1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 #include <linux/rcuwait.h> 36 37 struct mempolicy; 38 struct anon_vma; 39 struct anon_vma_chain; 40 struct user_struct; 41 struct pt_regs; 42 struct folio_batch; 43 44 void arch_mm_preinit(void); 45 void mm_core_init(void); 46 void init_mm_internals(void); 47 48 extern atomic_long_t _totalram_pages; 49 static inline unsigned long totalram_pages(void) 50 { 51 return (unsigned long)atomic_long_read(&_totalram_pages); 52 } 53 54 static inline void totalram_pages_inc(void) 55 { 56 atomic_long_inc(&_totalram_pages); 57 } 58 59 static inline void totalram_pages_dec(void) 60 { 61 atomic_long_dec(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_add(long count) 65 { 66 atomic_long_add(count, &_totalram_pages); 67 } 68 69 extern void * high_memory; 70 71 #ifdef CONFIG_SYSCTL 72 extern int sysctl_legacy_va_layout; 73 #else 74 #define sysctl_legacy_va_layout 0 75 #endif 76 77 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 78 extern const int mmap_rnd_bits_min; 79 extern int mmap_rnd_bits_max __ro_after_init; 80 extern int mmap_rnd_bits __read_mostly; 81 #endif 82 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 83 extern const int mmap_rnd_compat_bits_min; 84 extern const int mmap_rnd_compat_bits_max; 85 extern int mmap_rnd_compat_bits __read_mostly; 86 #endif 87 88 #ifndef DIRECT_MAP_PHYSMEM_END 89 # ifdef MAX_PHYSMEM_BITS 90 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 91 # else 92 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 93 # endif 94 #endif 95 96 #include <asm/page.h> 97 #include <asm/processor.h> 98 99 #ifndef __pa_symbol 100 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 101 #endif 102 103 #ifndef page_to_virt 104 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 105 #endif 106 107 #ifndef lm_alias 108 #define lm_alias(x) __va(__pa_symbol(x)) 109 #endif 110 111 /* 112 * To prevent common memory management code establishing 113 * a zero page mapping on a read fault. 114 * This macro should be defined within <asm/pgtable.h>. 115 * s390 does this to prevent multiplexing of hardware bits 116 * related to the physical page in case of virtualization. 117 */ 118 #ifndef mm_forbids_zeropage 119 #define mm_forbids_zeropage(X) (0) 120 #endif 121 122 /* 123 * On some architectures it is expensive to call memset() for small sizes. 124 * If an architecture decides to implement their own version of 125 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 126 * define their own version of this macro in <asm/pgtable.h> 127 */ 128 #if BITS_PER_LONG == 64 129 /* This function must be updated when the size of struct page grows above 96 130 * or reduces below 56. The idea that compiler optimizes out switch() 131 * statement, and only leaves move/store instructions. Also the compiler can 132 * combine write statements if they are both assignments and can be reordered, 133 * this can result in several of the writes here being dropped. 134 */ 135 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 136 static inline void __mm_zero_struct_page(struct page *page) 137 { 138 unsigned long *_pp = (void *)page; 139 140 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 141 BUILD_BUG_ON(sizeof(struct page) & 7); 142 BUILD_BUG_ON(sizeof(struct page) < 56); 143 BUILD_BUG_ON(sizeof(struct page) > 96); 144 145 switch (sizeof(struct page)) { 146 case 96: 147 _pp[11] = 0; 148 fallthrough; 149 case 88: 150 _pp[10] = 0; 151 fallthrough; 152 case 80: 153 _pp[9] = 0; 154 fallthrough; 155 case 72: 156 _pp[8] = 0; 157 fallthrough; 158 case 64: 159 _pp[7] = 0; 160 fallthrough; 161 case 56: 162 _pp[6] = 0; 163 _pp[5] = 0; 164 _pp[4] = 0; 165 _pp[3] = 0; 166 _pp[2] = 0; 167 _pp[1] = 0; 168 _pp[0] = 0; 169 } 170 } 171 #else 172 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 173 #endif 174 175 /* 176 * Default maximum number of active map areas, this limits the number of vmas 177 * per mm struct. Users can overwrite this number by sysctl but there is a 178 * problem. 179 * 180 * When a program's coredump is generated as ELF format, a section is created 181 * per a vma. In ELF, the number of sections is represented in unsigned short. 182 * This means the number of sections should be smaller than 65535 at coredump. 183 * Because the kernel adds some informative sections to a image of program at 184 * generating coredump, we need some margin. The number of extra sections is 185 * 1-3 now and depends on arch. We use "5" as safe margin, here. 186 * 187 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 188 * not a hard limit any more. Although some userspace tools can be surprised by 189 * that. 190 */ 191 #define MAPCOUNT_ELF_CORE_MARGIN (5) 192 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 193 194 extern int sysctl_max_map_count; 195 196 extern unsigned long sysctl_user_reserve_kbytes; 197 extern unsigned long sysctl_admin_reserve_kbytes; 198 199 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 200 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 201 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 202 #else 203 #define nth_page(page,n) ((page) + (n)) 204 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 205 #endif 206 207 /* to align the pointer to the (next) page boundary */ 208 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 209 210 /* to align the pointer to the (prev) page boundary */ 211 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 212 213 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 214 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 215 216 static inline struct folio *lru_to_folio(struct list_head *head) 217 { 218 return list_entry((head)->prev, struct folio, lru); 219 } 220 221 void setup_initial_init_mm(void *start_code, void *end_code, 222 void *end_data, void *brk); 223 224 /* 225 * Linux kernel virtual memory manager primitives. 226 * The idea being to have a "virtual" mm in the same way 227 * we have a virtual fs - giving a cleaner interface to the 228 * mm details, and allowing different kinds of memory mappings 229 * (from shared memory to executable loading to arbitrary 230 * mmap() functions). 231 */ 232 233 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 234 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 235 void vm_area_free(struct vm_area_struct *); 236 237 #ifndef CONFIG_MMU 238 extern struct rb_root nommu_region_tree; 239 extern struct rw_semaphore nommu_region_sem; 240 241 extern unsigned int kobjsize(const void *objp); 242 #endif 243 244 /* 245 * vm_flags in vm_area_struct, see mm_types.h. 246 * When changing, update also include/trace/events/mmflags.h 247 */ 248 #define VM_NONE 0x00000000 249 250 #define VM_READ 0x00000001 /* currently active flags */ 251 #define VM_WRITE 0x00000002 252 #define VM_EXEC 0x00000004 253 #define VM_SHARED 0x00000008 254 255 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 256 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 257 #define VM_MAYWRITE 0x00000020 258 #define VM_MAYEXEC 0x00000040 259 #define VM_MAYSHARE 0x00000080 260 261 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 262 #ifdef CONFIG_MMU 263 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 264 #else /* CONFIG_MMU */ 265 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 266 #define VM_UFFD_MISSING 0 267 #endif /* CONFIG_MMU */ 268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 269 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 270 271 #define VM_LOCKED 0x00002000 272 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 273 274 /* Used by sys_madvise() */ 275 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 276 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 277 278 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 279 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 280 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 281 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 282 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 283 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 284 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 285 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 286 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 287 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 288 289 #ifdef CONFIG_MEM_SOFT_DIRTY 290 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 291 #else 292 # define VM_SOFTDIRTY 0 293 #endif 294 295 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 296 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 297 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 298 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 299 300 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 301 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 302 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 303 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 304 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 305 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 306 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 308 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 309 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 310 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 311 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 312 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 313 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 314 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 315 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 316 317 #ifdef CONFIG_ARCH_HAS_PKEYS 318 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 319 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 320 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 321 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 322 #if CONFIG_ARCH_PKEY_BITS > 3 323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 324 #else 325 # define VM_PKEY_BIT3 0 326 #endif 327 #if CONFIG_ARCH_PKEY_BITS > 4 328 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 329 #else 330 # define VM_PKEY_BIT4 0 331 #endif 332 #endif /* CONFIG_ARCH_HAS_PKEYS */ 333 334 #ifdef CONFIG_X86_USER_SHADOW_STACK 335 /* 336 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 337 * support core mm. 338 * 339 * These VMAs will get a single end guard page. This helps userspace protect 340 * itself from attacks. A single page is enough for current shadow stack archs 341 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 342 * for more details on the guard size. 343 */ 344 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 345 #endif 346 347 #if defined(CONFIG_ARM64_GCS) 348 /* 349 * arm64's Guarded Control Stack implements similar functionality and 350 * has similar constraints to shadow stacks. 351 */ 352 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 353 #endif 354 355 #ifndef VM_SHADOW_STACK 356 # define VM_SHADOW_STACK VM_NONE 357 #endif 358 359 #if defined(CONFIG_X86) 360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361 #elif defined(CONFIG_PPC64) 362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363 #elif defined(CONFIG_PARISC) 364 # define VM_GROWSUP VM_ARCH_1 365 #elif defined(CONFIG_SPARC64) 366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367 # define VM_ARCH_CLEAR VM_SPARC_ADI 368 #elif defined(CONFIG_ARM64) 369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370 # define VM_ARCH_CLEAR VM_ARM64_BTI 371 #elif !defined(CONFIG_MMU) 372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373 #endif 374 375 #if defined(CONFIG_ARM64_MTE) 376 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 378 #else 379 # define VM_MTE VM_NONE 380 # define VM_MTE_ALLOWED VM_NONE 381 #endif 382 383 #ifndef VM_GROWSUP 384 # define VM_GROWSUP VM_NONE 385 #endif 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388 # define VM_UFFD_MINOR_BIT 38 389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391 # define VM_UFFD_MINOR VM_NONE 392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394 /* 395 * This flag is used to connect VFIO to arch specific KVM code. It 396 * indicates that the memory under this VMA is safe for use with any 397 * non-cachable memory type inside KVM. Some VFIO devices, on some 398 * platforms, are thought to be unsafe and can cause machine crashes 399 * if KVM does not lock down the memory type. 400 */ 401 #ifdef CONFIG_64BIT 402 #define VM_ALLOW_ANY_UNCACHED_BIT 39 403 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 404 #else 405 #define VM_ALLOW_ANY_UNCACHED VM_NONE 406 #endif 407 408 #ifdef CONFIG_64BIT 409 #define VM_DROPPABLE_BIT 40 410 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 411 #elif defined(CONFIG_PPC32) 412 #define VM_DROPPABLE VM_ARCH_1 413 #else 414 #define VM_DROPPABLE VM_NONE 415 #endif 416 417 #ifdef CONFIG_64BIT 418 /* VM is sealed, in vm_flags */ 419 #define VM_SEALED _BITUL(63) 420 #endif 421 422 /* Bits set in the VMA until the stack is in its final location */ 423 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 424 425 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 426 427 /* Common data flag combinations */ 428 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 429 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 430 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 431 VM_MAYWRITE | VM_MAYEXEC) 432 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 433 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 434 435 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 436 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 437 #endif 438 439 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 440 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 441 #endif 442 443 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 444 445 #ifdef CONFIG_STACK_GROWSUP 446 #define VM_STACK VM_GROWSUP 447 #define VM_STACK_EARLY VM_GROWSDOWN 448 #else 449 #define VM_STACK VM_GROWSDOWN 450 #define VM_STACK_EARLY 0 451 #endif 452 453 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 454 455 /* VMA basic access permission flags */ 456 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 457 458 459 /* 460 * Special vmas that are non-mergable, non-mlock()able. 461 */ 462 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 463 464 /* This mask prevents VMA from being scanned with khugepaged */ 465 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 466 467 /* This mask defines which mm->def_flags a process can inherit its parent */ 468 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 469 470 /* This mask represents all the VMA flag bits used by mlock */ 471 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 472 473 /* Arch-specific flags to clear when updating VM flags on protection change */ 474 #ifndef VM_ARCH_CLEAR 475 # define VM_ARCH_CLEAR VM_NONE 476 #endif 477 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 478 479 /* 480 * mapping from the currently active vm_flags protection bits (the 481 * low four bits) to a page protection mask.. 482 */ 483 484 /* 485 * The default fault flags that should be used by most of the 486 * arch-specific page fault handlers. 487 */ 488 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 489 FAULT_FLAG_KILLABLE | \ 490 FAULT_FLAG_INTERRUPTIBLE) 491 492 /** 493 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 494 * @flags: Fault flags. 495 * 496 * This is mostly used for places where we want to try to avoid taking 497 * the mmap_lock for too long a time when waiting for another condition 498 * to change, in which case we can try to be polite to release the 499 * mmap_lock in the first round to avoid potential starvation of other 500 * processes that would also want the mmap_lock. 501 * 502 * Return: true if the page fault allows retry and this is the first 503 * attempt of the fault handling; false otherwise. 504 */ 505 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 506 { 507 return (flags & FAULT_FLAG_ALLOW_RETRY) && 508 (!(flags & FAULT_FLAG_TRIED)); 509 } 510 511 #define FAULT_FLAG_TRACE \ 512 { FAULT_FLAG_WRITE, "WRITE" }, \ 513 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 514 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 515 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 516 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 517 { FAULT_FLAG_TRIED, "TRIED" }, \ 518 { FAULT_FLAG_USER, "USER" }, \ 519 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 520 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 521 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 522 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 523 524 /* 525 * vm_fault is filled by the pagefault handler and passed to the vma's 526 * ->fault function. The vma's ->fault is responsible for returning a bitmask 527 * of VM_FAULT_xxx flags that give details about how the fault was handled. 528 * 529 * MM layer fills up gfp_mask for page allocations but fault handler might 530 * alter it if its implementation requires a different allocation context. 531 * 532 * pgoff should be used in favour of virtual_address, if possible. 533 */ 534 struct vm_fault { 535 const struct { 536 struct vm_area_struct *vma; /* Target VMA */ 537 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 538 pgoff_t pgoff; /* Logical page offset based on vma */ 539 unsigned long address; /* Faulting virtual address - masked */ 540 unsigned long real_address; /* Faulting virtual address - unmasked */ 541 }; 542 enum fault_flag flags; /* FAULT_FLAG_xxx flags 543 * XXX: should really be 'const' */ 544 pmd_t *pmd; /* Pointer to pmd entry matching 545 * the 'address' */ 546 pud_t *pud; /* Pointer to pud entry matching 547 * the 'address' 548 */ 549 union { 550 pte_t orig_pte; /* Value of PTE at the time of fault */ 551 pmd_t orig_pmd; /* Value of PMD at the time of fault, 552 * used by PMD fault only. 553 */ 554 }; 555 556 struct page *cow_page; /* Page handler may use for COW fault */ 557 struct page *page; /* ->fault handlers should return a 558 * page here, unless VM_FAULT_NOPAGE 559 * is set (which is also implied by 560 * VM_FAULT_ERROR). 561 */ 562 /* These three entries are valid only while holding ptl lock */ 563 pte_t *pte; /* Pointer to pte entry matching 564 * the 'address'. NULL if the page 565 * table hasn't been allocated. 566 */ 567 spinlock_t *ptl; /* Page table lock. 568 * Protects pte page table if 'pte' 569 * is not NULL, otherwise pmd. 570 */ 571 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 572 * vm_ops->map_pages() sets up a page 573 * table from atomic context. 574 * do_fault_around() pre-allocates 575 * page table to avoid allocation from 576 * atomic context. 577 */ 578 }; 579 580 /* 581 * These are the virtual MM functions - opening of an area, closing and 582 * unmapping it (needed to keep files on disk up-to-date etc), pointer 583 * to the functions called when a no-page or a wp-page exception occurs. 584 */ 585 struct vm_operations_struct { 586 void (*open)(struct vm_area_struct * area); 587 /** 588 * @close: Called when the VMA is being removed from the MM. 589 * Context: User context. May sleep. Caller holds mmap_lock. 590 */ 591 void (*close)(struct vm_area_struct * area); 592 /* Called any time before splitting to check if it's allowed */ 593 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 594 int (*mremap)(struct vm_area_struct *area); 595 /* 596 * Called by mprotect() to make driver-specific permission 597 * checks before mprotect() is finalised. The VMA must not 598 * be modified. Returns 0 if mprotect() can proceed. 599 */ 600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 601 unsigned long end, unsigned long newflags); 602 vm_fault_t (*fault)(struct vm_fault *vmf); 603 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 604 vm_fault_t (*map_pages)(struct vm_fault *vmf, 605 pgoff_t start_pgoff, pgoff_t end_pgoff); 606 unsigned long (*pagesize)(struct vm_area_struct * area); 607 608 /* notification that a previously read-only page is about to become 609 * writable, if an error is returned it will cause a SIGBUS */ 610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 611 612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 614 615 /* called by access_process_vm when get_user_pages() fails, typically 616 * for use by special VMAs. See also generic_access_phys() for a generic 617 * implementation useful for any iomem mapping. 618 */ 619 int (*access)(struct vm_area_struct *vma, unsigned long addr, 620 void *buf, int len, int write); 621 622 /* Called by the /proc/PID/maps code to ask the vma whether it 623 * has a special name. Returning non-NULL will also cause this 624 * vma to be dumped unconditionally. */ 625 const char *(*name)(struct vm_area_struct *vma); 626 627 #ifdef CONFIG_NUMA 628 /* 629 * set_policy() op must add a reference to any non-NULL @new mempolicy 630 * to hold the policy upon return. Caller should pass NULL @new to 631 * remove a policy and fall back to surrounding context--i.e. do not 632 * install a MPOL_DEFAULT policy, nor the task or system default 633 * mempolicy. 634 */ 635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 636 637 /* 638 * get_policy() op must add reference [mpol_get()] to any policy at 639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 640 * in mm/mempolicy.c will do this automatically. 641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 644 * must return NULL--i.e., do not "fallback" to task or system default 645 * policy. 646 */ 647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 648 unsigned long addr, pgoff_t *ilx); 649 #endif 650 /* 651 * Called by vm_normal_page() for special PTEs to find the 652 * page for @addr. This is useful if the default behavior 653 * (using pte_page()) would not find the correct page. 654 */ 655 struct page *(*find_special_page)(struct vm_area_struct *vma, 656 unsigned long addr); 657 }; 658 659 #ifdef CONFIG_NUMA_BALANCING 660 static inline void vma_numab_state_init(struct vm_area_struct *vma) 661 { 662 vma->numab_state = NULL; 663 } 664 static inline void vma_numab_state_free(struct vm_area_struct *vma) 665 { 666 kfree(vma->numab_state); 667 } 668 #else 669 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 670 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 671 #endif /* CONFIG_NUMA_BALANCING */ 672 673 #ifdef CONFIG_PER_VMA_LOCK 674 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 675 { 676 #ifdef CONFIG_DEBUG_LOCK_ALLOC 677 static struct lock_class_key lockdep_key; 678 679 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0); 680 #endif 681 if (reset_refcnt) 682 refcount_set(&vma->vm_refcnt, 0); 683 vma->vm_lock_seq = UINT_MAX; 684 } 685 686 static inline bool is_vma_writer_only(int refcnt) 687 { 688 /* 689 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma 690 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on 691 * a detached vma happens only in vma_mark_detached() and is a rare 692 * case, therefore most of the time there will be no unnecessary wakeup. 693 */ 694 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1; 695 } 696 697 static inline void vma_refcount_put(struct vm_area_struct *vma) 698 { 699 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ 700 struct mm_struct *mm = vma->vm_mm; 701 int oldcnt; 702 703 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 704 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) { 705 706 if (is_vma_writer_only(oldcnt - 1)) 707 rcuwait_wake_up(&mm->vma_writer_wait); 708 } 709 } 710 711 /* 712 * Try to read-lock a vma. The function is allowed to occasionally yield false 713 * locked result to avoid performance overhead, in which case we fall back to 714 * using mmap_lock. The function should never yield false unlocked result. 715 * False locked result is possible if mm_lock_seq overflows or if vma gets 716 * reused and attached to a different mm before we lock it. 717 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got 718 * detached. 719 */ 720 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 721 struct vm_area_struct *vma) 722 { 723 int oldcnt; 724 725 /* 726 * Check before locking. A race might cause false locked result. 727 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 728 * ACQUIRE semantics, because this is just a lockless check whose result 729 * we don't rely on for anything - the mm_lock_seq read against which we 730 * need ordering is below. 731 */ 732 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) 733 return NULL; 734 735 /* 736 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() 737 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. 738 * Acquire fence is required here to avoid reordering against later 739 * vm_lock_seq check and checks inside lock_vma_under_rcu(). 740 */ 741 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 742 VMA_REF_LIMIT))) { 743 /* return EAGAIN if vma got detached from under us */ 744 return oldcnt ? NULL : ERR_PTR(-EAGAIN); 745 } 746 747 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 748 /* 749 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. 750 * False unlocked result is impossible because we modify and check 751 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq 752 * modification invalidates all existing locks. 753 * 754 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 755 * racing with vma_end_write_all(), we only start reading from the VMA 756 * after it has been unlocked. 757 * This pairs with RELEASE semantics in vma_end_write_all(). 758 */ 759 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { 760 vma_refcount_put(vma); 761 return NULL; 762 } 763 764 return vma; 765 } 766 767 /* 768 * Use only while holding mmap read lock which guarantees that locking will not 769 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 770 * not be used in such cases because it might fail due to mm_lock_seq overflow. 771 * This functionality is used to obtain vma read lock and drop the mmap read lock. 772 */ 773 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass) 774 { 775 int oldcnt; 776 777 mmap_assert_locked(vma->vm_mm); 778 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 779 VMA_REF_LIMIT))) 780 return false; 781 782 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 783 return true; 784 } 785 786 /* 787 * Use only while holding mmap read lock which guarantees that locking will not 788 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 789 * not be used in such cases because it might fail due to mm_lock_seq overflow. 790 * This functionality is used to obtain vma read lock and drop the mmap read lock. 791 */ 792 static inline bool vma_start_read_locked(struct vm_area_struct *vma) 793 { 794 return vma_start_read_locked_nested(vma, 0); 795 } 796 797 static inline void vma_end_read(struct vm_area_struct *vma) 798 { 799 vma_refcount_put(vma); 800 } 801 802 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 803 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 804 { 805 mmap_assert_write_locked(vma->vm_mm); 806 807 /* 808 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 809 * mm->mm_lock_seq can't be concurrently modified. 810 */ 811 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 812 return (vma->vm_lock_seq == *mm_lock_seq); 813 } 814 815 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq); 816 817 /* 818 * Begin writing to a VMA. 819 * Exclude concurrent readers under the per-VMA lock until the currently 820 * write-locked mmap_lock is dropped or downgraded. 821 */ 822 static inline void vma_start_write(struct vm_area_struct *vma) 823 { 824 unsigned int mm_lock_seq; 825 826 if (__is_vma_write_locked(vma, &mm_lock_seq)) 827 return; 828 829 __vma_start_write(vma, mm_lock_seq); 830 } 831 832 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 833 { 834 unsigned int mm_lock_seq; 835 836 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 837 } 838 839 static inline void vma_assert_locked(struct vm_area_struct *vma) 840 { 841 unsigned int mm_lock_seq; 842 843 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 && 844 !__is_vma_write_locked(vma, &mm_lock_seq), vma); 845 } 846 847 /* 848 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 849 * assertions should be made either under mmap_write_lock or when the object 850 * has been isolated under mmap_write_lock, ensuring no competing writers. 851 */ 852 static inline void vma_assert_attached(struct vm_area_struct *vma) 853 { 854 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 855 } 856 857 static inline void vma_assert_detached(struct vm_area_struct *vma) 858 { 859 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 860 } 861 862 static inline void vma_mark_attached(struct vm_area_struct *vma) 863 { 864 vma_assert_write_locked(vma); 865 vma_assert_detached(vma); 866 refcount_set_release(&vma->vm_refcnt, 1); 867 } 868 869 void vma_mark_detached(struct vm_area_struct *vma); 870 871 static inline void release_fault_lock(struct vm_fault *vmf) 872 { 873 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 874 vma_end_read(vmf->vma); 875 else 876 mmap_read_unlock(vmf->vma->vm_mm); 877 } 878 879 static inline void assert_fault_locked(struct vm_fault *vmf) 880 { 881 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 882 vma_assert_locked(vmf->vma); 883 else 884 mmap_assert_locked(vmf->vma->vm_mm); 885 } 886 887 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 888 unsigned long address); 889 890 #else /* CONFIG_PER_VMA_LOCK */ 891 892 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {} 893 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 894 struct vm_area_struct *vma) 895 { return NULL; } 896 static inline void vma_end_read(struct vm_area_struct *vma) {} 897 static inline void vma_start_write(struct vm_area_struct *vma) {} 898 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 899 { mmap_assert_write_locked(vma->vm_mm); } 900 static inline void vma_assert_attached(struct vm_area_struct *vma) {} 901 static inline void vma_assert_detached(struct vm_area_struct *vma) {} 902 static inline void vma_mark_attached(struct vm_area_struct *vma) {} 903 static inline void vma_mark_detached(struct vm_area_struct *vma) {} 904 905 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 906 unsigned long address) 907 { 908 return NULL; 909 } 910 911 static inline void vma_assert_locked(struct vm_area_struct *vma) 912 { 913 mmap_assert_locked(vma->vm_mm); 914 } 915 916 static inline void release_fault_lock(struct vm_fault *vmf) 917 { 918 mmap_read_unlock(vmf->vma->vm_mm); 919 } 920 921 static inline void assert_fault_locked(struct vm_fault *vmf) 922 { 923 mmap_assert_locked(vmf->vma->vm_mm); 924 } 925 926 #endif /* CONFIG_PER_VMA_LOCK */ 927 928 extern const struct vm_operations_struct vma_dummy_vm_ops; 929 930 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 931 { 932 memset(vma, 0, sizeof(*vma)); 933 vma->vm_mm = mm; 934 vma->vm_ops = &vma_dummy_vm_ops; 935 INIT_LIST_HEAD(&vma->anon_vma_chain); 936 vma_lock_init(vma, false); 937 } 938 939 /* Use when VMA is not part of the VMA tree and needs no locking */ 940 static inline void vm_flags_init(struct vm_area_struct *vma, 941 vm_flags_t flags) 942 { 943 ACCESS_PRIVATE(vma, __vm_flags) = flags; 944 } 945 946 /* 947 * Use when VMA is part of the VMA tree and modifications need coordination 948 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 949 * it should be locked explicitly beforehand. 950 */ 951 static inline void vm_flags_reset(struct vm_area_struct *vma, 952 vm_flags_t flags) 953 { 954 vma_assert_write_locked(vma); 955 vm_flags_init(vma, flags); 956 } 957 958 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 959 vm_flags_t flags) 960 { 961 vma_assert_write_locked(vma); 962 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 963 } 964 965 static inline void vm_flags_set(struct vm_area_struct *vma, 966 vm_flags_t flags) 967 { 968 vma_start_write(vma); 969 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 970 } 971 972 static inline void vm_flags_clear(struct vm_area_struct *vma, 973 vm_flags_t flags) 974 { 975 vma_start_write(vma); 976 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 977 } 978 979 /* 980 * Use only if VMA is not part of the VMA tree or has no other users and 981 * therefore needs no locking. 982 */ 983 static inline void __vm_flags_mod(struct vm_area_struct *vma, 984 vm_flags_t set, vm_flags_t clear) 985 { 986 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 987 } 988 989 /* 990 * Use only when the order of set/clear operations is unimportant, otherwise 991 * use vm_flags_{set|clear} explicitly. 992 */ 993 static inline void vm_flags_mod(struct vm_area_struct *vma, 994 vm_flags_t set, vm_flags_t clear) 995 { 996 vma_start_write(vma); 997 __vm_flags_mod(vma, set, clear); 998 } 999 1000 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1001 { 1002 vma->vm_ops = NULL; 1003 } 1004 1005 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1006 { 1007 return !vma->vm_ops; 1008 } 1009 1010 /* 1011 * Indicate if the VMA is a heap for the given task; for 1012 * /proc/PID/maps that is the heap of the main task. 1013 */ 1014 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1015 { 1016 return vma->vm_start < vma->vm_mm->brk && 1017 vma->vm_end > vma->vm_mm->start_brk; 1018 } 1019 1020 /* 1021 * Indicate if the VMA is a stack for the given task; for 1022 * /proc/PID/maps that is the stack of the main task. 1023 */ 1024 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1025 { 1026 /* 1027 * We make no effort to guess what a given thread considers to be 1028 * its "stack". It's not even well-defined for programs written 1029 * languages like Go. 1030 */ 1031 return vma->vm_start <= vma->vm_mm->start_stack && 1032 vma->vm_end >= vma->vm_mm->start_stack; 1033 } 1034 1035 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 1036 { 1037 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1038 1039 if (!maybe_stack) 1040 return false; 1041 1042 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1043 VM_STACK_INCOMPLETE_SETUP) 1044 return true; 1045 1046 return false; 1047 } 1048 1049 static inline bool vma_is_foreign(struct vm_area_struct *vma) 1050 { 1051 if (!current->mm) 1052 return true; 1053 1054 if (current->mm != vma->vm_mm) 1055 return true; 1056 1057 return false; 1058 } 1059 1060 static inline bool vma_is_accessible(struct vm_area_struct *vma) 1061 { 1062 return vma->vm_flags & VM_ACCESS_FLAGS; 1063 } 1064 1065 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1066 { 1067 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1068 (VM_SHARED | VM_MAYWRITE); 1069 } 1070 1071 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1072 { 1073 return is_shared_maywrite(vma->vm_flags); 1074 } 1075 1076 static inline 1077 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1078 { 1079 return mas_find(&vmi->mas, max - 1); 1080 } 1081 1082 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1083 { 1084 /* 1085 * Uses mas_find() to get the first VMA when the iterator starts. 1086 * Calling mas_next() could skip the first entry. 1087 */ 1088 return mas_find(&vmi->mas, ULONG_MAX); 1089 } 1090 1091 static inline 1092 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1093 { 1094 return mas_next_range(&vmi->mas, ULONG_MAX); 1095 } 1096 1097 1098 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1099 { 1100 return mas_prev(&vmi->mas, 0); 1101 } 1102 1103 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1104 unsigned long start, unsigned long end, gfp_t gfp) 1105 { 1106 __mas_set_range(&vmi->mas, start, end - 1); 1107 mas_store_gfp(&vmi->mas, NULL, gfp); 1108 if (unlikely(mas_is_err(&vmi->mas))) 1109 return -ENOMEM; 1110 1111 return 0; 1112 } 1113 1114 /* Free any unused preallocations */ 1115 static inline void vma_iter_free(struct vma_iterator *vmi) 1116 { 1117 mas_destroy(&vmi->mas); 1118 } 1119 1120 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1121 struct vm_area_struct *vma) 1122 { 1123 vmi->mas.index = vma->vm_start; 1124 vmi->mas.last = vma->vm_end - 1; 1125 mas_store(&vmi->mas, vma); 1126 if (unlikely(mas_is_err(&vmi->mas))) 1127 return -ENOMEM; 1128 1129 vma_mark_attached(vma); 1130 return 0; 1131 } 1132 1133 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1134 { 1135 mas_pause(&vmi->mas); 1136 } 1137 1138 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1139 { 1140 mas_set(&vmi->mas, addr); 1141 } 1142 1143 #define for_each_vma(__vmi, __vma) \ 1144 while (((__vma) = vma_next(&(__vmi))) != NULL) 1145 1146 /* The MM code likes to work with exclusive end addresses */ 1147 #define for_each_vma_range(__vmi, __vma, __end) \ 1148 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1149 1150 #ifdef CONFIG_SHMEM 1151 /* 1152 * The vma_is_shmem is not inline because it is used only by slow 1153 * paths in userfault. 1154 */ 1155 bool vma_is_shmem(struct vm_area_struct *vma); 1156 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1157 #else 1158 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1159 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1160 #endif 1161 1162 int vma_is_stack_for_current(struct vm_area_struct *vma); 1163 1164 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1165 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1166 1167 struct mmu_gather; 1168 struct inode; 1169 1170 extern void prep_compound_page(struct page *page, unsigned int order); 1171 1172 static inline unsigned int folio_large_order(const struct folio *folio) 1173 { 1174 return folio->_flags_1 & 0xff; 1175 } 1176 1177 #ifdef NR_PAGES_IN_LARGE_FOLIO 1178 static inline long folio_large_nr_pages(const struct folio *folio) 1179 { 1180 return folio->_nr_pages; 1181 } 1182 #else 1183 static inline long folio_large_nr_pages(const struct folio *folio) 1184 { 1185 return 1L << folio_large_order(folio); 1186 } 1187 #endif 1188 1189 /* 1190 * compound_order() can be called without holding a reference, which means 1191 * that niceties like page_folio() don't work. These callers should be 1192 * prepared to handle wild return values. For example, PG_head may be 1193 * set before the order is initialised, or this may be a tail page. 1194 * See compaction.c for some good examples. 1195 */ 1196 static inline unsigned int compound_order(struct page *page) 1197 { 1198 struct folio *folio = (struct folio *)page; 1199 1200 if (!test_bit(PG_head, &folio->flags)) 1201 return 0; 1202 return folio_large_order(folio); 1203 } 1204 1205 /** 1206 * folio_order - The allocation order of a folio. 1207 * @folio: The folio. 1208 * 1209 * A folio is composed of 2^order pages. See get_order() for the definition 1210 * of order. 1211 * 1212 * Return: The order of the folio. 1213 */ 1214 static inline unsigned int folio_order(const struct folio *folio) 1215 { 1216 if (!folio_test_large(folio)) 1217 return 0; 1218 return folio_large_order(folio); 1219 } 1220 1221 #include <linux/huge_mm.h> 1222 1223 /* 1224 * Methods to modify the page usage count. 1225 * 1226 * What counts for a page usage: 1227 * - cache mapping (page->mapping) 1228 * - private data (page->private) 1229 * - page mapped in a task's page tables, each mapping 1230 * is counted separately 1231 * 1232 * Also, many kernel routines increase the page count before a critical 1233 * routine so they can be sure the page doesn't go away from under them. 1234 */ 1235 1236 /* 1237 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1238 */ 1239 static inline int put_page_testzero(struct page *page) 1240 { 1241 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1242 return page_ref_dec_and_test(page); 1243 } 1244 1245 static inline int folio_put_testzero(struct folio *folio) 1246 { 1247 return put_page_testzero(&folio->page); 1248 } 1249 1250 /* 1251 * Try to grab a ref unless the page has a refcount of zero, return false if 1252 * that is the case. 1253 * This can be called when MMU is off so it must not access 1254 * any of the virtual mappings. 1255 */ 1256 static inline bool get_page_unless_zero(struct page *page) 1257 { 1258 return page_ref_add_unless(page, 1, 0); 1259 } 1260 1261 static inline struct folio *folio_get_nontail_page(struct page *page) 1262 { 1263 if (unlikely(!get_page_unless_zero(page))) 1264 return NULL; 1265 return (struct folio *)page; 1266 } 1267 1268 extern int page_is_ram(unsigned long pfn); 1269 1270 enum { 1271 REGION_INTERSECTS, 1272 REGION_DISJOINT, 1273 REGION_MIXED, 1274 }; 1275 1276 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1277 unsigned long desc); 1278 1279 /* Support for virtually mapped pages */ 1280 struct page *vmalloc_to_page(const void *addr); 1281 unsigned long vmalloc_to_pfn(const void *addr); 1282 1283 /* 1284 * Determine if an address is within the vmalloc range 1285 * 1286 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1287 * is no special casing required. 1288 */ 1289 #ifdef CONFIG_MMU 1290 extern bool is_vmalloc_addr(const void *x); 1291 extern int is_vmalloc_or_module_addr(const void *x); 1292 #else 1293 static inline bool is_vmalloc_addr(const void *x) 1294 { 1295 return false; 1296 } 1297 static inline int is_vmalloc_or_module_addr(const void *x) 1298 { 1299 return 0; 1300 } 1301 #endif 1302 1303 /* 1304 * How many times the entire folio is mapped as a single unit (eg by a 1305 * PMD or PUD entry). This is probably not what you want, except for 1306 * debugging purposes or implementation of other core folio_*() primitives. 1307 */ 1308 static inline int folio_entire_mapcount(const struct folio *folio) 1309 { 1310 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1311 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1312 return 0; 1313 return atomic_read(&folio->_entire_mapcount) + 1; 1314 } 1315 1316 static inline int folio_large_mapcount(const struct folio *folio) 1317 { 1318 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1319 return atomic_read(&folio->_large_mapcount) + 1; 1320 } 1321 1322 /** 1323 * folio_mapcount() - Number of mappings of this folio. 1324 * @folio: The folio. 1325 * 1326 * The folio mapcount corresponds to the number of present user page table 1327 * entries that reference any part of a folio. Each such present user page 1328 * table entry must be paired with exactly on folio reference. 1329 * 1330 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1331 * exactly once. 1332 * 1333 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1334 * references the entire folio counts exactly once, even when such special 1335 * page table entries are comprised of multiple ordinary page table entries. 1336 * 1337 * Will report 0 for pages which cannot be mapped into userspace, such as 1338 * slab, page tables and similar. 1339 * 1340 * Return: The number of times this folio is mapped. 1341 */ 1342 static inline int folio_mapcount(const struct folio *folio) 1343 { 1344 int mapcount; 1345 1346 if (likely(!folio_test_large(folio))) { 1347 mapcount = atomic_read(&folio->_mapcount) + 1; 1348 if (page_mapcount_is_type(mapcount)) 1349 mapcount = 0; 1350 return mapcount; 1351 } 1352 return folio_large_mapcount(folio); 1353 } 1354 1355 /** 1356 * folio_mapped - Is this folio mapped into userspace? 1357 * @folio: The folio. 1358 * 1359 * Return: True if any page in this folio is referenced by user page tables. 1360 */ 1361 static inline bool folio_mapped(const struct folio *folio) 1362 { 1363 return folio_mapcount(folio) >= 1; 1364 } 1365 1366 /* 1367 * Return true if this page is mapped into pagetables. 1368 * For compound page it returns true if any sub-page of compound page is mapped, 1369 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1370 */ 1371 static inline bool page_mapped(const struct page *page) 1372 { 1373 return folio_mapped(page_folio(page)); 1374 } 1375 1376 static inline struct page *virt_to_head_page(const void *x) 1377 { 1378 struct page *page = virt_to_page(x); 1379 1380 return compound_head(page); 1381 } 1382 1383 static inline struct folio *virt_to_folio(const void *x) 1384 { 1385 struct page *page = virt_to_page(x); 1386 1387 return page_folio(page); 1388 } 1389 1390 void __folio_put(struct folio *folio); 1391 1392 void split_page(struct page *page, unsigned int order); 1393 void folio_copy(struct folio *dst, struct folio *src); 1394 int folio_mc_copy(struct folio *dst, struct folio *src); 1395 1396 unsigned long nr_free_buffer_pages(void); 1397 1398 /* Returns the number of bytes in this potentially compound page. */ 1399 static inline unsigned long page_size(struct page *page) 1400 { 1401 return PAGE_SIZE << compound_order(page); 1402 } 1403 1404 /* Returns the number of bits needed for the number of bytes in a page */ 1405 static inline unsigned int page_shift(struct page *page) 1406 { 1407 return PAGE_SHIFT + compound_order(page); 1408 } 1409 1410 /** 1411 * thp_order - Order of a transparent huge page. 1412 * @page: Head page of a transparent huge page. 1413 */ 1414 static inline unsigned int thp_order(struct page *page) 1415 { 1416 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1417 return compound_order(page); 1418 } 1419 1420 /** 1421 * thp_size - Size of a transparent huge page. 1422 * @page: Head page of a transparent huge page. 1423 * 1424 * Return: Number of bytes in this page. 1425 */ 1426 static inline unsigned long thp_size(struct page *page) 1427 { 1428 return PAGE_SIZE << thp_order(page); 1429 } 1430 1431 #ifdef CONFIG_MMU 1432 /* 1433 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1434 * servicing faults for write access. In the normal case, do always want 1435 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1436 * that do not have writing enabled, when used by access_process_vm. 1437 */ 1438 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1439 { 1440 if (likely(vma->vm_flags & VM_WRITE)) 1441 pte = pte_mkwrite(pte, vma); 1442 return pte; 1443 } 1444 1445 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1446 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1447 struct page *page, unsigned int nr, unsigned long addr); 1448 1449 vm_fault_t finish_fault(struct vm_fault *vmf); 1450 #endif 1451 1452 /* 1453 * Multiple processes may "see" the same page. E.g. for untouched 1454 * mappings of /dev/null, all processes see the same page full of 1455 * zeroes, and text pages of executables and shared libraries have 1456 * only one copy in memory, at most, normally. 1457 * 1458 * For the non-reserved pages, page_count(page) denotes a reference count. 1459 * page_count() == 0 means the page is free. page->lru is then used for 1460 * freelist management in the buddy allocator. 1461 * page_count() > 0 means the page has been allocated. 1462 * 1463 * Pages are allocated by the slab allocator in order to provide memory 1464 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1465 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1466 * unless a particular usage is carefully commented. (the responsibility of 1467 * freeing the kmalloc memory is the caller's, of course). 1468 * 1469 * A page may be used by anyone else who does a __get_free_page(). 1470 * In this case, page_count still tracks the references, and should only 1471 * be used through the normal accessor functions. The top bits of page->flags 1472 * and page->virtual store page management information, but all other fields 1473 * are unused and could be used privately, carefully. The management of this 1474 * page is the responsibility of the one who allocated it, and those who have 1475 * subsequently been given references to it. 1476 * 1477 * The other pages (we may call them "pagecache pages") are completely 1478 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1479 * The following discussion applies only to them. 1480 * 1481 * A pagecache page contains an opaque `private' member, which belongs to the 1482 * page's address_space. Usually, this is the address of a circular list of 1483 * the page's disk buffers. PG_private must be set to tell the VM to call 1484 * into the filesystem to release these pages. 1485 * 1486 * A page may belong to an inode's memory mapping. In this case, page->mapping 1487 * is the pointer to the inode, and page->index is the file offset of the page, 1488 * in units of PAGE_SIZE. 1489 * 1490 * If pagecache pages are not associated with an inode, they are said to be 1491 * anonymous pages. These may become associated with the swapcache, and in that 1492 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1493 * 1494 * In either case (swapcache or inode backed), the pagecache itself holds one 1495 * reference to the page. Setting PG_private should also increment the 1496 * refcount. The each user mapping also has a reference to the page. 1497 * 1498 * The pagecache pages are stored in a per-mapping radix tree, which is 1499 * rooted at mapping->i_pages, and indexed by offset. 1500 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1501 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1502 * 1503 * All pagecache pages may be subject to I/O: 1504 * - inode pages may need to be read from disk, 1505 * - inode pages which have been modified and are MAP_SHARED may need 1506 * to be written back to the inode on disk, 1507 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1508 * modified may need to be swapped out to swap space and (later) to be read 1509 * back into memory. 1510 */ 1511 1512 /* 127: arbitrary random number, small enough to assemble well */ 1513 #define folio_ref_zero_or_close_to_overflow(folio) \ 1514 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1515 1516 /** 1517 * folio_get - Increment the reference count on a folio. 1518 * @folio: The folio. 1519 * 1520 * Context: May be called in any context, as long as you know that 1521 * you have a refcount on the folio. If you do not already have one, 1522 * folio_try_get() may be the right interface for you to use. 1523 */ 1524 static inline void folio_get(struct folio *folio) 1525 { 1526 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1527 folio_ref_inc(folio); 1528 } 1529 1530 static inline void get_page(struct page *page) 1531 { 1532 struct folio *folio = page_folio(page); 1533 if (WARN_ON_ONCE(folio_test_slab(folio))) 1534 return; 1535 folio_get(folio); 1536 } 1537 1538 static inline __must_check bool try_get_page(struct page *page) 1539 { 1540 page = compound_head(page); 1541 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1542 return false; 1543 page_ref_inc(page); 1544 return true; 1545 } 1546 1547 /** 1548 * folio_put - Decrement the reference count on a folio. 1549 * @folio: The folio. 1550 * 1551 * If the folio's reference count reaches zero, the memory will be 1552 * released back to the page allocator and may be used by another 1553 * allocation immediately. Do not access the memory or the struct folio 1554 * after calling folio_put() unless you can be sure that it wasn't the 1555 * last reference. 1556 * 1557 * Context: May be called in process or interrupt context, but not in NMI 1558 * context. May be called while holding a spinlock. 1559 */ 1560 static inline void folio_put(struct folio *folio) 1561 { 1562 if (folio_put_testzero(folio)) 1563 __folio_put(folio); 1564 } 1565 1566 /** 1567 * folio_put_refs - Reduce the reference count on a folio. 1568 * @folio: The folio. 1569 * @refs: The amount to subtract from the folio's reference count. 1570 * 1571 * If the folio's reference count reaches zero, the memory will be 1572 * released back to the page allocator and may be used by another 1573 * allocation immediately. Do not access the memory or the struct folio 1574 * after calling folio_put_refs() unless you can be sure that these weren't 1575 * the last references. 1576 * 1577 * Context: May be called in process or interrupt context, but not in NMI 1578 * context. May be called while holding a spinlock. 1579 */ 1580 static inline void folio_put_refs(struct folio *folio, int refs) 1581 { 1582 if (folio_ref_sub_and_test(folio, refs)) 1583 __folio_put(folio); 1584 } 1585 1586 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1587 1588 /* 1589 * union release_pages_arg - an array of pages or folios 1590 * 1591 * release_pages() releases a simple array of multiple pages, and 1592 * accepts various different forms of said page array: either 1593 * a regular old boring array of pages, an array of folios, or 1594 * an array of encoded page pointers. 1595 * 1596 * The transparent union syntax for this kind of "any of these 1597 * argument types" is all kinds of ugly, so look away. 1598 */ 1599 typedef union { 1600 struct page **pages; 1601 struct folio **folios; 1602 struct encoded_page **encoded_pages; 1603 } release_pages_arg __attribute__ ((__transparent_union__)); 1604 1605 void release_pages(release_pages_arg, int nr); 1606 1607 /** 1608 * folios_put - Decrement the reference count on an array of folios. 1609 * @folios: The folios. 1610 * 1611 * Like folio_put(), but for a batch of folios. This is more efficient 1612 * than writing the loop yourself as it will optimise the locks which need 1613 * to be taken if the folios are freed. The folios batch is returned 1614 * empty and ready to be reused for another batch; there is no need to 1615 * reinitialise it. 1616 * 1617 * Context: May be called in process or interrupt context, but not in NMI 1618 * context. May be called while holding a spinlock. 1619 */ 1620 static inline void folios_put(struct folio_batch *folios) 1621 { 1622 folios_put_refs(folios, NULL); 1623 } 1624 1625 static inline void put_page(struct page *page) 1626 { 1627 struct folio *folio = page_folio(page); 1628 1629 if (folio_test_slab(folio)) 1630 return; 1631 1632 folio_put(folio); 1633 } 1634 1635 /* 1636 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1637 * the page's refcount so that two separate items are tracked: the original page 1638 * reference count, and also a new count of how many pin_user_pages() calls were 1639 * made against the page. ("gup-pinned" is another term for the latter). 1640 * 1641 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1642 * distinct from normal pages. As such, the unpin_user_page() call (and its 1643 * variants) must be used in order to release gup-pinned pages. 1644 * 1645 * Choice of value: 1646 * 1647 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1648 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1649 * simpler, due to the fact that adding an even power of two to the page 1650 * refcount has the effect of using only the upper N bits, for the code that 1651 * counts up using the bias value. This means that the lower bits are left for 1652 * the exclusive use of the original code that increments and decrements by one 1653 * (or at least, by much smaller values than the bias value). 1654 * 1655 * Of course, once the lower bits overflow into the upper bits (and this is 1656 * OK, because subtraction recovers the original values), then visual inspection 1657 * no longer suffices to directly view the separate counts. However, for normal 1658 * applications that don't have huge page reference counts, this won't be an 1659 * issue. 1660 * 1661 * Locking: the lockless algorithm described in folio_try_get_rcu() 1662 * provides safe operation for get_user_pages(), folio_mkclean() and 1663 * other calls that race to set up page table entries. 1664 */ 1665 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1666 1667 void unpin_user_page(struct page *page); 1668 void unpin_folio(struct folio *folio); 1669 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1670 bool make_dirty); 1671 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1672 bool make_dirty); 1673 void unpin_user_pages(struct page **pages, unsigned long npages); 1674 void unpin_user_folio(struct folio *folio, unsigned long npages); 1675 void unpin_folios(struct folio **folios, unsigned long nfolios); 1676 1677 static inline bool is_cow_mapping(vm_flags_t flags) 1678 { 1679 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1680 } 1681 1682 #ifndef CONFIG_MMU 1683 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1684 { 1685 /* 1686 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1687 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1688 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1689 * underlying memory if ptrace is active, so this is only possible if 1690 * ptrace does not apply. Note that there is no mprotect() to upgrade 1691 * write permissions later. 1692 */ 1693 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1694 } 1695 #endif 1696 1697 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1698 #define SECTION_IN_PAGE_FLAGS 1699 #endif 1700 1701 /* 1702 * The identification function is mainly used by the buddy allocator for 1703 * determining if two pages could be buddies. We are not really identifying 1704 * the zone since we could be using the section number id if we do not have 1705 * node id available in page flags. 1706 * We only guarantee that it will return the same value for two combinable 1707 * pages in a zone. 1708 */ 1709 static inline int page_zone_id(struct page *page) 1710 { 1711 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1712 } 1713 1714 #ifdef NODE_NOT_IN_PAGE_FLAGS 1715 int page_to_nid(const struct page *page); 1716 #else 1717 static inline int page_to_nid(const struct page *page) 1718 { 1719 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1720 } 1721 #endif 1722 1723 static inline int folio_nid(const struct folio *folio) 1724 { 1725 return page_to_nid(&folio->page); 1726 } 1727 1728 #ifdef CONFIG_NUMA_BALANCING 1729 /* page access time bits needs to hold at least 4 seconds */ 1730 #define PAGE_ACCESS_TIME_MIN_BITS 12 1731 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1732 #define PAGE_ACCESS_TIME_BUCKETS \ 1733 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1734 #else 1735 #define PAGE_ACCESS_TIME_BUCKETS 0 1736 #endif 1737 1738 #define PAGE_ACCESS_TIME_MASK \ 1739 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1740 1741 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1742 { 1743 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1744 } 1745 1746 static inline int cpupid_to_pid(int cpupid) 1747 { 1748 return cpupid & LAST__PID_MASK; 1749 } 1750 1751 static inline int cpupid_to_cpu(int cpupid) 1752 { 1753 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1754 } 1755 1756 static inline int cpupid_to_nid(int cpupid) 1757 { 1758 return cpu_to_node(cpupid_to_cpu(cpupid)); 1759 } 1760 1761 static inline bool cpupid_pid_unset(int cpupid) 1762 { 1763 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1764 } 1765 1766 static inline bool cpupid_cpu_unset(int cpupid) 1767 { 1768 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1769 } 1770 1771 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1772 { 1773 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1774 } 1775 1776 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1777 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1778 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1779 { 1780 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1781 } 1782 1783 static inline int folio_last_cpupid(struct folio *folio) 1784 { 1785 return folio->_last_cpupid; 1786 } 1787 static inline void page_cpupid_reset_last(struct page *page) 1788 { 1789 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1790 } 1791 #else 1792 static inline int folio_last_cpupid(struct folio *folio) 1793 { 1794 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1795 } 1796 1797 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1798 1799 static inline void page_cpupid_reset_last(struct page *page) 1800 { 1801 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1802 } 1803 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1804 1805 static inline int folio_xchg_access_time(struct folio *folio, int time) 1806 { 1807 int last_time; 1808 1809 last_time = folio_xchg_last_cpupid(folio, 1810 time >> PAGE_ACCESS_TIME_BUCKETS); 1811 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1812 } 1813 1814 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1815 { 1816 unsigned int pid_bit; 1817 1818 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1819 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1820 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1821 } 1822 } 1823 1824 bool folio_use_access_time(struct folio *folio); 1825 #else /* !CONFIG_NUMA_BALANCING */ 1826 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1827 { 1828 return folio_nid(folio); /* XXX */ 1829 } 1830 1831 static inline int folio_xchg_access_time(struct folio *folio, int time) 1832 { 1833 return 0; 1834 } 1835 1836 static inline int folio_last_cpupid(struct folio *folio) 1837 { 1838 return folio_nid(folio); /* XXX */ 1839 } 1840 1841 static inline int cpupid_to_nid(int cpupid) 1842 { 1843 return -1; 1844 } 1845 1846 static inline int cpupid_to_pid(int cpupid) 1847 { 1848 return -1; 1849 } 1850 1851 static inline int cpupid_to_cpu(int cpupid) 1852 { 1853 return -1; 1854 } 1855 1856 static inline int cpu_pid_to_cpupid(int nid, int pid) 1857 { 1858 return -1; 1859 } 1860 1861 static inline bool cpupid_pid_unset(int cpupid) 1862 { 1863 return true; 1864 } 1865 1866 static inline void page_cpupid_reset_last(struct page *page) 1867 { 1868 } 1869 1870 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1871 { 1872 return false; 1873 } 1874 1875 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1876 { 1877 } 1878 static inline bool folio_use_access_time(struct folio *folio) 1879 { 1880 return false; 1881 } 1882 #endif /* CONFIG_NUMA_BALANCING */ 1883 1884 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1885 1886 /* 1887 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1888 * setting tags for all pages to native kernel tag value 0xff, as the default 1889 * value 0x00 maps to 0xff. 1890 */ 1891 1892 static inline u8 page_kasan_tag(const struct page *page) 1893 { 1894 u8 tag = KASAN_TAG_KERNEL; 1895 1896 if (kasan_enabled()) { 1897 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1898 tag ^= 0xff; 1899 } 1900 1901 return tag; 1902 } 1903 1904 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1905 { 1906 unsigned long old_flags, flags; 1907 1908 if (!kasan_enabled()) 1909 return; 1910 1911 tag ^= 0xff; 1912 old_flags = READ_ONCE(page->flags); 1913 do { 1914 flags = old_flags; 1915 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1916 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1917 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1918 } 1919 1920 static inline void page_kasan_tag_reset(struct page *page) 1921 { 1922 if (kasan_enabled()) 1923 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1924 } 1925 1926 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1927 1928 static inline u8 page_kasan_tag(const struct page *page) 1929 { 1930 return 0xff; 1931 } 1932 1933 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1934 static inline void page_kasan_tag_reset(struct page *page) { } 1935 1936 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1937 1938 static inline struct zone *page_zone(const struct page *page) 1939 { 1940 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1941 } 1942 1943 static inline pg_data_t *page_pgdat(const struct page *page) 1944 { 1945 return NODE_DATA(page_to_nid(page)); 1946 } 1947 1948 static inline struct zone *folio_zone(const struct folio *folio) 1949 { 1950 return page_zone(&folio->page); 1951 } 1952 1953 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1954 { 1955 return page_pgdat(&folio->page); 1956 } 1957 1958 #ifdef SECTION_IN_PAGE_FLAGS 1959 static inline void set_page_section(struct page *page, unsigned long section) 1960 { 1961 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1962 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1963 } 1964 1965 static inline unsigned long page_to_section(const struct page *page) 1966 { 1967 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1968 } 1969 #endif 1970 1971 /** 1972 * folio_pfn - Return the Page Frame Number of a folio. 1973 * @folio: The folio. 1974 * 1975 * A folio may contain multiple pages. The pages have consecutive 1976 * Page Frame Numbers. 1977 * 1978 * Return: The Page Frame Number of the first page in the folio. 1979 */ 1980 static inline unsigned long folio_pfn(const struct folio *folio) 1981 { 1982 return page_to_pfn(&folio->page); 1983 } 1984 1985 static inline struct folio *pfn_folio(unsigned long pfn) 1986 { 1987 return page_folio(pfn_to_page(pfn)); 1988 } 1989 1990 static inline bool folio_has_pincount(const struct folio *folio) 1991 { 1992 if (IS_ENABLED(CONFIG_64BIT)) 1993 return folio_test_large(folio); 1994 return folio_order(folio) > 1; 1995 } 1996 1997 /** 1998 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1999 * @folio: The folio. 2000 * 2001 * This function checks if a folio has been pinned via a call to 2002 * a function in the pin_user_pages() family. 2003 * 2004 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2005 * because it means "definitely not pinned for DMA", but true means "probably 2006 * pinned for DMA, but possibly a false positive due to having at least 2007 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2008 * 2009 * False positives are OK, because: a) it's unlikely for a folio to 2010 * get that many refcounts, and b) all the callers of this routine are 2011 * expected to be able to deal gracefully with a false positive. 2012 * 2013 * For most large folios, the result will be exactly correct. That's because 2014 * we have more tracking data available: the _pincount field is used 2015 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2016 * 2017 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2018 * 2019 * Return: True, if it is likely that the folio has been "dma-pinned". 2020 * False, if the folio is definitely not dma-pinned. 2021 */ 2022 static inline bool folio_maybe_dma_pinned(struct folio *folio) 2023 { 2024 if (folio_has_pincount(folio)) 2025 return atomic_read(&folio->_pincount) > 0; 2026 2027 /* 2028 * folio_ref_count() is signed. If that refcount overflows, then 2029 * folio_ref_count() returns a negative value, and callers will avoid 2030 * further incrementing the refcount. 2031 * 2032 * Here, for that overflow case, use the sign bit to count a little 2033 * bit higher via unsigned math, and thus still get an accurate result. 2034 */ 2035 return ((unsigned int)folio_ref_count(folio)) >= 2036 GUP_PIN_COUNTING_BIAS; 2037 } 2038 2039 /* 2040 * This should most likely only be called during fork() to see whether we 2041 * should break the cow immediately for an anon page on the src mm. 2042 * 2043 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2044 */ 2045 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2046 struct folio *folio) 2047 { 2048 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2049 2050 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 2051 return false; 2052 2053 return folio_maybe_dma_pinned(folio); 2054 } 2055 2056 /** 2057 * is_zero_page - Query if a page is a zero page 2058 * @page: The page to query 2059 * 2060 * This returns true if @page is one of the permanent zero pages. 2061 */ 2062 static inline bool is_zero_page(const struct page *page) 2063 { 2064 return is_zero_pfn(page_to_pfn(page)); 2065 } 2066 2067 /** 2068 * is_zero_folio - Query if a folio is a zero page 2069 * @folio: The folio to query 2070 * 2071 * This returns true if @folio is one of the permanent zero pages. 2072 */ 2073 static inline bool is_zero_folio(const struct folio *folio) 2074 { 2075 return is_zero_page(&folio->page); 2076 } 2077 2078 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2079 #ifdef CONFIG_MIGRATION 2080 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2081 { 2082 #ifdef CONFIG_CMA 2083 int mt = folio_migratetype(folio); 2084 2085 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2086 return false; 2087 #endif 2088 /* The zero page can be "pinned" but gets special handling. */ 2089 if (is_zero_folio(folio)) 2090 return true; 2091 2092 /* Coherent device memory must always allow eviction. */ 2093 if (folio_is_device_coherent(folio)) 2094 return false; 2095 2096 /* 2097 * Filesystems can only tolerate transient delays to truncate and 2098 * hole-punch operations 2099 */ 2100 if (folio_is_fsdax(folio)) 2101 return false; 2102 2103 /* Otherwise, non-movable zone folios can be pinned. */ 2104 return !folio_is_zone_movable(folio); 2105 2106 } 2107 #else 2108 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2109 { 2110 return true; 2111 } 2112 #endif 2113 2114 static inline void set_page_zone(struct page *page, enum zone_type zone) 2115 { 2116 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2117 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2118 } 2119 2120 static inline void set_page_node(struct page *page, unsigned long node) 2121 { 2122 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2123 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2124 } 2125 2126 static inline void set_page_links(struct page *page, enum zone_type zone, 2127 unsigned long node, unsigned long pfn) 2128 { 2129 set_page_zone(page, zone); 2130 set_page_node(page, node); 2131 #ifdef SECTION_IN_PAGE_FLAGS 2132 set_page_section(page, pfn_to_section_nr(pfn)); 2133 #endif 2134 } 2135 2136 /** 2137 * folio_nr_pages - The number of pages in the folio. 2138 * @folio: The folio. 2139 * 2140 * Return: A positive power of two. 2141 */ 2142 static inline long folio_nr_pages(const struct folio *folio) 2143 { 2144 if (!folio_test_large(folio)) 2145 return 1; 2146 return folio_large_nr_pages(folio); 2147 } 2148 2149 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2150 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2151 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2152 #else 2153 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2154 #endif 2155 2156 /* 2157 * compound_nr() returns the number of pages in this potentially compound 2158 * page. compound_nr() can be called on a tail page, and is defined to 2159 * return 1 in that case. 2160 */ 2161 static inline long compound_nr(struct page *page) 2162 { 2163 struct folio *folio = (struct folio *)page; 2164 2165 if (!test_bit(PG_head, &folio->flags)) 2166 return 1; 2167 return folio_large_nr_pages(folio); 2168 } 2169 2170 /** 2171 * thp_nr_pages - The number of regular pages in this huge page. 2172 * @page: The head page of a huge page. 2173 */ 2174 static inline long thp_nr_pages(struct page *page) 2175 { 2176 return folio_nr_pages((struct folio *)page); 2177 } 2178 2179 /** 2180 * folio_next - Move to the next physical folio. 2181 * @folio: The folio we're currently operating on. 2182 * 2183 * If you have physically contiguous memory which may span more than 2184 * one folio (eg a &struct bio_vec), use this function to move from one 2185 * folio to the next. Do not use it if the memory is only virtually 2186 * contiguous as the folios are almost certainly not adjacent to each 2187 * other. This is the folio equivalent to writing ``page++``. 2188 * 2189 * Context: We assume that the folios are refcounted and/or locked at a 2190 * higher level and do not adjust the reference counts. 2191 * Return: The next struct folio. 2192 */ 2193 static inline struct folio *folio_next(struct folio *folio) 2194 { 2195 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2196 } 2197 2198 /** 2199 * folio_shift - The size of the memory described by this folio. 2200 * @folio: The folio. 2201 * 2202 * A folio represents a number of bytes which is a power-of-two in size. 2203 * This function tells you which power-of-two the folio is. See also 2204 * folio_size() and folio_order(). 2205 * 2206 * Context: The caller should have a reference on the folio to prevent 2207 * it from being split. It is not necessary for the folio to be locked. 2208 * Return: The base-2 logarithm of the size of this folio. 2209 */ 2210 static inline unsigned int folio_shift(const struct folio *folio) 2211 { 2212 return PAGE_SHIFT + folio_order(folio); 2213 } 2214 2215 /** 2216 * folio_size - The number of bytes in a folio. 2217 * @folio: The folio. 2218 * 2219 * Context: The caller should have a reference on the folio to prevent 2220 * it from being split. It is not necessary for the folio to be locked. 2221 * Return: The number of bytes in this folio. 2222 */ 2223 static inline size_t folio_size(const struct folio *folio) 2224 { 2225 return PAGE_SIZE << folio_order(folio); 2226 } 2227 2228 /** 2229 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2230 * tables of more than one MM 2231 * @folio: The folio. 2232 * 2233 * This function checks if the folio maybe currently mapped into more than one 2234 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2235 * MM ("mapped exclusively"). 2236 * 2237 * For KSM folios, this function also returns "mapped shared" when a folio is 2238 * mapped multiple times into the same MM, because the individual page mappings 2239 * are independent. 2240 * 2241 * For small anonymous folios and anonymous hugetlb folios, the return 2242 * value will be exactly correct: non-KSM folios can only be mapped at most once 2243 * into an MM, and they cannot be partially mapped. KSM folios are 2244 * considered shared even if mapped multiple times into the same MM. 2245 * 2246 * For other folios, the result can be fuzzy: 2247 * #. For partially-mappable large folios (THP), the return value can wrongly 2248 * indicate "mapped shared" (false positive) if a folio was mapped by 2249 * more than two MMs at one point in time. 2250 * #. For pagecache folios (including hugetlb), the return value can wrongly 2251 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2252 * cover the same file range. 2253 * 2254 * Further, this function only considers current page table mappings that 2255 * are tracked using the folio mapcount(s). 2256 * 2257 * This function does not consider: 2258 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2259 * pagecache, temporary unmapping for migration). 2260 * #. If the folio is mapped differently (VM_PFNMAP). 2261 * #. If hugetlb page table sharing applies. Callers might want to check 2262 * hugetlb_pmd_shared(). 2263 * 2264 * Return: Whether the folio is estimated to be mapped into more than one MM. 2265 */ 2266 static inline bool folio_maybe_mapped_shared(struct folio *folio) 2267 { 2268 int mapcount = folio_mapcount(folio); 2269 2270 /* Only partially-mappable folios require more care. */ 2271 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2272 return mapcount > 1; 2273 2274 /* 2275 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2276 * simply assume "mapped shared", nobody should really care 2277 * about this for arbitrary kernel allocations. 2278 */ 2279 if (!IS_ENABLED(CONFIG_MM_ID)) 2280 return true; 2281 2282 /* 2283 * A single mapping implies "mapped exclusively", even if the 2284 * folio flag says something different: it's easier to handle this 2285 * case here instead of on the RMAP hot path. 2286 */ 2287 if (mapcount <= 1) 2288 return false; 2289 return folio_test_large_maybe_mapped_shared(folio); 2290 } 2291 2292 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2293 static inline int arch_make_folio_accessible(struct folio *folio) 2294 { 2295 return 0; 2296 } 2297 #endif 2298 2299 /* 2300 * Some inline functions in vmstat.h depend on page_zone() 2301 */ 2302 #include <linux/vmstat.h> 2303 2304 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2305 #define HASHED_PAGE_VIRTUAL 2306 #endif 2307 2308 #if defined(WANT_PAGE_VIRTUAL) 2309 static inline void *page_address(const struct page *page) 2310 { 2311 return page->virtual; 2312 } 2313 static inline void set_page_address(struct page *page, void *address) 2314 { 2315 page->virtual = address; 2316 } 2317 #define page_address_init() do { } while(0) 2318 #endif 2319 2320 #if defined(HASHED_PAGE_VIRTUAL) 2321 void *page_address(const struct page *page); 2322 void set_page_address(struct page *page, void *virtual); 2323 void page_address_init(void); 2324 #endif 2325 2326 static __always_inline void *lowmem_page_address(const struct page *page) 2327 { 2328 return page_to_virt(page); 2329 } 2330 2331 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2332 #define page_address(page) lowmem_page_address(page) 2333 #define set_page_address(page, address) do { } while(0) 2334 #define page_address_init() do { } while(0) 2335 #endif 2336 2337 static inline void *folio_address(const struct folio *folio) 2338 { 2339 return page_address(&folio->page); 2340 } 2341 2342 /* 2343 * Return true only if the page has been allocated with 2344 * ALLOC_NO_WATERMARKS and the low watermark was not 2345 * met implying that the system is under some pressure. 2346 */ 2347 static inline bool page_is_pfmemalloc(const struct page *page) 2348 { 2349 /* 2350 * lru.next has bit 1 set if the page is allocated from the 2351 * pfmemalloc reserves. Callers may simply overwrite it if 2352 * they do not need to preserve that information. 2353 */ 2354 return (uintptr_t)page->lru.next & BIT(1); 2355 } 2356 2357 /* 2358 * Return true only if the folio has been allocated with 2359 * ALLOC_NO_WATERMARKS and the low watermark was not 2360 * met implying that the system is under some pressure. 2361 */ 2362 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2363 { 2364 /* 2365 * lru.next has bit 1 set if the page is allocated from the 2366 * pfmemalloc reserves. Callers may simply overwrite it if 2367 * they do not need to preserve that information. 2368 */ 2369 return (uintptr_t)folio->lru.next & BIT(1); 2370 } 2371 2372 /* 2373 * Only to be called by the page allocator on a freshly allocated 2374 * page. 2375 */ 2376 static inline void set_page_pfmemalloc(struct page *page) 2377 { 2378 page->lru.next = (void *)BIT(1); 2379 } 2380 2381 static inline void clear_page_pfmemalloc(struct page *page) 2382 { 2383 page->lru.next = NULL; 2384 } 2385 2386 /* 2387 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2388 */ 2389 extern void pagefault_out_of_memory(void); 2390 2391 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2392 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2393 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2394 2395 /* 2396 * Parameter block passed down to zap_pte_range in exceptional cases. 2397 */ 2398 struct zap_details { 2399 struct folio *single_folio; /* Locked folio to be unmapped */ 2400 bool even_cows; /* Zap COWed private pages too? */ 2401 bool reclaim_pt; /* Need reclaim page tables? */ 2402 zap_flags_t zap_flags; /* Extra flags for zapping */ 2403 }; 2404 2405 /* 2406 * Whether to drop the pte markers, for example, the uffd-wp information for 2407 * file-backed memory. This should only be specified when we will completely 2408 * drop the page in the mm, either by truncation or unmapping of the vma. By 2409 * default, the flag is not set. 2410 */ 2411 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2412 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2413 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2414 2415 #ifdef CONFIG_SCHED_MM_CID 2416 void sched_mm_cid_before_execve(struct task_struct *t); 2417 void sched_mm_cid_after_execve(struct task_struct *t); 2418 void sched_mm_cid_fork(struct task_struct *t); 2419 void sched_mm_cid_exit_signals(struct task_struct *t); 2420 static inline int task_mm_cid(struct task_struct *t) 2421 { 2422 return t->mm_cid; 2423 } 2424 #else 2425 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2426 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2427 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2428 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2429 static inline int task_mm_cid(struct task_struct *t) 2430 { 2431 /* 2432 * Use the processor id as a fall-back when the mm cid feature is 2433 * disabled. This provides functional per-cpu data structure accesses 2434 * in user-space, althrough it won't provide the memory usage benefits. 2435 */ 2436 return raw_smp_processor_id(); 2437 } 2438 #endif 2439 2440 #ifdef CONFIG_MMU 2441 extern bool can_do_mlock(void); 2442 #else 2443 static inline bool can_do_mlock(void) { return false; } 2444 #endif 2445 extern int user_shm_lock(size_t, struct ucounts *); 2446 extern void user_shm_unlock(size_t, struct ucounts *); 2447 2448 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2449 pte_t pte); 2450 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2451 pte_t pte); 2452 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2453 unsigned long addr, pmd_t pmd); 2454 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2455 pmd_t pmd); 2456 2457 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2458 unsigned long size); 2459 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2460 unsigned long size, struct zap_details *details); 2461 static inline void zap_vma_pages(struct vm_area_struct *vma) 2462 { 2463 zap_page_range_single(vma, vma->vm_start, 2464 vma->vm_end - vma->vm_start, NULL); 2465 } 2466 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2467 struct vm_area_struct *start_vma, unsigned long start, 2468 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2469 2470 struct mmu_notifier_range; 2471 2472 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2473 unsigned long end, unsigned long floor, unsigned long ceiling); 2474 int 2475 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2476 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2477 void *buf, int len, int write); 2478 2479 struct follow_pfnmap_args { 2480 /** 2481 * Inputs: 2482 * @vma: Pointer to @vm_area_struct struct 2483 * @address: the virtual address to walk 2484 */ 2485 struct vm_area_struct *vma; 2486 unsigned long address; 2487 /** 2488 * Internals: 2489 * 2490 * The caller shouldn't touch any of these. 2491 */ 2492 spinlock_t *lock; 2493 pte_t *ptep; 2494 /** 2495 * Outputs: 2496 * 2497 * @pfn: the PFN of the address 2498 * @pgprot: the pgprot_t of the mapping 2499 * @writable: whether the mapping is writable 2500 * @special: whether the mapping is a special mapping (real PFN maps) 2501 */ 2502 unsigned long pfn; 2503 pgprot_t pgprot; 2504 bool writable; 2505 bool special; 2506 }; 2507 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2508 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2509 2510 extern void truncate_pagecache(struct inode *inode, loff_t new); 2511 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2512 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2513 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2514 int generic_error_remove_folio(struct address_space *mapping, 2515 struct folio *folio); 2516 2517 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2518 unsigned long address, struct pt_regs *regs); 2519 2520 #ifdef CONFIG_MMU 2521 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2522 unsigned long address, unsigned int flags, 2523 struct pt_regs *regs); 2524 extern int fixup_user_fault(struct mm_struct *mm, 2525 unsigned long address, unsigned int fault_flags, 2526 bool *unlocked); 2527 void unmap_mapping_pages(struct address_space *mapping, 2528 pgoff_t start, pgoff_t nr, bool even_cows); 2529 void unmap_mapping_range(struct address_space *mapping, 2530 loff_t const holebegin, loff_t const holelen, int even_cows); 2531 #else 2532 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2533 unsigned long address, unsigned int flags, 2534 struct pt_regs *regs) 2535 { 2536 /* should never happen if there's no MMU */ 2537 BUG(); 2538 return VM_FAULT_SIGBUS; 2539 } 2540 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2541 unsigned int fault_flags, bool *unlocked) 2542 { 2543 /* should never happen if there's no MMU */ 2544 BUG(); 2545 return -EFAULT; 2546 } 2547 static inline void unmap_mapping_pages(struct address_space *mapping, 2548 pgoff_t start, pgoff_t nr, bool even_cows) { } 2549 static inline void unmap_mapping_range(struct address_space *mapping, 2550 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2551 #endif 2552 2553 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2554 loff_t const holebegin, loff_t const holelen) 2555 { 2556 unmap_mapping_range(mapping, holebegin, holelen, 0); 2557 } 2558 2559 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2560 unsigned long addr); 2561 2562 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2563 void *buf, int len, unsigned int gup_flags); 2564 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2565 void *buf, int len, unsigned int gup_flags); 2566 2567 #ifdef CONFIG_BPF_SYSCALL 2568 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2569 void *buf, int len, unsigned int gup_flags); 2570 #endif 2571 2572 long get_user_pages_remote(struct mm_struct *mm, 2573 unsigned long start, unsigned long nr_pages, 2574 unsigned int gup_flags, struct page **pages, 2575 int *locked); 2576 long pin_user_pages_remote(struct mm_struct *mm, 2577 unsigned long start, unsigned long nr_pages, 2578 unsigned int gup_flags, struct page **pages, 2579 int *locked); 2580 2581 /* 2582 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2583 */ 2584 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2585 unsigned long addr, 2586 int gup_flags, 2587 struct vm_area_struct **vmap) 2588 { 2589 struct page *page; 2590 struct vm_area_struct *vma; 2591 int got; 2592 2593 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2594 return ERR_PTR(-EINVAL); 2595 2596 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2597 2598 if (got < 0) 2599 return ERR_PTR(got); 2600 2601 vma = vma_lookup(mm, addr); 2602 if (WARN_ON_ONCE(!vma)) { 2603 put_page(page); 2604 return ERR_PTR(-EINVAL); 2605 } 2606 2607 *vmap = vma; 2608 return page; 2609 } 2610 2611 long get_user_pages(unsigned long start, unsigned long nr_pages, 2612 unsigned int gup_flags, struct page **pages); 2613 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2614 unsigned int gup_flags, struct page **pages); 2615 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2616 struct page **pages, unsigned int gup_flags); 2617 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2618 struct page **pages, unsigned int gup_flags); 2619 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2620 struct folio **folios, unsigned int max_folios, 2621 pgoff_t *offset); 2622 int folio_add_pins(struct folio *folio, unsigned int pins); 2623 2624 int get_user_pages_fast(unsigned long start, int nr_pages, 2625 unsigned int gup_flags, struct page **pages); 2626 int pin_user_pages_fast(unsigned long start, int nr_pages, 2627 unsigned int gup_flags, struct page **pages); 2628 void folio_add_pin(struct folio *folio); 2629 2630 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2631 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2632 struct task_struct *task, bool bypass_rlim); 2633 2634 struct kvec; 2635 struct page *get_dump_page(unsigned long addr, int *locked); 2636 2637 bool folio_mark_dirty(struct folio *folio); 2638 bool folio_mark_dirty_lock(struct folio *folio); 2639 bool set_page_dirty(struct page *page); 2640 int set_page_dirty_lock(struct page *page); 2641 2642 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2643 2644 /* 2645 * Flags used by change_protection(). For now we make it a bitmap so 2646 * that we can pass in multiple flags just like parameters. However 2647 * for now all the callers are only use one of the flags at the same 2648 * time. 2649 */ 2650 /* 2651 * Whether we should manually check if we can map individual PTEs writable, 2652 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2653 * PTEs automatically in a writable mapping. 2654 */ 2655 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2656 /* Whether this protection change is for NUMA hints */ 2657 #define MM_CP_PROT_NUMA (1UL << 1) 2658 /* Whether this change is for write protecting */ 2659 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2660 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2661 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2662 MM_CP_UFFD_WP_RESOLVE) 2663 2664 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2665 pte_t pte); 2666 extern long change_protection(struct mmu_gather *tlb, 2667 struct vm_area_struct *vma, unsigned long start, 2668 unsigned long end, unsigned long cp_flags); 2669 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2670 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2671 unsigned long start, unsigned long end, unsigned long newflags); 2672 2673 /* 2674 * doesn't attempt to fault and will return short. 2675 */ 2676 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2677 unsigned int gup_flags, struct page **pages); 2678 2679 static inline bool get_user_page_fast_only(unsigned long addr, 2680 unsigned int gup_flags, struct page **pagep) 2681 { 2682 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2683 } 2684 /* 2685 * per-process(per-mm_struct) statistics. 2686 */ 2687 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2688 { 2689 return percpu_counter_read_positive(&mm->rss_stat[member]); 2690 } 2691 2692 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2693 2694 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2695 { 2696 percpu_counter_add(&mm->rss_stat[member], value); 2697 2698 mm_trace_rss_stat(mm, member); 2699 } 2700 2701 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2702 { 2703 percpu_counter_inc(&mm->rss_stat[member]); 2704 2705 mm_trace_rss_stat(mm, member); 2706 } 2707 2708 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2709 { 2710 percpu_counter_dec(&mm->rss_stat[member]); 2711 2712 mm_trace_rss_stat(mm, member); 2713 } 2714 2715 /* Optimized variant when folio is already known not to be anon */ 2716 static inline int mm_counter_file(struct folio *folio) 2717 { 2718 if (folio_test_swapbacked(folio)) 2719 return MM_SHMEMPAGES; 2720 return MM_FILEPAGES; 2721 } 2722 2723 static inline int mm_counter(struct folio *folio) 2724 { 2725 if (folio_test_anon(folio)) 2726 return MM_ANONPAGES; 2727 return mm_counter_file(folio); 2728 } 2729 2730 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2731 { 2732 return get_mm_counter(mm, MM_FILEPAGES) + 2733 get_mm_counter(mm, MM_ANONPAGES) + 2734 get_mm_counter(mm, MM_SHMEMPAGES); 2735 } 2736 2737 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2738 { 2739 return max(mm->hiwater_rss, get_mm_rss(mm)); 2740 } 2741 2742 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2743 { 2744 return max(mm->hiwater_vm, mm->total_vm); 2745 } 2746 2747 static inline void update_hiwater_rss(struct mm_struct *mm) 2748 { 2749 unsigned long _rss = get_mm_rss(mm); 2750 2751 if ((mm)->hiwater_rss < _rss) 2752 (mm)->hiwater_rss = _rss; 2753 } 2754 2755 static inline void update_hiwater_vm(struct mm_struct *mm) 2756 { 2757 if (mm->hiwater_vm < mm->total_vm) 2758 mm->hiwater_vm = mm->total_vm; 2759 } 2760 2761 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2762 { 2763 mm->hiwater_rss = get_mm_rss(mm); 2764 } 2765 2766 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2767 struct mm_struct *mm) 2768 { 2769 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2770 2771 if (*maxrss < hiwater_rss) 2772 *maxrss = hiwater_rss; 2773 } 2774 2775 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2776 static inline int pte_special(pte_t pte) 2777 { 2778 return 0; 2779 } 2780 2781 static inline pte_t pte_mkspecial(pte_t pte) 2782 { 2783 return pte; 2784 } 2785 #endif 2786 2787 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2788 static inline bool pmd_special(pmd_t pmd) 2789 { 2790 return false; 2791 } 2792 2793 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2794 { 2795 return pmd; 2796 } 2797 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2798 2799 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2800 static inline bool pud_special(pud_t pud) 2801 { 2802 return false; 2803 } 2804 2805 static inline pud_t pud_mkspecial(pud_t pud) 2806 { 2807 return pud; 2808 } 2809 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2810 2811 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2812 static inline int pte_devmap(pte_t pte) 2813 { 2814 return 0; 2815 } 2816 #endif 2817 2818 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2819 spinlock_t **ptl); 2820 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2821 spinlock_t **ptl) 2822 { 2823 pte_t *ptep; 2824 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2825 return ptep; 2826 } 2827 2828 #ifdef __PAGETABLE_P4D_FOLDED 2829 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2830 unsigned long address) 2831 { 2832 return 0; 2833 } 2834 #else 2835 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2836 #endif 2837 2838 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2839 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2840 unsigned long address) 2841 { 2842 return 0; 2843 } 2844 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2845 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2846 2847 #else 2848 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2849 2850 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2851 { 2852 if (mm_pud_folded(mm)) 2853 return; 2854 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2855 } 2856 2857 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2858 { 2859 if (mm_pud_folded(mm)) 2860 return; 2861 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2862 } 2863 #endif 2864 2865 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2866 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2867 unsigned long address) 2868 { 2869 return 0; 2870 } 2871 2872 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2873 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2874 2875 #else 2876 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2877 2878 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2879 { 2880 if (mm_pmd_folded(mm)) 2881 return; 2882 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2883 } 2884 2885 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2886 { 2887 if (mm_pmd_folded(mm)) 2888 return; 2889 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2890 } 2891 #endif 2892 2893 #ifdef CONFIG_MMU 2894 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2895 { 2896 atomic_long_set(&mm->pgtables_bytes, 0); 2897 } 2898 2899 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2900 { 2901 return atomic_long_read(&mm->pgtables_bytes); 2902 } 2903 2904 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2905 { 2906 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2907 } 2908 2909 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2910 { 2911 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2912 } 2913 #else 2914 2915 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2916 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2917 { 2918 return 0; 2919 } 2920 2921 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2922 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2923 #endif 2924 2925 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2926 int __pte_alloc_kernel(pmd_t *pmd); 2927 2928 #if defined(CONFIG_MMU) 2929 2930 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2931 unsigned long address) 2932 { 2933 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2934 NULL : p4d_offset(pgd, address); 2935 } 2936 2937 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2938 unsigned long address) 2939 { 2940 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2941 NULL : pud_offset(p4d, address); 2942 } 2943 2944 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2945 { 2946 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2947 NULL: pmd_offset(pud, address); 2948 } 2949 #endif /* CONFIG_MMU */ 2950 2951 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2952 { 2953 return page_ptdesc(virt_to_page(x)); 2954 } 2955 2956 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2957 { 2958 return page_to_virt(ptdesc_page(pt)); 2959 } 2960 2961 static inline void *ptdesc_address(const struct ptdesc *pt) 2962 { 2963 return folio_address(ptdesc_folio(pt)); 2964 } 2965 2966 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2967 { 2968 return folio_test_reserved(ptdesc_folio(pt)); 2969 } 2970 2971 /** 2972 * pagetable_alloc - Allocate pagetables 2973 * @gfp: GFP flags 2974 * @order: desired pagetable order 2975 * 2976 * pagetable_alloc allocates memory for page tables as well as a page table 2977 * descriptor to describe that memory. 2978 * 2979 * Return: The ptdesc describing the allocated page tables. 2980 */ 2981 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2982 { 2983 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2984 2985 return page_ptdesc(page); 2986 } 2987 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2988 2989 /** 2990 * pagetable_free - Free pagetables 2991 * @pt: The page table descriptor 2992 * 2993 * pagetable_free frees the memory of all page tables described by a page 2994 * table descriptor and the memory for the descriptor itself. 2995 */ 2996 static inline void pagetable_free(struct ptdesc *pt) 2997 { 2998 struct page *page = ptdesc_page(pt); 2999 3000 __free_pages(page, compound_order(page)); 3001 } 3002 3003 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3004 #if ALLOC_SPLIT_PTLOCKS 3005 void __init ptlock_cache_init(void); 3006 bool ptlock_alloc(struct ptdesc *ptdesc); 3007 void ptlock_free(struct ptdesc *ptdesc); 3008 3009 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3010 { 3011 return ptdesc->ptl; 3012 } 3013 #else /* ALLOC_SPLIT_PTLOCKS */ 3014 static inline void ptlock_cache_init(void) 3015 { 3016 } 3017 3018 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3019 { 3020 return true; 3021 } 3022 3023 static inline void ptlock_free(struct ptdesc *ptdesc) 3024 { 3025 } 3026 3027 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3028 { 3029 return &ptdesc->ptl; 3030 } 3031 #endif /* ALLOC_SPLIT_PTLOCKS */ 3032 3033 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3034 { 3035 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3036 } 3037 3038 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3039 { 3040 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3041 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3042 return ptlock_ptr(virt_to_ptdesc(pte)); 3043 } 3044 3045 static inline bool ptlock_init(struct ptdesc *ptdesc) 3046 { 3047 /* 3048 * prep_new_page() initialize page->private (and therefore page->ptl) 3049 * with 0. Make sure nobody took it in use in between. 3050 * 3051 * It can happen if arch try to use slab for page table allocation: 3052 * slab code uses page->slab_cache, which share storage with page->ptl. 3053 */ 3054 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3055 if (!ptlock_alloc(ptdesc)) 3056 return false; 3057 spin_lock_init(ptlock_ptr(ptdesc)); 3058 return true; 3059 } 3060 3061 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3062 /* 3063 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3064 */ 3065 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3066 { 3067 return &mm->page_table_lock; 3068 } 3069 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3070 { 3071 return &mm->page_table_lock; 3072 } 3073 static inline void ptlock_cache_init(void) {} 3074 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3075 static inline void ptlock_free(struct ptdesc *ptdesc) {} 3076 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3077 3078 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3079 { 3080 struct folio *folio = ptdesc_folio(ptdesc); 3081 3082 __folio_set_pgtable(folio); 3083 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3084 } 3085 3086 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3087 { 3088 struct folio *folio = ptdesc_folio(ptdesc); 3089 3090 ptlock_free(ptdesc); 3091 __folio_clear_pgtable(folio); 3092 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3093 } 3094 3095 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3096 { 3097 pagetable_dtor(ptdesc); 3098 pagetable_free(ptdesc); 3099 } 3100 3101 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3102 { 3103 if (!ptlock_init(ptdesc)) 3104 return false; 3105 __pagetable_ctor(ptdesc); 3106 return true; 3107 } 3108 3109 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3110 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3111 pmd_t *pmdvalp) 3112 { 3113 pte_t *pte; 3114 3115 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3116 return pte; 3117 } 3118 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3119 { 3120 return __pte_offset_map(pmd, addr, NULL); 3121 } 3122 3123 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3124 unsigned long addr, spinlock_t **ptlp); 3125 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3126 unsigned long addr, spinlock_t **ptlp) 3127 { 3128 pte_t *pte; 3129 3130 __cond_lock(RCU, __cond_lock(*ptlp, 3131 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3132 return pte; 3133 } 3134 3135 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3136 unsigned long addr, spinlock_t **ptlp); 3137 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3138 unsigned long addr, pmd_t *pmdvalp, 3139 spinlock_t **ptlp); 3140 3141 #define pte_unmap_unlock(pte, ptl) do { \ 3142 spin_unlock(ptl); \ 3143 pte_unmap(pte); \ 3144 } while (0) 3145 3146 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3147 3148 #define pte_alloc_map(mm, pmd, address) \ 3149 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3150 3151 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3152 (pte_alloc(mm, pmd) ? \ 3153 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3154 3155 #define pte_alloc_kernel(pmd, address) \ 3156 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3157 NULL: pte_offset_kernel(pmd, address)) 3158 3159 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3160 3161 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3162 { 3163 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3164 return virt_to_page((void *)((unsigned long) pmd & mask)); 3165 } 3166 3167 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3168 { 3169 return page_ptdesc(pmd_pgtable_page(pmd)); 3170 } 3171 3172 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3173 { 3174 return ptlock_ptr(pmd_ptdesc(pmd)); 3175 } 3176 3177 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3178 { 3179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3180 ptdesc->pmd_huge_pte = NULL; 3181 #endif 3182 return ptlock_init(ptdesc); 3183 } 3184 3185 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3186 3187 #else 3188 3189 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3190 { 3191 return &mm->page_table_lock; 3192 } 3193 3194 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3195 3196 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3197 3198 #endif 3199 3200 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3201 { 3202 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3203 spin_lock(ptl); 3204 return ptl; 3205 } 3206 3207 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3208 { 3209 if (!pmd_ptlock_init(ptdesc)) 3210 return false; 3211 ptdesc_pmd_pts_init(ptdesc); 3212 __pagetable_ctor(ptdesc); 3213 return true; 3214 } 3215 3216 /* 3217 * No scalability reason to split PUD locks yet, but follow the same pattern 3218 * as the PMD locks to make it easier if we decide to. The VM should not be 3219 * considered ready to switch to split PUD locks yet; there may be places 3220 * which need to be converted from page_table_lock. 3221 */ 3222 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3223 { 3224 return &mm->page_table_lock; 3225 } 3226 3227 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3228 { 3229 spinlock_t *ptl = pud_lockptr(mm, pud); 3230 3231 spin_lock(ptl); 3232 return ptl; 3233 } 3234 3235 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3236 { 3237 __pagetable_ctor(ptdesc); 3238 } 3239 3240 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3241 { 3242 __pagetable_ctor(ptdesc); 3243 } 3244 3245 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3246 { 3247 __pagetable_ctor(ptdesc); 3248 } 3249 3250 extern void __init pagecache_init(void); 3251 extern void free_initmem(void); 3252 3253 /* 3254 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3255 * into the buddy system. The freed pages will be poisoned with pattern 3256 * "poison" if it's within range [0, UCHAR_MAX]. 3257 * Return pages freed into the buddy system. 3258 */ 3259 extern unsigned long free_reserved_area(void *start, void *end, 3260 int poison, const char *s); 3261 3262 extern void adjust_managed_page_count(struct page *page, long count); 3263 3264 extern void reserve_bootmem_region(phys_addr_t start, 3265 phys_addr_t end, int nid); 3266 3267 /* Free the reserved page into the buddy system, so it gets managed. */ 3268 void free_reserved_page(struct page *page); 3269 3270 static inline void mark_page_reserved(struct page *page) 3271 { 3272 SetPageReserved(page); 3273 adjust_managed_page_count(page, -1); 3274 } 3275 3276 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3277 { 3278 free_reserved_page(ptdesc_page(pt)); 3279 } 3280 3281 /* 3282 * Default method to free all the __init memory into the buddy system. 3283 * The freed pages will be poisoned with pattern "poison" if it's within 3284 * range [0, UCHAR_MAX]. 3285 * Return pages freed into the buddy system. 3286 */ 3287 static inline unsigned long free_initmem_default(int poison) 3288 { 3289 extern char __init_begin[], __init_end[]; 3290 3291 return free_reserved_area(&__init_begin, &__init_end, 3292 poison, "unused kernel image (initmem)"); 3293 } 3294 3295 static inline unsigned long get_num_physpages(void) 3296 { 3297 int nid; 3298 unsigned long phys_pages = 0; 3299 3300 for_each_online_node(nid) 3301 phys_pages += node_present_pages(nid); 3302 3303 return phys_pages; 3304 } 3305 3306 /* 3307 * Using memblock node mappings, an architecture may initialise its 3308 * zones, allocate the backing mem_map and account for memory holes in an 3309 * architecture independent manner. 3310 * 3311 * An architecture is expected to register range of page frames backed by 3312 * physical memory with memblock_add[_node]() before calling 3313 * free_area_init() passing in the PFN each zone ends at. At a basic 3314 * usage, an architecture is expected to do something like 3315 * 3316 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3317 * max_highmem_pfn}; 3318 * for_each_valid_physical_page_range() 3319 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3320 * free_area_init(max_zone_pfns); 3321 */ 3322 void free_area_init(unsigned long *max_zone_pfn); 3323 unsigned long node_map_pfn_alignment(void); 3324 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3325 unsigned long end_pfn); 3326 extern void get_pfn_range_for_nid(unsigned int nid, 3327 unsigned long *start_pfn, unsigned long *end_pfn); 3328 3329 #ifndef CONFIG_NUMA 3330 static inline int early_pfn_to_nid(unsigned long pfn) 3331 { 3332 return 0; 3333 } 3334 #else 3335 /* please see mm/page_alloc.c */ 3336 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3337 #endif 3338 3339 extern void mem_init(void); 3340 extern void __init mmap_init(void); 3341 3342 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3343 static inline void show_mem(void) 3344 { 3345 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3346 } 3347 extern long si_mem_available(void); 3348 extern void si_meminfo(struct sysinfo * val); 3349 extern void si_meminfo_node(struct sysinfo *val, int nid); 3350 3351 extern __printf(3, 4) 3352 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3353 3354 extern void setup_per_cpu_pageset(void); 3355 3356 /* nommu.c */ 3357 extern atomic_long_t mmap_pages_allocated; 3358 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3359 3360 /* interval_tree.c */ 3361 void vma_interval_tree_insert(struct vm_area_struct *node, 3362 struct rb_root_cached *root); 3363 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3364 struct vm_area_struct *prev, 3365 struct rb_root_cached *root); 3366 void vma_interval_tree_remove(struct vm_area_struct *node, 3367 struct rb_root_cached *root); 3368 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3369 unsigned long start, unsigned long last); 3370 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3371 unsigned long start, unsigned long last); 3372 3373 #define vma_interval_tree_foreach(vma, root, start, last) \ 3374 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3375 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3376 3377 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3378 struct rb_root_cached *root); 3379 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3380 struct rb_root_cached *root); 3381 struct anon_vma_chain * 3382 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3383 unsigned long start, unsigned long last); 3384 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3385 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3386 #ifdef CONFIG_DEBUG_VM_RB 3387 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3388 #endif 3389 3390 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3391 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3392 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3393 3394 /* mmap.c */ 3395 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3396 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3397 extern void exit_mmap(struct mm_struct *); 3398 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3399 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3400 unsigned long addr, bool write); 3401 3402 static inline int check_data_rlimit(unsigned long rlim, 3403 unsigned long new, 3404 unsigned long start, 3405 unsigned long end_data, 3406 unsigned long start_data) 3407 { 3408 if (rlim < RLIM_INFINITY) { 3409 if (((new - start) + (end_data - start_data)) > rlim) 3410 return -ENOSPC; 3411 } 3412 3413 return 0; 3414 } 3415 3416 extern int mm_take_all_locks(struct mm_struct *mm); 3417 extern void mm_drop_all_locks(struct mm_struct *mm); 3418 3419 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3420 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3421 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3422 extern struct file *get_task_exe_file(struct task_struct *task); 3423 3424 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3425 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3426 3427 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3428 const struct vm_special_mapping *sm); 3429 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3430 unsigned long addr, unsigned long len, 3431 unsigned long flags, 3432 const struct vm_special_mapping *spec); 3433 3434 unsigned long randomize_stack_top(unsigned long stack_top); 3435 unsigned long randomize_page(unsigned long start, unsigned long range); 3436 3437 unsigned long 3438 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3439 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3440 3441 static inline unsigned long 3442 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3443 unsigned long pgoff, unsigned long flags) 3444 { 3445 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3446 } 3447 3448 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3449 unsigned long len, unsigned long prot, unsigned long flags, 3450 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3451 struct list_head *uf); 3452 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3453 unsigned long start, size_t len, struct list_head *uf, 3454 bool unlock); 3455 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3456 struct mm_struct *mm, unsigned long start, 3457 unsigned long end, struct list_head *uf, bool unlock); 3458 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3459 struct list_head *uf); 3460 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3461 3462 #ifdef CONFIG_MMU 3463 extern int __mm_populate(unsigned long addr, unsigned long len, 3464 int ignore_errors); 3465 static inline void mm_populate(unsigned long addr, unsigned long len) 3466 { 3467 /* Ignore errors */ 3468 (void) __mm_populate(addr, len, 1); 3469 } 3470 #else 3471 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3472 #endif 3473 3474 /* This takes the mm semaphore itself */ 3475 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3476 extern int vm_munmap(unsigned long, size_t); 3477 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3478 unsigned long, unsigned long, 3479 unsigned long, unsigned long); 3480 3481 struct vm_unmapped_area_info { 3482 #define VM_UNMAPPED_AREA_TOPDOWN 1 3483 unsigned long flags; 3484 unsigned long length; 3485 unsigned long low_limit; 3486 unsigned long high_limit; 3487 unsigned long align_mask; 3488 unsigned long align_offset; 3489 unsigned long start_gap; 3490 }; 3491 3492 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3493 3494 /* truncate.c */ 3495 extern void truncate_inode_pages(struct address_space *, loff_t); 3496 extern void truncate_inode_pages_range(struct address_space *, 3497 loff_t lstart, loff_t lend); 3498 extern void truncate_inode_pages_final(struct address_space *); 3499 3500 /* generic vm_area_ops exported for stackable file systems */ 3501 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3502 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3503 pgoff_t start_pgoff, pgoff_t end_pgoff); 3504 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3505 3506 extern unsigned long stack_guard_gap; 3507 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3508 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3509 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3510 3511 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3512 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3513 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3514 struct vm_area_struct **pprev); 3515 3516 /* 3517 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3518 * NULL if none. Assume start_addr < end_addr. 3519 */ 3520 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3521 unsigned long start_addr, unsigned long end_addr); 3522 3523 /** 3524 * vma_lookup() - Find a VMA at a specific address 3525 * @mm: The process address space. 3526 * @addr: The user address. 3527 * 3528 * Return: The vm_area_struct at the given address, %NULL otherwise. 3529 */ 3530 static inline 3531 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3532 { 3533 return mtree_load(&mm->mm_mt, addr); 3534 } 3535 3536 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3537 { 3538 if (vma->vm_flags & VM_GROWSDOWN) 3539 return stack_guard_gap; 3540 3541 /* See reasoning around the VM_SHADOW_STACK definition */ 3542 if (vma->vm_flags & VM_SHADOW_STACK) 3543 return PAGE_SIZE; 3544 3545 return 0; 3546 } 3547 3548 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3549 { 3550 unsigned long gap = stack_guard_start_gap(vma); 3551 unsigned long vm_start = vma->vm_start; 3552 3553 vm_start -= gap; 3554 if (vm_start > vma->vm_start) 3555 vm_start = 0; 3556 return vm_start; 3557 } 3558 3559 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3560 { 3561 unsigned long vm_end = vma->vm_end; 3562 3563 if (vma->vm_flags & VM_GROWSUP) { 3564 vm_end += stack_guard_gap; 3565 if (vm_end < vma->vm_end) 3566 vm_end = -PAGE_SIZE; 3567 } 3568 return vm_end; 3569 } 3570 3571 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3572 { 3573 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3574 } 3575 3576 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3577 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3578 unsigned long vm_start, unsigned long vm_end) 3579 { 3580 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3581 3582 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3583 vma = NULL; 3584 3585 return vma; 3586 } 3587 3588 static inline bool range_in_vma(struct vm_area_struct *vma, 3589 unsigned long start, unsigned long end) 3590 { 3591 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3592 } 3593 3594 #ifdef CONFIG_MMU 3595 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3596 void vma_set_page_prot(struct vm_area_struct *vma); 3597 #else 3598 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3599 { 3600 return __pgprot(0); 3601 } 3602 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3603 { 3604 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3605 } 3606 #endif 3607 3608 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3609 3610 #ifdef CONFIG_NUMA_BALANCING 3611 unsigned long change_prot_numa(struct vm_area_struct *vma, 3612 unsigned long start, unsigned long end); 3613 #endif 3614 3615 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3616 unsigned long addr); 3617 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3618 unsigned long pfn, unsigned long size, pgprot_t); 3619 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3620 unsigned long pfn, unsigned long size, pgprot_t prot); 3621 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3622 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3623 struct page **pages, unsigned long *num); 3624 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3625 unsigned long num); 3626 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3627 unsigned long num); 3628 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3629 bool write); 3630 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3631 unsigned long pfn); 3632 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3633 unsigned long pfn, pgprot_t pgprot); 3634 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3635 pfn_t pfn); 3636 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3637 unsigned long addr, pfn_t pfn); 3638 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3639 3640 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3641 unsigned long addr, struct page *page) 3642 { 3643 int err = vm_insert_page(vma, addr, page); 3644 3645 if (err == -ENOMEM) 3646 return VM_FAULT_OOM; 3647 if (err < 0 && err != -EBUSY) 3648 return VM_FAULT_SIGBUS; 3649 3650 return VM_FAULT_NOPAGE; 3651 } 3652 3653 #ifndef io_remap_pfn_range 3654 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3655 unsigned long addr, unsigned long pfn, 3656 unsigned long size, pgprot_t prot) 3657 { 3658 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3659 } 3660 #endif 3661 3662 static inline vm_fault_t vmf_error(int err) 3663 { 3664 if (err == -ENOMEM) 3665 return VM_FAULT_OOM; 3666 else if (err == -EHWPOISON) 3667 return VM_FAULT_HWPOISON; 3668 return VM_FAULT_SIGBUS; 3669 } 3670 3671 /* 3672 * Convert errno to return value for ->page_mkwrite() calls. 3673 * 3674 * This should eventually be merged with vmf_error() above, but will need a 3675 * careful audit of all vmf_error() callers. 3676 */ 3677 static inline vm_fault_t vmf_fs_error(int err) 3678 { 3679 if (err == 0) 3680 return VM_FAULT_LOCKED; 3681 if (err == -EFAULT || err == -EAGAIN) 3682 return VM_FAULT_NOPAGE; 3683 if (err == -ENOMEM) 3684 return VM_FAULT_OOM; 3685 /* -ENOSPC, -EDQUOT, -EIO ... */ 3686 return VM_FAULT_SIGBUS; 3687 } 3688 3689 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3690 { 3691 if (vm_fault & VM_FAULT_OOM) 3692 return -ENOMEM; 3693 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3694 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3695 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3696 return -EFAULT; 3697 return 0; 3698 } 3699 3700 /* 3701 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3702 * a (NUMA hinting) fault is required. 3703 */ 3704 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3705 unsigned int flags) 3706 { 3707 /* 3708 * If callers don't want to honor NUMA hinting faults, no need to 3709 * determine if we would actually have to trigger a NUMA hinting fault. 3710 */ 3711 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3712 return true; 3713 3714 /* 3715 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3716 * 3717 * Requiring a fault here even for inaccessible VMAs would mean that 3718 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3719 * refuses to process NUMA hinting faults in inaccessible VMAs. 3720 */ 3721 return !vma_is_accessible(vma); 3722 } 3723 3724 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3725 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3726 unsigned long size, pte_fn_t fn, void *data); 3727 extern int apply_to_existing_page_range(struct mm_struct *mm, 3728 unsigned long address, unsigned long size, 3729 pte_fn_t fn, void *data); 3730 3731 #ifdef CONFIG_PAGE_POISONING 3732 extern void __kernel_poison_pages(struct page *page, int numpages); 3733 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3734 extern bool _page_poisoning_enabled_early; 3735 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3736 static inline bool page_poisoning_enabled(void) 3737 { 3738 return _page_poisoning_enabled_early; 3739 } 3740 /* 3741 * For use in fast paths after init_mem_debugging() has run, or when a 3742 * false negative result is not harmful when called too early. 3743 */ 3744 static inline bool page_poisoning_enabled_static(void) 3745 { 3746 return static_branch_unlikely(&_page_poisoning_enabled); 3747 } 3748 static inline void kernel_poison_pages(struct page *page, int numpages) 3749 { 3750 if (page_poisoning_enabled_static()) 3751 __kernel_poison_pages(page, numpages); 3752 } 3753 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3754 { 3755 if (page_poisoning_enabled_static()) 3756 __kernel_unpoison_pages(page, numpages); 3757 } 3758 #else 3759 static inline bool page_poisoning_enabled(void) { return false; } 3760 static inline bool page_poisoning_enabled_static(void) { return false; } 3761 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3762 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3763 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3764 #endif 3765 3766 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3767 static inline bool want_init_on_alloc(gfp_t flags) 3768 { 3769 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3770 &init_on_alloc)) 3771 return true; 3772 return flags & __GFP_ZERO; 3773 } 3774 3775 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3776 static inline bool want_init_on_free(void) 3777 { 3778 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3779 &init_on_free); 3780 } 3781 3782 extern bool _debug_pagealloc_enabled_early; 3783 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3784 3785 static inline bool debug_pagealloc_enabled(void) 3786 { 3787 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3788 _debug_pagealloc_enabled_early; 3789 } 3790 3791 /* 3792 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3793 * or when a false negative result is not harmful when called too early. 3794 */ 3795 static inline bool debug_pagealloc_enabled_static(void) 3796 { 3797 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3798 return false; 3799 3800 return static_branch_unlikely(&_debug_pagealloc_enabled); 3801 } 3802 3803 /* 3804 * To support DEBUG_PAGEALLOC architecture must ensure that 3805 * __kernel_map_pages() never fails 3806 */ 3807 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3808 #ifdef CONFIG_DEBUG_PAGEALLOC 3809 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3810 { 3811 if (debug_pagealloc_enabled_static()) 3812 __kernel_map_pages(page, numpages, 1); 3813 } 3814 3815 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3816 { 3817 if (debug_pagealloc_enabled_static()) 3818 __kernel_map_pages(page, numpages, 0); 3819 } 3820 3821 extern unsigned int _debug_guardpage_minorder; 3822 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3823 3824 static inline unsigned int debug_guardpage_minorder(void) 3825 { 3826 return _debug_guardpage_minorder; 3827 } 3828 3829 static inline bool debug_guardpage_enabled(void) 3830 { 3831 return static_branch_unlikely(&_debug_guardpage_enabled); 3832 } 3833 3834 static inline bool page_is_guard(struct page *page) 3835 { 3836 if (!debug_guardpage_enabled()) 3837 return false; 3838 3839 return PageGuard(page); 3840 } 3841 3842 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3843 static inline bool set_page_guard(struct zone *zone, struct page *page, 3844 unsigned int order) 3845 { 3846 if (!debug_guardpage_enabled()) 3847 return false; 3848 return __set_page_guard(zone, page, order); 3849 } 3850 3851 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3852 static inline void clear_page_guard(struct zone *zone, struct page *page, 3853 unsigned int order) 3854 { 3855 if (!debug_guardpage_enabled()) 3856 return; 3857 __clear_page_guard(zone, page, order); 3858 } 3859 3860 #else /* CONFIG_DEBUG_PAGEALLOC */ 3861 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3862 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3863 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3864 static inline bool debug_guardpage_enabled(void) { return false; } 3865 static inline bool page_is_guard(struct page *page) { return false; } 3866 static inline bool set_page_guard(struct zone *zone, struct page *page, 3867 unsigned int order) { return false; } 3868 static inline void clear_page_guard(struct zone *zone, struct page *page, 3869 unsigned int order) {} 3870 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3871 3872 #ifdef __HAVE_ARCH_GATE_AREA 3873 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3874 extern int in_gate_area_no_mm(unsigned long addr); 3875 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3876 #else 3877 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3878 { 3879 return NULL; 3880 } 3881 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3882 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3883 { 3884 return 0; 3885 } 3886 #endif /* __HAVE_ARCH_GATE_AREA */ 3887 3888 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3889 3890 void drop_slab(void); 3891 3892 #ifndef CONFIG_MMU 3893 #define randomize_va_space 0 3894 #else 3895 extern int randomize_va_space; 3896 #endif 3897 3898 const char * arch_vma_name(struct vm_area_struct *vma); 3899 #ifdef CONFIG_MMU 3900 void print_vma_addr(char *prefix, unsigned long rip); 3901 #else 3902 static inline void print_vma_addr(char *prefix, unsigned long rip) 3903 { 3904 } 3905 #endif 3906 3907 void *sparse_buffer_alloc(unsigned long size); 3908 unsigned long section_map_size(void); 3909 struct page * __populate_section_memmap(unsigned long pfn, 3910 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3911 struct dev_pagemap *pgmap); 3912 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3913 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3914 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3915 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3916 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3917 struct vmem_altmap *altmap, unsigned long ptpfn, 3918 unsigned long flags); 3919 void *vmemmap_alloc_block(unsigned long size, int node); 3920 struct vmem_altmap; 3921 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3922 struct vmem_altmap *altmap); 3923 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3924 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3925 unsigned long addr, unsigned long next); 3926 int vmemmap_check_pmd(pmd_t *pmd, int node, 3927 unsigned long addr, unsigned long next); 3928 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3929 int node, struct vmem_altmap *altmap); 3930 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3931 int node, struct vmem_altmap *altmap); 3932 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3933 struct vmem_altmap *altmap); 3934 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3935 unsigned long headsize); 3936 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3937 unsigned long headsize); 3938 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3939 unsigned long headsize); 3940 void vmemmap_populate_print_last(void); 3941 #ifdef CONFIG_MEMORY_HOTPLUG 3942 void vmemmap_free(unsigned long start, unsigned long end, 3943 struct vmem_altmap *altmap); 3944 #endif 3945 3946 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3947 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3948 { 3949 /* number of pfns from base where pfn_to_page() is valid */ 3950 if (altmap) 3951 return altmap->reserve + altmap->free; 3952 return 0; 3953 } 3954 3955 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3956 unsigned long nr_pfns) 3957 { 3958 altmap->alloc -= nr_pfns; 3959 } 3960 #else 3961 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3962 { 3963 return 0; 3964 } 3965 3966 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3967 unsigned long nr_pfns) 3968 { 3969 } 3970 #endif 3971 3972 #define VMEMMAP_RESERVE_NR 2 3973 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3974 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3975 struct dev_pagemap *pgmap) 3976 { 3977 unsigned long nr_pages; 3978 unsigned long nr_vmemmap_pages; 3979 3980 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3981 return false; 3982 3983 nr_pages = pgmap_vmemmap_nr(pgmap); 3984 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3985 /* 3986 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3987 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3988 */ 3989 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3990 } 3991 /* 3992 * If we don't have an architecture override, use the generic rule 3993 */ 3994 #ifndef vmemmap_can_optimize 3995 #define vmemmap_can_optimize __vmemmap_can_optimize 3996 #endif 3997 3998 #else 3999 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4000 struct dev_pagemap *pgmap) 4001 { 4002 return false; 4003 } 4004 #endif 4005 4006 enum mf_flags { 4007 MF_COUNT_INCREASED = 1 << 0, 4008 MF_ACTION_REQUIRED = 1 << 1, 4009 MF_MUST_KILL = 1 << 2, 4010 MF_SOFT_OFFLINE = 1 << 3, 4011 MF_UNPOISON = 1 << 4, 4012 MF_SW_SIMULATED = 1 << 5, 4013 MF_NO_RETRY = 1 << 6, 4014 MF_MEM_PRE_REMOVE = 1 << 7, 4015 }; 4016 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4017 unsigned long count, int mf_flags); 4018 extern int memory_failure(unsigned long pfn, int flags); 4019 extern void memory_failure_queue_kick(int cpu); 4020 extern int unpoison_memory(unsigned long pfn); 4021 extern atomic_long_t num_poisoned_pages __read_mostly; 4022 extern int soft_offline_page(unsigned long pfn, int flags); 4023 #ifdef CONFIG_MEMORY_FAILURE 4024 /* 4025 * Sysfs entries for memory failure handling statistics. 4026 */ 4027 extern const struct attribute_group memory_failure_attr_group; 4028 extern void memory_failure_queue(unsigned long pfn, int flags); 4029 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4030 bool *migratable_cleared); 4031 void num_poisoned_pages_inc(unsigned long pfn); 4032 void num_poisoned_pages_sub(unsigned long pfn, long i); 4033 #else 4034 static inline void memory_failure_queue(unsigned long pfn, int flags) 4035 { 4036 } 4037 4038 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4039 bool *migratable_cleared) 4040 { 4041 return 0; 4042 } 4043 4044 static inline void num_poisoned_pages_inc(unsigned long pfn) 4045 { 4046 } 4047 4048 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4049 { 4050 } 4051 #endif 4052 4053 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4054 extern void memblk_nr_poison_inc(unsigned long pfn); 4055 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4056 #else 4057 static inline void memblk_nr_poison_inc(unsigned long pfn) 4058 { 4059 } 4060 4061 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4062 { 4063 } 4064 #endif 4065 4066 #ifndef arch_memory_failure 4067 static inline int arch_memory_failure(unsigned long pfn, int flags) 4068 { 4069 return -ENXIO; 4070 } 4071 #endif 4072 4073 #ifndef arch_is_platform_page 4074 static inline bool arch_is_platform_page(u64 paddr) 4075 { 4076 return false; 4077 } 4078 #endif 4079 4080 /* 4081 * Error handlers for various types of pages. 4082 */ 4083 enum mf_result { 4084 MF_IGNORED, /* Error: cannot be handled */ 4085 MF_FAILED, /* Error: handling failed */ 4086 MF_DELAYED, /* Will be handled later */ 4087 MF_RECOVERED, /* Successfully recovered */ 4088 }; 4089 4090 enum mf_action_page_type { 4091 MF_MSG_KERNEL, 4092 MF_MSG_KERNEL_HIGH_ORDER, 4093 MF_MSG_DIFFERENT_COMPOUND, 4094 MF_MSG_HUGE, 4095 MF_MSG_FREE_HUGE, 4096 MF_MSG_GET_HWPOISON, 4097 MF_MSG_UNMAP_FAILED, 4098 MF_MSG_DIRTY_SWAPCACHE, 4099 MF_MSG_CLEAN_SWAPCACHE, 4100 MF_MSG_DIRTY_MLOCKED_LRU, 4101 MF_MSG_CLEAN_MLOCKED_LRU, 4102 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4103 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4104 MF_MSG_DIRTY_LRU, 4105 MF_MSG_CLEAN_LRU, 4106 MF_MSG_TRUNCATED_LRU, 4107 MF_MSG_BUDDY, 4108 MF_MSG_DAX, 4109 MF_MSG_UNSPLIT_THP, 4110 MF_MSG_ALREADY_POISONED, 4111 MF_MSG_UNKNOWN, 4112 }; 4113 4114 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4115 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4116 int copy_user_large_folio(struct folio *dst, struct folio *src, 4117 unsigned long addr_hint, 4118 struct vm_area_struct *vma); 4119 long copy_folio_from_user(struct folio *dst_folio, 4120 const void __user *usr_src, 4121 bool allow_pagefault); 4122 4123 /** 4124 * vma_is_special_huge - Are transhuge page-table entries considered special? 4125 * @vma: Pointer to the struct vm_area_struct to consider 4126 * 4127 * Whether transhuge page-table entries are considered "special" following 4128 * the definition in vm_normal_page(). 4129 * 4130 * Return: true if transhuge page-table entries should be considered special, 4131 * false otherwise. 4132 */ 4133 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4134 { 4135 return vma_is_dax(vma) || (vma->vm_file && 4136 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4137 } 4138 4139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4140 4141 #if MAX_NUMNODES > 1 4142 void __init setup_nr_node_ids(void); 4143 #else 4144 static inline void setup_nr_node_ids(void) {} 4145 #endif 4146 4147 extern int memcmp_pages(struct page *page1, struct page *page2); 4148 4149 static inline int pages_identical(struct page *page1, struct page *page2) 4150 { 4151 return !memcmp_pages(page1, page2); 4152 } 4153 4154 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4155 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4156 pgoff_t first_index, pgoff_t nr, 4157 pgoff_t bitmap_pgoff, 4158 unsigned long *bitmap, 4159 pgoff_t *start, 4160 pgoff_t *end); 4161 4162 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4163 pgoff_t first_index, pgoff_t nr); 4164 #endif 4165 4166 #ifdef CONFIG_ANON_VMA_NAME 4167 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4168 unsigned long len_in, 4169 struct anon_vma_name *anon_name); 4170 #else 4171 static inline int 4172 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4173 unsigned long len_in, struct anon_vma_name *anon_name) { 4174 return 0; 4175 } 4176 #endif 4177 4178 #ifdef CONFIG_UNACCEPTED_MEMORY 4179 4180 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4181 void accept_memory(phys_addr_t start, unsigned long size); 4182 4183 #else 4184 4185 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4186 unsigned long size) 4187 { 4188 return false; 4189 } 4190 4191 static inline void accept_memory(phys_addr_t start, unsigned long size) 4192 { 4193 } 4194 4195 #endif 4196 4197 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4198 { 4199 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4200 } 4201 4202 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4203 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4204 4205 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4206 int reserve_mem_release_by_name(const char *name); 4207 4208 #ifdef CONFIG_64BIT 4209 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4210 #else 4211 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4212 { 4213 /* noop on 32 bit */ 4214 return 0; 4215 } 4216 #endif 4217 4218 /* 4219 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4220 * be zeroed or not. 4221 */ 4222 static inline bool user_alloc_needs_zeroing(void) 4223 { 4224 /* 4225 * for user folios, arch with cache aliasing requires cache flush and 4226 * arc changes folio->flags to make icache coherent with dcache, so 4227 * always return false to make caller use 4228 * clear_user_page()/clear_user_highpage(). 4229 */ 4230 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4231 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4232 &init_on_alloc); 4233 } 4234 4235 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4236 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4237 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4238 4239 #endif /* _LINUX_MM_H */ 4240