it if the memory is only virtually
2186  * contiguous as the folios are almost certainly not adjacent to each
2187  * other.  This is the folio equivalent to writing ``page++``.
2188  *
2189  * Context: We assume that the folios are refcounted and/or locked at a
2190  * higher level and do not adjust the reference counts.
2191  * Return: The next struct folio.
2192  */
2193 static inline struct folio *folio_next(struct folio *folio)
2194 {
2195 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2196 }
2197 
2198 /**
2199  * folio_shift - The size of the memory described by this folio.
2200  * @folio: The folio.
2201  *
2202  * A folio represents a number of bytes which is a power-of-two in size.
2203  * This function tells you which power-of-two the folio is.  See also
2204  * folio_size() and folio_order().
2205  *
2206  * Context: The caller should have a reference on the folio to prevent
2207  * it from being split.  It is not necessary for the folio to be locked.
2208  * Return: The base-2 logarithm of the size of this folio.
2209  */
2210 static inline unsigned int folio_shift(const struct folio *folio)
2211 {
2212 	return PAGE_SHIFT + folio_order(folio);
2213 }
2214 
2215 /**
2216  * folio_size - The number of bytes in a folio.
2217  * @folio: The folio.
2218  *
2219  * Context: The caller should have a reference on the folio to prevent
2220  * it from being split.  It is not necessary for the folio to be locked.
2221  * Return: The number of bytes in this folio.
2222  */
2223 static inline size_t folio_size(const struct folio *folio)
2224 {
2225 	return PAGE_SIZE << folio_order(folio);
2226 }
2227 
2228 /**
2229  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2230  *			       tables of more than one MM
2231  * @folio: The folio.
2232  *
2233  * This function checks if the folio maybe currently mapped into more than one
2234  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2235  * MM ("mapped exclusively").
2236  *
2237  * For KSM folios, this function also returns "mapped shared" when a folio is
2238  * mapped multiple times into the same MM, because the individual page mappings
2239  * are independent.
2240  *
2241  * For small anonymous folios and anonymous hugetlb folios, the return
2242  * value will be exactly correct: non-KSM folios can only be mapped at most once
2243  * into an MM, and they cannot be partially mapped. KSM folios are
2244  * considered shared even if mapped multiple times into the same MM.
2245  *
2246  * For other folios, the result can be fuzzy:
2247  *    #. For partially-mappable large folios (THP), the return value can wrongly
2248  *       indicate "mapped shared" (false positive) if a folio was mapped by
2249  *       more than two MMs at one point in time.
2250  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2251  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2252  *       cover the same file range.
2253  *
2254  * Further, this function only considers current page table mappings that
2255  * are tracked using the folio mapcount(s).
2256  *
2257  * This function does not consider:
2258  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2259  *       pagecache, temporary unmapping for migration).
2260  *    #. If the folio is mapped differently (VM_PFNMAP).
2261  *    #. If hugetlb page table sharing applies. Callers might want to check
2262  *       hugetlb_pmd_shared().
2263  *
2264  * Return: Whether the folio is estimated to be mapped into more than one MM.
2265  */
2266 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2267 {
2268 	int mapcount = folio_mapcount(folio);
2269 
2270 	/* Only partially-mappable folios require more care. */
2271 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2272 		return mapcount > 1;
2273 
2274 	/*
2275 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2276 	 * simply assume "mapped shared", nobody should really care
2277 	 * about this for arbitrary kernel allocations.
2278 	 */
2279 	if (!IS_ENABLED(CONFIG_MM_ID))
2280 		return true;
2281 
2282 	/*
2283 	 * A single mapping implies "mapped exclusively", even if the
2284 	 * folio flag says something different: it's easier to handle this
2285 	 * case here instead of on the RMAP hot path.
2286 	 */
2287 	if (mapcount <= 1)
2288 		return false;
2289 	return folio_test_large_maybe_mapped_shared(folio);
2290 }
2291 
2292 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2293 static inline int arch_make_folio_accessible(struct folio *folio)
2294 {
2295 	return 0;
2296 }
2297 #endif
2298 
2299 /*
2300  * Some inline functions in vmstat.h depend on page_zone()
2301  */
2302 #include <linux/vmstat.h>
2303 
2304 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2305 #define HASHED_PAGE_VIRTUAL
2306 #endif
2307 
2308 #if defined(WANT_PAGE_VIRTUAL)
2309 static inline void *page_address(const struct page *page)
2310 {
2311 	return page->virtual;
2312 }
2313 static inline void set_page_address(struct page *page, void *address)
2314 {
2315 	page->virtual = address;
2316 }
2317 #define page_address_init()  do { } while(0)
2318 #endif
2319 
2320 #if defined(HASHED_PAGE_VIRTUAL)
2321 void *page_address(const struct page *page);
2322 void set_page_address(struct page *page, void *virtual);
2323 void page_address_init(void);
2324 #endif
2325 
2326 static __always_inline void *lowmem_page_address(const struct page *page)
2327 {
2328 	return page_to_virt(page);
2329 }
2330 
2331 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2332 #define page_address(page) lowmem_page_address(page)
2333 #define set_page_address(page, address)  do { } while(0)
2334 #define page_address_init()  do { } while(0)
2335 #endif
2336 
2337 static inline void *folio_address(const struct folio *folio)
2338 {
2339 	return page_address(&folio->page);
2340 }
2341 
2342 /*
2343  * Return true only if the page has been allocated with
2344  * ALLOC_NO_WATERMARKS and the low watermark was not
2345  * met implying that the system is under some pressure.
2346  */
2347 static inline bool page_is_pfmemalloc(const struct page *page)
2348 {
2349 	/*
2350 	 * lru.next has bit 1 set if the page is allocated from the
2351 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2352 	 * they do not need to preserve that information.
2353 	 */
2354 	return (uintptr_t)page->lru.next & BIT(1);
2355 }
2356 
2357 /*
2358  * Return true only if the folio has been allocated with
2359  * ALLOC_NO_WATERMARKS and the low watermark was not
2360  * met implying that the system is under some pressure.
2361  */
2362 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2363 {
2364 	/*
2365 	 * lru.next has bit 1 set if the page is allocated from the
2366 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2367 	 * they do not need to preserve that information.
2368 	 */
2369 	return (uintptr_t)folio->lru.next & BIT(1);
2370 }
2371 
2372 /*
2373  * Only to be called by the page allocator on a freshly allocated
2374  * page.
2375  */
2376 static inline void set_page_pfmemalloc(struct page *page)
2377 {
2378 	page->lru.next = (void *)BIT(1);
2379 }
2380 
2381 static inline void clear_page_pfmemalloc(struct page *page)
2382 {
2383 	page->lru.next = NULL;
2384 }
2385 
2386 /*
2387  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2388  */
2389 extern void pagefault_out_of_memory(void);
2390 
2391 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2392 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2393 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2394 
2395 /*
2396  * Parameter block passed down to zap_pte_range in exceptional cases.
2397  */
2398 struct zap_details {
2399 	struct folio *single_folio;	/* Locked folio to be unmapped */
2400 	bool even_cows;			/* Zap COWed private pages too? */
2401 	bool reclaim_pt;		/* Need reclaim page tables? */
2402 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2403 };
2404 
2405 /*
2406  * Whether to drop the pte markers, for example, the uffd-wp information for
2407  * file-backed memory.  This should only be specified when we will completely
2408  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2409  * default, the flag is not set.
2410  */
2411 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2412 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2413 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2414 
2415 #ifdef CONFIG_SCHED_MM_CID
2416 void sched_mm_cid_before_execve(struct task_struct *t);
2417 void sched_mm_cid_after_execve(struct task_struct *t);
2418 void sched_mm_cid_fork(struct task_struct *t);
2419 void sched_mm_cid_exit_signals(struct task_struct *t);
2420 static inline int task_mm_cid(struct task_struct *t)
2421 {
2422 	return t->mm_cid;
2423 }
2424 #else
2425 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2426 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2427 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2428 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2429 static inline int task_mm_cid(struct task_struct *t)
2430 {
2431 	/*
2432 	 * Use the processor id as a fall-back when the mm cid feature is
2433 	 * disabled. This provides functional per-cpu data structure accesses
2434 	 * in user-space, althrough it won't provide the memory usage benefits.
2435 	 */
2436 	return raw_smp_processor_id();
2437 }
2438 #endif
2439 
2440 #ifdef CONFIG_MMU
2441 extern bool can_do_mlock(void);
2442 #else
2443 static inline bool can_do_mlock(void) { return false; }
2444 #endif
2445 extern int user_shm_lock(size_t, struct ucounts *);
2446 extern void user_shm_unlock(size_t, struct ucounts *);
2447 
2448 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2449 			     pte_t pte);
2450 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2451 			     pte_t pte);
2452 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2453 				  unsigned long addr, pmd_t pmd);
2454 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2455 				pmd_t pmd);
2456 
2457 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2458 		  unsigned long size);
2459 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2460 			   unsigned long size, struct zap_details *details);
2461 static inline void zap_vma_pages(struct vm_area_struct *vma)
2462 {
2463 	zap_page_range_single(vma, vma->vm_start,
2464 			      vma->vm_end - vma->vm_start, NULL);
2465 }
2466 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2467 		struct vm_area_struct *start_vma, unsigned long start,
2468 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2469 
2470 struct mmu_notifier_range;
2471 
2472 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2473 		unsigned long end, unsigned long floor, unsigned long ceiling);
2474 int
2475 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2476 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2477 			void *buf, int len, int write);
2478 
2479 struct follow_pfnmap_args {
2480 	/**
2481 	 * Inputs:
2482 	 * @vma: Pointer to @vm_area_struct struct
2483 	 * @address: the virtual address to walk
2484 	 */
2485 	struct vm_area_struct *vma;
2486 	unsigned long address;
2487 	/**
2488 	 * Internals:
2489 	 *
2490 	 * The caller shouldn't touch any of these.
2491 	 */
2492 	spinlock_t *lock;
2493 	pte_t *ptep;
2494 	/**
2495 	 * Outputs:
2496 	 *
2497 	 * @pfn: the PFN of the address
2498 	 * @pgprot: the pgprot_t of the mapping
2499 	 * @writable: whether the mapping is writable
2500 	 * @special: whether the mapping is a special mapping (real PFN maps)
2501 	 */
2502 	unsigned long pfn;
2503 	pgprot_t pgprot;
2504 	bool writable;
2505 	bool special;
2506 };
2507 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2508 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2509 
2510 extern void truncate_pagecache(struct inode *inode, loff_t new);
2511 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2512 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2513 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2514 int generic_error_remove_folio(struct address_space *mapping,
2515 		struct folio *folio);
2516 
2517 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2518 		unsigned long address, struct pt_regs *regs);
2519 
2520 #ifdef CONFIG_MMU
2521 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2522 				  unsigned long address, unsigned int flags,
2523 				  struct pt_regs *regs);
2524 extern int fixup_user_fault(struct mm_struct *mm,
2525 			    unsigned long address, unsigned int fault_flags,
2526 			    bool *unlocked);
2527 void unmap_mapping_pages(struct address_space *mapping,
2528 		pgoff_t start, pgoff_t nr, bool even_cows);
2529 void unmap_mapping_range(struct address_space *mapping,
2530 		loff_t const holebegin, loff_t const holelen, int even_cows);
2531 #else
2532 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2533 					 unsigned long address, unsigned int flags,
2534 					 struct pt_regs *regs)
2535 {
2536 	/* should never happen if there's no MMU */
2537 	BUG();
2538 	return VM_FAULT_SIGBUS;
2539 }
2540 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2541 		unsigned int fault_flags, bool *unlocked)
2542 {
2543 	/* should never happen if there's no MMU */
2544 	BUG();
2545 	return -EFAULT;
2546 }
2547 static inline void unmap_mapping_pages(struct address_space *mapping,
2548 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2549 static inline void unmap_mapping_range(struct address_space *mapping,
2550 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2551 #endif
2552 
2553 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2554 		loff_t const holebegin, loff_t const holelen)
2555 {
2556 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2557 }
2558 
2559 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2560 						unsigned long addr);
2561 
2562 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2563 		void *buf, int len, unsigned int gup_flags);
2564 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2565 		void *buf, int len, unsigned int gup_flags);
2566 
2567 #ifdef CONFIG_BPF_SYSCALL
2568 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2569 			      void *buf, int len, unsigned int gup_flags);
2570 #endif
2571 
2572 long get_user_pages_remote(struct mm_struct *mm,
2573 			   unsigned long start, unsigned long nr_pages,
2574 			   unsigned int gup_flags, struct page **pages,
2575 			   int *locked);
2576 long pin_user_pages_remote(struct mm_struct *mm,
2577 			   unsigned long start, unsigned long nr_pages,
2578 			   unsigned int gup_flags, struct page **pages,
2579 			   int *locked);
2580 
2581 /*
2582  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2583  */
2584 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2585 						    unsigned long addr,
2586 						    int gup_flags,
2587 						    struct vm_area_struct **vmap)
2588 {
2589 	struct page *page;
2590 	struct vm_area_struct *vma;
2591 	int got;
2592 
2593 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2594 		return ERR_PTR(-EINVAL);
2595 
2596 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2597 
2598 	if (got < 0)
2599 		return ERR_PTR(got);
2600 
2601 	vma = vma_lookup(mm, addr);
2602 	if (WARN_ON_ONCE(!vma)) {
2603 		put_page(page);
2604 		return ERR_PTR(-EINVAL);
2605 	}
2606 
2607 	*vmap = vma;
2608 	return page;
2609 }
2610 
2611 long get_user_pages(unsigned long start, unsigned long nr_pages,
2612 		    unsigned int gup_flags, struct page **pages);
2613 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2614 		    unsigned int gup_flags, struct page **pages);
2615 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2616 		    struct page **pages, unsigned int gup_flags);
2617 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2618 		    struct page **pages, unsigned int gup_flags);
2619 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2620 		      struct folio **folios, unsigned int max_folios,
2621 		      pgoff_t *offset);
2622 int folio_add_pins(struct folio *folio, unsigned int pins);
2623 
2624 int get_user_pages_fast(unsigned long start, int nr_pages,
2625 			unsigned int gup_flags, struct page **pages);
2626 int pin_user_pages_fast(unsigned long start, int nr_pages,
2627 			unsigned int gup_flags, struct page **pages);
2628 void folio_add_pin(struct folio *folio);
2629 
2630 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2631 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2632 			struct task_struct *task, bool bypass_rlim);
2633 
2634 struct kvec;
2635 struct page *get_dump_page(unsigned long addr, int *locked);
2636 
2637 bool folio_mark_dirty(struct folio *folio);
2638 bool folio_mark_dirty_lock(struct folio *folio);
2639 bool set_page_dirty(struct page *page);
2640 int set_page_dirty_lock(struct page *page);
2641 
2642 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2643 
2644 /*
2645  * Flags used by change_protection().  For now we make it a bitmap so
2646  * that we can pass in multiple flags just like parameters.  However
2647  * for now all the callers are only use one of the flags at the same
2648  * time.
2649  */
2650 /*
2651  * Whether we should manually check if we can map individual PTEs writable,
2652  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2653  * PTEs automatically in a writable mapping.
2654  */
2655 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2656 /* Whether this protection change is for NUMA hints */
2657 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2658 /* Whether this change is for write protecting */
2659 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2660 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2661 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2662 					    MM_CP_UFFD_WP_RESOLVE)
2663 
2664 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2665 			     pte_t pte);
2666 extern long change_protection(struct mmu_gather *tlb,
2667 			      struct vm_area_struct *vma, unsigned long start,
2668 			      unsigned long end, unsigned long cp_flags);
2669 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2670 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2671 	  unsigned long start, unsigned long end, unsigned long newflags);
2672 
2673 /*
2674  * doesn't attempt to fault and will return short.
2675  */
2676 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2677 			     unsigned int gup_flags, struct page **pages);
2678 
2679 static inline bool get_user_page_fast_only(unsigned long addr,
2680 			unsigned int gup_flags, struct page **pagep)
2681 {
2682 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2683 }
2684 /*
2685  * per-process(per-mm_struct) statistics.
2686  */
2687 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2688 {
2689 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2690 }
2691 
2692 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2693 
2694 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2695 {
2696 	percpu_counter_add(&mm->rss_stat[member], value);
2697 
2698 	mm_trace_rss_stat(mm, member);
2699 }
2700 
2701 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2702 {
2703 	percpu_counter_inc(&mm->rss_stat[member]);
2704 
2705 	mm_trace_rss_stat(mm, member);
2706 }
2707 
2708 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2709 {
2710 	percpu_counter_dec(&mm->rss_stat[member]);
2711 
2712 	mm_trace_rss_stat(mm, member);
2713 }
2714 
2715 /* Optimized variant when folio is already known not to be anon */
2716 static inline int mm_counter_file(struct folio *folio)
2717 {
2718 	if (folio_test_swapbacked(folio))
2719 		return MM_SHMEMPAGES;
2720 	return MM_FILEPAGES;
2721 }
2722 
2723 static inline int mm_counter(struct folio *folio)
2724 {
2725 	if (folio_test_anon(folio))
2726 		return MM_ANONPAGES;
2727 	return mm_counter_file(folio);
2728 }
2729 
2730 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2731 {
2732 	return get_mm_counter(mm, MM_FILEPAGES) +
2733 		get_mm_counter(mm, MM_ANONPAGES) +
2734 		get_mm_counter(mm, MM_SHMEMPAGES);
2735 }
2736 
2737 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2738 {
2739 	return max(mm->hiwater_rss, get_mm_rss(mm));
2740 }
2741 
2742 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2743 {
2744 	return max(mm->hiwater_vm, mm->total_vm);
2745 }
2746 
2747 static inline void update_hiwater_rss(struct mm_struct *mm)
2748 {
2749 	unsigned long _rss = get_mm_rss(mm);
2750 
2751 	if ((mm)->hiwater_rss < _rss)
2752 		(mm)->hiwater_rss = _rss;
2753 }
2754 
2755 static inline void update_hiwater_vm(struct mm_struct *mm)
2756 {
2757 	if (mm->hiwater_vm < mm->total_vm)
2758 		mm->hiwater_vm = mm->total_vm;
2759 }
2760 
2761 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2762 {
2763 	mm->hiwater_rss = get_mm_rss(mm);
2764 }
2765 
2766 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2767 					 struct mm_struct *mm)
2768 {
2769 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2770 
2771 	if (*maxrss < hiwater_rss)
2772 		*maxrss = hiwater_rss;
2773 }
2774 
2775 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2776 static inline int pte_special(pte_t pte)
2777 {
2778 	return 0;
2779 }
2780 
2781 static inline pte_t pte_mkspecial(pte_t pte)
2782 {
2783 	return pte;
2784 }
2785 #endif
2786 
2787 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2788 static inline bool pmd_special(pmd_t pmd)
2789 {
2790 	return false;
2791 }
2792 
2793 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2794 {
2795 	return pmd;
2796 }
2797 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2798 
2799 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2800 static inline bool pud_special(pud_t pud)
2801 {
2802 	return false;
2803 }
2804 
2805 static inline pud_t pud_mkspecial(pud_t pud)
2806 {
2807 	return pud;
2808 }
2809 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2810 
2811 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2812 static inline int pte_devmap(pte_t pte)
2813 {
2814 	return 0;
2815 }
2816 #endif
2817 
2818 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2819 			       spinlock_t **ptl);
2820 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2821 				    spinlock_t **ptl)
2822 {
2823 	pte_t *ptep;
2824 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2825 	return ptep;
2826 }
2827 
2828 #ifdef __PAGETABLE_P4D_FOLDED
2829 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2830 						unsigned long address)
2831 {
2832 	return 0;
2833 }
2834 #else
2835 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2836 #endif
2837 
2838 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2839 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2840 						unsigned long address)
2841 {
2842 	return 0;
2843 }
2844 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2845 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2846 
2847 #else
2848 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2849 
2850 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2851 {
2852 	if (mm_pud_folded(mm))
2853 		return;
2854 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2855 }
2856 
2857 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2858 {
2859 	if (mm_pud_folded(mm))
2860 		return;
2861 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2862 }
2863 #endif
2864 
2865 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2866 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2867 						unsigned long address)
2868 {
2869 	return 0;
2870 }
2871 
2872 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2873 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2874 
2875 #else
2876 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2877 
2878 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2879 {
2880 	if (mm_pmd_folded(mm))
2881 		return;
2882 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2883 }
2884 
2885 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2886 {
2887 	if (mm_pmd_folded(mm))
2888 		return;
2889 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2890 }
2891 #endif
2892 
2893 #ifdef CONFIG_MMU
2894 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2895 {
2896 	atomic_long_set(&mm->pgtables_bytes, 0);
2897 }
2898 
2899 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2900 {
2901 	return atomic_long_read(&mm->pgtables_bytes);
2902 }
2903 
2904 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2905 {
2906 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2907 }
2908 
2909 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2910 {
2911 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2912 }
2913 #else
2914 
2915 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2916 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2917 {
2918 	return 0;
2919 }
2920 
2921 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2922 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2923 #endif
2924 
2925 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2926 int __pte_alloc_kernel(pmd_t *pmd);
2927 
2928 #if defined(CONFIG_MMU)
2929 
2930 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2931 		unsigned long address)
2932 {
2933 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2934 		NULL : p4d_offset(pgd, address);
2935 }
2936 
2937 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2938 		unsigned long address)
2939 {
2940 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2941 		NULL : pud_offset(p4d, address);
2942 }
2943 
2944 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2945 {
2946 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2947 		NULL: pmd_offset(pud, address);
2948 }
2949 #endif /* CONFIG_MMU */
2950 
2951 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2952 {
2953 	return page_ptdesc(virt_to_page(x));
2954 }
2955 
2956 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2957 {
2958 	return page_to_virt(ptdesc_page(pt));
2959 }
2960 
2961 static inline void *ptdesc_address(const struct ptdesc *pt)
2962 {
2963 	return folio_address(ptdesc_folio(pt));
2964 }
2965 
2966 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2967 {
2968 	return folio_test_reserved(ptdesc_folio(pt));
2969 }
2970 
2971 /**
2972  * pagetable_alloc - Allocate pagetables
2973  * @gfp:    GFP flags
2974  * @order:  desired pagetable order
2975  *
2976  * pagetable_alloc allocates memory for page tables as well as a page table
2977  * descriptor to describe that memory.
2978  *
2979  * Return: The ptdesc describing the allocated page tables.
2980  */
2981 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2982 {
2983 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2984 
2985 	return page_ptdesc(page);
2986 }
2987 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2988 
2989 /**
2990  * pagetable_free - Free pagetables
2991  * @pt:	The page table descriptor
2992  *
2993  * pagetable_free frees the memory of all page tables described by a page
2994  * table descriptor and the memory for the descriptor itself.
2995  */
2996 static inline void pagetable_free(struct ptdesc *pt)
2997 {
2998 	struct page *page = ptdesc_page(pt);
2999 
3000 	__free_pages(page, compound_order(page));
3001 }
3002 
3003 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3004 #if ALLOC_SPLIT_PTLOCKS
3005 void __init ptlock_cache_init(void);
3006 bool ptlock_alloc(struct ptdesc *ptdesc);
3007 void ptlock_free(struct ptdesc *ptdesc);
3008 
3009 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3010 {
3011 	return ptdesc->ptl;
3012 }
3013 #else /* ALLOC_SPLIT_PTLOCKS */
3014 static inline void ptlock_cache_init(void)
3015 {
3016 }
3017 
3018 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3019 {
3020 	return true;
3021 }
3022 
3023 static inline void ptlock_free(struct ptdesc *ptdesc)
3024 {
3025 }
3026 
3027 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3028 {
3029 	return &ptdesc->ptl;
3030 }
3031 #endif /* ALLOC_SPLIT_PTLOCKS */
3032 
3033 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3034 {
3035 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3036 }
3037 
3038 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3039 {
3040 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3041 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3042 	return ptlock_ptr(virt_to_ptdesc(pte));
3043 }
3044 
3045 static inline bool ptlock_init(struct ptdesc *ptdesc)
3046 {
3047 	/*
3048 	 * prep_new_page() initialize page->private (and therefore page->ptl)
3049 	 * with 0. Make sure nobody took it in use in between.
3050 	 *
3051 	 * It can happen if arch try to use slab for page table allocation:
3052 	 * slab code uses page->slab_cache, which share storage with page->ptl.
3053 	 */
3054 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3055 	if (!ptlock_alloc(ptdesc))
3056 		return false;
3057 	spin_lock_init(ptlock_ptr(ptdesc));
3058 	return true;
3059 }
3060 
3061 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3062 /*
3063  * We use mm->page_table_lock to guard all pagetable pages of the mm.
3064  */
3065 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3066 {
3067 	return &mm->page_table_lock;
3068 }
3069 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3070 {
3071 	return &mm->page_table_lock;
3072 }
3073 static inline void ptlock_cache_init(void) {}
3074 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
3075 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3076 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3077 
3078 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3079 {
3080 	struct folio *folio = ptdesc_folio(ptdesc);
3081 
3082 	__folio_set_pgtable(folio);
3083 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3084 }
3085 
3086 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3087 {
3088 	struct folio *folio = ptdesc_folio(ptdesc);
3089 
3090 	ptlock_free(ptdesc);
3091 	__folio_clear_pgtable(folio);
3092 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3093 }
3094 
3095 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3096 {
3097 	pagetable_dtor(ptdesc);
3098 	pagetable_free(ptdesc);
3099 }
3100 
3101 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3102 {
3103 	if (!ptlock_init(ptdesc))
3104 		return false;
3105 	__pagetable_ctor(ptdesc);
3106 	return true;
3107 }
3108 
3109 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3110 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3111 			pmd_t *pmdvalp)
3112 {
3113 	pte_t *pte;
3114 
3115 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3116 	return pte;
3117 }
3118 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3119 {
3120 	return __pte_offset_map(pmd, addr, NULL);
3121 }
3122 
3123 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3124 			unsigned long addr, spinlock_t **ptlp);
3125 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3126 			unsigned long addr, spinlock_t **ptlp)
3127 {
3128 	pte_t *pte;
3129 
3130 	__cond_lock(RCU, __cond_lock(*ptlp,
3131 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3132 	return pte;
3133 }
3134 
3135 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3136 				unsigned long addr, spinlock_t **ptlp);
3137 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3138 				unsigned long addr, pmd_t *pmdvalp,
3139 				spinlock_t **ptlp);
3140 
3141 #define pte_unmap_unlock(pte, ptl)	do {		\
3142 	spin_unlock(ptl);				\
3143 	pte_unmap(pte);					\
3144 } while (0)
3145 
3146 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3147 
3148 #define pte_alloc_map(mm, pmd, address)			\
3149 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3150 
3151 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3152 	(pte_alloc(mm, pmd) ?			\
3153 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3154 
3155 #define pte_alloc_kernel(pmd, address)			\
3156 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3157 		NULL: pte_offset_kernel(pmd, address))
3158 
3159 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3160 
3161 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3162 {
3163 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3164 	return virt_to_page((void *)((unsigned long) pmd & mask));
3165 }
3166 
3167 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3168 {
3169 	return page_ptdesc(pmd_pgtable_page(pmd));
3170 }
3171 
3172 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3173 {
3174 	return ptlock_ptr(pmd_ptdesc(pmd));
3175 }
3176 
3177 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3178 {
3179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3180 	ptdesc->pmd_huge_pte = NULL;
3181 #endif
3182 	return ptlock_init(ptdesc);
3183 }
3184 
3185 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3186 
3187 #else
3188 
3189 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3190 {
3191 	return &mm->page_table_lock;
3192 }
3193 
3194 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3195 
3196 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3197 
3198 #endif
3199 
3200 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3201 {
3202 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3203 	spin_lock(ptl);
3204 	return ptl;
3205 }
3206 
3207 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3208 {
3209 	if (!pmd_ptlock_init(ptdesc))
3210 		return false;
3211 	ptdesc_pmd_pts_init(ptdesc);
3212 	__pagetable_ctor(ptdesc);
3213 	return true;
3214 }
3215 
3216 /*
3217  * No scalability reason to split PUD locks yet, but follow the same pattern
3218  * as the PMD locks to make it easier if we decide to.  The VM should not be
3219  * considered ready to switch to split PUD locks yet; there may be places
3220  * which need to be converted from page_table_lock.
3221  */
3222 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3223 {
3224 	return &mm->page_table_lock;
3225 }
3226 
3227 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3228 {
3229 	spinlock_t *ptl = pud_lockptr(mm, pud);
3230 
3231 	spin_lock(ptl);
3232 	return ptl;
3233 }
3234 
3235 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3236 {
3237 	__pagetable_ctor(ptdesc);
3238 }
3239 
3240 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3241 {
3242 	__pagetable_ctor(ptdesc);
3243 }
3244 
3245 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3246 {
3247 	__pagetable_ctor(ptdesc);
3248 }
3249 
3250 extern void __init pagecache_init(void);
3251 extern void free_initmem(void);
3252 
3253 /*
3254  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3255  * into the buddy system. The freed pages will be poisoned with pattern
3256  * "poison" if it's within range [0, UCHAR_MAX].
3257  * Return pages freed into the buddy system.
3258  */
3259 extern unsigned long free_reserved_area(void *start, void *end,
3260 					int poison, const char *s);
3261 
3262 extern void adjust_managed_page_count(struct page *page, long count);
3263 
3264 extern void reserve_bootmem_region(phys_addr_t start,
3265 				   phys_addr_t end, int nid);
3266 
3267 /* Free the reserved page into the buddy system, so it gets managed. */
3268 void free_reserved_page(struct page *page);
3269 
3270 static inline void mark_page_reserved(struct page *page)
3271 {
3272 	SetPageReserved(page);
3273 	adjust_managed_page_count(page, -1);
3274 }
3275 
3276 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3277 {
3278 	free_reserved_page(ptdesc_page(pt));
3279 }
3280 
3281 /*
3282  * Default method to free all the __init memory into the buddy system.
3283  * The freed pages will be poisoned with pattern "poison" if it's within
3284  * range [0, UCHAR_MAX].
3285  * Return pages freed into the buddy system.
3286  */
3287 static inline unsigned long free_initmem_default(int poison)
3288 {
3289 	extern char __init_begin[], __init_end[];
3290 
3291 	return free_reserved_area(&__init_begin, &__init_end,
3292 				  poison, "unused kernel image (initmem)");
3293 }
3294 
3295 static inline unsigned long get_num_physpages(void)
3296 {
3297 	int nid;
3298 	unsigned long phys_pages = 0;
3299 
3300 	for_each_online_node(nid)
3301 		phys_pages += node_present_pages(nid);
3302 
3303 	return phys_pages;
3304 }
3305 
3306 /*
3307  * Using memblock node mappings, an architecture may initialise its
3308  * zones, allocate the backing mem_map and account for memory holes in an
3309  * architecture independent manner.
3310  *
3311  * An architecture is expected to register range of page frames backed by
3312  * physical memory with memblock_add[_node]() before calling
3313  * free_area_init() passing in the PFN each zone ends at. At a basic
3314  * usage, an architecture is expected to do something like
3315  *
3316  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3317  * 							 max_highmem_pfn};
3318  * for_each_valid_physical_page_range()
3319  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3320  * free_area_init(max_zone_pfns);
3321  */
3322 void free_area_init(unsigned long *max_zone_pfn);
3323 unsigned long node_map_pfn_alignment(void);
3324 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3325 						unsigned long end_pfn);
3326 extern void get_pfn_range_for_nid(unsigned int nid,
3327 			unsigned long *start_pfn, unsigned long *end_pfn);
3328 
3329 #ifndef CONFIG_NUMA
3330 static inline int early_pfn_to_nid(unsigned long pfn)
3331 {
3332 	return 0;
3333 }
3334 #else
3335 /* please see mm/page_alloc.c */
3336 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3337 #endif
3338 
3339 extern void mem_init(void);
3340 extern void __init mmap_init(void);
3341 
3342 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3343 static inline void show_mem(void)
3344 {
3345 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3346 }
3347 extern long si_mem_available(void);
3348 extern void si_meminfo(struct sysinfo * val);
3349 extern void si_meminfo_node(struct sysinfo *val, int nid);
3350 
3351 extern __printf(3, 4)
3352 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3353 
3354 extern void setup_per_cpu_pageset(void);
3355 
3356 /* nommu.c */
3357 extern atomic_long_t mmap_pages_allocated;
3358 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3359 
3360 /* interval_tree.c */
3361 void vma_interval_tree_insert(struct vm_area_struct *node,
3362 			      struct rb_root_cached *root);
3363 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3364 				    struct vm_area_struct *prev,
3365 				    struct rb_root_cached *root);
3366 void vma_interval_tree_remove(struct vm_area_struct *node,
3367 			      struct rb_root_cached *root);
3368 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3369 				unsigned long start, unsigned long last);
3370 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3371 				unsigned long start, unsigned long last);
3372 
3373 #define vma_interval_tree_foreach(vma, root, start, last)		\
3374 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3375 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3376 
3377 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3378 				   struct rb_root_cached *root);
3379 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3380 				   struct rb_root_cached *root);
3381 struct anon_vma_chain *
3382 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3383 				  unsigned long start, unsigned long last);
3384 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3385 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3386 #ifdef CONFIG_DEBUG_VM_RB
3387 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3388 #endif
3389 
3390 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3391 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3392 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3393 
3394 /* mmap.c */
3395 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3396 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3397 extern void exit_mmap(struct mm_struct *);
3398 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3399 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3400 				 unsigned long addr, bool write);
3401 
3402 static inline int check_data_rlimit(unsigned long rlim,
3403 				    unsigned long new,
3404 				    unsigned long start,
3405 				    unsigned long end_data,
3406 				    unsigned long start_data)
3407 {
3408 	if (rlim < RLIM_INFINITY) {
3409 		if (((new - start) + (end_data - start_data)) > rlim)
3410 			return -ENOSPC;
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 extern int mm_take_all_locks(struct mm_struct *mm);
3417 extern void mm_drop_all_locks(struct mm_struct *mm);
3418 
3419 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3420 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3421 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3422 extern struct file *get_task_exe_file(struct task_struct *task);
3423 
3424 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3425 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3426 
3427 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3428 				   const struct vm_special_mapping *sm);
3429 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3430 				   unsigned long addr, unsigned long len,
3431 				   unsigned long flags,
3432 				   const struct vm_special_mapping *spec);
3433 
3434 unsigned long randomize_stack_top(unsigned long stack_top);
3435 unsigned long randomize_page(unsigned long start, unsigned long range);
3436 
3437 unsigned long
3438 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3439 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3440 
3441 static inline unsigned long
3442 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3443 		  unsigned long pgoff, unsigned long flags)
3444 {
3445 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3446 }
3447 
3448 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3449 	unsigned long len, unsigned long prot, unsigned long flags,
3450 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3451 	struct list_head *uf);
3452 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3453 			 unsigned long start, size_t len, struct list_head *uf,
3454 			 bool unlock);
3455 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3456 		    struct mm_struct *mm, unsigned long start,
3457 		    unsigned long end, struct list_head *uf, bool unlock);
3458 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3459 		     struct list_head *uf);
3460 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3461 
3462 #ifdef CONFIG_MMU
3463 extern int __mm_populate(unsigned long addr, unsigned long len,
3464 			 int ignore_errors);
3465 static inline void mm_populate(unsigned long addr, unsigned long len)
3466 {
3467 	/* Ignore errors */
3468 	(void) __mm_populate(addr, len, 1);
3469 }
3470 #else
3471 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3472 #endif
3473 
3474 /* This takes the mm semaphore itself */
3475 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3476 extern int vm_munmap(unsigned long, size_t);
3477 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3478         unsigned long, unsigned long,
3479         unsigned long, unsigned long);
3480 
3481 struct vm_unmapped_area_info {
3482 #define VM_UNMAPPED_AREA_TOPDOWN 1
3483 	unsigned long flags;
3484 	unsigned long length;
3485 	unsigned long low_limit;
3486 	unsigned long high_limit;
3487 	unsigned long align_mask;
3488 	unsigned long align_offset;
3489 	unsigned long start_gap;
3490 };
3491 
3492 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3493 
3494 /* truncate.c */
3495 extern void truncate_inode_pages(struct address_space *, loff_t);
3496 extern void truncate_inode_pages_range(struct address_space *,
3497 				       loff_t lstart, loff_t lend);
3498 extern void truncate_inode_pages_final(struct address_space *);
3499 
3500 /* generic vm_area_ops exported for stackable file systems */
3501 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3502 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3503 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3504 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3505 
3506 extern unsigned long stack_guard_gap;
3507 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3508 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3509 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3510 
3511 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3512 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3513 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3514 					     struct vm_area_struct **pprev);
3515 
3516 /*
3517  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3518  * NULL if none.  Assume start_addr < end_addr.
3519  */
3520 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3521 			unsigned long start_addr, unsigned long end_addr);
3522 
3523 /**
3524  * vma_lookup() - Find a VMA at a specific address
3525  * @mm: The process address space.
3526  * @addr: The user address.
3527  *
3528  * Return: The vm_area_struct at the given address, %NULL otherwise.
3529  */
3530 static inline
3531 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3532 {
3533 	return mtree_load(&mm->mm_mt, addr);
3534 }
3535 
3536 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3537 {
3538 	if (vma->vm_flags & VM_GROWSDOWN)
3539 		return stack_guard_gap;
3540 
3541 	/* See reasoning around the VM_SHADOW_STACK definition */
3542 	if (vma->vm_flags & VM_SHADOW_STACK)
3543 		return PAGE_SIZE;
3544 
3545 	return 0;
3546 }
3547 
3548 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3549 {
3550 	unsigned long gap = stack_guard_start_gap(vma);
3551 	unsigned long vm_start = vma->vm_start;
3552 
3553 	vm_start -= gap;
3554 	if (vm_start > vma->vm_start)
3555 		vm_start = 0;
3556 	return vm_start;
3557 }
3558 
3559 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3560 {
3561 	unsigned long vm_end = vma->vm_end;
3562 
3563 	if (vma->vm_flags & VM_GROWSUP) {
3564 		vm_end += stack_guard_gap;
3565 		if (vm_end < vma->vm_end)
3566 			vm_end = -PAGE_SIZE;
3567 	}
3568 	return vm_end;
3569 }
3570 
3571 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3572 {
3573 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3574 }
3575 
3576 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3577 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3578 				unsigned long vm_start, unsigned long vm_end)
3579 {
3580 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3581 
3582 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3583 		vma = NULL;
3584 
3585 	return vma;
3586 }
3587 
3588 static inline bool range_in_vma(struct vm_area_struct *vma,
3589 				unsigned long start, unsigned long end)
3590 {
3591 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3592 }
3593 
3594 #ifdef CONFIG_MMU
3595 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3596 void vma_set_page_prot(struct vm_area_struct *vma);
3597 #else
3598 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3599 {
3600 	return __pgprot(0);
3601 }
3602 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3603 {
3604 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3605 }
3606 #endif
3607 
3608 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3609 
3610 #ifdef CONFIG_NUMA_BALANCING
3611 unsigned long change_prot_numa(struct vm_area_struct *vma,
3612 			unsigned long start, unsigned long end);
3613 #endif
3614 
3615 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3616 		unsigned long addr);
3617 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3618 			unsigned long pfn, unsigned long size, pgprot_t);
3619 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3620 		unsigned long pfn, unsigned long size, pgprot_t prot);
3621 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3622 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3623 			struct page **pages, unsigned long *num);
3624 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3625 				unsigned long num);
3626 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3627 				unsigned long num);
3628 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3629 			bool write);
3630 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3631 			unsigned long pfn);
3632 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3633 			unsigned long pfn, pgprot_t pgprot);
3634 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3635 			pfn_t pfn);
3636 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3637 		unsigned long addr, pfn_t pfn);
3638 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3639 
3640 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3641 				unsigned long addr, struct page *page)
3642 {
3643 	int err = vm_insert_page(vma, addr, page);
3644 
3645 	if (err == -ENOMEM)
3646 		return VM_FAULT_OOM;
3647 	if (err < 0 && err != -EBUSY)
3648 		return VM_FAULT_SIGBUS;
3649 
3650 	return VM_FAULT_NOPAGE;
3651 }
3652 
3653 #ifndef io_remap_pfn_range
3654 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3655 				     unsigned long addr, unsigned long pfn,
3656 				     unsigned long size, pgprot_t prot)
3657 {
3658 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3659 }
3660 #endif
3661 
3662 static inline vm_fault_t vmf_error(int err)
3663 {
3664 	if (err == -ENOMEM)
3665 		return VM_FAULT_OOM;
3666 	else if (err == -EHWPOISON)
3667 		return VM_FAULT_HWPOISON;
3668 	return VM_FAULT_SIGBUS;
3669 }
3670 
3671 /*
3672  * Convert errno to return value for ->page_mkwrite() calls.
3673  *
3674  * This should eventually be merged with vmf_error() above, but will need a
3675  * careful audit of all vmf_error() callers.
3676  */
3677 static inline vm_fault_t vmf_fs_error(int err)
3678 {
3679 	if (err == 0)
3680 		return VM_FAULT_LOCKED;
3681 	if (err == -EFAULT || err == -EAGAIN)
3682 		return VM_FAULT_NOPAGE;
3683 	if (err == -ENOMEM)
3684 		return VM_FAULT_OOM;
3685 	/* -ENOSPC, -EDQUOT, -EIO ... */
3686 	return VM_FAULT_SIGBUS;
3687 }
3688 
3689 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3690 {
3691 	if (vm_fault & VM_FAULT_OOM)
3692 		return -ENOMEM;
3693 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3694 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3695 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3696 		return -EFAULT;
3697 	return 0;
3698 }
3699 
3700 /*
3701  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3702  * a (NUMA hinting) fault is required.
3703  */
3704 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3705 					   unsigned int flags)
3706 {
3707 	/*
3708 	 * If callers don't want to honor NUMA hinting faults, no need to
3709 	 * determine if we would actually have to trigger a NUMA hinting fault.
3710 	 */
3711 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3712 		return true;
3713 
3714 	/*
3715 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3716 	 *
3717 	 * Requiring a fault here even for inaccessible VMAs would mean that
3718 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3719 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3720 	 */
3721 	return !vma_is_accessible(vma);
3722 }
3723 
3724 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3725 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3726 			       unsigned long size, pte_fn_t fn, void *data);
3727 extern int apply_to_existing_page_range(struct mm_struct *mm,
3728 				   unsigned long address, unsigned long size,
3729 				   pte_fn_t fn, void *data);
3730 
3731 #ifdef CONFIG_PAGE_POISONING
3732 extern void __kernel_poison_pages(struct page *page, int numpages);
3733 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3734 extern bool _page_poisoning_enabled_early;
3735 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3736 static inline bool page_poisoning_enabled(void)
3737 {
3738 	return _page_poisoning_enabled_early;
3739 }
3740 /*
3741  * For use in fast paths after init_mem_debugging() has run, or when a
3742  * false negative result is not harmful when called too early.
3743  */
3744 static inline bool page_poisoning_enabled_static(void)
3745 {
3746 	return static_branch_unlikely(&_page_poisoning_enabled);
3747 }
3748 static inline void kernel_poison_pages(struct page *page, int numpages)
3749 {
3750 	if (page_poisoning_enabled_static())
3751 		__kernel_poison_pages(page, numpages);
3752 }
3753 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3754 {
3755 	if (page_poisoning_enabled_static())
3756 		__kernel_unpoison_pages(page, numpages);
3757 }
3758 #else
3759 static inline bool page_poisoning_enabled(void) { return false; }
3760 static inline bool page_poisoning_enabled_static(void) { return false; }
3761 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3762 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3763 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3764 #endif
3765 
3766 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3767 static inline bool want_init_on_alloc(gfp_t flags)
3768 {
3769 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3770 				&init_on_alloc))
3771 		return true;
3772 	return flags & __GFP_ZERO;
3773 }
3774 
3775 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3776 static inline bool want_init_on_free(void)
3777 {
3778 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3779 				   &init_on_free);
3780 }
3781 
3782 extern bool _debug_pagealloc_enabled_early;
3783 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3784 
3785 static inline bool debug_pagealloc_enabled(void)
3786 {
3787 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3788 		_debug_pagealloc_enabled_early;
3789 }
3790 
3791 /*
3792  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3793  * or when a false negative result is not harmful when called too early.
3794  */
3795 static inline bool debug_pagealloc_enabled_static(void)
3796 {
3797 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3798 		return false;
3799 
3800 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3801 }
3802 
3803 /*
3804  * To support DEBUG_PAGEALLOC architecture must ensure that
3805  * __kernel_map_pages() never fails
3806  */
3807 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3808 #ifdef CONFIG_DEBUG_PAGEALLOC
3809 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3810 {
3811 	if (debug_pagealloc_enabled_static())
3812 		__kernel_map_pages(page, numpages, 1);
3813 }
3814 
3815 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3816 {
3817 	if (debug_pagealloc_enabled_static())
3818 		__kernel_map_pages(page, numpages, 0);
3819 }
3820 
3821 extern unsigned int _debug_guardpage_minorder;
3822 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3823 
3824 static inline unsigned int debug_guardpage_minorder(void)
3825 {
3826 	return _debug_guardpage_minorder;
3827 }
3828 
3829 static inline bool debug_guardpage_enabled(void)
3830 {
3831 	return static_branch_unlikely(&_debug_guardpage_enabled);
3832 }
3833 
3834 static inline bool page_is_guard(struct page *page)
3835 {
3836 	if (!debug_guardpage_enabled())
3837 		return false;
3838 
3839 	return PageGuard(page);
3840 }
3841 
3842 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3843 static inline bool set_page_guard(struct zone *zone, struct page *page,
3844 				  unsigned int order)
3845 {
3846 	if (!debug_guardpage_enabled())
3847 		return false;
3848 	return __set_page_guard(zone, page, order);
3849 }
3850 
3851 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3852 static inline void clear_page_guard(struct zone *zone, struct page *page,
3853 				    unsigned int order)
3854 {
3855 	if (!debug_guardpage_enabled())
3856 		return;
3857 	__clear_page_guard(zone, page, order);
3858 }
3859 
3860 #else	/* CONFIG_DEBUG_PAGEALLOC */
3861 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3862 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3863 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3864 static inline bool debug_guardpage_enabled(void) { return false; }
3865 static inline bool page_is_guard(struct page *page) { return false; }
3866 static inline bool set_page_guard(struct zone *zone, struct page *page,
3867 			unsigned int order) { return false; }
3868 static inline void clear_page_guard(struct zone *zone, struct page *page,
3869 				unsigned int order) {}
3870 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3871 
3872 #ifdef __HAVE_ARCH_GATE_AREA
3873 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3874 extern int in_gate_area_no_mm(unsigned long addr);
3875 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3876 #else
3877 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3878 {
3879 	return NULL;
3880 }
3881 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3882 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3883 {
3884 	return 0;
3885 }
3886 #endif	/* __HAVE_ARCH_GATE_AREA */
3887 
3888 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3889 
3890 void drop_slab(void);
3891 
3892 #ifndef CONFIG_MMU
3893 #define randomize_va_space 0
3894 #else
3895 extern int randomize_va_space;
3896 #endif
3897 
3898 const char * arch_vma_name(struct vm_area_struct *vma);
3899 #ifdef CONFIG_MMU
3900 void print_vma_addr(char *prefix, unsigned long rip);
3901 #else
3902 static inline void print_vma_addr(char *prefix, unsigned long rip)
3903 {
3904 }
3905 #endif
3906 
3907 void *sparse_buffer_alloc(unsigned long size);
3908 unsigned long section_map_size(void);
3909 struct page * __populate_section_memmap(unsigned long pfn,
3910 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3911 		struct dev_pagemap *pgmap);
3912 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3913 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3914 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3915 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3916 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3917 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3918 			    unsigned long flags);
3919 void *vmemmap_alloc_block(unsigned long size, int node);
3920 struct vmem_altmap;
3921 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3922 			      struct vmem_altmap *altmap);
3923 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3924 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3925 		     unsigned long addr, unsigned long next);
3926 int vmemmap_check_pmd(pmd_t *pmd, int node,
3927 		      unsigned long addr, unsigned long next);
3928 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3929 			       int node, struct vmem_altmap *altmap);
3930 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3931 			       int node, struct vmem_altmap *altmap);
3932 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3933 		struct vmem_altmap *altmap);
3934 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3935 			 unsigned long headsize);
3936 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3937 		     unsigned long headsize);
3938 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3939 			  unsigned long headsize);
3940 void vmemmap_populate_print_last(void);
3941 #ifdef CONFIG_MEMORY_HOTPLUG
3942 void vmemmap_free(unsigned long start, unsigned long end,
3943 		struct vmem_altmap *altmap);
3944 #endif
3945 
3946 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3947 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3948 {
3949 	/* number of pfns from base where pfn_to_page() is valid */
3950 	if (altmap)
3951 		return altmap->reserve + altmap->free;
3952 	return 0;
3953 }
3954 
3955 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3956 				    unsigned long nr_pfns)
3957 {
3958 	altmap->alloc -= nr_pfns;
3959 }
3960 #else
3961 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3962 {
3963 	return 0;
3964 }
3965 
3966 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3967 				    unsigned long nr_pfns)
3968 {
3969 }
3970 #endif
3971 
3972 #define VMEMMAP_RESERVE_NR	2
3973 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3974 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3975 					  struct dev_pagemap *pgmap)
3976 {
3977 	unsigned long nr_pages;
3978 	unsigned long nr_vmemmap_pages;
3979 
3980 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3981 		return false;
3982 
3983 	nr_pages = pgmap_vmemmap_nr(pgmap);
3984 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3985 	/*
3986 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3987 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3988 	 */
3989 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3990 }
3991 /*
3992  * If we don't have an architecture override, use the generic rule
3993  */
3994 #ifndef vmemmap_can_optimize
3995 #define vmemmap_can_optimize __vmemmap_can_optimize
3996 #endif
3997 
3998 #else
3999 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4000 					   struct dev_pagemap *pgmap)
4001 {
4002 	return false;
4003 }
4004 #endif
4005 
4006 enum mf_flags {
4007 	MF_COUNT_INCREASED = 1 << 0,
4008 	MF_ACTION_REQUIRED = 1 << 1,
4009 	MF_MUST_KILL = 1 << 2,
4010 	MF_SOFT_OFFLINE = 1 << 3,
4011 	MF_UNPOISON = 1 << 4,
4012 	MF_SW_SIMULATED = 1 << 5,
4013 	MF_NO_RETRY = 1 << 6,
4014 	MF_MEM_PRE_REMOVE = 1 << 7,
4015 };
4016 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4017 		      unsigned long count, int mf_flags);
4018 extern int memory_failure(unsigned long pfn, int flags);
4019 extern void memory_failure_queue_kick(int cpu);
4020 extern int unpoison_memory(unsigned long pfn);
4021 extern atomic_long_t num_poisoned_pages __read_mostly;
4022 extern int soft_offline_page(unsigned long pfn, int flags);
4023 #ifdef CONFIG_MEMORY_FAILURE
4024 /*
4025  * Sysfs entries for memory failure handling statistics.
4026  */
4027 extern const struct attribute_group memory_failure_attr_group;
4028 extern void memory_failure_queue(unsigned long pfn, int flags);
4029 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4030 					bool *migratable_cleared);
4031 void num_poisoned_pages_inc(unsigned long pfn);
4032 void num_poisoned_pages_sub(unsigned long pfn, long i);
4033 #else
4034 static inline void memory_failure_queue(unsigned long pfn, int flags)
4035 {
4036 }
4037 
4038 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4039 					bool *migratable_cleared)
4040 {
4041 	return 0;
4042 }
4043 
4044 static inline void num_poisoned_pages_inc(unsigned long pfn)
4045 {
4046 }
4047 
4048 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4049 {
4050 }
4051 #endif
4052 
4053 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4054 extern void memblk_nr_poison_inc(unsigned long pfn);
4055 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4056 #else
4057 static inline void memblk_nr_poison_inc(unsigned long pfn)
4058 {
4059 }
4060 
4061 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4062 {
4063 }
4064 #endif
4065 
4066 #ifndef arch_memory_failure
4067 static inline int arch_memory_failure(unsigned long pfn, int flags)
4068 {
4069 	return -ENXIO;
4070 }
4071 #endif
4072 
4073 #ifndef arch_is_platform_page
4074 static inline bool arch_is_platform_page(u64 paddr)
4075 {
4076 	return false;
4077 }
4078 #endif
4079 
4080 /*
4081  * Error handlers for various types of pages.
4082  */
4083 enum mf_result {
4084 	MF_IGNORED,	/* Error: cannot be handled */
4085 	MF_FAILED,	/* Error: handling failed */
4086 	MF_DELAYED,	/* Will be handled later */
4087 	MF_RECOVERED,	/* Successfully recovered */
4088 };
4089 
4090 enum mf_action_page_type {
4091 	MF_MSG_KERNEL,
4092 	MF_MSG_KERNEL_HIGH_ORDER,
4093 	MF_MSG_DIFFERENT_COMPOUND,
4094 	MF_MSG_HUGE,
4095 	MF_MSG_FREE_HUGE,
4096 	MF_MSG_GET_HWPOISON,
4097 	MF_MSG_UNMAP_FAILED,
4098 	MF_MSG_DIRTY_SWAPCACHE,
4099 	MF_MSG_CLEAN_SWAPCACHE,
4100 	MF_MSG_DIRTY_MLOCKED_LRU,
4101 	MF_MSG_CLEAN_MLOCKED_LRU,
4102 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4103 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4104 	MF_MSG_DIRTY_LRU,
4105 	MF_MSG_CLEAN_LRU,
4106 	MF_MSG_TRUNCATED_LRU,
4107 	MF_MSG_BUDDY,
4108 	MF_MSG_DAX,
4109 	MF_MSG_UNSPLIT_THP,
4110 	MF_MSG_ALREADY_POISONED,
4111 	MF_MSG_UNKNOWN,
4112 };
4113 
4114 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4115 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4116 int copy_user_large_folio(struct folio *dst, struct folio *src,
4117 			  unsigned long addr_hint,
4118 			  struct vm_area_struct *vma);
4119 long copy_folio_from_user(struct folio *dst_folio,
4120 			   const void __user *usr_src,
4121 			   bool allow_pagefault);
4122 
4123 /**
4124  * vma_is_special_huge - Are transhuge page-table entries considered special?
4125  * @vma: Pointer to the struct vm_area_struct to consider
4126  *
4127  * Whether transhuge page-table entries are considered "special" following
4128  * the definition in vm_normal_page().
4129  *
4130  * Return: true if transhuge page-table entries should be considered special,
4131  * false otherwise.
4132  */
4133 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4134 {
4135 	return vma_is_dax(vma) || (vma->vm_file &&
4136 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4137 }
4138 
4139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4140 
4141 #if MAX_NUMNODES > 1
4142 void __init setup_nr_node_ids(void);
4143 #else
4144 static inline void setup_nr_node_ids(void) {}
4145 #endif
4146 
4147 extern int memcmp_pages(struct page *page1, struct page *page2);
4148 
4149 static inline int pages_identical(struct page *page1, struct page *page2)
4150 {
4151 	return !memcmp_pages(page1, page2);
4152 }
4153 
4154 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4155 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4156 						pgoff_t first_index, pgoff_t nr,
4157 						pgoff_t bitmap_pgoff,
4158 						unsigned long *bitmap,
4159 						pgoff_t *start,
4160 						pgoff_t *end);
4161 
4162 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4163 				      pgoff_t first_index, pgoff_t nr);
4164 #endif
4165 
4166 #ifdef CONFIG_ANON_VMA_NAME
4167 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4168 			  unsigned long len_in,
4169 			  struct anon_vma_name *anon_name);
4170 #else
4171 static inline int
4172 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4173 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4174 	return 0;
4175 }
4176 #endif
4177 
4178 #ifdef CONFIG_UNACCEPTED_MEMORY
4179 
4180 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4181 void accept_memory(phys_addr_t start, unsigned long size);
4182 
4183 #else
4184 
4185 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4186 						    unsigned long size)
4187 {
4188 	return false;
4189 }
4190 
4191 static inline void accept_memory(phys_addr_t start, unsigned long size)
4192 {
4193 }
4194 
4195 #endif
4196 
4197 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4198 {
4199 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4200 }
4201 
4202 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4203 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4204 
4205 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4206 int reserve_mem_release_by_name(const char *name);
4207 
4208 #ifdef CONFIG_64BIT
4209 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4210 #else
4211 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4212 {
4213 	/* noop on 32 bit */
4214 	return 0;
4215 }
4216 #endif
4217 
4218 /*
4219  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4220  * be zeroed or not.
4221  */
4222 static inline bool user_alloc_needs_zeroing(void)
4223 {
4224 	/*
4225 	 * for user folios, arch with cache aliasing requires cache flush and
4226 	 * arc changes folio->flags to make icache coherent with dcache, so
4227 	 * always return false to make caller use
4228 	 * clear_user_page()/clear_user_highpage().
4229 	 */
4230 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4231 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4232 				   &init_on_alloc);
4233 }
4234 
4235 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4236 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4237 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4238 
4239 #endif /* _LINUX_MM_H */
4240