xref: /linux-6.15/include/linux/mm.h (revision 2b8232ce)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/mutex.h>
14 #include <linux/debug_locks.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mm_types.h>
17 
18 struct mempolicy;
19 struct anon_vma;
20 struct file_ra_state;
21 struct user_struct;
22 struct writeback_control;
23 
24 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27 
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern int page_cluster;
31 
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
37 
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43 
44 /*
45  * Linux kernel virtual memory manager primitives.
46  * The idea being to have a "virtual" mm in the same way
47  * we have a virtual fs - giving a cleaner interface to the
48  * mm details, and allowing different kinds of memory mappings
49  * (from shared memory to executable loading to arbitrary
50  * mmap() functions).
51  */
52 
53 /*
54  * This struct defines a memory VMM memory area. There is one of these
55  * per VM-area/task.  A VM area is any part of the process virtual memory
56  * space that has a special rule for the page-fault handlers (ie a shared
57  * library, the executable area etc).
58  */
59 struct vm_area_struct {
60 	struct mm_struct * vm_mm;	/* The address space we belong to. */
61 	unsigned long vm_start;		/* Our start address within vm_mm. */
62 	unsigned long vm_end;		/* The first byte after our end address
63 					   within vm_mm. */
64 
65 	/* linked list of VM areas per task, sorted by address */
66 	struct vm_area_struct *vm_next;
67 
68 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
69 	unsigned long vm_flags;		/* Flags, listed below. */
70 
71 	struct rb_node vm_rb;
72 
73 	/*
74 	 * For areas with an address space and backing store,
75 	 * linkage into the address_space->i_mmap prio tree, or
76 	 * linkage to the list of like vmas hanging off its node, or
77 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
78 	 */
79 	union {
80 		struct {
81 			struct list_head list;
82 			void *parent;	/* aligns with prio_tree_node parent */
83 			struct vm_area_struct *head;
84 		} vm_set;
85 
86 		struct raw_prio_tree_node prio_tree_node;
87 	} shared;
88 
89 	/*
90 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 	 * list, after a COW of one of the file pages.  A MAP_SHARED vma
92 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
93 	 * or brk vma (with NULL file) can only be in an anon_vma list.
94 	 */
95 	struct list_head anon_vma_node;	/* Serialized by anon_vma->lock */
96 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
97 
98 	/* Function pointers to deal with this struct. */
99 	struct vm_operations_struct * vm_ops;
100 
101 	/* Information about our backing store: */
102 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
103 					   units, *not* PAGE_CACHE_SIZE */
104 	struct file * vm_file;		/* File we map to (can be NULL). */
105 	void * vm_private_data;		/* was vm_pte (shared mem) */
106 	unsigned long vm_truncate_count;/* truncate_count or restart_addr */
107 
108 #ifndef CONFIG_MMU
109 	atomic_t vm_usage;		/* refcount (VMAs shared if !MMU) */
110 #endif
111 #ifdef CONFIG_NUMA
112 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
113 #endif
114 };
115 
116 extern struct kmem_cache *vm_area_cachep;
117 
118 /*
119  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
120  * disabled, then there's a single shared list of VMAs maintained by the
121  * system, and mm's subscribe to these individually
122  */
123 struct vm_list_struct {
124 	struct vm_list_struct	*next;
125 	struct vm_area_struct	*vma;
126 };
127 
128 #ifndef CONFIG_MMU
129 extern struct rb_root nommu_vma_tree;
130 extern struct rw_semaphore nommu_vma_sem;
131 
132 extern unsigned int kobjsize(const void *objp);
133 #endif
134 
135 /*
136  * vm_flags..
137  */
138 #define VM_READ		0x00000001	/* currently active flags */
139 #define VM_WRITE	0x00000002
140 #define VM_EXEC		0x00000004
141 #define VM_SHARED	0x00000008
142 
143 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
144 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
145 #define VM_MAYWRITE	0x00000020
146 #define VM_MAYEXEC	0x00000040
147 #define VM_MAYSHARE	0x00000080
148 
149 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
150 #define VM_GROWSUP	0x00000200
151 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
152 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
153 
154 #define VM_EXECUTABLE	0x00001000
155 #define VM_LOCKED	0x00002000
156 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
157 
158 					/* Used by sys_madvise() */
159 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
160 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
161 
162 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
163 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
164 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
165 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
166 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
167 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
168 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
169 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
170 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
171 
172 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
173 
174 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
175 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
176 #endif
177 
178 #ifdef CONFIG_STACK_GROWSUP
179 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
180 #else
181 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
182 #endif
183 
184 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
185 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
186 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
187 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
188 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
189 
190 /*
191  * mapping from the currently active vm_flags protection bits (the
192  * low four bits) to a page protection mask..
193  */
194 extern pgprot_t protection_map[16];
195 
196 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
197 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
198 
199 
200 /*
201  * vm_fault is filled by the the pagefault handler and passed to the vma's
202  * ->fault function. The vma's ->fault is responsible for returning a bitmask
203  * of VM_FAULT_xxx flags that give details about how the fault was handled.
204  *
205  * pgoff should be used in favour of virtual_address, if possible. If pgoff
206  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
207  * mapping support.
208  */
209 struct vm_fault {
210 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
211 	pgoff_t pgoff;			/* Logical page offset based on vma */
212 	void __user *virtual_address;	/* Faulting virtual address */
213 
214 	struct page *page;		/* ->fault handlers should return a
215 					 * page here, unless VM_FAULT_NOPAGE
216 					 * is set (which is also implied by
217 					 * VM_FAULT_ERROR).
218 					 */
219 };
220 
221 /*
222  * These are the virtual MM functions - opening of an area, closing and
223  * unmapping it (needed to keep files on disk up-to-date etc), pointer
224  * to the functions called when a no-page or a wp-page exception occurs.
225  */
226 struct vm_operations_struct {
227 	void (*open)(struct vm_area_struct * area);
228 	void (*close)(struct vm_area_struct * area);
229 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
230 	struct page *(*nopage)(struct vm_area_struct *area,
231 			unsigned long address, int *type);
232 	unsigned long (*nopfn)(struct vm_area_struct *area,
233 			unsigned long address);
234 
235 	/* notification that a previously read-only page is about to become
236 	 * writable, if an error is returned it will cause a SIGBUS */
237 	int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
238 #ifdef CONFIG_NUMA
239 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
240 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241 					unsigned long addr);
242 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243 		const nodemask_t *to, unsigned long flags);
244 #endif
245 };
246 
247 struct mmu_gather;
248 struct inode;
249 
250 #define page_private(page)		((page)->private)
251 #define set_page_private(page, v)	((page)->private = (v))
252 
253 /*
254  * FIXME: take this include out, include page-flags.h in
255  * files which need it (119 of them)
256  */
257 #include <linux/page-flags.h>
258 
259 #ifdef CONFIG_DEBUG_VM
260 #define VM_BUG_ON(cond) BUG_ON(cond)
261 #else
262 #define VM_BUG_ON(condition) do { } while(0)
263 #endif
264 
265 /*
266  * Methods to modify the page usage count.
267  *
268  * What counts for a page usage:
269  * - cache mapping   (page->mapping)
270  * - private data    (page->private)
271  * - page mapped in a task's page tables, each mapping
272  *   is counted separately
273  *
274  * Also, many kernel routines increase the page count before a critical
275  * routine so they can be sure the page doesn't go away from under them.
276  */
277 
278 /*
279  * Drop a ref, return true if the refcount fell to zero (the page has no users)
280  */
281 static inline int put_page_testzero(struct page *page)
282 {
283 	VM_BUG_ON(atomic_read(&page->_count) == 0);
284 	return atomic_dec_and_test(&page->_count);
285 }
286 
287 /*
288  * Try to grab a ref unless the page has a refcount of zero, return false if
289  * that is the case.
290  */
291 static inline int get_page_unless_zero(struct page *page)
292 {
293 	VM_BUG_ON(PageCompound(page));
294 	return atomic_inc_not_zero(&page->_count);
295 }
296 
297 static inline struct page *compound_head(struct page *page)
298 {
299 	if (unlikely(PageTail(page)))
300 		return page->first_page;
301 	return page;
302 }
303 
304 static inline int page_count(struct page *page)
305 {
306 	return atomic_read(&compound_head(page)->_count);
307 }
308 
309 static inline void get_page(struct page *page)
310 {
311 	page = compound_head(page);
312 	VM_BUG_ON(atomic_read(&page->_count) == 0);
313 	atomic_inc(&page->_count);
314 }
315 
316 static inline struct page *virt_to_head_page(const void *x)
317 {
318 	struct page *page = virt_to_page(x);
319 	return compound_head(page);
320 }
321 
322 /*
323  * Setup the page count before being freed into the page allocator for
324  * the first time (boot or memory hotplug)
325  */
326 static inline void init_page_count(struct page *page)
327 {
328 	atomic_set(&page->_count, 1);
329 }
330 
331 void put_page(struct page *page);
332 void put_pages_list(struct list_head *pages);
333 
334 void split_page(struct page *page, unsigned int order);
335 
336 /*
337  * Compound pages have a destructor function.  Provide a
338  * prototype for that function and accessor functions.
339  * These are _only_ valid on the head of a PG_compound page.
340  */
341 typedef void compound_page_dtor(struct page *);
342 
343 static inline void set_compound_page_dtor(struct page *page,
344 						compound_page_dtor *dtor)
345 {
346 	page[1].lru.next = (void *)dtor;
347 }
348 
349 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
350 {
351 	return (compound_page_dtor *)page[1].lru.next;
352 }
353 
354 static inline int compound_order(struct page *page)
355 {
356 	if (!PageHead(page))
357 		return 0;
358 	return (unsigned long)page[1].lru.prev;
359 }
360 
361 static inline void set_compound_order(struct page *page, unsigned long order)
362 {
363 	page[1].lru.prev = (void *)order;
364 }
365 
366 /*
367  * Multiple processes may "see" the same page. E.g. for untouched
368  * mappings of /dev/null, all processes see the same page full of
369  * zeroes, and text pages of executables and shared libraries have
370  * only one copy in memory, at most, normally.
371  *
372  * For the non-reserved pages, page_count(page) denotes a reference count.
373  *   page_count() == 0 means the page is free. page->lru is then used for
374  *   freelist management in the buddy allocator.
375  *   page_count() > 0  means the page has been allocated.
376  *
377  * Pages are allocated by the slab allocator in order to provide memory
378  * to kmalloc and kmem_cache_alloc. In this case, the management of the
379  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
380  * unless a particular usage is carefully commented. (the responsibility of
381  * freeing the kmalloc memory is the caller's, of course).
382  *
383  * A page may be used by anyone else who does a __get_free_page().
384  * In this case, page_count still tracks the references, and should only
385  * be used through the normal accessor functions. The top bits of page->flags
386  * and page->virtual store page management information, but all other fields
387  * are unused and could be used privately, carefully. The management of this
388  * page is the responsibility of the one who allocated it, and those who have
389  * subsequently been given references to it.
390  *
391  * The other pages (we may call them "pagecache pages") are completely
392  * managed by the Linux memory manager: I/O, buffers, swapping etc.
393  * The following discussion applies only to them.
394  *
395  * A pagecache page contains an opaque `private' member, which belongs to the
396  * page's address_space. Usually, this is the address of a circular list of
397  * the page's disk buffers. PG_private must be set to tell the VM to call
398  * into the filesystem to release these pages.
399  *
400  * A page may belong to an inode's memory mapping. In this case, page->mapping
401  * is the pointer to the inode, and page->index is the file offset of the page,
402  * in units of PAGE_CACHE_SIZE.
403  *
404  * If pagecache pages are not associated with an inode, they are said to be
405  * anonymous pages. These may become associated with the swapcache, and in that
406  * case PG_swapcache is set, and page->private is an offset into the swapcache.
407  *
408  * In either case (swapcache or inode backed), the pagecache itself holds one
409  * reference to the page. Setting PG_private should also increment the
410  * refcount. The each user mapping also has a reference to the page.
411  *
412  * The pagecache pages are stored in a per-mapping radix tree, which is
413  * rooted at mapping->page_tree, and indexed by offset.
414  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
415  * lists, we instead now tag pages as dirty/writeback in the radix tree.
416  *
417  * All pagecache pages may be subject to I/O:
418  * - inode pages may need to be read from disk,
419  * - inode pages which have been modified and are MAP_SHARED may need
420  *   to be written back to the inode on disk,
421  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
422  *   modified may need to be swapped out to swap space and (later) to be read
423  *   back into memory.
424  */
425 
426 /*
427  * The zone field is never updated after free_area_init_core()
428  * sets it, so none of the operations on it need to be atomic.
429  */
430 
431 
432 /*
433  * page->flags layout:
434  *
435  * There are three possibilities for how page->flags get
436  * laid out.  The first is for the normal case, without
437  * sparsemem.  The second is for sparsemem when there is
438  * plenty of space for node and section.  The last is when
439  * we have run out of space and have to fall back to an
440  * alternate (slower) way of determining the node.
441  *
442  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
443  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
444  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
445  */
446 #ifdef CONFIG_SPARSEMEM
447 #define SECTIONS_WIDTH		SECTIONS_SHIFT
448 #else
449 #define SECTIONS_WIDTH		0
450 #endif
451 
452 #define ZONES_WIDTH		ZONES_SHIFT
453 
454 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
455 #define NODES_WIDTH		NODES_SHIFT
456 #else
457 #define NODES_WIDTH		0
458 #endif
459 
460 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
461 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
462 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
463 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
464 
465 /*
466  * We are going to use the flags for the page to node mapping if its in
467  * there.  This includes the case where there is no node, so it is implicit.
468  */
469 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
470 #define NODE_NOT_IN_PAGE_FLAGS
471 #endif
472 
473 #ifndef PFN_SECTION_SHIFT
474 #define PFN_SECTION_SHIFT 0
475 #endif
476 
477 /*
478  * Define the bit shifts to access each section.  For non-existant
479  * sections we define the shift as 0; that plus a 0 mask ensures
480  * the compiler will optimise away reference to them.
481  */
482 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
483 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
484 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
485 
486 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
487 #ifdef NODE_NOT_IN_PAGEFLAGS
488 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
489 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
490 						SECTIONS_PGOFF : ZONES_PGOFF)
491 #else
492 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
493 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
494 						NODES_PGOFF : ZONES_PGOFF)
495 #endif
496 
497 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
498 
499 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
500 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
501 #endif
502 
503 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
504 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
505 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
506 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
507 
508 static inline enum zone_type page_zonenum(struct page *page)
509 {
510 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
511 }
512 
513 /*
514  * The identification function is only used by the buddy allocator for
515  * determining if two pages could be buddies. We are not really
516  * identifying a zone since we could be using a the section number
517  * id if we have not node id available in page flags.
518  * We guarantee only that it will return the same value for two
519  * combinable pages in a zone.
520  */
521 static inline int page_zone_id(struct page *page)
522 {
523 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
524 }
525 
526 static inline int zone_to_nid(struct zone *zone)
527 {
528 #ifdef CONFIG_NUMA
529 	return zone->node;
530 #else
531 	return 0;
532 #endif
533 }
534 
535 #ifdef NODE_NOT_IN_PAGE_FLAGS
536 extern int page_to_nid(struct page *page);
537 #else
538 static inline int page_to_nid(struct page *page)
539 {
540 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
541 }
542 #endif
543 
544 static inline struct zone *page_zone(struct page *page)
545 {
546 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
547 }
548 
549 static inline unsigned long page_to_section(struct page *page)
550 {
551 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
552 }
553 
554 static inline void set_page_zone(struct page *page, enum zone_type zone)
555 {
556 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
557 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
558 }
559 
560 static inline void set_page_node(struct page *page, unsigned long node)
561 {
562 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
563 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
564 }
565 
566 static inline void set_page_section(struct page *page, unsigned long section)
567 {
568 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
569 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
570 }
571 
572 static inline void set_page_links(struct page *page, enum zone_type zone,
573 	unsigned long node, unsigned long pfn)
574 {
575 	set_page_zone(page, zone);
576 	set_page_node(page, node);
577 	set_page_section(page, pfn_to_section_nr(pfn));
578 }
579 
580 /*
581  * Some inline functions in vmstat.h depend on page_zone()
582  */
583 #include <linux/vmstat.h>
584 
585 static __always_inline void *lowmem_page_address(struct page *page)
586 {
587 	return __va(page_to_pfn(page) << PAGE_SHIFT);
588 }
589 
590 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
591 #define HASHED_PAGE_VIRTUAL
592 #endif
593 
594 #if defined(WANT_PAGE_VIRTUAL)
595 #define page_address(page) ((page)->virtual)
596 #define set_page_address(page, address)			\
597 	do {						\
598 		(page)->virtual = (address);		\
599 	} while(0)
600 #define page_address_init()  do { } while(0)
601 #endif
602 
603 #if defined(HASHED_PAGE_VIRTUAL)
604 void *page_address(struct page *page);
605 void set_page_address(struct page *page, void *virtual);
606 void page_address_init(void);
607 #endif
608 
609 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
610 #define page_address(page) lowmem_page_address(page)
611 #define set_page_address(page, address)  do { } while(0)
612 #define page_address_init()  do { } while(0)
613 #endif
614 
615 /*
616  * On an anonymous page mapped into a user virtual memory area,
617  * page->mapping points to its anon_vma, not to a struct address_space;
618  * with the PAGE_MAPPING_ANON bit set to distinguish it.
619  *
620  * Please note that, confusingly, "page_mapping" refers to the inode
621  * address_space which maps the page from disk; whereas "page_mapped"
622  * refers to user virtual address space into which the page is mapped.
623  */
624 #define PAGE_MAPPING_ANON	1
625 
626 extern struct address_space swapper_space;
627 static inline struct address_space *page_mapping(struct page *page)
628 {
629 	struct address_space *mapping = page->mapping;
630 
631 	VM_BUG_ON(PageSlab(page));
632 	if (unlikely(PageSwapCache(page)))
633 		mapping = &swapper_space;
634 #ifdef CONFIG_SLUB
635 	else if (unlikely(PageSlab(page)))
636 		mapping = NULL;
637 #endif
638 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
639 		mapping = NULL;
640 	return mapping;
641 }
642 
643 static inline int PageAnon(struct page *page)
644 {
645 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
646 }
647 
648 /*
649  * Return the pagecache index of the passed page.  Regular pagecache pages
650  * use ->index whereas swapcache pages use ->private
651  */
652 static inline pgoff_t page_index(struct page *page)
653 {
654 	if (unlikely(PageSwapCache(page)))
655 		return page_private(page);
656 	return page->index;
657 }
658 
659 /*
660  * The atomic page->_mapcount, like _count, starts from -1:
661  * so that transitions both from it and to it can be tracked,
662  * using atomic_inc_and_test and atomic_add_negative(-1).
663  */
664 static inline void reset_page_mapcount(struct page *page)
665 {
666 	atomic_set(&(page)->_mapcount, -1);
667 }
668 
669 static inline int page_mapcount(struct page *page)
670 {
671 	return atomic_read(&(page)->_mapcount) + 1;
672 }
673 
674 /*
675  * Return true if this page is mapped into pagetables.
676  */
677 static inline int page_mapped(struct page *page)
678 {
679 	return atomic_read(&(page)->_mapcount) >= 0;
680 }
681 
682 /*
683  * Error return values for the *_nopage functions
684  */
685 #define NOPAGE_SIGBUS	(NULL)
686 #define NOPAGE_OOM	((struct page *) (-1))
687 
688 /*
689  * Error return values for the *_nopfn functions
690  */
691 #define NOPFN_SIGBUS	((unsigned long) -1)
692 #define NOPFN_OOM	((unsigned long) -2)
693 #define NOPFN_REFAULT	((unsigned long) -3)
694 
695 /*
696  * Different kinds of faults, as returned by handle_mm_fault().
697  * Used to decide whether a process gets delivered SIGBUS or
698  * just gets major/minor fault counters bumped up.
699  */
700 
701 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
702 
703 #define VM_FAULT_OOM	0x0001
704 #define VM_FAULT_SIGBUS	0x0002
705 #define VM_FAULT_MAJOR	0x0004
706 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
707 
708 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
709 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
710 
711 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS)
712 
713 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
714 
715 extern void show_free_areas(void);
716 
717 #ifdef CONFIG_SHMEM
718 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
719 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
720 					unsigned long addr);
721 int shmem_lock(struct file *file, int lock, struct user_struct *user);
722 #else
723 static inline int shmem_lock(struct file *file, int lock,
724 			     struct user_struct *user)
725 {
726 	return 0;
727 }
728 
729 static inline int shmem_set_policy(struct vm_area_struct *vma,
730 				   struct mempolicy *new)
731 {
732 	return 0;
733 }
734 
735 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
736 						 unsigned long addr)
737 {
738 	return NULL;
739 }
740 #endif
741 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
742 
743 int shmem_zero_setup(struct vm_area_struct *);
744 
745 #ifndef CONFIG_MMU
746 extern unsigned long shmem_get_unmapped_area(struct file *file,
747 					     unsigned long addr,
748 					     unsigned long len,
749 					     unsigned long pgoff,
750 					     unsigned long flags);
751 #endif
752 
753 extern int can_do_mlock(void);
754 extern int user_shm_lock(size_t, struct user_struct *);
755 extern void user_shm_unlock(size_t, struct user_struct *);
756 
757 /*
758  * Parameter block passed down to zap_pte_range in exceptional cases.
759  */
760 struct zap_details {
761 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
762 	struct address_space *check_mapping;	/* Check page->mapping if set */
763 	pgoff_t	first_index;			/* Lowest page->index to unmap */
764 	pgoff_t last_index;			/* Highest page->index to unmap */
765 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
766 	unsigned long truncate_count;		/* Compare vm_truncate_count */
767 };
768 
769 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
770 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
771 		unsigned long size, struct zap_details *);
772 unsigned long unmap_vmas(struct mmu_gather **tlb,
773 		struct vm_area_struct *start_vma, unsigned long start_addr,
774 		unsigned long end_addr, unsigned long *nr_accounted,
775 		struct zap_details *);
776 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
777 		unsigned long end, unsigned long floor, unsigned long ceiling);
778 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
779 		unsigned long floor, unsigned long ceiling);
780 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
781 			struct vm_area_struct *vma);
782 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
783 			unsigned long size, pgprot_t prot);
784 void unmap_mapping_range(struct address_space *mapping,
785 		loff_t const holebegin, loff_t const holelen, int even_cows);
786 
787 static inline void unmap_shared_mapping_range(struct address_space *mapping,
788 		loff_t const holebegin, loff_t const holelen)
789 {
790 	unmap_mapping_range(mapping, holebegin, holelen, 0);
791 }
792 
793 extern int vmtruncate(struct inode * inode, loff_t offset);
794 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
795 
796 #ifdef CONFIG_MMU
797 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
798 			unsigned long address, int write_access);
799 #else
800 static inline int handle_mm_fault(struct mm_struct *mm,
801 			struct vm_area_struct *vma, unsigned long address,
802 			int write_access)
803 {
804 	/* should never happen if there's no MMU */
805 	BUG();
806 	return VM_FAULT_SIGBUS;
807 }
808 #endif
809 
810 extern int make_pages_present(unsigned long addr, unsigned long end);
811 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
812 
813 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
814 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
815 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
816 
817 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
818 extern void do_invalidatepage(struct page *page, unsigned long offset);
819 
820 int __set_page_dirty_nobuffers(struct page *page);
821 int __set_page_dirty_no_writeback(struct page *page);
822 int redirty_page_for_writepage(struct writeback_control *wbc,
823 				struct page *page);
824 int FASTCALL(set_page_dirty(struct page *page));
825 int set_page_dirty_lock(struct page *page);
826 int clear_page_dirty_for_io(struct page *page);
827 
828 extern unsigned long move_page_tables(struct vm_area_struct *vma,
829 		unsigned long old_addr, struct vm_area_struct *new_vma,
830 		unsigned long new_addr, unsigned long len);
831 extern unsigned long do_mremap(unsigned long addr,
832 			       unsigned long old_len, unsigned long new_len,
833 			       unsigned long flags, unsigned long new_addr);
834 extern int mprotect_fixup(struct vm_area_struct *vma,
835 			  struct vm_area_struct **pprev, unsigned long start,
836 			  unsigned long end, unsigned long newflags);
837 
838 /*
839  * A callback you can register to apply pressure to ageable caches.
840  *
841  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
842  * look through the least-recently-used 'nr_to_scan' entries and
843  * attempt to free them up.  It should return the number of objects
844  * which remain in the cache.  If it returns -1, it means it cannot do
845  * any scanning at this time (eg. there is a risk of deadlock).
846  *
847  * The 'gfpmask' refers to the allocation we are currently trying to
848  * fulfil.
849  *
850  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
851  * querying the cache size, so a fastpath for that case is appropriate.
852  */
853 struct shrinker {
854 	int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
855 	int seeks;	/* seeks to recreate an obj */
856 
857 	/* These are for internal use */
858 	struct list_head list;
859 	long nr;	/* objs pending delete */
860 };
861 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
862 extern void register_shrinker(struct shrinker *);
863 extern void unregister_shrinker(struct shrinker *);
864 
865 int vma_wants_writenotify(struct vm_area_struct *vma);
866 
867 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
868 
869 #ifdef __PAGETABLE_PUD_FOLDED
870 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
871 						unsigned long address)
872 {
873 	return 0;
874 }
875 #else
876 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
877 #endif
878 
879 #ifdef __PAGETABLE_PMD_FOLDED
880 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
881 						unsigned long address)
882 {
883 	return 0;
884 }
885 #else
886 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
887 #endif
888 
889 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
890 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
891 
892 /*
893  * The following ifdef needed to get the 4level-fixup.h header to work.
894  * Remove it when 4level-fixup.h has been removed.
895  */
896 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
897 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
898 {
899 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
900 		NULL: pud_offset(pgd, address);
901 }
902 
903 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
904 {
905 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
906 		NULL: pmd_offset(pud, address);
907 }
908 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
909 
910 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
911 /*
912  * We tuck a spinlock to guard each pagetable page into its struct page,
913  * at page->private, with BUILD_BUG_ON to make sure that this will not
914  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
915  * When freeing, reset page->mapping so free_pages_check won't complain.
916  */
917 #define __pte_lockptr(page)	&((page)->ptl)
918 #define pte_lock_init(_page)	do {					\
919 	spin_lock_init(__pte_lockptr(_page));				\
920 } while (0)
921 #define pte_lock_deinit(page)	((page)->mapping = NULL)
922 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
923 #else
924 /*
925  * We use mm->page_table_lock to guard all pagetable pages of the mm.
926  */
927 #define pte_lock_init(page)	do {} while (0)
928 #define pte_lock_deinit(page)	do {} while (0)
929 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
930 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
931 
932 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
933 ({							\
934 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
935 	pte_t *__pte = pte_offset_map(pmd, address);	\
936 	*(ptlp) = __ptl;				\
937 	spin_lock(__ptl);				\
938 	__pte;						\
939 })
940 
941 #define pte_unmap_unlock(pte, ptl)	do {		\
942 	spin_unlock(ptl);				\
943 	pte_unmap(pte);					\
944 } while (0)
945 
946 #define pte_alloc_map(mm, pmd, address)			\
947 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
948 		NULL: pte_offset_map(pmd, address))
949 
950 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
951 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
952 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
953 
954 #define pte_alloc_kernel(pmd, address)			\
955 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
956 		NULL: pte_offset_kernel(pmd, address))
957 
958 extern void free_area_init(unsigned long * zones_size);
959 extern void free_area_init_node(int nid, pg_data_t *pgdat,
960 	unsigned long * zones_size, unsigned long zone_start_pfn,
961 	unsigned long *zholes_size);
962 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
963 /*
964  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
965  * zones, allocate the backing mem_map and account for memory holes in a more
966  * architecture independent manner. This is a substitute for creating the
967  * zone_sizes[] and zholes_size[] arrays and passing them to
968  * free_area_init_node()
969  *
970  * An architecture is expected to register range of page frames backed by
971  * physical memory with add_active_range() before calling
972  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
973  * usage, an architecture is expected to do something like
974  *
975  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
976  * 							 max_highmem_pfn};
977  * for_each_valid_physical_page_range()
978  * 	add_active_range(node_id, start_pfn, end_pfn)
979  * free_area_init_nodes(max_zone_pfns);
980  *
981  * If the architecture guarantees that there are no holes in the ranges
982  * registered with add_active_range(), free_bootmem_active_regions()
983  * will call free_bootmem_node() for each registered physical page range.
984  * Similarly sparse_memory_present_with_active_regions() calls
985  * memory_present() for each range when SPARSEMEM is enabled.
986  *
987  * See mm/page_alloc.c for more information on each function exposed by
988  * CONFIG_ARCH_POPULATES_NODE_MAP
989  */
990 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
991 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
992 					unsigned long end_pfn);
993 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
994 						unsigned long new_end_pfn);
995 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
996 					unsigned long end_pfn);
997 extern void remove_all_active_ranges(void);
998 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
999 						unsigned long end_pfn);
1000 extern void get_pfn_range_for_nid(unsigned int nid,
1001 			unsigned long *start_pfn, unsigned long *end_pfn);
1002 extern unsigned long find_min_pfn_with_active_regions(void);
1003 extern unsigned long find_max_pfn_with_active_regions(void);
1004 extern void free_bootmem_with_active_regions(int nid,
1005 						unsigned long max_low_pfn);
1006 extern void sparse_memory_present_with_active_regions(int nid);
1007 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1008 extern int early_pfn_to_nid(unsigned long pfn);
1009 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1010 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1011 extern void set_dma_reserve(unsigned long new_dma_reserve);
1012 extern void memmap_init_zone(unsigned long, int, unsigned long,
1013 				unsigned long, enum memmap_context);
1014 extern void setup_per_zone_pages_min(void);
1015 extern void mem_init(void);
1016 extern void show_mem(void);
1017 extern void si_meminfo(struct sysinfo * val);
1018 extern void si_meminfo_node(struct sysinfo *val, int nid);
1019 
1020 #ifdef CONFIG_NUMA
1021 extern void setup_per_cpu_pageset(void);
1022 #else
1023 static inline void setup_per_cpu_pageset(void) {}
1024 #endif
1025 
1026 /* prio_tree.c */
1027 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1028 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1029 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1030 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1031 	struct prio_tree_iter *iter);
1032 
1033 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1034 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1035 		(vma = vma_prio_tree_next(vma, iter)); )
1036 
1037 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1038 					struct list_head *list)
1039 {
1040 	vma->shared.vm_set.parent = NULL;
1041 	list_add_tail(&vma->shared.vm_set.list, list);
1042 }
1043 
1044 /* mmap.c */
1045 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1046 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1047 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1048 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1049 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1050 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1051 	struct mempolicy *);
1052 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1053 extern int split_vma(struct mm_struct *,
1054 	struct vm_area_struct *, unsigned long addr, int new_below);
1055 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1056 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1057 	struct rb_node **, struct rb_node *);
1058 extern void unlink_file_vma(struct vm_area_struct *);
1059 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1060 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1061 extern void exit_mmap(struct mm_struct *);
1062 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1063 extern int install_special_mapping(struct mm_struct *mm,
1064 				   unsigned long addr, unsigned long len,
1065 				   unsigned long flags, struct page **pages);
1066 
1067 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1068 
1069 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1070 	unsigned long len, unsigned long prot,
1071 	unsigned long flag, unsigned long pgoff);
1072 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1073 	unsigned long len, unsigned long flags,
1074 	unsigned int vm_flags, unsigned long pgoff,
1075 	int accountable);
1076 
1077 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1078 	unsigned long len, unsigned long prot,
1079 	unsigned long flag, unsigned long offset)
1080 {
1081 	unsigned long ret = -EINVAL;
1082 	if ((offset + PAGE_ALIGN(len)) < offset)
1083 		goto out;
1084 	if (!(offset & ~PAGE_MASK))
1085 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1086 out:
1087 	return ret;
1088 }
1089 
1090 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1091 
1092 extern unsigned long do_brk(unsigned long, unsigned long);
1093 
1094 /* filemap.c */
1095 extern unsigned long page_unuse(struct page *);
1096 extern void truncate_inode_pages(struct address_space *, loff_t);
1097 extern void truncate_inode_pages_range(struct address_space *,
1098 				       loff_t lstart, loff_t lend);
1099 
1100 /* generic vm_area_ops exported for stackable file systems */
1101 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1102 
1103 /* mm/page-writeback.c */
1104 int write_one_page(struct page *page, int wait);
1105 
1106 /* readahead.c */
1107 #define VM_MAX_READAHEAD	128	/* kbytes */
1108 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1109 #define VM_MAX_CACHE_HIT    	256	/* max pages in a row in cache before
1110 					 * turning readahead off */
1111 
1112 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1113 			pgoff_t offset, unsigned long nr_to_read);
1114 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1115 			pgoff_t offset, unsigned long nr_to_read);
1116 
1117 void page_cache_sync_readahead(struct address_space *mapping,
1118 			       struct file_ra_state *ra,
1119 			       struct file *filp,
1120 			       pgoff_t offset,
1121 			       unsigned long size);
1122 
1123 void page_cache_async_readahead(struct address_space *mapping,
1124 				struct file_ra_state *ra,
1125 				struct file *filp,
1126 				struct page *pg,
1127 				pgoff_t offset,
1128 				unsigned long size);
1129 
1130 unsigned long max_sane_readahead(unsigned long nr);
1131 
1132 /* Do stack extension */
1133 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1134 #ifdef CONFIG_IA64
1135 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1136 #endif
1137 extern int expand_stack_downwards(struct vm_area_struct *vma,
1138 				  unsigned long address);
1139 
1140 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1141 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1142 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1143 					     struct vm_area_struct **pprev);
1144 
1145 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1146    NULL if none.  Assume start_addr < end_addr. */
1147 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1148 {
1149 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1150 
1151 	if (vma && end_addr <= vma->vm_start)
1152 		vma = NULL;
1153 	return vma;
1154 }
1155 
1156 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1157 {
1158 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1159 }
1160 
1161 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1162 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1163 struct page *vmalloc_to_page(void *addr);
1164 unsigned long vmalloc_to_pfn(void *addr);
1165 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1166 			unsigned long pfn, unsigned long size, pgprot_t);
1167 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1168 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1169 			unsigned long pfn);
1170 
1171 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1172 			unsigned int foll_flags);
1173 #define FOLL_WRITE	0x01	/* check pte is writable */
1174 #define FOLL_TOUCH	0x02	/* mark page accessed */
1175 #define FOLL_GET	0x04	/* do get_page on page */
1176 #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */
1177 
1178 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1179 			void *data);
1180 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1181 			       unsigned long size, pte_fn_t fn, void *data);
1182 
1183 #ifdef CONFIG_PROC_FS
1184 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1185 #else
1186 static inline void vm_stat_account(struct mm_struct *mm,
1187 			unsigned long flags, struct file *file, long pages)
1188 {
1189 }
1190 #endif /* CONFIG_PROC_FS */
1191 
1192 #ifndef CONFIG_DEBUG_PAGEALLOC
1193 static inline void
1194 kernel_map_pages(struct page *page, int numpages, int enable) {}
1195 #endif
1196 
1197 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1198 #ifdef	__HAVE_ARCH_GATE_AREA
1199 int in_gate_area_no_task(unsigned long addr);
1200 int in_gate_area(struct task_struct *task, unsigned long addr);
1201 #else
1202 int in_gate_area_no_task(unsigned long addr);
1203 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1204 #endif	/* __HAVE_ARCH_GATE_AREA */
1205 
1206 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1207 					void __user *, size_t *, loff_t *);
1208 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1209 			unsigned long lru_pages);
1210 void drop_pagecache(void);
1211 void drop_slab(void);
1212 
1213 #ifndef CONFIG_MMU
1214 #define randomize_va_space 0
1215 #else
1216 extern int randomize_va_space;
1217 #endif
1218 
1219 const char * arch_vma_name(struct vm_area_struct *vma);
1220 
1221 #endif /* __KERNEL__ */
1222 #endif /* _LINUX_MM_H */
1223