xref: /linux-6.15/include/linux/mm.h (revision 2ab71a02)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26 
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34 
35 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37 
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 	max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45 
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49 
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55 
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66 
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70 
71 #ifndef __pa_symbol
72 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74 
75 /*
76  * To prevent common memory management code establishing
77  * a zero page mapping on a read fault.
78  * This macro should be defined within <asm/pgtable.h>.
79  * s390 does this to prevent multiplexing of hardware bits
80  * related to the physical page in case of virtualization.
81  */
82 #ifndef mm_forbids_zeropage
83 #define mm_forbids_zeropage(X)	(0)
84 #endif
85 
86 /*
87  * Default maximum number of active map areas, this limits the number of vmas
88  * per mm struct. Users can overwrite this number by sysctl but there is a
89  * problem.
90  *
91  * When a program's coredump is generated as ELF format, a section is created
92  * per a vma. In ELF, the number of sections is represented in unsigned short.
93  * This means the number of sections should be smaller than 65535 at coredump.
94  * Because the kernel adds some informative sections to a image of program at
95  * generating coredump, we need some margin. The number of extra sections is
96  * 1-3 now and depends on arch. We use "5" as safe margin, here.
97  *
98  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
99  * not a hard limit any more. Although some userspace tools can be surprised by
100  * that.
101  */
102 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
103 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
104 
105 extern int sysctl_max_map_count;
106 
107 extern unsigned long sysctl_user_reserve_kbytes;
108 extern unsigned long sysctl_admin_reserve_kbytes;
109 
110 extern int sysctl_overcommit_memory;
111 extern int sysctl_overcommit_ratio;
112 extern unsigned long sysctl_overcommit_kbytes;
113 
114 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
115 				    size_t *, loff_t *);
116 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
117 				    size_t *, loff_t *);
118 
119 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
120 
121 /* to align the pointer to the (next) page boundary */
122 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
123 
124 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
125 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
126 
127 /*
128  * Linux kernel virtual memory manager primitives.
129  * The idea being to have a "virtual" mm in the same way
130  * we have a virtual fs - giving a cleaner interface to the
131  * mm details, and allowing different kinds of memory mappings
132  * (from shared memory to executable loading to arbitrary
133  * mmap() functions).
134  */
135 
136 extern struct kmem_cache *vm_area_cachep;
137 
138 #ifndef CONFIG_MMU
139 extern struct rb_root nommu_region_tree;
140 extern struct rw_semaphore nommu_region_sem;
141 
142 extern unsigned int kobjsize(const void *objp);
143 #endif
144 
145 /*
146  * vm_flags in vm_area_struct, see mm_types.h.
147  * When changing, update also include/trace/events/mmflags.h
148  */
149 #define VM_NONE		0x00000000
150 
151 #define VM_READ		0x00000001	/* currently active flags */
152 #define VM_WRITE	0x00000002
153 #define VM_EXEC		0x00000004
154 #define VM_SHARED	0x00000008
155 
156 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
157 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
158 #define VM_MAYWRITE	0x00000020
159 #define VM_MAYEXEC	0x00000040
160 #define VM_MAYSHARE	0x00000080
161 
162 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
163 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
164 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
165 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
166 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
167 
168 #define VM_LOCKED	0x00002000
169 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
170 
171 					/* Used by sys_madvise() */
172 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
173 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
174 
175 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
176 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
177 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
178 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
179 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
180 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
181 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
182 #define VM_ARCH_2	0x02000000
183 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
184 
185 #ifdef CONFIG_MEM_SOFT_DIRTY
186 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
187 #else
188 # define VM_SOFTDIRTY	0
189 #endif
190 
191 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
192 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
193 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
194 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
195 
196 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
197 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
198 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
199 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
200 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
201 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
202 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
203 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
204 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
205 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
206 
207 #if defined(CONFIG_X86)
208 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
209 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
210 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
211 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
212 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1
213 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
214 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
215 #endif
216 #elif defined(CONFIG_PPC)
217 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
218 #elif defined(CONFIG_PARISC)
219 # define VM_GROWSUP	VM_ARCH_1
220 #elif defined(CONFIG_METAG)
221 # define VM_GROWSUP	VM_ARCH_1
222 #elif defined(CONFIG_IA64)
223 # define VM_GROWSUP	VM_ARCH_1
224 #elif !defined(CONFIG_MMU)
225 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
226 #endif
227 
228 #if defined(CONFIG_X86)
229 /* MPX specific bounds table or bounds directory */
230 # define VM_MPX		VM_ARCH_2
231 #endif
232 
233 #ifndef VM_GROWSUP
234 # define VM_GROWSUP	VM_NONE
235 #endif
236 
237 /* Bits set in the VMA until the stack is in its final location */
238 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
239 
240 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
241 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
242 #endif
243 
244 #ifdef CONFIG_STACK_GROWSUP
245 #define VM_STACK	VM_GROWSUP
246 #else
247 #define VM_STACK	VM_GROWSDOWN
248 #endif
249 
250 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
251 
252 /*
253  * Special vmas that are non-mergable, non-mlock()able.
254  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
255  */
256 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
257 
258 /* This mask defines which mm->def_flags a process can inherit its parent */
259 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
260 
261 /* This mask is used to clear all the VMA flags used by mlock */
262 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
263 
264 /*
265  * mapping from the currently active vm_flags protection bits (the
266  * low four bits) to a page protection mask..
267  */
268 extern pgprot_t protection_map[16];
269 
270 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
271 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
272 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
273 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
274 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
275 #define FAULT_FLAG_TRIED	0x20	/* Second try */
276 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
277 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
278 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
279 
280 /*
281  * vm_fault is filled by the the pagefault handler and passed to the vma's
282  * ->fault function. The vma's ->fault is responsible for returning a bitmask
283  * of VM_FAULT_xxx flags that give details about how the fault was handled.
284  *
285  * MM layer fills up gfp_mask for page allocations but fault handler might
286  * alter it if its implementation requires a different allocation context.
287  *
288  * pgoff should be used in favour of virtual_address, if possible.
289  */
290 struct vm_fault {
291 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
292 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
293 	pgoff_t pgoff;			/* Logical page offset based on vma */
294 	void __user *virtual_address;	/* Faulting virtual address */
295 
296 	struct page *cow_page;		/* Handler may choose to COW */
297 	struct page *page;		/* ->fault handlers should return a
298 					 * page here, unless VM_FAULT_NOPAGE
299 					 * is set (which is also implied by
300 					 * VM_FAULT_ERROR).
301 					 */
302 	/* for ->map_pages() only */
303 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
304 					 * max_pgoff inclusive */
305 	pte_t *pte;			/* pte entry associated with ->pgoff */
306 };
307 
308 /*
309  * These are the virtual MM functions - opening of an area, closing and
310  * unmapping it (needed to keep files on disk up-to-date etc), pointer
311  * to the functions called when a no-page or a wp-page exception occurs.
312  */
313 struct vm_operations_struct {
314 	void (*open)(struct vm_area_struct * area);
315 	void (*close)(struct vm_area_struct * area);
316 	int (*mremap)(struct vm_area_struct * area);
317 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
318 	int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
319 						pmd_t *, unsigned int flags);
320 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
321 
322 	/* notification that a previously read-only page is about to become
323 	 * writable, if an error is returned it will cause a SIGBUS */
324 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
325 
326 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
327 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
328 
329 	/* called by access_process_vm when get_user_pages() fails, typically
330 	 * for use by special VMAs that can switch between memory and hardware
331 	 */
332 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
333 		      void *buf, int len, int write);
334 
335 	/* Called by the /proc/PID/maps code to ask the vma whether it
336 	 * has a special name.  Returning non-NULL will also cause this
337 	 * vma to be dumped unconditionally. */
338 	const char *(*name)(struct vm_area_struct *vma);
339 
340 #ifdef CONFIG_NUMA
341 	/*
342 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
343 	 * to hold the policy upon return.  Caller should pass NULL @new to
344 	 * remove a policy and fall back to surrounding context--i.e. do not
345 	 * install a MPOL_DEFAULT policy, nor the task or system default
346 	 * mempolicy.
347 	 */
348 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
349 
350 	/*
351 	 * get_policy() op must add reference [mpol_get()] to any policy at
352 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
353 	 * in mm/mempolicy.c will do this automatically.
354 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
355 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
356 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
357 	 * must return NULL--i.e., do not "fallback" to task or system default
358 	 * policy.
359 	 */
360 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
361 					unsigned long addr);
362 #endif
363 	/*
364 	 * Called by vm_normal_page() for special PTEs to find the
365 	 * page for @addr.  This is useful if the default behavior
366 	 * (using pte_page()) would not find the correct page.
367 	 */
368 	struct page *(*find_special_page)(struct vm_area_struct *vma,
369 					  unsigned long addr);
370 };
371 
372 struct mmu_gather;
373 struct inode;
374 
375 #define page_private(page)		((page)->private)
376 #define set_page_private(page, v)	((page)->private = (v))
377 
378 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
379 static inline int pmd_devmap(pmd_t pmd)
380 {
381 	return 0;
382 }
383 #endif
384 
385 /*
386  * FIXME: take this include out, include page-flags.h in
387  * files which need it (119 of them)
388  */
389 #include <linux/page-flags.h>
390 #include <linux/huge_mm.h>
391 
392 /*
393  * Methods to modify the page usage count.
394  *
395  * What counts for a page usage:
396  * - cache mapping   (page->mapping)
397  * - private data    (page->private)
398  * - page mapped in a task's page tables, each mapping
399  *   is counted separately
400  *
401  * Also, many kernel routines increase the page count before a critical
402  * routine so they can be sure the page doesn't go away from under them.
403  */
404 
405 /*
406  * Drop a ref, return true if the refcount fell to zero (the page has no users)
407  */
408 static inline int put_page_testzero(struct page *page)
409 {
410 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
411 	return page_ref_dec_and_test(page);
412 }
413 
414 /*
415  * Try to grab a ref unless the page has a refcount of zero, return false if
416  * that is the case.
417  * This can be called when MMU is off so it must not access
418  * any of the virtual mappings.
419  */
420 static inline int get_page_unless_zero(struct page *page)
421 {
422 	return page_ref_add_unless(page, 1, 0);
423 }
424 
425 extern int page_is_ram(unsigned long pfn);
426 
427 enum {
428 	REGION_INTERSECTS,
429 	REGION_DISJOINT,
430 	REGION_MIXED,
431 };
432 
433 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
434 		      unsigned long desc);
435 
436 /* Support for virtually mapped pages */
437 struct page *vmalloc_to_page(const void *addr);
438 unsigned long vmalloc_to_pfn(const void *addr);
439 
440 /*
441  * Determine if an address is within the vmalloc range
442  *
443  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
444  * is no special casing required.
445  */
446 static inline int is_vmalloc_addr(const void *x)
447 {
448 #ifdef CONFIG_MMU
449 	unsigned long addr = (unsigned long)x;
450 
451 	return addr >= VMALLOC_START && addr < VMALLOC_END;
452 #else
453 	return 0;
454 #endif
455 }
456 #ifdef CONFIG_MMU
457 extern int is_vmalloc_or_module_addr(const void *x);
458 #else
459 static inline int is_vmalloc_or_module_addr(const void *x)
460 {
461 	return 0;
462 }
463 #endif
464 
465 extern void kvfree(const void *addr);
466 
467 static inline atomic_t *compound_mapcount_ptr(struct page *page)
468 {
469 	return &page[1].compound_mapcount;
470 }
471 
472 static inline int compound_mapcount(struct page *page)
473 {
474 	if (!PageCompound(page))
475 		return 0;
476 	page = compound_head(page);
477 	return atomic_read(compound_mapcount_ptr(page)) + 1;
478 }
479 
480 /*
481  * The atomic page->_mapcount, starts from -1: so that transitions
482  * both from it and to it can be tracked, using atomic_inc_and_test
483  * and atomic_add_negative(-1).
484  */
485 static inline void page_mapcount_reset(struct page *page)
486 {
487 	atomic_set(&(page)->_mapcount, -1);
488 }
489 
490 int __page_mapcount(struct page *page);
491 
492 static inline int page_mapcount(struct page *page)
493 {
494 	VM_BUG_ON_PAGE(PageSlab(page), page);
495 
496 	if (unlikely(PageCompound(page)))
497 		return __page_mapcount(page);
498 	return atomic_read(&page->_mapcount) + 1;
499 }
500 
501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
502 int total_mapcount(struct page *page);
503 #else
504 static inline int total_mapcount(struct page *page)
505 {
506 	return page_mapcount(page);
507 }
508 #endif
509 
510 static inline struct page *virt_to_head_page(const void *x)
511 {
512 	struct page *page = virt_to_page(x);
513 
514 	return compound_head(page);
515 }
516 
517 void __put_page(struct page *page);
518 
519 void put_pages_list(struct list_head *pages);
520 
521 void split_page(struct page *page, unsigned int order);
522 int split_free_page(struct page *page);
523 
524 /*
525  * Compound pages have a destructor function.  Provide a
526  * prototype for that function and accessor functions.
527  * These are _only_ valid on the head of a compound page.
528  */
529 typedef void compound_page_dtor(struct page *);
530 
531 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
532 enum compound_dtor_id {
533 	NULL_COMPOUND_DTOR,
534 	COMPOUND_PAGE_DTOR,
535 #ifdef CONFIG_HUGETLB_PAGE
536 	HUGETLB_PAGE_DTOR,
537 #endif
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 	TRANSHUGE_PAGE_DTOR,
540 #endif
541 	NR_COMPOUND_DTORS,
542 };
543 extern compound_page_dtor * const compound_page_dtors[];
544 
545 static inline void set_compound_page_dtor(struct page *page,
546 		enum compound_dtor_id compound_dtor)
547 {
548 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
549 	page[1].compound_dtor = compound_dtor;
550 }
551 
552 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
553 {
554 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
555 	return compound_page_dtors[page[1].compound_dtor];
556 }
557 
558 static inline unsigned int compound_order(struct page *page)
559 {
560 	if (!PageHead(page))
561 		return 0;
562 	return page[1].compound_order;
563 }
564 
565 static inline void set_compound_order(struct page *page, unsigned int order)
566 {
567 	page[1].compound_order = order;
568 }
569 
570 void free_compound_page(struct page *page);
571 
572 #ifdef CONFIG_MMU
573 /*
574  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
575  * servicing faults for write access.  In the normal case, do always want
576  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
577  * that do not have writing enabled, when used by access_process_vm.
578  */
579 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
580 {
581 	if (likely(vma->vm_flags & VM_WRITE))
582 		pte = pte_mkwrite(pte);
583 	return pte;
584 }
585 
586 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
587 		struct page *page, pte_t *pte, bool write, bool anon);
588 #endif
589 
590 /*
591  * Multiple processes may "see" the same page. E.g. for untouched
592  * mappings of /dev/null, all processes see the same page full of
593  * zeroes, and text pages of executables and shared libraries have
594  * only one copy in memory, at most, normally.
595  *
596  * For the non-reserved pages, page_count(page) denotes a reference count.
597  *   page_count() == 0 means the page is free. page->lru is then used for
598  *   freelist management in the buddy allocator.
599  *   page_count() > 0  means the page has been allocated.
600  *
601  * Pages are allocated by the slab allocator in order to provide memory
602  * to kmalloc and kmem_cache_alloc. In this case, the management of the
603  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
604  * unless a particular usage is carefully commented. (the responsibility of
605  * freeing the kmalloc memory is the caller's, of course).
606  *
607  * A page may be used by anyone else who does a __get_free_page().
608  * In this case, page_count still tracks the references, and should only
609  * be used through the normal accessor functions. The top bits of page->flags
610  * and page->virtual store page management information, but all other fields
611  * are unused and could be used privately, carefully. The management of this
612  * page is the responsibility of the one who allocated it, and those who have
613  * subsequently been given references to it.
614  *
615  * The other pages (we may call them "pagecache pages") are completely
616  * managed by the Linux memory manager: I/O, buffers, swapping etc.
617  * The following discussion applies only to them.
618  *
619  * A pagecache page contains an opaque `private' member, which belongs to the
620  * page's address_space. Usually, this is the address of a circular list of
621  * the page's disk buffers. PG_private must be set to tell the VM to call
622  * into the filesystem to release these pages.
623  *
624  * A page may belong to an inode's memory mapping. In this case, page->mapping
625  * is the pointer to the inode, and page->index is the file offset of the page,
626  * in units of PAGE_SIZE.
627  *
628  * If pagecache pages are not associated with an inode, they are said to be
629  * anonymous pages. These may become associated with the swapcache, and in that
630  * case PG_swapcache is set, and page->private is an offset into the swapcache.
631  *
632  * In either case (swapcache or inode backed), the pagecache itself holds one
633  * reference to the page. Setting PG_private should also increment the
634  * refcount. The each user mapping also has a reference to the page.
635  *
636  * The pagecache pages are stored in a per-mapping radix tree, which is
637  * rooted at mapping->page_tree, and indexed by offset.
638  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
639  * lists, we instead now tag pages as dirty/writeback in the radix tree.
640  *
641  * All pagecache pages may be subject to I/O:
642  * - inode pages may need to be read from disk,
643  * - inode pages which have been modified and are MAP_SHARED may need
644  *   to be written back to the inode on disk,
645  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
646  *   modified may need to be swapped out to swap space and (later) to be read
647  *   back into memory.
648  */
649 
650 /*
651  * The zone field is never updated after free_area_init_core()
652  * sets it, so none of the operations on it need to be atomic.
653  */
654 
655 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
656 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
657 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
658 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
659 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
660 
661 /*
662  * Define the bit shifts to access each section.  For non-existent
663  * sections we define the shift as 0; that plus a 0 mask ensures
664  * the compiler will optimise away reference to them.
665  */
666 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
667 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
668 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
669 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
670 
671 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
672 #ifdef NODE_NOT_IN_PAGE_FLAGS
673 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
674 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
675 						SECTIONS_PGOFF : ZONES_PGOFF)
676 #else
677 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
678 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
679 						NODES_PGOFF : ZONES_PGOFF)
680 #endif
681 
682 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
683 
684 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
685 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
686 #endif
687 
688 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
689 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
690 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
691 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
692 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
693 
694 static inline enum zone_type page_zonenum(const struct page *page)
695 {
696 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
697 }
698 
699 #ifdef CONFIG_ZONE_DEVICE
700 void get_zone_device_page(struct page *page);
701 void put_zone_device_page(struct page *page);
702 static inline bool is_zone_device_page(const struct page *page)
703 {
704 	return page_zonenum(page) == ZONE_DEVICE;
705 }
706 #else
707 static inline void get_zone_device_page(struct page *page)
708 {
709 }
710 static inline void put_zone_device_page(struct page *page)
711 {
712 }
713 static inline bool is_zone_device_page(const struct page *page)
714 {
715 	return false;
716 }
717 #endif
718 
719 static inline void get_page(struct page *page)
720 {
721 	page = compound_head(page);
722 	/*
723 	 * Getting a normal page or the head of a compound page
724 	 * requires to already have an elevated page->_count.
725 	 */
726 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
727 	page_ref_inc(page);
728 
729 	if (unlikely(is_zone_device_page(page)))
730 		get_zone_device_page(page);
731 }
732 
733 static inline void put_page(struct page *page)
734 {
735 	page = compound_head(page);
736 
737 	if (put_page_testzero(page))
738 		__put_page(page);
739 
740 	if (unlikely(is_zone_device_page(page)))
741 		put_zone_device_page(page);
742 }
743 
744 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
745 #define SECTION_IN_PAGE_FLAGS
746 #endif
747 
748 /*
749  * The identification function is mainly used by the buddy allocator for
750  * determining if two pages could be buddies. We are not really identifying
751  * the zone since we could be using the section number id if we do not have
752  * node id available in page flags.
753  * We only guarantee that it will return the same value for two combinable
754  * pages in a zone.
755  */
756 static inline int page_zone_id(struct page *page)
757 {
758 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
759 }
760 
761 static inline int zone_to_nid(struct zone *zone)
762 {
763 #ifdef CONFIG_NUMA
764 	return zone->node;
765 #else
766 	return 0;
767 #endif
768 }
769 
770 #ifdef NODE_NOT_IN_PAGE_FLAGS
771 extern int page_to_nid(const struct page *page);
772 #else
773 static inline int page_to_nid(const struct page *page)
774 {
775 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
776 }
777 #endif
778 
779 #ifdef CONFIG_NUMA_BALANCING
780 static inline int cpu_pid_to_cpupid(int cpu, int pid)
781 {
782 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
783 }
784 
785 static inline int cpupid_to_pid(int cpupid)
786 {
787 	return cpupid & LAST__PID_MASK;
788 }
789 
790 static inline int cpupid_to_cpu(int cpupid)
791 {
792 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
793 }
794 
795 static inline int cpupid_to_nid(int cpupid)
796 {
797 	return cpu_to_node(cpupid_to_cpu(cpupid));
798 }
799 
800 static inline bool cpupid_pid_unset(int cpupid)
801 {
802 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
803 }
804 
805 static inline bool cpupid_cpu_unset(int cpupid)
806 {
807 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
808 }
809 
810 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
811 {
812 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
813 }
814 
815 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
816 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
817 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
818 {
819 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
820 }
821 
822 static inline int page_cpupid_last(struct page *page)
823 {
824 	return page->_last_cpupid;
825 }
826 static inline void page_cpupid_reset_last(struct page *page)
827 {
828 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
829 }
830 #else
831 static inline int page_cpupid_last(struct page *page)
832 {
833 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
834 }
835 
836 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
837 
838 static inline void page_cpupid_reset_last(struct page *page)
839 {
840 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
841 
842 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
843 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
844 }
845 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
846 #else /* !CONFIG_NUMA_BALANCING */
847 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
848 {
849 	return page_to_nid(page); /* XXX */
850 }
851 
852 static inline int page_cpupid_last(struct page *page)
853 {
854 	return page_to_nid(page); /* XXX */
855 }
856 
857 static inline int cpupid_to_nid(int cpupid)
858 {
859 	return -1;
860 }
861 
862 static inline int cpupid_to_pid(int cpupid)
863 {
864 	return -1;
865 }
866 
867 static inline int cpupid_to_cpu(int cpupid)
868 {
869 	return -1;
870 }
871 
872 static inline int cpu_pid_to_cpupid(int nid, int pid)
873 {
874 	return -1;
875 }
876 
877 static inline bool cpupid_pid_unset(int cpupid)
878 {
879 	return 1;
880 }
881 
882 static inline void page_cpupid_reset_last(struct page *page)
883 {
884 }
885 
886 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
887 {
888 	return false;
889 }
890 #endif /* CONFIG_NUMA_BALANCING */
891 
892 static inline struct zone *page_zone(const struct page *page)
893 {
894 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
895 }
896 
897 #ifdef SECTION_IN_PAGE_FLAGS
898 static inline void set_page_section(struct page *page, unsigned long section)
899 {
900 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
901 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
902 }
903 
904 static inline unsigned long page_to_section(const struct page *page)
905 {
906 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
907 }
908 #endif
909 
910 static inline void set_page_zone(struct page *page, enum zone_type zone)
911 {
912 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
913 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
914 }
915 
916 static inline void set_page_node(struct page *page, unsigned long node)
917 {
918 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
919 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
920 }
921 
922 static inline void set_page_links(struct page *page, enum zone_type zone,
923 	unsigned long node, unsigned long pfn)
924 {
925 	set_page_zone(page, zone);
926 	set_page_node(page, node);
927 #ifdef SECTION_IN_PAGE_FLAGS
928 	set_page_section(page, pfn_to_section_nr(pfn));
929 #endif
930 }
931 
932 #ifdef CONFIG_MEMCG
933 static inline struct mem_cgroup *page_memcg(struct page *page)
934 {
935 	return page->mem_cgroup;
936 }
937 #else
938 static inline struct mem_cgroup *page_memcg(struct page *page)
939 {
940 	return NULL;
941 }
942 #endif
943 
944 /*
945  * Some inline functions in vmstat.h depend on page_zone()
946  */
947 #include <linux/vmstat.h>
948 
949 static __always_inline void *lowmem_page_address(const struct page *page)
950 {
951 	return __va(PFN_PHYS(page_to_pfn(page)));
952 }
953 
954 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
955 #define HASHED_PAGE_VIRTUAL
956 #endif
957 
958 #if defined(WANT_PAGE_VIRTUAL)
959 static inline void *page_address(const struct page *page)
960 {
961 	return page->virtual;
962 }
963 static inline void set_page_address(struct page *page, void *address)
964 {
965 	page->virtual = address;
966 }
967 #define page_address_init()  do { } while(0)
968 #endif
969 
970 #if defined(HASHED_PAGE_VIRTUAL)
971 void *page_address(const struct page *page);
972 void set_page_address(struct page *page, void *virtual);
973 void page_address_init(void);
974 #endif
975 
976 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
977 #define page_address(page) lowmem_page_address(page)
978 #define set_page_address(page, address)  do { } while(0)
979 #define page_address_init()  do { } while(0)
980 #endif
981 
982 extern void *page_rmapping(struct page *page);
983 extern struct anon_vma *page_anon_vma(struct page *page);
984 extern struct address_space *page_mapping(struct page *page);
985 
986 extern struct address_space *__page_file_mapping(struct page *);
987 
988 static inline
989 struct address_space *page_file_mapping(struct page *page)
990 {
991 	if (unlikely(PageSwapCache(page)))
992 		return __page_file_mapping(page);
993 
994 	return page->mapping;
995 }
996 
997 /*
998  * Return the pagecache index of the passed page.  Regular pagecache pages
999  * use ->index whereas swapcache pages use ->private
1000  */
1001 static inline pgoff_t page_index(struct page *page)
1002 {
1003 	if (unlikely(PageSwapCache(page)))
1004 		return page_private(page);
1005 	return page->index;
1006 }
1007 
1008 extern pgoff_t __page_file_index(struct page *page);
1009 
1010 /*
1011  * Return the file index of the page. Regular pagecache pages use ->index
1012  * whereas swapcache pages use swp_offset(->private)
1013  */
1014 static inline pgoff_t page_file_index(struct page *page)
1015 {
1016 	if (unlikely(PageSwapCache(page)))
1017 		return __page_file_index(page);
1018 
1019 	return page->index;
1020 }
1021 
1022 /*
1023  * Return true if this page is mapped into pagetables.
1024  * For compound page it returns true if any subpage of compound page is mapped.
1025  */
1026 static inline bool page_mapped(struct page *page)
1027 {
1028 	int i;
1029 	if (likely(!PageCompound(page)))
1030 		return atomic_read(&page->_mapcount) >= 0;
1031 	page = compound_head(page);
1032 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1033 		return true;
1034 	if (PageHuge(page))
1035 		return false;
1036 	for (i = 0; i < hpage_nr_pages(page); i++) {
1037 		if (atomic_read(&page[i]._mapcount) >= 0)
1038 			return true;
1039 	}
1040 	return false;
1041 }
1042 
1043 /*
1044  * Return true only if the page has been allocated with
1045  * ALLOC_NO_WATERMARKS and the low watermark was not
1046  * met implying that the system is under some pressure.
1047  */
1048 static inline bool page_is_pfmemalloc(struct page *page)
1049 {
1050 	/*
1051 	 * Page index cannot be this large so this must be
1052 	 * a pfmemalloc page.
1053 	 */
1054 	return page->index == -1UL;
1055 }
1056 
1057 /*
1058  * Only to be called by the page allocator on a freshly allocated
1059  * page.
1060  */
1061 static inline void set_page_pfmemalloc(struct page *page)
1062 {
1063 	page->index = -1UL;
1064 }
1065 
1066 static inline void clear_page_pfmemalloc(struct page *page)
1067 {
1068 	page->index = 0;
1069 }
1070 
1071 /*
1072  * Different kinds of faults, as returned by handle_mm_fault().
1073  * Used to decide whether a process gets delivered SIGBUS or
1074  * just gets major/minor fault counters bumped up.
1075  */
1076 
1077 #define VM_FAULT_OOM	0x0001
1078 #define VM_FAULT_SIGBUS	0x0002
1079 #define VM_FAULT_MAJOR	0x0004
1080 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1081 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1082 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1083 #define VM_FAULT_SIGSEGV 0x0040
1084 
1085 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1086 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1087 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1088 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1089 
1090 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1091 
1092 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1093 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1094 			 VM_FAULT_FALLBACK)
1095 
1096 /* Encode hstate index for a hwpoisoned large page */
1097 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1098 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1099 
1100 /*
1101  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1102  */
1103 extern void pagefault_out_of_memory(void);
1104 
1105 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1106 
1107 /*
1108  * Flags passed to show_mem() and show_free_areas() to suppress output in
1109  * various contexts.
1110  */
1111 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1112 
1113 extern void show_free_areas(unsigned int flags);
1114 extern bool skip_free_areas_node(unsigned int flags, int nid);
1115 
1116 int shmem_zero_setup(struct vm_area_struct *);
1117 #ifdef CONFIG_SHMEM
1118 bool shmem_mapping(struct address_space *mapping);
1119 #else
1120 static inline bool shmem_mapping(struct address_space *mapping)
1121 {
1122 	return false;
1123 }
1124 #endif
1125 
1126 extern bool can_do_mlock(void);
1127 extern int user_shm_lock(size_t, struct user_struct *);
1128 extern void user_shm_unlock(size_t, struct user_struct *);
1129 
1130 /*
1131  * Parameter block passed down to zap_pte_range in exceptional cases.
1132  */
1133 struct zap_details {
1134 	struct address_space *check_mapping;	/* Check page->mapping if set */
1135 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1136 	pgoff_t last_index;			/* Highest page->index to unmap */
1137 	bool ignore_dirty;			/* Ignore dirty pages */
1138 	bool check_swap_entries;		/* Check also swap entries */
1139 };
1140 
1141 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1142 		pte_t pte);
1143 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1144 				pmd_t pmd);
1145 
1146 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1147 		unsigned long size);
1148 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1149 		unsigned long size, struct zap_details *);
1150 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1151 		unsigned long start, unsigned long end);
1152 
1153 /**
1154  * mm_walk - callbacks for walk_page_range
1155  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1156  *	       this handler is required to be able to handle
1157  *	       pmd_trans_huge() pmds.  They may simply choose to
1158  *	       split_huge_page() instead of handling it explicitly.
1159  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1160  * @pte_hole: if set, called for each hole at all levels
1161  * @hugetlb_entry: if set, called for each hugetlb entry
1162  * @test_walk: caller specific callback function to determine whether
1163  *             we walk over the current vma or not. A positive returned
1164  *             value means "do page table walk over the current vma,"
1165  *             and a negative one means "abort current page table walk
1166  *             right now." 0 means "skip the current vma."
1167  * @mm:        mm_struct representing the target process of page table walk
1168  * @vma:       vma currently walked (NULL if walking outside vmas)
1169  * @private:   private data for callbacks' usage
1170  *
1171  * (see the comment on walk_page_range() for more details)
1172  */
1173 struct mm_walk {
1174 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1175 			 unsigned long next, struct mm_walk *walk);
1176 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1177 			 unsigned long next, struct mm_walk *walk);
1178 	int (*pte_hole)(unsigned long addr, unsigned long next,
1179 			struct mm_walk *walk);
1180 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1181 			     unsigned long addr, unsigned long next,
1182 			     struct mm_walk *walk);
1183 	int (*test_walk)(unsigned long addr, unsigned long next,
1184 			struct mm_walk *walk);
1185 	struct mm_struct *mm;
1186 	struct vm_area_struct *vma;
1187 	void *private;
1188 };
1189 
1190 int walk_page_range(unsigned long addr, unsigned long end,
1191 		struct mm_walk *walk);
1192 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1193 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1194 		unsigned long end, unsigned long floor, unsigned long ceiling);
1195 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1196 			struct vm_area_struct *vma);
1197 void unmap_mapping_range(struct address_space *mapping,
1198 		loff_t const holebegin, loff_t const holelen, int even_cows);
1199 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1200 	unsigned long *pfn);
1201 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1202 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1203 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1204 			void *buf, int len, int write);
1205 
1206 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1207 		loff_t const holebegin, loff_t const holelen)
1208 {
1209 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1210 }
1211 
1212 extern void truncate_pagecache(struct inode *inode, loff_t new);
1213 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1214 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1215 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1216 int truncate_inode_page(struct address_space *mapping, struct page *page);
1217 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1218 int invalidate_inode_page(struct page *page);
1219 
1220 #ifdef CONFIG_MMU
1221 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1222 			unsigned long address, unsigned int flags);
1223 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1224 			    unsigned long address, unsigned int fault_flags,
1225 			    bool *unlocked);
1226 #else
1227 static inline int handle_mm_fault(struct mm_struct *mm,
1228 			struct vm_area_struct *vma, unsigned long address,
1229 			unsigned int flags)
1230 {
1231 	/* should never happen if there's no MMU */
1232 	BUG();
1233 	return VM_FAULT_SIGBUS;
1234 }
1235 static inline int fixup_user_fault(struct task_struct *tsk,
1236 		struct mm_struct *mm, unsigned long address,
1237 		unsigned int fault_flags, bool *unlocked)
1238 {
1239 	/* should never happen if there's no MMU */
1240 	BUG();
1241 	return -EFAULT;
1242 }
1243 #endif
1244 
1245 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1246 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1247 		void *buf, int len, int write);
1248 
1249 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1250 		      unsigned long start, unsigned long nr_pages,
1251 		      unsigned int foll_flags, struct page **pages,
1252 		      struct vm_area_struct **vmas, int *nonblocking);
1253 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1254 			    unsigned long start, unsigned long nr_pages,
1255 			    int write, int force, struct page **pages,
1256 			    struct vm_area_struct **vmas);
1257 long get_user_pages(unsigned long start, unsigned long nr_pages,
1258 			    int write, int force, struct page **pages,
1259 			    struct vm_area_struct **vmas);
1260 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1261 		    int write, int force, struct page **pages, int *locked);
1262 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1263 			       unsigned long start, unsigned long nr_pages,
1264 			       int write, int force, struct page **pages,
1265 			       unsigned int gup_flags);
1266 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1267 		    int write, int force, struct page **pages);
1268 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1269 			struct page **pages);
1270 
1271 /* Container for pinned pfns / pages */
1272 struct frame_vector {
1273 	unsigned int nr_allocated;	/* Number of frames we have space for */
1274 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1275 	bool got_ref;		/* Did we pin pages by getting page ref? */
1276 	bool is_pfns;		/* Does array contain pages or pfns? */
1277 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1278 				 * pfns_vector_pages() or pfns_vector_pfns()
1279 				 * for access */
1280 };
1281 
1282 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1283 void frame_vector_destroy(struct frame_vector *vec);
1284 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1285 		     bool write, bool force, struct frame_vector *vec);
1286 void put_vaddr_frames(struct frame_vector *vec);
1287 int frame_vector_to_pages(struct frame_vector *vec);
1288 void frame_vector_to_pfns(struct frame_vector *vec);
1289 
1290 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1291 {
1292 	return vec->nr_frames;
1293 }
1294 
1295 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1296 {
1297 	if (vec->is_pfns) {
1298 		int err = frame_vector_to_pages(vec);
1299 
1300 		if (err)
1301 			return ERR_PTR(err);
1302 	}
1303 	return (struct page **)(vec->ptrs);
1304 }
1305 
1306 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1307 {
1308 	if (!vec->is_pfns)
1309 		frame_vector_to_pfns(vec);
1310 	return (unsigned long *)(vec->ptrs);
1311 }
1312 
1313 struct kvec;
1314 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1315 			struct page **pages);
1316 int get_kernel_page(unsigned long start, int write, struct page **pages);
1317 struct page *get_dump_page(unsigned long addr);
1318 
1319 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1320 extern void do_invalidatepage(struct page *page, unsigned int offset,
1321 			      unsigned int length);
1322 
1323 int __set_page_dirty_nobuffers(struct page *page);
1324 int __set_page_dirty_no_writeback(struct page *page);
1325 int redirty_page_for_writepage(struct writeback_control *wbc,
1326 				struct page *page);
1327 void account_page_dirtied(struct page *page, struct address_space *mapping);
1328 void account_page_cleaned(struct page *page, struct address_space *mapping,
1329 			  struct bdi_writeback *wb);
1330 int set_page_dirty(struct page *page);
1331 int set_page_dirty_lock(struct page *page);
1332 void cancel_dirty_page(struct page *page);
1333 int clear_page_dirty_for_io(struct page *page);
1334 
1335 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1336 
1337 /* Is the vma a continuation of the stack vma above it? */
1338 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1339 {
1340 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1341 }
1342 
1343 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1344 {
1345 	return !vma->vm_ops;
1346 }
1347 
1348 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1349 					     unsigned long addr)
1350 {
1351 	return (vma->vm_flags & VM_GROWSDOWN) &&
1352 		(vma->vm_start == addr) &&
1353 		!vma_growsdown(vma->vm_prev, addr);
1354 }
1355 
1356 /* Is the vma a continuation of the stack vma below it? */
1357 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1358 {
1359 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1360 }
1361 
1362 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1363 					   unsigned long addr)
1364 {
1365 	return (vma->vm_flags & VM_GROWSUP) &&
1366 		(vma->vm_end == addr) &&
1367 		!vma_growsup(vma->vm_next, addr);
1368 }
1369 
1370 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1371 
1372 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1373 		unsigned long old_addr, struct vm_area_struct *new_vma,
1374 		unsigned long new_addr, unsigned long len,
1375 		bool need_rmap_locks);
1376 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1377 			      unsigned long end, pgprot_t newprot,
1378 			      int dirty_accountable, int prot_numa);
1379 extern int mprotect_fixup(struct vm_area_struct *vma,
1380 			  struct vm_area_struct **pprev, unsigned long start,
1381 			  unsigned long end, unsigned long newflags);
1382 
1383 /*
1384  * doesn't attempt to fault and will return short.
1385  */
1386 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1387 			  struct page **pages);
1388 /*
1389  * per-process(per-mm_struct) statistics.
1390  */
1391 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1392 {
1393 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1394 
1395 #ifdef SPLIT_RSS_COUNTING
1396 	/*
1397 	 * counter is updated in asynchronous manner and may go to minus.
1398 	 * But it's never be expected number for users.
1399 	 */
1400 	if (val < 0)
1401 		val = 0;
1402 #endif
1403 	return (unsigned long)val;
1404 }
1405 
1406 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1407 {
1408 	atomic_long_add(value, &mm->rss_stat.count[member]);
1409 }
1410 
1411 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1412 {
1413 	atomic_long_inc(&mm->rss_stat.count[member]);
1414 }
1415 
1416 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1417 {
1418 	atomic_long_dec(&mm->rss_stat.count[member]);
1419 }
1420 
1421 /* Optimized variant when page is already known not to be PageAnon */
1422 static inline int mm_counter_file(struct page *page)
1423 {
1424 	if (PageSwapBacked(page))
1425 		return MM_SHMEMPAGES;
1426 	return MM_FILEPAGES;
1427 }
1428 
1429 static inline int mm_counter(struct page *page)
1430 {
1431 	if (PageAnon(page))
1432 		return MM_ANONPAGES;
1433 	return mm_counter_file(page);
1434 }
1435 
1436 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1437 {
1438 	return get_mm_counter(mm, MM_FILEPAGES) +
1439 		get_mm_counter(mm, MM_ANONPAGES) +
1440 		get_mm_counter(mm, MM_SHMEMPAGES);
1441 }
1442 
1443 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1444 {
1445 	return max(mm->hiwater_rss, get_mm_rss(mm));
1446 }
1447 
1448 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1449 {
1450 	return max(mm->hiwater_vm, mm->total_vm);
1451 }
1452 
1453 static inline void update_hiwater_rss(struct mm_struct *mm)
1454 {
1455 	unsigned long _rss = get_mm_rss(mm);
1456 
1457 	if ((mm)->hiwater_rss < _rss)
1458 		(mm)->hiwater_rss = _rss;
1459 }
1460 
1461 static inline void update_hiwater_vm(struct mm_struct *mm)
1462 {
1463 	if (mm->hiwater_vm < mm->total_vm)
1464 		mm->hiwater_vm = mm->total_vm;
1465 }
1466 
1467 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1468 {
1469 	mm->hiwater_rss = get_mm_rss(mm);
1470 }
1471 
1472 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1473 					 struct mm_struct *mm)
1474 {
1475 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1476 
1477 	if (*maxrss < hiwater_rss)
1478 		*maxrss = hiwater_rss;
1479 }
1480 
1481 #if defined(SPLIT_RSS_COUNTING)
1482 void sync_mm_rss(struct mm_struct *mm);
1483 #else
1484 static inline void sync_mm_rss(struct mm_struct *mm)
1485 {
1486 }
1487 #endif
1488 
1489 #ifndef __HAVE_ARCH_PTE_DEVMAP
1490 static inline int pte_devmap(pte_t pte)
1491 {
1492 	return 0;
1493 }
1494 #endif
1495 
1496 int vma_wants_writenotify(struct vm_area_struct *vma);
1497 
1498 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1499 			       spinlock_t **ptl);
1500 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1501 				    spinlock_t **ptl)
1502 {
1503 	pte_t *ptep;
1504 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1505 	return ptep;
1506 }
1507 
1508 #ifdef __PAGETABLE_PUD_FOLDED
1509 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1510 						unsigned long address)
1511 {
1512 	return 0;
1513 }
1514 #else
1515 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1516 #endif
1517 
1518 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1519 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1520 						unsigned long address)
1521 {
1522 	return 0;
1523 }
1524 
1525 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1526 
1527 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1528 {
1529 	return 0;
1530 }
1531 
1532 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1533 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1534 
1535 #else
1536 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1537 
1538 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1539 {
1540 	atomic_long_set(&mm->nr_pmds, 0);
1541 }
1542 
1543 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1544 {
1545 	return atomic_long_read(&mm->nr_pmds);
1546 }
1547 
1548 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1549 {
1550 	atomic_long_inc(&mm->nr_pmds);
1551 }
1552 
1553 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1554 {
1555 	atomic_long_dec(&mm->nr_pmds);
1556 }
1557 #endif
1558 
1559 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1560 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1561 
1562 /*
1563  * The following ifdef needed to get the 4level-fixup.h header to work.
1564  * Remove it when 4level-fixup.h has been removed.
1565  */
1566 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1567 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1568 {
1569 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1570 		NULL: pud_offset(pgd, address);
1571 }
1572 
1573 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1574 {
1575 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1576 		NULL: pmd_offset(pud, address);
1577 }
1578 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1579 
1580 #if USE_SPLIT_PTE_PTLOCKS
1581 #if ALLOC_SPLIT_PTLOCKS
1582 void __init ptlock_cache_init(void);
1583 extern bool ptlock_alloc(struct page *page);
1584 extern void ptlock_free(struct page *page);
1585 
1586 static inline spinlock_t *ptlock_ptr(struct page *page)
1587 {
1588 	return page->ptl;
1589 }
1590 #else /* ALLOC_SPLIT_PTLOCKS */
1591 static inline void ptlock_cache_init(void)
1592 {
1593 }
1594 
1595 static inline bool ptlock_alloc(struct page *page)
1596 {
1597 	return true;
1598 }
1599 
1600 static inline void ptlock_free(struct page *page)
1601 {
1602 }
1603 
1604 static inline spinlock_t *ptlock_ptr(struct page *page)
1605 {
1606 	return &page->ptl;
1607 }
1608 #endif /* ALLOC_SPLIT_PTLOCKS */
1609 
1610 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1611 {
1612 	return ptlock_ptr(pmd_page(*pmd));
1613 }
1614 
1615 static inline bool ptlock_init(struct page *page)
1616 {
1617 	/*
1618 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1619 	 * with 0. Make sure nobody took it in use in between.
1620 	 *
1621 	 * It can happen if arch try to use slab for page table allocation:
1622 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1623 	 */
1624 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1625 	if (!ptlock_alloc(page))
1626 		return false;
1627 	spin_lock_init(ptlock_ptr(page));
1628 	return true;
1629 }
1630 
1631 /* Reset page->mapping so free_pages_check won't complain. */
1632 static inline void pte_lock_deinit(struct page *page)
1633 {
1634 	page->mapping = NULL;
1635 	ptlock_free(page);
1636 }
1637 
1638 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1639 /*
1640  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1641  */
1642 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1643 {
1644 	return &mm->page_table_lock;
1645 }
1646 static inline void ptlock_cache_init(void) {}
1647 static inline bool ptlock_init(struct page *page) { return true; }
1648 static inline void pte_lock_deinit(struct page *page) {}
1649 #endif /* USE_SPLIT_PTE_PTLOCKS */
1650 
1651 static inline void pgtable_init(void)
1652 {
1653 	ptlock_cache_init();
1654 	pgtable_cache_init();
1655 }
1656 
1657 static inline bool pgtable_page_ctor(struct page *page)
1658 {
1659 	if (!ptlock_init(page))
1660 		return false;
1661 	inc_zone_page_state(page, NR_PAGETABLE);
1662 	return true;
1663 }
1664 
1665 static inline void pgtable_page_dtor(struct page *page)
1666 {
1667 	pte_lock_deinit(page);
1668 	dec_zone_page_state(page, NR_PAGETABLE);
1669 }
1670 
1671 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1672 ({							\
1673 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1674 	pte_t *__pte = pte_offset_map(pmd, address);	\
1675 	*(ptlp) = __ptl;				\
1676 	spin_lock(__ptl);				\
1677 	__pte;						\
1678 })
1679 
1680 #define pte_unmap_unlock(pte, ptl)	do {		\
1681 	spin_unlock(ptl);				\
1682 	pte_unmap(pte);					\
1683 } while (0)
1684 
1685 #define pte_alloc(mm, pmd, address)			\
1686 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1687 
1688 #define pte_alloc_map(mm, pmd, address)			\
1689 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1690 
1691 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1692 	(pte_alloc(mm, pmd, address) ?			\
1693 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1694 
1695 #define pte_alloc_kernel(pmd, address)			\
1696 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1697 		NULL: pte_offset_kernel(pmd, address))
1698 
1699 #if USE_SPLIT_PMD_PTLOCKS
1700 
1701 static struct page *pmd_to_page(pmd_t *pmd)
1702 {
1703 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1704 	return virt_to_page((void *)((unsigned long) pmd & mask));
1705 }
1706 
1707 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1708 {
1709 	return ptlock_ptr(pmd_to_page(pmd));
1710 }
1711 
1712 static inline bool pgtable_pmd_page_ctor(struct page *page)
1713 {
1714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1715 	page->pmd_huge_pte = NULL;
1716 #endif
1717 	return ptlock_init(page);
1718 }
1719 
1720 static inline void pgtable_pmd_page_dtor(struct page *page)
1721 {
1722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1723 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1724 #endif
1725 	ptlock_free(page);
1726 }
1727 
1728 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1729 
1730 #else
1731 
1732 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1733 {
1734 	return &mm->page_table_lock;
1735 }
1736 
1737 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1738 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1739 
1740 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1741 
1742 #endif
1743 
1744 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1745 {
1746 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1747 	spin_lock(ptl);
1748 	return ptl;
1749 }
1750 
1751 extern void free_area_init(unsigned long * zones_size);
1752 extern void free_area_init_node(int nid, unsigned long * zones_size,
1753 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1754 extern void free_initmem(void);
1755 
1756 /*
1757  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1758  * into the buddy system. The freed pages will be poisoned with pattern
1759  * "poison" if it's within range [0, UCHAR_MAX].
1760  * Return pages freed into the buddy system.
1761  */
1762 extern unsigned long free_reserved_area(void *start, void *end,
1763 					int poison, char *s);
1764 
1765 #ifdef	CONFIG_HIGHMEM
1766 /*
1767  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1768  * and totalram_pages.
1769  */
1770 extern void free_highmem_page(struct page *page);
1771 #endif
1772 
1773 extern void adjust_managed_page_count(struct page *page, long count);
1774 extern void mem_init_print_info(const char *str);
1775 
1776 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1777 
1778 /* Free the reserved page into the buddy system, so it gets managed. */
1779 static inline void __free_reserved_page(struct page *page)
1780 {
1781 	ClearPageReserved(page);
1782 	init_page_count(page);
1783 	__free_page(page);
1784 }
1785 
1786 static inline void free_reserved_page(struct page *page)
1787 {
1788 	__free_reserved_page(page);
1789 	adjust_managed_page_count(page, 1);
1790 }
1791 
1792 static inline void mark_page_reserved(struct page *page)
1793 {
1794 	SetPageReserved(page);
1795 	adjust_managed_page_count(page, -1);
1796 }
1797 
1798 /*
1799  * Default method to free all the __init memory into the buddy system.
1800  * The freed pages will be poisoned with pattern "poison" if it's within
1801  * range [0, UCHAR_MAX].
1802  * Return pages freed into the buddy system.
1803  */
1804 static inline unsigned long free_initmem_default(int poison)
1805 {
1806 	extern char __init_begin[], __init_end[];
1807 
1808 	return free_reserved_area(&__init_begin, &__init_end,
1809 				  poison, "unused kernel");
1810 }
1811 
1812 static inline unsigned long get_num_physpages(void)
1813 {
1814 	int nid;
1815 	unsigned long phys_pages = 0;
1816 
1817 	for_each_online_node(nid)
1818 		phys_pages += node_present_pages(nid);
1819 
1820 	return phys_pages;
1821 }
1822 
1823 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1824 /*
1825  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1826  * zones, allocate the backing mem_map and account for memory holes in a more
1827  * architecture independent manner. This is a substitute for creating the
1828  * zone_sizes[] and zholes_size[] arrays and passing them to
1829  * free_area_init_node()
1830  *
1831  * An architecture is expected to register range of page frames backed by
1832  * physical memory with memblock_add[_node]() before calling
1833  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1834  * usage, an architecture is expected to do something like
1835  *
1836  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1837  * 							 max_highmem_pfn};
1838  * for_each_valid_physical_page_range()
1839  * 	memblock_add_node(base, size, nid)
1840  * free_area_init_nodes(max_zone_pfns);
1841  *
1842  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1843  * registered physical page range.  Similarly
1844  * sparse_memory_present_with_active_regions() calls memory_present() for
1845  * each range when SPARSEMEM is enabled.
1846  *
1847  * See mm/page_alloc.c for more information on each function exposed by
1848  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1849  */
1850 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1851 unsigned long node_map_pfn_alignment(void);
1852 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1853 						unsigned long end_pfn);
1854 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1855 						unsigned long end_pfn);
1856 extern void get_pfn_range_for_nid(unsigned int nid,
1857 			unsigned long *start_pfn, unsigned long *end_pfn);
1858 extern unsigned long find_min_pfn_with_active_regions(void);
1859 extern void free_bootmem_with_active_regions(int nid,
1860 						unsigned long max_low_pfn);
1861 extern void sparse_memory_present_with_active_regions(int nid);
1862 
1863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1864 
1865 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1866     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1867 static inline int __early_pfn_to_nid(unsigned long pfn,
1868 					struct mminit_pfnnid_cache *state)
1869 {
1870 	return 0;
1871 }
1872 #else
1873 /* please see mm/page_alloc.c */
1874 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1875 /* there is a per-arch backend function. */
1876 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1877 					struct mminit_pfnnid_cache *state);
1878 #endif
1879 
1880 extern void set_dma_reserve(unsigned long new_dma_reserve);
1881 extern void memmap_init_zone(unsigned long, int, unsigned long,
1882 				unsigned long, enum memmap_context);
1883 extern void setup_per_zone_wmarks(void);
1884 extern int __meminit init_per_zone_wmark_min(void);
1885 extern void mem_init(void);
1886 extern void __init mmap_init(void);
1887 extern void show_mem(unsigned int flags);
1888 extern long si_mem_available(void);
1889 extern void si_meminfo(struct sysinfo * val);
1890 extern void si_meminfo_node(struct sysinfo *val, int nid);
1891 
1892 extern __printf(3, 4)
1893 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1894 		const char *fmt, ...);
1895 
1896 extern void setup_per_cpu_pageset(void);
1897 
1898 extern void zone_pcp_update(struct zone *zone);
1899 extern void zone_pcp_reset(struct zone *zone);
1900 
1901 /* page_alloc.c */
1902 extern int min_free_kbytes;
1903 extern int watermark_scale_factor;
1904 
1905 /* nommu.c */
1906 extern atomic_long_t mmap_pages_allocated;
1907 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1908 
1909 /* interval_tree.c */
1910 void vma_interval_tree_insert(struct vm_area_struct *node,
1911 			      struct rb_root *root);
1912 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1913 				    struct vm_area_struct *prev,
1914 				    struct rb_root *root);
1915 void vma_interval_tree_remove(struct vm_area_struct *node,
1916 			      struct rb_root *root);
1917 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1918 				unsigned long start, unsigned long last);
1919 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1920 				unsigned long start, unsigned long last);
1921 
1922 #define vma_interval_tree_foreach(vma, root, start, last)		\
1923 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1924 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1925 
1926 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1927 				   struct rb_root *root);
1928 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1929 				   struct rb_root *root);
1930 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1931 	struct rb_root *root, unsigned long start, unsigned long last);
1932 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1933 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1934 #ifdef CONFIG_DEBUG_VM_RB
1935 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1936 #endif
1937 
1938 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1939 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1940 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1941 
1942 /* mmap.c */
1943 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1944 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1945 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1946 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1947 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1948 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1949 	struct mempolicy *, struct vm_userfaultfd_ctx);
1950 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1951 extern int split_vma(struct mm_struct *,
1952 	struct vm_area_struct *, unsigned long addr, int new_below);
1953 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1954 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1955 	struct rb_node **, struct rb_node *);
1956 extern void unlink_file_vma(struct vm_area_struct *);
1957 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1958 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1959 	bool *need_rmap_locks);
1960 extern void exit_mmap(struct mm_struct *);
1961 
1962 static inline int check_data_rlimit(unsigned long rlim,
1963 				    unsigned long new,
1964 				    unsigned long start,
1965 				    unsigned long end_data,
1966 				    unsigned long start_data)
1967 {
1968 	if (rlim < RLIM_INFINITY) {
1969 		if (((new - start) + (end_data - start_data)) > rlim)
1970 			return -ENOSPC;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 extern int mm_take_all_locks(struct mm_struct *mm);
1977 extern void mm_drop_all_locks(struct mm_struct *mm);
1978 
1979 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1980 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1981 
1982 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1983 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1984 
1985 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1986 				   unsigned long addr, unsigned long len,
1987 				   unsigned long flags,
1988 				   const struct vm_special_mapping *spec);
1989 /* This is an obsolete alternative to _install_special_mapping. */
1990 extern int install_special_mapping(struct mm_struct *mm,
1991 				   unsigned long addr, unsigned long len,
1992 				   unsigned long flags, struct page **pages);
1993 
1994 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1995 
1996 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1997 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1998 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1999 	unsigned long len, unsigned long prot, unsigned long flags,
2000 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2001 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2002 
2003 static inline unsigned long
2004 do_mmap_pgoff(struct file *file, unsigned long addr,
2005 	unsigned long len, unsigned long prot, unsigned long flags,
2006 	unsigned long pgoff, unsigned long *populate)
2007 {
2008 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2009 }
2010 
2011 #ifdef CONFIG_MMU
2012 extern int __mm_populate(unsigned long addr, unsigned long len,
2013 			 int ignore_errors);
2014 static inline void mm_populate(unsigned long addr, unsigned long len)
2015 {
2016 	/* Ignore errors */
2017 	(void) __mm_populate(addr, len, 1);
2018 }
2019 #else
2020 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2021 #endif
2022 
2023 /* These take the mm semaphore themselves */
2024 extern unsigned long vm_brk(unsigned long, unsigned long);
2025 extern int vm_munmap(unsigned long, size_t);
2026 extern unsigned long vm_mmap(struct file *, unsigned long,
2027         unsigned long, unsigned long,
2028         unsigned long, unsigned long);
2029 
2030 struct vm_unmapped_area_info {
2031 #define VM_UNMAPPED_AREA_TOPDOWN 1
2032 	unsigned long flags;
2033 	unsigned long length;
2034 	unsigned long low_limit;
2035 	unsigned long high_limit;
2036 	unsigned long align_mask;
2037 	unsigned long align_offset;
2038 };
2039 
2040 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2041 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2042 
2043 /*
2044  * Search for an unmapped address range.
2045  *
2046  * We are looking for a range that:
2047  * - does not intersect with any VMA;
2048  * - is contained within the [low_limit, high_limit) interval;
2049  * - is at least the desired size.
2050  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2051  */
2052 static inline unsigned long
2053 vm_unmapped_area(struct vm_unmapped_area_info *info)
2054 {
2055 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2056 		return unmapped_area_topdown(info);
2057 	else
2058 		return unmapped_area(info);
2059 }
2060 
2061 /* truncate.c */
2062 extern void truncate_inode_pages(struct address_space *, loff_t);
2063 extern void truncate_inode_pages_range(struct address_space *,
2064 				       loff_t lstart, loff_t lend);
2065 extern void truncate_inode_pages_final(struct address_space *);
2066 
2067 /* generic vm_area_ops exported for stackable file systems */
2068 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2069 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2070 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2071 
2072 /* mm/page-writeback.c */
2073 int write_one_page(struct page *page, int wait);
2074 void task_dirty_inc(struct task_struct *tsk);
2075 
2076 /* readahead.c */
2077 #define VM_MAX_READAHEAD	128	/* kbytes */
2078 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2079 
2080 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2081 			pgoff_t offset, unsigned long nr_to_read);
2082 
2083 void page_cache_sync_readahead(struct address_space *mapping,
2084 			       struct file_ra_state *ra,
2085 			       struct file *filp,
2086 			       pgoff_t offset,
2087 			       unsigned long size);
2088 
2089 void page_cache_async_readahead(struct address_space *mapping,
2090 				struct file_ra_state *ra,
2091 				struct file *filp,
2092 				struct page *pg,
2093 				pgoff_t offset,
2094 				unsigned long size);
2095 
2096 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2097 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2098 
2099 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2100 extern int expand_downwards(struct vm_area_struct *vma,
2101 		unsigned long address);
2102 #if VM_GROWSUP
2103 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2104 #else
2105   #define expand_upwards(vma, address) (0)
2106 #endif
2107 
2108 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2109 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2110 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2111 					     struct vm_area_struct **pprev);
2112 
2113 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2114    NULL if none.  Assume start_addr < end_addr. */
2115 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2116 {
2117 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2118 
2119 	if (vma && end_addr <= vma->vm_start)
2120 		vma = NULL;
2121 	return vma;
2122 }
2123 
2124 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2125 {
2126 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2127 }
2128 
2129 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2130 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2131 				unsigned long vm_start, unsigned long vm_end)
2132 {
2133 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2134 
2135 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2136 		vma = NULL;
2137 
2138 	return vma;
2139 }
2140 
2141 #ifdef CONFIG_MMU
2142 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2143 void vma_set_page_prot(struct vm_area_struct *vma);
2144 #else
2145 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2146 {
2147 	return __pgprot(0);
2148 }
2149 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2150 {
2151 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2152 }
2153 #endif
2154 
2155 #ifdef CONFIG_NUMA_BALANCING
2156 unsigned long change_prot_numa(struct vm_area_struct *vma,
2157 			unsigned long start, unsigned long end);
2158 #endif
2159 
2160 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2161 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2162 			unsigned long pfn, unsigned long size, pgprot_t);
2163 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2164 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2165 			unsigned long pfn);
2166 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2167 			unsigned long pfn, pgprot_t pgprot);
2168 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2169 			pfn_t pfn);
2170 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2171 
2172 
2173 struct page *follow_page_mask(struct vm_area_struct *vma,
2174 			      unsigned long address, unsigned int foll_flags,
2175 			      unsigned int *page_mask);
2176 
2177 static inline struct page *follow_page(struct vm_area_struct *vma,
2178 		unsigned long address, unsigned int foll_flags)
2179 {
2180 	unsigned int unused_page_mask;
2181 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2182 }
2183 
2184 #define FOLL_WRITE	0x01	/* check pte is writable */
2185 #define FOLL_TOUCH	0x02	/* mark page accessed */
2186 #define FOLL_GET	0x04	/* do get_page on page */
2187 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2188 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2189 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2190 				 * and return without waiting upon it */
2191 #define FOLL_POPULATE	0x40	/* fault in page */
2192 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2193 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2194 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2195 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2196 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2197 #define FOLL_MLOCK	0x1000	/* lock present pages */
2198 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2199 
2200 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2201 			void *data);
2202 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2203 			       unsigned long size, pte_fn_t fn, void *data);
2204 
2205 
2206 #ifdef CONFIG_PAGE_POISONING
2207 extern bool page_poisoning_enabled(void);
2208 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2209 extern bool page_is_poisoned(struct page *page);
2210 #else
2211 static inline bool page_poisoning_enabled(void) { return false; }
2212 static inline void kernel_poison_pages(struct page *page, int numpages,
2213 					int enable) { }
2214 static inline bool page_is_poisoned(struct page *page) { return false; }
2215 #endif
2216 
2217 #ifdef CONFIG_DEBUG_PAGEALLOC
2218 extern bool _debug_pagealloc_enabled;
2219 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2220 
2221 static inline bool debug_pagealloc_enabled(void)
2222 {
2223 	return _debug_pagealloc_enabled;
2224 }
2225 
2226 static inline void
2227 kernel_map_pages(struct page *page, int numpages, int enable)
2228 {
2229 	if (!debug_pagealloc_enabled())
2230 		return;
2231 
2232 	__kernel_map_pages(page, numpages, enable);
2233 }
2234 #ifdef CONFIG_HIBERNATION
2235 extern bool kernel_page_present(struct page *page);
2236 #endif	/* CONFIG_HIBERNATION */
2237 #else	/* CONFIG_DEBUG_PAGEALLOC */
2238 static inline void
2239 kernel_map_pages(struct page *page, int numpages, int enable) {}
2240 #ifdef CONFIG_HIBERNATION
2241 static inline bool kernel_page_present(struct page *page) { return true; }
2242 #endif	/* CONFIG_HIBERNATION */
2243 static inline bool debug_pagealloc_enabled(void)
2244 {
2245 	return false;
2246 }
2247 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2248 
2249 #ifdef __HAVE_ARCH_GATE_AREA
2250 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2251 extern int in_gate_area_no_mm(unsigned long addr);
2252 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2253 #else
2254 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2255 {
2256 	return NULL;
2257 }
2258 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2259 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2260 {
2261 	return 0;
2262 }
2263 #endif	/* __HAVE_ARCH_GATE_AREA */
2264 
2265 #ifdef CONFIG_SYSCTL
2266 extern int sysctl_drop_caches;
2267 int drop_caches_sysctl_handler(struct ctl_table *, int,
2268 					void __user *, size_t *, loff_t *);
2269 #endif
2270 
2271 void drop_slab(void);
2272 void drop_slab_node(int nid);
2273 
2274 #ifndef CONFIG_MMU
2275 #define randomize_va_space 0
2276 #else
2277 extern int randomize_va_space;
2278 #endif
2279 
2280 const char * arch_vma_name(struct vm_area_struct *vma);
2281 void print_vma_addr(char *prefix, unsigned long rip);
2282 
2283 void sparse_mem_maps_populate_node(struct page **map_map,
2284 				   unsigned long pnum_begin,
2285 				   unsigned long pnum_end,
2286 				   unsigned long map_count,
2287 				   int nodeid);
2288 
2289 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2290 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2291 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2292 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2293 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2294 void *vmemmap_alloc_block(unsigned long size, int node);
2295 struct vmem_altmap;
2296 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2297 		struct vmem_altmap *altmap);
2298 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2299 {
2300 	return __vmemmap_alloc_block_buf(size, node, NULL);
2301 }
2302 
2303 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2304 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2305 			       int node);
2306 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2307 void vmemmap_populate_print_last(void);
2308 #ifdef CONFIG_MEMORY_HOTPLUG
2309 void vmemmap_free(unsigned long start, unsigned long end);
2310 #endif
2311 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2312 				  unsigned long size);
2313 
2314 enum mf_flags {
2315 	MF_COUNT_INCREASED = 1 << 0,
2316 	MF_ACTION_REQUIRED = 1 << 1,
2317 	MF_MUST_KILL = 1 << 2,
2318 	MF_SOFT_OFFLINE = 1 << 3,
2319 };
2320 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2321 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2322 extern int unpoison_memory(unsigned long pfn);
2323 extern int get_hwpoison_page(struct page *page);
2324 #define put_hwpoison_page(page)	put_page(page)
2325 extern int sysctl_memory_failure_early_kill;
2326 extern int sysctl_memory_failure_recovery;
2327 extern void shake_page(struct page *p, int access);
2328 extern atomic_long_t num_poisoned_pages;
2329 extern int soft_offline_page(struct page *page, int flags);
2330 
2331 
2332 /*
2333  * Error handlers for various types of pages.
2334  */
2335 enum mf_result {
2336 	MF_IGNORED,	/* Error: cannot be handled */
2337 	MF_FAILED,	/* Error: handling failed */
2338 	MF_DELAYED,	/* Will be handled later */
2339 	MF_RECOVERED,	/* Successfully recovered */
2340 };
2341 
2342 enum mf_action_page_type {
2343 	MF_MSG_KERNEL,
2344 	MF_MSG_KERNEL_HIGH_ORDER,
2345 	MF_MSG_SLAB,
2346 	MF_MSG_DIFFERENT_COMPOUND,
2347 	MF_MSG_POISONED_HUGE,
2348 	MF_MSG_HUGE,
2349 	MF_MSG_FREE_HUGE,
2350 	MF_MSG_UNMAP_FAILED,
2351 	MF_MSG_DIRTY_SWAPCACHE,
2352 	MF_MSG_CLEAN_SWAPCACHE,
2353 	MF_MSG_DIRTY_MLOCKED_LRU,
2354 	MF_MSG_CLEAN_MLOCKED_LRU,
2355 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2356 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2357 	MF_MSG_DIRTY_LRU,
2358 	MF_MSG_CLEAN_LRU,
2359 	MF_MSG_TRUNCATED_LRU,
2360 	MF_MSG_BUDDY,
2361 	MF_MSG_BUDDY_2ND,
2362 	MF_MSG_UNKNOWN,
2363 };
2364 
2365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2366 extern void clear_huge_page(struct page *page,
2367 			    unsigned long addr,
2368 			    unsigned int pages_per_huge_page);
2369 extern void copy_user_huge_page(struct page *dst, struct page *src,
2370 				unsigned long addr, struct vm_area_struct *vma,
2371 				unsigned int pages_per_huge_page);
2372 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2373 
2374 extern struct page_ext_operations debug_guardpage_ops;
2375 extern struct page_ext_operations page_poisoning_ops;
2376 
2377 #ifdef CONFIG_DEBUG_PAGEALLOC
2378 extern unsigned int _debug_guardpage_minorder;
2379 extern bool _debug_guardpage_enabled;
2380 
2381 static inline unsigned int debug_guardpage_minorder(void)
2382 {
2383 	return _debug_guardpage_minorder;
2384 }
2385 
2386 static inline bool debug_guardpage_enabled(void)
2387 {
2388 	return _debug_guardpage_enabled;
2389 }
2390 
2391 static inline bool page_is_guard(struct page *page)
2392 {
2393 	struct page_ext *page_ext;
2394 
2395 	if (!debug_guardpage_enabled())
2396 		return false;
2397 
2398 	page_ext = lookup_page_ext(page);
2399 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2400 }
2401 #else
2402 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2403 static inline bool debug_guardpage_enabled(void) { return false; }
2404 static inline bool page_is_guard(struct page *page) { return false; }
2405 #endif /* CONFIG_DEBUG_PAGEALLOC */
2406 
2407 #if MAX_NUMNODES > 1
2408 void __init setup_nr_node_ids(void);
2409 #else
2410 static inline void setup_nr_node_ids(void) {}
2411 #endif
2412 
2413 #endif /* __KERNEL__ */
2414 #endif /* _LINUX_MM_H */
2415