1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36 extern unsigned long max_mapnr; 37 38 static inline void set_max_mapnr(unsigned long limit) 39 { 40 max_mapnr = limit; 41 } 42 #else 43 static inline void set_max_mapnr(unsigned long limit) { } 44 #endif 45 46 extern unsigned long totalram_pages; 47 extern void * high_memory; 48 extern int page_cluster; 49 50 #ifdef CONFIG_SYSCTL 51 extern int sysctl_legacy_va_layout; 52 #else 53 #define sysctl_legacy_va_layout 0 54 #endif 55 56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57 extern const int mmap_rnd_bits_min; 58 extern const int mmap_rnd_bits_max; 59 extern int mmap_rnd_bits __read_mostly; 60 #endif 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62 extern const int mmap_rnd_compat_bits_min; 63 extern const int mmap_rnd_compat_bits_max; 64 extern int mmap_rnd_compat_bits __read_mostly; 65 #endif 66 67 #include <asm/page.h> 68 #include <asm/pgtable.h> 69 #include <asm/processor.h> 70 71 #ifndef __pa_symbol 72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73 #endif 74 75 /* 76 * To prevent common memory management code establishing 77 * a zero page mapping on a read fault. 78 * This macro should be defined within <asm/pgtable.h>. 79 * s390 does this to prevent multiplexing of hardware bits 80 * related to the physical page in case of virtualization. 81 */ 82 #ifndef mm_forbids_zeropage 83 #define mm_forbids_zeropage(X) (0) 84 #endif 85 86 /* 87 * Default maximum number of active map areas, this limits the number of vmas 88 * per mm struct. Users can overwrite this number by sysctl but there is a 89 * problem. 90 * 91 * When a program's coredump is generated as ELF format, a section is created 92 * per a vma. In ELF, the number of sections is represented in unsigned short. 93 * This means the number of sections should be smaller than 65535 at coredump. 94 * Because the kernel adds some informative sections to a image of program at 95 * generating coredump, we need some margin. The number of extra sections is 96 * 1-3 now and depends on arch. We use "5" as safe margin, here. 97 * 98 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 99 * not a hard limit any more. Although some userspace tools can be surprised by 100 * that. 101 */ 102 #define MAPCOUNT_ELF_CORE_MARGIN (5) 103 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 104 105 extern int sysctl_max_map_count; 106 107 extern unsigned long sysctl_user_reserve_kbytes; 108 extern unsigned long sysctl_admin_reserve_kbytes; 109 110 extern int sysctl_overcommit_memory; 111 extern int sysctl_overcommit_ratio; 112 extern unsigned long sysctl_overcommit_kbytes; 113 114 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 115 size_t *, loff_t *); 116 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 117 size_t *, loff_t *); 118 119 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 120 121 /* to align the pointer to the (next) page boundary */ 122 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 123 124 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 125 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 126 127 /* 128 * Linux kernel virtual memory manager primitives. 129 * The idea being to have a "virtual" mm in the same way 130 * we have a virtual fs - giving a cleaner interface to the 131 * mm details, and allowing different kinds of memory mappings 132 * (from shared memory to executable loading to arbitrary 133 * mmap() functions). 134 */ 135 136 extern struct kmem_cache *vm_area_cachep; 137 138 #ifndef CONFIG_MMU 139 extern struct rb_root nommu_region_tree; 140 extern struct rw_semaphore nommu_region_sem; 141 142 extern unsigned int kobjsize(const void *objp); 143 #endif 144 145 /* 146 * vm_flags in vm_area_struct, see mm_types.h. 147 * When changing, update also include/trace/events/mmflags.h 148 */ 149 #define VM_NONE 0x00000000 150 151 #define VM_READ 0x00000001 /* currently active flags */ 152 #define VM_WRITE 0x00000002 153 #define VM_EXEC 0x00000004 154 #define VM_SHARED 0x00000008 155 156 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 157 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 158 #define VM_MAYWRITE 0x00000020 159 #define VM_MAYEXEC 0x00000040 160 #define VM_MAYSHARE 0x00000080 161 162 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 163 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 164 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 165 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 166 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 167 168 #define VM_LOCKED 0x00002000 169 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 170 171 /* Used by sys_madvise() */ 172 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 173 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 174 175 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 176 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 177 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 178 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 179 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 180 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 181 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 182 #define VM_ARCH_2 0x02000000 183 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 184 185 #ifdef CONFIG_MEM_SOFT_DIRTY 186 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 187 #else 188 # define VM_SOFTDIRTY 0 189 #endif 190 191 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 192 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 193 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 194 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 195 196 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 197 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 198 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 199 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 200 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 201 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 202 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 203 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 204 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 205 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 206 207 #if defined(CONFIG_X86) 208 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 209 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 210 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 211 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 212 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 213 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 214 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 215 #endif 216 #elif defined(CONFIG_PPC) 217 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 218 #elif defined(CONFIG_PARISC) 219 # define VM_GROWSUP VM_ARCH_1 220 #elif defined(CONFIG_METAG) 221 # define VM_GROWSUP VM_ARCH_1 222 #elif defined(CONFIG_IA64) 223 # define VM_GROWSUP VM_ARCH_1 224 #elif !defined(CONFIG_MMU) 225 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 226 #endif 227 228 #if defined(CONFIG_X86) 229 /* MPX specific bounds table or bounds directory */ 230 # define VM_MPX VM_ARCH_2 231 #endif 232 233 #ifndef VM_GROWSUP 234 # define VM_GROWSUP VM_NONE 235 #endif 236 237 /* Bits set in the VMA until the stack is in its final location */ 238 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 239 240 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 241 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 242 #endif 243 244 #ifdef CONFIG_STACK_GROWSUP 245 #define VM_STACK VM_GROWSUP 246 #else 247 #define VM_STACK VM_GROWSDOWN 248 #endif 249 250 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 251 252 /* 253 * Special vmas that are non-mergable, non-mlock()able. 254 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 255 */ 256 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 257 258 /* This mask defines which mm->def_flags a process can inherit its parent */ 259 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 260 261 /* This mask is used to clear all the VMA flags used by mlock */ 262 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 263 264 /* 265 * mapping from the currently active vm_flags protection bits (the 266 * low four bits) to a page protection mask.. 267 */ 268 extern pgprot_t protection_map[16]; 269 270 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 271 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 272 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 273 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 274 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 275 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 276 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 277 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 278 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 279 280 /* 281 * vm_fault is filled by the the pagefault handler and passed to the vma's 282 * ->fault function. The vma's ->fault is responsible for returning a bitmask 283 * of VM_FAULT_xxx flags that give details about how the fault was handled. 284 * 285 * MM layer fills up gfp_mask for page allocations but fault handler might 286 * alter it if its implementation requires a different allocation context. 287 * 288 * pgoff should be used in favour of virtual_address, if possible. 289 */ 290 struct vm_fault { 291 unsigned int flags; /* FAULT_FLAG_xxx flags */ 292 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 293 pgoff_t pgoff; /* Logical page offset based on vma */ 294 void __user *virtual_address; /* Faulting virtual address */ 295 296 struct page *cow_page; /* Handler may choose to COW */ 297 struct page *page; /* ->fault handlers should return a 298 * page here, unless VM_FAULT_NOPAGE 299 * is set (which is also implied by 300 * VM_FAULT_ERROR). 301 */ 302 /* for ->map_pages() only */ 303 pgoff_t max_pgoff; /* map pages for offset from pgoff till 304 * max_pgoff inclusive */ 305 pte_t *pte; /* pte entry associated with ->pgoff */ 306 }; 307 308 /* 309 * These are the virtual MM functions - opening of an area, closing and 310 * unmapping it (needed to keep files on disk up-to-date etc), pointer 311 * to the functions called when a no-page or a wp-page exception occurs. 312 */ 313 struct vm_operations_struct { 314 void (*open)(struct vm_area_struct * area); 315 void (*close)(struct vm_area_struct * area); 316 int (*mremap)(struct vm_area_struct * area); 317 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 318 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 319 pmd_t *, unsigned int flags); 320 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 321 322 /* notification that a previously read-only page is about to become 323 * writable, if an error is returned it will cause a SIGBUS */ 324 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 325 326 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 327 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 328 329 /* called by access_process_vm when get_user_pages() fails, typically 330 * for use by special VMAs that can switch between memory and hardware 331 */ 332 int (*access)(struct vm_area_struct *vma, unsigned long addr, 333 void *buf, int len, int write); 334 335 /* Called by the /proc/PID/maps code to ask the vma whether it 336 * has a special name. Returning non-NULL will also cause this 337 * vma to be dumped unconditionally. */ 338 const char *(*name)(struct vm_area_struct *vma); 339 340 #ifdef CONFIG_NUMA 341 /* 342 * set_policy() op must add a reference to any non-NULL @new mempolicy 343 * to hold the policy upon return. Caller should pass NULL @new to 344 * remove a policy and fall back to surrounding context--i.e. do not 345 * install a MPOL_DEFAULT policy, nor the task or system default 346 * mempolicy. 347 */ 348 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 349 350 /* 351 * get_policy() op must add reference [mpol_get()] to any policy at 352 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 353 * in mm/mempolicy.c will do this automatically. 354 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 355 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 356 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 357 * must return NULL--i.e., do not "fallback" to task or system default 358 * policy. 359 */ 360 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 361 unsigned long addr); 362 #endif 363 /* 364 * Called by vm_normal_page() for special PTEs to find the 365 * page for @addr. This is useful if the default behavior 366 * (using pte_page()) would not find the correct page. 367 */ 368 struct page *(*find_special_page)(struct vm_area_struct *vma, 369 unsigned long addr); 370 }; 371 372 struct mmu_gather; 373 struct inode; 374 375 #define page_private(page) ((page)->private) 376 #define set_page_private(page, v) ((page)->private = (v)) 377 378 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 379 static inline int pmd_devmap(pmd_t pmd) 380 { 381 return 0; 382 } 383 #endif 384 385 /* 386 * FIXME: take this include out, include page-flags.h in 387 * files which need it (119 of them) 388 */ 389 #include <linux/page-flags.h> 390 #include <linux/huge_mm.h> 391 392 /* 393 * Methods to modify the page usage count. 394 * 395 * What counts for a page usage: 396 * - cache mapping (page->mapping) 397 * - private data (page->private) 398 * - page mapped in a task's page tables, each mapping 399 * is counted separately 400 * 401 * Also, many kernel routines increase the page count before a critical 402 * routine so they can be sure the page doesn't go away from under them. 403 */ 404 405 /* 406 * Drop a ref, return true if the refcount fell to zero (the page has no users) 407 */ 408 static inline int put_page_testzero(struct page *page) 409 { 410 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 411 return page_ref_dec_and_test(page); 412 } 413 414 /* 415 * Try to grab a ref unless the page has a refcount of zero, return false if 416 * that is the case. 417 * This can be called when MMU is off so it must not access 418 * any of the virtual mappings. 419 */ 420 static inline int get_page_unless_zero(struct page *page) 421 { 422 return page_ref_add_unless(page, 1, 0); 423 } 424 425 extern int page_is_ram(unsigned long pfn); 426 427 enum { 428 REGION_INTERSECTS, 429 REGION_DISJOINT, 430 REGION_MIXED, 431 }; 432 433 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 434 unsigned long desc); 435 436 /* Support for virtually mapped pages */ 437 struct page *vmalloc_to_page(const void *addr); 438 unsigned long vmalloc_to_pfn(const void *addr); 439 440 /* 441 * Determine if an address is within the vmalloc range 442 * 443 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 444 * is no special casing required. 445 */ 446 static inline int is_vmalloc_addr(const void *x) 447 { 448 #ifdef CONFIG_MMU 449 unsigned long addr = (unsigned long)x; 450 451 return addr >= VMALLOC_START && addr < VMALLOC_END; 452 #else 453 return 0; 454 #endif 455 } 456 #ifdef CONFIG_MMU 457 extern int is_vmalloc_or_module_addr(const void *x); 458 #else 459 static inline int is_vmalloc_or_module_addr(const void *x) 460 { 461 return 0; 462 } 463 #endif 464 465 extern void kvfree(const void *addr); 466 467 static inline atomic_t *compound_mapcount_ptr(struct page *page) 468 { 469 return &page[1].compound_mapcount; 470 } 471 472 static inline int compound_mapcount(struct page *page) 473 { 474 if (!PageCompound(page)) 475 return 0; 476 page = compound_head(page); 477 return atomic_read(compound_mapcount_ptr(page)) + 1; 478 } 479 480 /* 481 * The atomic page->_mapcount, starts from -1: so that transitions 482 * both from it and to it can be tracked, using atomic_inc_and_test 483 * and atomic_add_negative(-1). 484 */ 485 static inline void page_mapcount_reset(struct page *page) 486 { 487 atomic_set(&(page)->_mapcount, -1); 488 } 489 490 int __page_mapcount(struct page *page); 491 492 static inline int page_mapcount(struct page *page) 493 { 494 VM_BUG_ON_PAGE(PageSlab(page), page); 495 496 if (unlikely(PageCompound(page))) 497 return __page_mapcount(page); 498 return atomic_read(&page->_mapcount) + 1; 499 } 500 501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 502 int total_mapcount(struct page *page); 503 #else 504 static inline int total_mapcount(struct page *page) 505 { 506 return page_mapcount(page); 507 } 508 #endif 509 510 static inline struct page *virt_to_head_page(const void *x) 511 { 512 struct page *page = virt_to_page(x); 513 514 return compound_head(page); 515 } 516 517 void __put_page(struct page *page); 518 519 void put_pages_list(struct list_head *pages); 520 521 void split_page(struct page *page, unsigned int order); 522 int split_free_page(struct page *page); 523 524 /* 525 * Compound pages have a destructor function. Provide a 526 * prototype for that function and accessor functions. 527 * These are _only_ valid on the head of a compound page. 528 */ 529 typedef void compound_page_dtor(struct page *); 530 531 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 532 enum compound_dtor_id { 533 NULL_COMPOUND_DTOR, 534 COMPOUND_PAGE_DTOR, 535 #ifdef CONFIG_HUGETLB_PAGE 536 HUGETLB_PAGE_DTOR, 537 #endif 538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 539 TRANSHUGE_PAGE_DTOR, 540 #endif 541 NR_COMPOUND_DTORS, 542 }; 543 extern compound_page_dtor * const compound_page_dtors[]; 544 545 static inline void set_compound_page_dtor(struct page *page, 546 enum compound_dtor_id compound_dtor) 547 { 548 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 549 page[1].compound_dtor = compound_dtor; 550 } 551 552 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 553 { 554 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 555 return compound_page_dtors[page[1].compound_dtor]; 556 } 557 558 static inline unsigned int compound_order(struct page *page) 559 { 560 if (!PageHead(page)) 561 return 0; 562 return page[1].compound_order; 563 } 564 565 static inline void set_compound_order(struct page *page, unsigned int order) 566 { 567 page[1].compound_order = order; 568 } 569 570 void free_compound_page(struct page *page); 571 572 #ifdef CONFIG_MMU 573 /* 574 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 575 * servicing faults for write access. In the normal case, do always want 576 * pte_mkwrite. But get_user_pages can cause write faults for mappings 577 * that do not have writing enabled, when used by access_process_vm. 578 */ 579 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 580 { 581 if (likely(vma->vm_flags & VM_WRITE)) 582 pte = pte_mkwrite(pte); 583 return pte; 584 } 585 586 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 587 struct page *page, pte_t *pte, bool write, bool anon); 588 #endif 589 590 /* 591 * Multiple processes may "see" the same page. E.g. for untouched 592 * mappings of /dev/null, all processes see the same page full of 593 * zeroes, and text pages of executables and shared libraries have 594 * only one copy in memory, at most, normally. 595 * 596 * For the non-reserved pages, page_count(page) denotes a reference count. 597 * page_count() == 0 means the page is free. page->lru is then used for 598 * freelist management in the buddy allocator. 599 * page_count() > 0 means the page has been allocated. 600 * 601 * Pages are allocated by the slab allocator in order to provide memory 602 * to kmalloc and kmem_cache_alloc. In this case, the management of the 603 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 604 * unless a particular usage is carefully commented. (the responsibility of 605 * freeing the kmalloc memory is the caller's, of course). 606 * 607 * A page may be used by anyone else who does a __get_free_page(). 608 * In this case, page_count still tracks the references, and should only 609 * be used through the normal accessor functions. The top bits of page->flags 610 * and page->virtual store page management information, but all other fields 611 * are unused and could be used privately, carefully. The management of this 612 * page is the responsibility of the one who allocated it, and those who have 613 * subsequently been given references to it. 614 * 615 * The other pages (we may call them "pagecache pages") are completely 616 * managed by the Linux memory manager: I/O, buffers, swapping etc. 617 * The following discussion applies only to them. 618 * 619 * A pagecache page contains an opaque `private' member, which belongs to the 620 * page's address_space. Usually, this is the address of a circular list of 621 * the page's disk buffers. PG_private must be set to tell the VM to call 622 * into the filesystem to release these pages. 623 * 624 * A page may belong to an inode's memory mapping. In this case, page->mapping 625 * is the pointer to the inode, and page->index is the file offset of the page, 626 * in units of PAGE_SIZE. 627 * 628 * If pagecache pages are not associated with an inode, they are said to be 629 * anonymous pages. These may become associated with the swapcache, and in that 630 * case PG_swapcache is set, and page->private is an offset into the swapcache. 631 * 632 * In either case (swapcache or inode backed), the pagecache itself holds one 633 * reference to the page. Setting PG_private should also increment the 634 * refcount. The each user mapping also has a reference to the page. 635 * 636 * The pagecache pages are stored in a per-mapping radix tree, which is 637 * rooted at mapping->page_tree, and indexed by offset. 638 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 639 * lists, we instead now tag pages as dirty/writeback in the radix tree. 640 * 641 * All pagecache pages may be subject to I/O: 642 * - inode pages may need to be read from disk, 643 * - inode pages which have been modified and are MAP_SHARED may need 644 * to be written back to the inode on disk, 645 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 646 * modified may need to be swapped out to swap space and (later) to be read 647 * back into memory. 648 */ 649 650 /* 651 * The zone field is never updated after free_area_init_core() 652 * sets it, so none of the operations on it need to be atomic. 653 */ 654 655 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 656 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 657 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 658 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 659 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 660 661 /* 662 * Define the bit shifts to access each section. For non-existent 663 * sections we define the shift as 0; that plus a 0 mask ensures 664 * the compiler will optimise away reference to them. 665 */ 666 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 667 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 668 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 669 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 670 671 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 672 #ifdef NODE_NOT_IN_PAGE_FLAGS 673 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 674 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 675 SECTIONS_PGOFF : ZONES_PGOFF) 676 #else 677 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 678 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 679 NODES_PGOFF : ZONES_PGOFF) 680 #endif 681 682 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 683 684 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 685 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 686 #endif 687 688 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 689 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 690 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 691 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 692 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 693 694 static inline enum zone_type page_zonenum(const struct page *page) 695 { 696 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 697 } 698 699 #ifdef CONFIG_ZONE_DEVICE 700 void get_zone_device_page(struct page *page); 701 void put_zone_device_page(struct page *page); 702 static inline bool is_zone_device_page(const struct page *page) 703 { 704 return page_zonenum(page) == ZONE_DEVICE; 705 } 706 #else 707 static inline void get_zone_device_page(struct page *page) 708 { 709 } 710 static inline void put_zone_device_page(struct page *page) 711 { 712 } 713 static inline bool is_zone_device_page(const struct page *page) 714 { 715 return false; 716 } 717 #endif 718 719 static inline void get_page(struct page *page) 720 { 721 page = compound_head(page); 722 /* 723 * Getting a normal page or the head of a compound page 724 * requires to already have an elevated page->_count. 725 */ 726 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 727 page_ref_inc(page); 728 729 if (unlikely(is_zone_device_page(page))) 730 get_zone_device_page(page); 731 } 732 733 static inline void put_page(struct page *page) 734 { 735 page = compound_head(page); 736 737 if (put_page_testzero(page)) 738 __put_page(page); 739 740 if (unlikely(is_zone_device_page(page))) 741 put_zone_device_page(page); 742 } 743 744 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 745 #define SECTION_IN_PAGE_FLAGS 746 #endif 747 748 /* 749 * The identification function is mainly used by the buddy allocator for 750 * determining if two pages could be buddies. We are not really identifying 751 * the zone since we could be using the section number id if we do not have 752 * node id available in page flags. 753 * We only guarantee that it will return the same value for two combinable 754 * pages in a zone. 755 */ 756 static inline int page_zone_id(struct page *page) 757 { 758 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 759 } 760 761 static inline int zone_to_nid(struct zone *zone) 762 { 763 #ifdef CONFIG_NUMA 764 return zone->node; 765 #else 766 return 0; 767 #endif 768 } 769 770 #ifdef NODE_NOT_IN_PAGE_FLAGS 771 extern int page_to_nid(const struct page *page); 772 #else 773 static inline int page_to_nid(const struct page *page) 774 { 775 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 776 } 777 #endif 778 779 #ifdef CONFIG_NUMA_BALANCING 780 static inline int cpu_pid_to_cpupid(int cpu, int pid) 781 { 782 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 783 } 784 785 static inline int cpupid_to_pid(int cpupid) 786 { 787 return cpupid & LAST__PID_MASK; 788 } 789 790 static inline int cpupid_to_cpu(int cpupid) 791 { 792 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 793 } 794 795 static inline int cpupid_to_nid(int cpupid) 796 { 797 return cpu_to_node(cpupid_to_cpu(cpupid)); 798 } 799 800 static inline bool cpupid_pid_unset(int cpupid) 801 { 802 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 803 } 804 805 static inline bool cpupid_cpu_unset(int cpupid) 806 { 807 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 808 } 809 810 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 811 { 812 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 813 } 814 815 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 816 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 817 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 818 { 819 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 820 } 821 822 static inline int page_cpupid_last(struct page *page) 823 { 824 return page->_last_cpupid; 825 } 826 static inline void page_cpupid_reset_last(struct page *page) 827 { 828 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 829 } 830 #else 831 static inline int page_cpupid_last(struct page *page) 832 { 833 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 834 } 835 836 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 837 838 static inline void page_cpupid_reset_last(struct page *page) 839 { 840 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 841 842 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 843 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 844 } 845 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 846 #else /* !CONFIG_NUMA_BALANCING */ 847 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 848 { 849 return page_to_nid(page); /* XXX */ 850 } 851 852 static inline int page_cpupid_last(struct page *page) 853 { 854 return page_to_nid(page); /* XXX */ 855 } 856 857 static inline int cpupid_to_nid(int cpupid) 858 { 859 return -1; 860 } 861 862 static inline int cpupid_to_pid(int cpupid) 863 { 864 return -1; 865 } 866 867 static inline int cpupid_to_cpu(int cpupid) 868 { 869 return -1; 870 } 871 872 static inline int cpu_pid_to_cpupid(int nid, int pid) 873 { 874 return -1; 875 } 876 877 static inline bool cpupid_pid_unset(int cpupid) 878 { 879 return 1; 880 } 881 882 static inline void page_cpupid_reset_last(struct page *page) 883 { 884 } 885 886 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 887 { 888 return false; 889 } 890 #endif /* CONFIG_NUMA_BALANCING */ 891 892 static inline struct zone *page_zone(const struct page *page) 893 { 894 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 895 } 896 897 #ifdef SECTION_IN_PAGE_FLAGS 898 static inline void set_page_section(struct page *page, unsigned long section) 899 { 900 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 901 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 902 } 903 904 static inline unsigned long page_to_section(const struct page *page) 905 { 906 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 907 } 908 #endif 909 910 static inline void set_page_zone(struct page *page, enum zone_type zone) 911 { 912 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 913 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 914 } 915 916 static inline void set_page_node(struct page *page, unsigned long node) 917 { 918 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 919 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 920 } 921 922 static inline void set_page_links(struct page *page, enum zone_type zone, 923 unsigned long node, unsigned long pfn) 924 { 925 set_page_zone(page, zone); 926 set_page_node(page, node); 927 #ifdef SECTION_IN_PAGE_FLAGS 928 set_page_section(page, pfn_to_section_nr(pfn)); 929 #endif 930 } 931 932 #ifdef CONFIG_MEMCG 933 static inline struct mem_cgroup *page_memcg(struct page *page) 934 { 935 return page->mem_cgroup; 936 } 937 #else 938 static inline struct mem_cgroup *page_memcg(struct page *page) 939 { 940 return NULL; 941 } 942 #endif 943 944 /* 945 * Some inline functions in vmstat.h depend on page_zone() 946 */ 947 #include <linux/vmstat.h> 948 949 static __always_inline void *lowmem_page_address(const struct page *page) 950 { 951 return __va(PFN_PHYS(page_to_pfn(page))); 952 } 953 954 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 955 #define HASHED_PAGE_VIRTUAL 956 #endif 957 958 #if defined(WANT_PAGE_VIRTUAL) 959 static inline void *page_address(const struct page *page) 960 { 961 return page->virtual; 962 } 963 static inline void set_page_address(struct page *page, void *address) 964 { 965 page->virtual = address; 966 } 967 #define page_address_init() do { } while(0) 968 #endif 969 970 #if defined(HASHED_PAGE_VIRTUAL) 971 void *page_address(const struct page *page); 972 void set_page_address(struct page *page, void *virtual); 973 void page_address_init(void); 974 #endif 975 976 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 977 #define page_address(page) lowmem_page_address(page) 978 #define set_page_address(page, address) do { } while(0) 979 #define page_address_init() do { } while(0) 980 #endif 981 982 extern void *page_rmapping(struct page *page); 983 extern struct anon_vma *page_anon_vma(struct page *page); 984 extern struct address_space *page_mapping(struct page *page); 985 986 extern struct address_space *__page_file_mapping(struct page *); 987 988 static inline 989 struct address_space *page_file_mapping(struct page *page) 990 { 991 if (unlikely(PageSwapCache(page))) 992 return __page_file_mapping(page); 993 994 return page->mapping; 995 } 996 997 /* 998 * Return the pagecache index of the passed page. Regular pagecache pages 999 * use ->index whereas swapcache pages use ->private 1000 */ 1001 static inline pgoff_t page_index(struct page *page) 1002 { 1003 if (unlikely(PageSwapCache(page))) 1004 return page_private(page); 1005 return page->index; 1006 } 1007 1008 extern pgoff_t __page_file_index(struct page *page); 1009 1010 /* 1011 * Return the file index of the page. Regular pagecache pages use ->index 1012 * whereas swapcache pages use swp_offset(->private) 1013 */ 1014 static inline pgoff_t page_file_index(struct page *page) 1015 { 1016 if (unlikely(PageSwapCache(page))) 1017 return __page_file_index(page); 1018 1019 return page->index; 1020 } 1021 1022 /* 1023 * Return true if this page is mapped into pagetables. 1024 * For compound page it returns true if any subpage of compound page is mapped. 1025 */ 1026 static inline bool page_mapped(struct page *page) 1027 { 1028 int i; 1029 if (likely(!PageCompound(page))) 1030 return atomic_read(&page->_mapcount) >= 0; 1031 page = compound_head(page); 1032 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 1033 return true; 1034 if (PageHuge(page)) 1035 return false; 1036 for (i = 0; i < hpage_nr_pages(page); i++) { 1037 if (atomic_read(&page[i]._mapcount) >= 0) 1038 return true; 1039 } 1040 return false; 1041 } 1042 1043 /* 1044 * Return true only if the page has been allocated with 1045 * ALLOC_NO_WATERMARKS and the low watermark was not 1046 * met implying that the system is under some pressure. 1047 */ 1048 static inline bool page_is_pfmemalloc(struct page *page) 1049 { 1050 /* 1051 * Page index cannot be this large so this must be 1052 * a pfmemalloc page. 1053 */ 1054 return page->index == -1UL; 1055 } 1056 1057 /* 1058 * Only to be called by the page allocator on a freshly allocated 1059 * page. 1060 */ 1061 static inline void set_page_pfmemalloc(struct page *page) 1062 { 1063 page->index = -1UL; 1064 } 1065 1066 static inline void clear_page_pfmemalloc(struct page *page) 1067 { 1068 page->index = 0; 1069 } 1070 1071 /* 1072 * Different kinds of faults, as returned by handle_mm_fault(). 1073 * Used to decide whether a process gets delivered SIGBUS or 1074 * just gets major/minor fault counters bumped up. 1075 */ 1076 1077 #define VM_FAULT_OOM 0x0001 1078 #define VM_FAULT_SIGBUS 0x0002 1079 #define VM_FAULT_MAJOR 0x0004 1080 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1081 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1082 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1083 #define VM_FAULT_SIGSEGV 0x0040 1084 1085 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1086 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1087 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1088 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1089 1090 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1091 1092 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1093 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1094 VM_FAULT_FALLBACK) 1095 1096 /* Encode hstate index for a hwpoisoned large page */ 1097 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1098 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1099 1100 /* 1101 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1102 */ 1103 extern void pagefault_out_of_memory(void); 1104 1105 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1106 1107 /* 1108 * Flags passed to show_mem() and show_free_areas() to suppress output in 1109 * various contexts. 1110 */ 1111 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1112 1113 extern void show_free_areas(unsigned int flags); 1114 extern bool skip_free_areas_node(unsigned int flags, int nid); 1115 1116 int shmem_zero_setup(struct vm_area_struct *); 1117 #ifdef CONFIG_SHMEM 1118 bool shmem_mapping(struct address_space *mapping); 1119 #else 1120 static inline bool shmem_mapping(struct address_space *mapping) 1121 { 1122 return false; 1123 } 1124 #endif 1125 1126 extern bool can_do_mlock(void); 1127 extern int user_shm_lock(size_t, struct user_struct *); 1128 extern void user_shm_unlock(size_t, struct user_struct *); 1129 1130 /* 1131 * Parameter block passed down to zap_pte_range in exceptional cases. 1132 */ 1133 struct zap_details { 1134 struct address_space *check_mapping; /* Check page->mapping if set */ 1135 pgoff_t first_index; /* Lowest page->index to unmap */ 1136 pgoff_t last_index; /* Highest page->index to unmap */ 1137 bool ignore_dirty; /* Ignore dirty pages */ 1138 bool check_swap_entries; /* Check also swap entries */ 1139 }; 1140 1141 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1142 pte_t pte); 1143 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1144 pmd_t pmd); 1145 1146 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1147 unsigned long size); 1148 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1149 unsigned long size, struct zap_details *); 1150 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1151 unsigned long start, unsigned long end); 1152 1153 /** 1154 * mm_walk - callbacks for walk_page_range 1155 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1156 * this handler is required to be able to handle 1157 * pmd_trans_huge() pmds. They may simply choose to 1158 * split_huge_page() instead of handling it explicitly. 1159 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1160 * @pte_hole: if set, called for each hole at all levels 1161 * @hugetlb_entry: if set, called for each hugetlb entry 1162 * @test_walk: caller specific callback function to determine whether 1163 * we walk over the current vma or not. A positive returned 1164 * value means "do page table walk over the current vma," 1165 * and a negative one means "abort current page table walk 1166 * right now." 0 means "skip the current vma." 1167 * @mm: mm_struct representing the target process of page table walk 1168 * @vma: vma currently walked (NULL if walking outside vmas) 1169 * @private: private data for callbacks' usage 1170 * 1171 * (see the comment on walk_page_range() for more details) 1172 */ 1173 struct mm_walk { 1174 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1175 unsigned long next, struct mm_walk *walk); 1176 int (*pte_entry)(pte_t *pte, unsigned long addr, 1177 unsigned long next, struct mm_walk *walk); 1178 int (*pte_hole)(unsigned long addr, unsigned long next, 1179 struct mm_walk *walk); 1180 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1181 unsigned long addr, unsigned long next, 1182 struct mm_walk *walk); 1183 int (*test_walk)(unsigned long addr, unsigned long next, 1184 struct mm_walk *walk); 1185 struct mm_struct *mm; 1186 struct vm_area_struct *vma; 1187 void *private; 1188 }; 1189 1190 int walk_page_range(unsigned long addr, unsigned long end, 1191 struct mm_walk *walk); 1192 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1193 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1194 unsigned long end, unsigned long floor, unsigned long ceiling); 1195 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1196 struct vm_area_struct *vma); 1197 void unmap_mapping_range(struct address_space *mapping, 1198 loff_t const holebegin, loff_t const holelen, int even_cows); 1199 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1200 unsigned long *pfn); 1201 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1202 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1203 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1204 void *buf, int len, int write); 1205 1206 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1207 loff_t const holebegin, loff_t const holelen) 1208 { 1209 unmap_mapping_range(mapping, holebegin, holelen, 0); 1210 } 1211 1212 extern void truncate_pagecache(struct inode *inode, loff_t new); 1213 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1214 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1215 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1216 int truncate_inode_page(struct address_space *mapping, struct page *page); 1217 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1218 int invalidate_inode_page(struct page *page); 1219 1220 #ifdef CONFIG_MMU 1221 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1222 unsigned long address, unsigned int flags); 1223 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1224 unsigned long address, unsigned int fault_flags, 1225 bool *unlocked); 1226 #else 1227 static inline int handle_mm_fault(struct mm_struct *mm, 1228 struct vm_area_struct *vma, unsigned long address, 1229 unsigned int flags) 1230 { 1231 /* should never happen if there's no MMU */ 1232 BUG(); 1233 return VM_FAULT_SIGBUS; 1234 } 1235 static inline int fixup_user_fault(struct task_struct *tsk, 1236 struct mm_struct *mm, unsigned long address, 1237 unsigned int fault_flags, bool *unlocked) 1238 { 1239 /* should never happen if there's no MMU */ 1240 BUG(); 1241 return -EFAULT; 1242 } 1243 #endif 1244 1245 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1246 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1247 void *buf, int len, int write); 1248 1249 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1250 unsigned long start, unsigned long nr_pages, 1251 unsigned int foll_flags, struct page **pages, 1252 struct vm_area_struct **vmas, int *nonblocking); 1253 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1254 unsigned long start, unsigned long nr_pages, 1255 int write, int force, struct page **pages, 1256 struct vm_area_struct **vmas); 1257 long get_user_pages(unsigned long start, unsigned long nr_pages, 1258 int write, int force, struct page **pages, 1259 struct vm_area_struct **vmas); 1260 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1261 int write, int force, struct page **pages, int *locked); 1262 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1263 unsigned long start, unsigned long nr_pages, 1264 int write, int force, struct page **pages, 1265 unsigned int gup_flags); 1266 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1267 int write, int force, struct page **pages); 1268 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1269 struct page **pages); 1270 1271 /* Container for pinned pfns / pages */ 1272 struct frame_vector { 1273 unsigned int nr_allocated; /* Number of frames we have space for */ 1274 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1275 bool got_ref; /* Did we pin pages by getting page ref? */ 1276 bool is_pfns; /* Does array contain pages or pfns? */ 1277 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1278 * pfns_vector_pages() or pfns_vector_pfns() 1279 * for access */ 1280 }; 1281 1282 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1283 void frame_vector_destroy(struct frame_vector *vec); 1284 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1285 bool write, bool force, struct frame_vector *vec); 1286 void put_vaddr_frames(struct frame_vector *vec); 1287 int frame_vector_to_pages(struct frame_vector *vec); 1288 void frame_vector_to_pfns(struct frame_vector *vec); 1289 1290 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1291 { 1292 return vec->nr_frames; 1293 } 1294 1295 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1296 { 1297 if (vec->is_pfns) { 1298 int err = frame_vector_to_pages(vec); 1299 1300 if (err) 1301 return ERR_PTR(err); 1302 } 1303 return (struct page **)(vec->ptrs); 1304 } 1305 1306 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1307 { 1308 if (!vec->is_pfns) 1309 frame_vector_to_pfns(vec); 1310 return (unsigned long *)(vec->ptrs); 1311 } 1312 1313 struct kvec; 1314 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1315 struct page **pages); 1316 int get_kernel_page(unsigned long start, int write, struct page **pages); 1317 struct page *get_dump_page(unsigned long addr); 1318 1319 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1320 extern void do_invalidatepage(struct page *page, unsigned int offset, 1321 unsigned int length); 1322 1323 int __set_page_dirty_nobuffers(struct page *page); 1324 int __set_page_dirty_no_writeback(struct page *page); 1325 int redirty_page_for_writepage(struct writeback_control *wbc, 1326 struct page *page); 1327 void account_page_dirtied(struct page *page, struct address_space *mapping); 1328 void account_page_cleaned(struct page *page, struct address_space *mapping, 1329 struct bdi_writeback *wb); 1330 int set_page_dirty(struct page *page); 1331 int set_page_dirty_lock(struct page *page); 1332 void cancel_dirty_page(struct page *page); 1333 int clear_page_dirty_for_io(struct page *page); 1334 1335 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1336 1337 /* Is the vma a continuation of the stack vma above it? */ 1338 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1339 { 1340 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1341 } 1342 1343 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1344 { 1345 return !vma->vm_ops; 1346 } 1347 1348 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1349 unsigned long addr) 1350 { 1351 return (vma->vm_flags & VM_GROWSDOWN) && 1352 (vma->vm_start == addr) && 1353 !vma_growsdown(vma->vm_prev, addr); 1354 } 1355 1356 /* Is the vma a continuation of the stack vma below it? */ 1357 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1358 { 1359 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1360 } 1361 1362 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1363 unsigned long addr) 1364 { 1365 return (vma->vm_flags & VM_GROWSUP) && 1366 (vma->vm_end == addr) && 1367 !vma_growsup(vma->vm_next, addr); 1368 } 1369 1370 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1371 1372 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1373 unsigned long old_addr, struct vm_area_struct *new_vma, 1374 unsigned long new_addr, unsigned long len, 1375 bool need_rmap_locks); 1376 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1377 unsigned long end, pgprot_t newprot, 1378 int dirty_accountable, int prot_numa); 1379 extern int mprotect_fixup(struct vm_area_struct *vma, 1380 struct vm_area_struct **pprev, unsigned long start, 1381 unsigned long end, unsigned long newflags); 1382 1383 /* 1384 * doesn't attempt to fault and will return short. 1385 */ 1386 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1387 struct page **pages); 1388 /* 1389 * per-process(per-mm_struct) statistics. 1390 */ 1391 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1392 { 1393 long val = atomic_long_read(&mm->rss_stat.count[member]); 1394 1395 #ifdef SPLIT_RSS_COUNTING 1396 /* 1397 * counter is updated in asynchronous manner and may go to minus. 1398 * But it's never be expected number for users. 1399 */ 1400 if (val < 0) 1401 val = 0; 1402 #endif 1403 return (unsigned long)val; 1404 } 1405 1406 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1407 { 1408 atomic_long_add(value, &mm->rss_stat.count[member]); 1409 } 1410 1411 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1412 { 1413 atomic_long_inc(&mm->rss_stat.count[member]); 1414 } 1415 1416 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1417 { 1418 atomic_long_dec(&mm->rss_stat.count[member]); 1419 } 1420 1421 /* Optimized variant when page is already known not to be PageAnon */ 1422 static inline int mm_counter_file(struct page *page) 1423 { 1424 if (PageSwapBacked(page)) 1425 return MM_SHMEMPAGES; 1426 return MM_FILEPAGES; 1427 } 1428 1429 static inline int mm_counter(struct page *page) 1430 { 1431 if (PageAnon(page)) 1432 return MM_ANONPAGES; 1433 return mm_counter_file(page); 1434 } 1435 1436 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1437 { 1438 return get_mm_counter(mm, MM_FILEPAGES) + 1439 get_mm_counter(mm, MM_ANONPAGES) + 1440 get_mm_counter(mm, MM_SHMEMPAGES); 1441 } 1442 1443 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1444 { 1445 return max(mm->hiwater_rss, get_mm_rss(mm)); 1446 } 1447 1448 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1449 { 1450 return max(mm->hiwater_vm, mm->total_vm); 1451 } 1452 1453 static inline void update_hiwater_rss(struct mm_struct *mm) 1454 { 1455 unsigned long _rss = get_mm_rss(mm); 1456 1457 if ((mm)->hiwater_rss < _rss) 1458 (mm)->hiwater_rss = _rss; 1459 } 1460 1461 static inline void update_hiwater_vm(struct mm_struct *mm) 1462 { 1463 if (mm->hiwater_vm < mm->total_vm) 1464 mm->hiwater_vm = mm->total_vm; 1465 } 1466 1467 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1468 { 1469 mm->hiwater_rss = get_mm_rss(mm); 1470 } 1471 1472 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1473 struct mm_struct *mm) 1474 { 1475 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1476 1477 if (*maxrss < hiwater_rss) 1478 *maxrss = hiwater_rss; 1479 } 1480 1481 #if defined(SPLIT_RSS_COUNTING) 1482 void sync_mm_rss(struct mm_struct *mm); 1483 #else 1484 static inline void sync_mm_rss(struct mm_struct *mm) 1485 { 1486 } 1487 #endif 1488 1489 #ifndef __HAVE_ARCH_PTE_DEVMAP 1490 static inline int pte_devmap(pte_t pte) 1491 { 1492 return 0; 1493 } 1494 #endif 1495 1496 int vma_wants_writenotify(struct vm_area_struct *vma); 1497 1498 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1499 spinlock_t **ptl); 1500 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1501 spinlock_t **ptl) 1502 { 1503 pte_t *ptep; 1504 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1505 return ptep; 1506 } 1507 1508 #ifdef __PAGETABLE_PUD_FOLDED 1509 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1510 unsigned long address) 1511 { 1512 return 0; 1513 } 1514 #else 1515 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1516 #endif 1517 1518 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1519 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1520 unsigned long address) 1521 { 1522 return 0; 1523 } 1524 1525 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1526 1527 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1528 { 1529 return 0; 1530 } 1531 1532 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1533 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1534 1535 #else 1536 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1537 1538 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1539 { 1540 atomic_long_set(&mm->nr_pmds, 0); 1541 } 1542 1543 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1544 { 1545 return atomic_long_read(&mm->nr_pmds); 1546 } 1547 1548 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1549 { 1550 atomic_long_inc(&mm->nr_pmds); 1551 } 1552 1553 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1554 { 1555 atomic_long_dec(&mm->nr_pmds); 1556 } 1557 #endif 1558 1559 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1560 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1561 1562 /* 1563 * The following ifdef needed to get the 4level-fixup.h header to work. 1564 * Remove it when 4level-fixup.h has been removed. 1565 */ 1566 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1567 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1568 { 1569 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1570 NULL: pud_offset(pgd, address); 1571 } 1572 1573 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1574 { 1575 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1576 NULL: pmd_offset(pud, address); 1577 } 1578 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1579 1580 #if USE_SPLIT_PTE_PTLOCKS 1581 #if ALLOC_SPLIT_PTLOCKS 1582 void __init ptlock_cache_init(void); 1583 extern bool ptlock_alloc(struct page *page); 1584 extern void ptlock_free(struct page *page); 1585 1586 static inline spinlock_t *ptlock_ptr(struct page *page) 1587 { 1588 return page->ptl; 1589 } 1590 #else /* ALLOC_SPLIT_PTLOCKS */ 1591 static inline void ptlock_cache_init(void) 1592 { 1593 } 1594 1595 static inline bool ptlock_alloc(struct page *page) 1596 { 1597 return true; 1598 } 1599 1600 static inline void ptlock_free(struct page *page) 1601 { 1602 } 1603 1604 static inline spinlock_t *ptlock_ptr(struct page *page) 1605 { 1606 return &page->ptl; 1607 } 1608 #endif /* ALLOC_SPLIT_PTLOCKS */ 1609 1610 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1611 { 1612 return ptlock_ptr(pmd_page(*pmd)); 1613 } 1614 1615 static inline bool ptlock_init(struct page *page) 1616 { 1617 /* 1618 * prep_new_page() initialize page->private (and therefore page->ptl) 1619 * with 0. Make sure nobody took it in use in between. 1620 * 1621 * It can happen if arch try to use slab for page table allocation: 1622 * slab code uses page->slab_cache, which share storage with page->ptl. 1623 */ 1624 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1625 if (!ptlock_alloc(page)) 1626 return false; 1627 spin_lock_init(ptlock_ptr(page)); 1628 return true; 1629 } 1630 1631 /* Reset page->mapping so free_pages_check won't complain. */ 1632 static inline void pte_lock_deinit(struct page *page) 1633 { 1634 page->mapping = NULL; 1635 ptlock_free(page); 1636 } 1637 1638 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1639 /* 1640 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1641 */ 1642 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1643 { 1644 return &mm->page_table_lock; 1645 } 1646 static inline void ptlock_cache_init(void) {} 1647 static inline bool ptlock_init(struct page *page) { return true; } 1648 static inline void pte_lock_deinit(struct page *page) {} 1649 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1650 1651 static inline void pgtable_init(void) 1652 { 1653 ptlock_cache_init(); 1654 pgtable_cache_init(); 1655 } 1656 1657 static inline bool pgtable_page_ctor(struct page *page) 1658 { 1659 if (!ptlock_init(page)) 1660 return false; 1661 inc_zone_page_state(page, NR_PAGETABLE); 1662 return true; 1663 } 1664 1665 static inline void pgtable_page_dtor(struct page *page) 1666 { 1667 pte_lock_deinit(page); 1668 dec_zone_page_state(page, NR_PAGETABLE); 1669 } 1670 1671 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1672 ({ \ 1673 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1674 pte_t *__pte = pte_offset_map(pmd, address); \ 1675 *(ptlp) = __ptl; \ 1676 spin_lock(__ptl); \ 1677 __pte; \ 1678 }) 1679 1680 #define pte_unmap_unlock(pte, ptl) do { \ 1681 spin_unlock(ptl); \ 1682 pte_unmap(pte); \ 1683 } while (0) 1684 1685 #define pte_alloc(mm, pmd, address) \ 1686 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1687 1688 #define pte_alloc_map(mm, pmd, address) \ 1689 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1690 1691 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1692 (pte_alloc(mm, pmd, address) ? \ 1693 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1694 1695 #define pte_alloc_kernel(pmd, address) \ 1696 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1697 NULL: pte_offset_kernel(pmd, address)) 1698 1699 #if USE_SPLIT_PMD_PTLOCKS 1700 1701 static struct page *pmd_to_page(pmd_t *pmd) 1702 { 1703 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1704 return virt_to_page((void *)((unsigned long) pmd & mask)); 1705 } 1706 1707 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1708 { 1709 return ptlock_ptr(pmd_to_page(pmd)); 1710 } 1711 1712 static inline bool pgtable_pmd_page_ctor(struct page *page) 1713 { 1714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1715 page->pmd_huge_pte = NULL; 1716 #endif 1717 return ptlock_init(page); 1718 } 1719 1720 static inline void pgtable_pmd_page_dtor(struct page *page) 1721 { 1722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1723 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1724 #endif 1725 ptlock_free(page); 1726 } 1727 1728 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1729 1730 #else 1731 1732 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1733 { 1734 return &mm->page_table_lock; 1735 } 1736 1737 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1738 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1739 1740 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1741 1742 #endif 1743 1744 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1745 { 1746 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1747 spin_lock(ptl); 1748 return ptl; 1749 } 1750 1751 extern void free_area_init(unsigned long * zones_size); 1752 extern void free_area_init_node(int nid, unsigned long * zones_size, 1753 unsigned long zone_start_pfn, unsigned long *zholes_size); 1754 extern void free_initmem(void); 1755 1756 /* 1757 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1758 * into the buddy system. The freed pages will be poisoned with pattern 1759 * "poison" if it's within range [0, UCHAR_MAX]. 1760 * Return pages freed into the buddy system. 1761 */ 1762 extern unsigned long free_reserved_area(void *start, void *end, 1763 int poison, char *s); 1764 1765 #ifdef CONFIG_HIGHMEM 1766 /* 1767 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1768 * and totalram_pages. 1769 */ 1770 extern void free_highmem_page(struct page *page); 1771 #endif 1772 1773 extern void adjust_managed_page_count(struct page *page, long count); 1774 extern void mem_init_print_info(const char *str); 1775 1776 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1777 1778 /* Free the reserved page into the buddy system, so it gets managed. */ 1779 static inline void __free_reserved_page(struct page *page) 1780 { 1781 ClearPageReserved(page); 1782 init_page_count(page); 1783 __free_page(page); 1784 } 1785 1786 static inline void free_reserved_page(struct page *page) 1787 { 1788 __free_reserved_page(page); 1789 adjust_managed_page_count(page, 1); 1790 } 1791 1792 static inline void mark_page_reserved(struct page *page) 1793 { 1794 SetPageReserved(page); 1795 adjust_managed_page_count(page, -1); 1796 } 1797 1798 /* 1799 * Default method to free all the __init memory into the buddy system. 1800 * The freed pages will be poisoned with pattern "poison" if it's within 1801 * range [0, UCHAR_MAX]. 1802 * Return pages freed into the buddy system. 1803 */ 1804 static inline unsigned long free_initmem_default(int poison) 1805 { 1806 extern char __init_begin[], __init_end[]; 1807 1808 return free_reserved_area(&__init_begin, &__init_end, 1809 poison, "unused kernel"); 1810 } 1811 1812 static inline unsigned long get_num_physpages(void) 1813 { 1814 int nid; 1815 unsigned long phys_pages = 0; 1816 1817 for_each_online_node(nid) 1818 phys_pages += node_present_pages(nid); 1819 1820 return phys_pages; 1821 } 1822 1823 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1824 /* 1825 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1826 * zones, allocate the backing mem_map and account for memory holes in a more 1827 * architecture independent manner. This is a substitute for creating the 1828 * zone_sizes[] and zholes_size[] arrays and passing them to 1829 * free_area_init_node() 1830 * 1831 * An architecture is expected to register range of page frames backed by 1832 * physical memory with memblock_add[_node]() before calling 1833 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1834 * usage, an architecture is expected to do something like 1835 * 1836 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1837 * max_highmem_pfn}; 1838 * for_each_valid_physical_page_range() 1839 * memblock_add_node(base, size, nid) 1840 * free_area_init_nodes(max_zone_pfns); 1841 * 1842 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1843 * registered physical page range. Similarly 1844 * sparse_memory_present_with_active_regions() calls memory_present() for 1845 * each range when SPARSEMEM is enabled. 1846 * 1847 * See mm/page_alloc.c for more information on each function exposed by 1848 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1849 */ 1850 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1851 unsigned long node_map_pfn_alignment(void); 1852 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1853 unsigned long end_pfn); 1854 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1855 unsigned long end_pfn); 1856 extern void get_pfn_range_for_nid(unsigned int nid, 1857 unsigned long *start_pfn, unsigned long *end_pfn); 1858 extern unsigned long find_min_pfn_with_active_regions(void); 1859 extern void free_bootmem_with_active_regions(int nid, 1860 unsigned long max_low_pfn); 1861 extern void sparse_memory_present_with_active_regions(int nid); 1862 1863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1864 1865 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1866 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1867 static inline int __early_pfn_to_nid(unsigned long pfn, 1868 struct mminit_pfnnid_cache *state) 1869 { 1870 return 0; 1871 } 1872 #else 1873 /* please see mm/page_alloc.c */ 1874 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1875 /* there is a per-arch backend function. */ 1876 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1877 struct mminit_pfnnid_cache *state); 1878 #endif 1879 1880 extern void set_dma_reserve(unsigned long new_dma_reserve); 1881 extern void memmap_init_zone(unsigned long, int, unsigned long, 1882 unsigned long, enum memmap_context); 1883 extern void setup_per_zone_wmarks(void); 1884 extern int __meminit init_per_zone_wmark_min(void); 1885 extern void mem_init(void); 1886 extern void __init mmap_init(void); 1887 extern void show_mem(unsigned int flags); 1888 extern long si_mem_available(void); 1889 extern void si_meminfo(struct sysinfo * val); 1890 extern void si_meminfo_node(struct sysinfo *val, int nid); 1891 1892 extern __printf(3, 4) 1893 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1894 const char *fmt, ...); 1895 1896 extern void setup_per_cpu_pageset(void); 1897 1898 extern void zone_pcp_update(struct zone *zone); 1899 extern void zone_pcp_reset(struct zone *zone); 1900 1901 /* page_alloc.c */ 1902 extern int min_free_kbytes; 1903 extern int watermark_scale_factor; 1904 1905 /* nommu.c */ 1906 extern atomic_long_t mmap_pages_allocated; 1907 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1908 1909 /* interval_tree.c */ 1910 void vma_interval_tree_insert(struct vm_area_struct *node, 1911 struct rb_root *root); 1912 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1913 struct vm_area_struct *prev, 1914 struct rb_root *root); 1915 void vma_interval_tree_remove(struct vm_area_struct *node, 1916 struct rb_root *root); 1917 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1918 unsigned long start, unsigned long last); 1919 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1920 unsigned long start, unsigned long last); 1921 1922 #define vma_interval_tree_foreach(vma, root, start, last) \ 1923 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1924 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1925 1926 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1927 struct rb_root *root); 1928 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1929 struct rb_root *root); 1930 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1931 struct rb_root *root, unsigned long start, unsigned long last); 1932 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1933 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1934 #ifdef CONFIG_DEBUG_VM_RB 1935 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1936 #endif 1937 1938 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1939 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1940 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1941 1942 /* mmap.c */ 1943 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1944 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1945 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1946 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1947 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1948 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1949 struct mempolicy *, struct vm_userfaultfd_ctx); 1950 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1951 extern int split_vma(struct mm_struct *, 1952 struct vm_area_struct *, unsigned long addr, int new_below); 1953 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1954 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1955 struct rb_node **, struct rb_node *); 1956 extern void unlink_file_vma(struct vm_area_struct *); 1957 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1958 unsigned long addr, unsigned long len, pgoff_t pgoff, 1959 bool *need_rmap_locks); 1960 extern void exit_mmap(struct mm_struct *); 1961 1962 static inline int check_data_rlimit(unsigned long rlim, 1963 unsigned long new, 1964 unsigned long start, 1965 unsigned long end_data, 1966 unsigned long start_data) 1967 { 1968 if (rlim < RLIM_INFINITY) { 1969 if (((new - start) + (end_data - start_data)) > rlim) 1970 return -ENOSPC; 1971 } 1972 1973 return 0; 1974 } 1975 1976 extern int mm_take_all_locks(struct mm_struct *mm); 1977 extern void mm_drop_all_locks(struct mm_struct *mm); 1978 1979 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1980 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1981 1982 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 1983 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 1984 1985 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1986 unsigned long addr, unsigned long len, 1987 unsigned long flags, 1988 const struct vm_special_mapping *spec); 1989 /* This is an obsolete alternative to _install_special_mapping. */ 1990 extern int install_special_mapping(struct mm_struct *mm, 1991 unsigned long addr, unsigned long len, 1992 unsigned long flags, struct page **pages); 1993 1994 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1995 1996 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1997 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1998 extern unsigned long do_mmap(struct file *file, unsigned long addr, 1999 unsigned long len, unsigned long prot, unsigned long flags, 2000 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2001 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2002 2003 static inline unsigned long 2004 do_mmap_pgoff(struct file *file, unsigned long addr, 2005 unsigned long len, unsigned long prot, unsigned long flags, 2006 unsigned long pgoff, unsigned long *populate) 2007 { 2008 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2009 } 2010 2011 #ifdef CONFIG_MMU 2012 extern int __mm_populate(unsigned long addr, unsigned long len, 2013 int ignore_errors); 2014 static inline void mm_populate(unsigned long addr, unsigned long len) 2015 { 2016 /* Ignore errors */ 2017 (void) __mm_populate(addr, len, 1); 2018 } 2019 #else 2020 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2021 #endif 2022 2023 /* These take the mm semaphore themselves */ 2024 extern unsigned long vm_brk(unsigned long, unsigned long); 2025 extern int vm_munmap(unsigned long, size_t); 2026 extern unsigned long vm_mmap(struct file *, unsigned long, 2027 unsigned long, unsigned long, 2028 unsigned long, unsigned long); 2029 2030 struct vm_unmapped_area_info { 2031 #define VM_UNMAPPED_AREA_TOPDOWN 1 2032 unsigned long flags; 2033 unsigned long length; 2034 unsigned long low_limit; 2035 unsigned long high_limit; 2036 unsigned long align_mask; 2037 unsigned long align_offset; 2038 }; 2039 2040 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2041 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2042 2043 /* 2044 * Search for an unmapped address range. 2045 * 2046 * We are looking for a range that: 2047 * - does not intersect with any VMA; 2048 * - is contained within the [low_limit, high_limit) interval; 2049 * - is at least the desired size. 2050 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2051 */ 2052 static inline unsigned long 2053 vm_unmapped_area(struct vm_unmapped_area_info *info) 2054 { 2055 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2056 return unmapped_area_topdown(info); 2057 else 2058 return unmapped_area(info); 2059 } 2060 2061 /* truncate.c */ 2062 extern void truncate_inode_pages(struct address_space *, loff_t); 2063 extern void truncate_inode_pages_range(struct address_space *, 2064 loff_t lstart, loff_t lend); 2065 extern void truncate_inode_pages_final(struct address_space *); 2066 2067 /* generic vm_area_ops exported for stackable file systems */ 2068 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2069 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2070 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2071 2072 /* mm/page-writeback.c */ 2073 int write_one_page(struct page *page, int wait); 2074 void task_dirty_inc(struct task_struct *tsk); 2075 2076 /* readahead.c */ 2077 #define VM_MAX_READAHEAD 128 /* kbytes */ 2078 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2079 2080 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2081 pgoff_t offset, unsigned long nr_to_read); 2082 2083 void page_cache_sync_readahead(struct address_space *mapping, 2084 struct file_ra_state *ra, 2085 struct file *filp, 2086 pgoff_t offset, 2087 unsigned long size); 2088 2089 void page_cache_async_readahead(struct address_space *mapping, 2090 struct file_ra_state *ra, 2091 struct file *filp, 2092 struct page *pg, 2093 pgoff_t offset, 2094 unsigned long size); 2095 2096 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2097 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2098 2099 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2100 extern int expand_downwards(struct vm_area_struct *vma, 2101 unsigned long address); 2102 #if VM_GROWSUP 2103 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2104 #else 2105 #define expand_upwards(vma, address) (0) 2106 #endif 2107 2108 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2109 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2110 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2111 struct vm_area_struct **pprev); 2112 2113 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2114 NULL if none. Assume start_addr < end_addr. */ 2115 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2116 { 2117 struct vm_area_struct * vma = find_vma(mm,start_addr); 2118 2119 if (vma && end_addr <= vma->vm_start) 2120 vma = NULL; 2121 return vma; 2122 } 2123 2124 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2125 { 2126 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2127 } 2128 2129 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2130 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2131 unsigned long vm_start, unsigned long vm_end) 2132 { 2133 struct vm_area_struct *vma = find_vma(mm, vm_start); 2134 2135 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2136 vma = NULL; 2137 2138 return vma; 2139 } 2140 2141 #ifdef CONFIG_MMU 2142 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2143 void vma_set_page_prot(struct vm_area_struct *vma); 2144 #else 2145 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2146 { 2147 return __pgprot(0); 2148 } 2149 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2150 { 2151 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2152 } 2153 #endif 2154 2155 #ifdef CONFIG_NUMA_BALANCING 2156 unsigned long change_prot_numa(struct vm_area_struct *vma, 2157 unsigned long start, unsigned long end); 2158 #endif 2159 2160 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2161 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2162 unsigned long pfn, unsigned long size, pgprot_t); 2163 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2164 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2165 unsigned long pfn); 2166 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2167 unsigned long pfn, pgprot_t pgprot); 2168 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2169 pfn_t pfn); 2170 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2171 2172 2173 struct page *follow_page_mask(struct vm_area_struct *vma, 2174 unsigned long address, unsigned int foll_flags, 2175 unsigned int *page_mask); 2176 2177 static inline struct page *follow_page(struct vm_area_struct *vma, 2178 unsigned long address, unsigned int foll_flags) 2179 { 2180 unsigned int unused_page_mask; 2181 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2182 } 2183 2184 #define FOLL_WRITE 0x01 /* check pte is writable */ 2185 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2186 #define FOLL_GET 0x04 /* do get_page on page */ 2187 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2188 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2189 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2190 * and return without waiting upon it */ 2191 #define FOLL_POPULATE 0x40 /* fault in page */ 2192 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2193 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2194 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2195 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2196 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2197 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2198 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2199 2200 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2201 void *data); 2202 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2203 unsigned long size, pte_fn_t fn, void *data); 2204 2205 2206 #ifdef CONFIG_PAGE_POISONING 2207 extern bool page_poisoning_enabled(void); 2208 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2209 extern bool page_is_poisoned(struct page *page); 2210 #else 2211 static inline bool page_poisoning_enabled(void) { return false; } 2212 static inline void kernel_poison_pages(struct page *page, int numpages, 2213 int enable) { } 2214 static inline bool page_is_poisoned(struct page *page) { return false; } 2215 #endif 2216 2217 #ifdef CONFIG_DEBUG_PAGEALLOC 2218 extern bool _debug_pagealloc_enabled; 2219 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2220 2221 static inline bool debug_pagealloc_enabled(void) 2222 { 2223 return _debug_pagealloc_enabled; 2224 } 2225 2226 static inline void 2227 kernel_map_pages(struct page *page, int numpages, int enable) 2228 { 2229 if (!debug_pagealloc_enabled()) 2230 return; 2231 2232 __kernel_map_pages(page, numpages, enable); 2233 } 2234 #ifdef CONFIG_HIBERNATION 2235 extern bool kernel_page_present(struct page *page); 2236 #endif /* CONFIG_HIBERNATION */ 2237 #else /* CONFIG_DEBUG_PAGEALLOC */ 2238 static inline void 2239 kernel_map_pages(struct page *page, int numpages, int enable) {} 2240 #ifdef CONFIG_HIBERNATION 2241 static inline bool kernel_page_present(struct page *page) { return true; } 2242 #endif /* CONFIG_HIBERNATION */ 2243 static inline bool debug_pagealloc_enabled(void) 2244 { 2245 return false; 2246 } 2247 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2248 2249 #ifdef __HAVE_ARCH_GATE_AREA 2250 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2251 extern int in_gate_area_no_mm(unsigned long addr); 2252 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2253 #else 2254 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2255 { 2256 return NULL; 2257 } 2258 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2259 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2260 { 2261 return 0; 2262 } 2263 #endif /* __HAVE_ARCH_GATE_AREA */ 2264 2265 #ifdef CONFIG_SYSCTL 2266 extern int sysctl_drop_caches; 2267 int drop_caches_sysctl_handler(struct ctl_table *, int, 2268 void __user *, size_t *, loff_t *); 2269 #endif 2270 2271 void drop_slab(void); 2272 void drop_slab_node(int nid); 2273 2274 #ifndef CONFIG_MMU 2275 #define randomize_va_space 0 2276 #else 2277 extern int randomize_va_space; 2278 #endif 2279 2280 const char * arch_vma_name(struct vm_area_struct *vma); 2281 void print_vma_addr(char *prefix, unsigned long rip); 2282 2283 void sparse_mem_maps_populate_node(struct page **map_map, 2284 unsigned long pnum_begin, 2285 unsigned long pnum_end, 2286 unsigned long map_count, 2287 int nodeid); 2288 2289 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2290 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2291 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2292 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2293 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2294 void *vmemmap_alloc_block(unsigned long size, int node); 2295 struct vmem_altmap; 2296 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2297 struct vmem_altmap *altmap); 2298 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2299 { 2300 return __vmemmap_alloc_block_buf(size, node, NULL); 2301 } 2302 2303 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2304 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2305 int node); 2306 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2307 void vmemmap_populate_print_last(void); 2308 #ifdef CONFIG_MEMORY_HOTPLUG 2309 void vmemmap_free(unsigned long start, unsigned long end); 2310 #endif 2311 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2312 unsigned long size); 2313 2314 enum mf_flags { 2315 MF_COUNT_INCREASED = 1 << 0, 2316 MF_ACTION_REQUIRED = 1 << 1, 2317 MF_MUST_KILL = 1 << 2, 2318 MF_SOFT_OFFLINE = 1 << 3, 2319 }; 2320 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2321 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2322 extern int unpoison_memory(unsigned long pfn); 2323 extern int get_hwpoison_page(struct page *page); 2324 #define put_hwpoison_page(page) put_page(page) 2325 extern int sysctl_memory_failure_early_kill; 2326 extern int sysctl_memory_failure_recovery; 2327 extern void shake_page(struct page *p, int access); 2328 extern atomic_long_t num_poisoned_pages; 2329 extern int soft_offline_page(struct page *page, int flags); 2330 2331 2332 /* 2333 * Error handlers for various types of pages. 2334 */ 2335 enum mf_result { 2336 MF_IGNORED, /* Error: cannot be handled */ 2337 MF_FAILED, /* Error: handling failed */ 2338 MF_DELAYED, /* Will be handled later */ 2339 MF_RECOVERED, /* Successfully recovered */ 2340 }; 2341 2342 enum mf_action_page_type { 2343 MF_MSG_KERNEL, 2344 MF_MSG_KERNEL_HIGH_ORDER, 2345 MF_MSG_SLAB, 2346 MF_MSG_DIFFERENT_COMPOUND, 2347 MF_MSG_POISONED_HUGE, 2348 MF_MSG_HUGE, 2349 MF_MSG_FREE_HUGE, 2350 MF_MSG_UNMAP_FAILED, 2351 MF_MSG_DIRTY_SWAPCACHE, 2352 MF_MSG_CLEAN_SWAPCACHE, 2353 MF_MSG_DIRTY_MLOCKED_LRU, 2354 MF_MSG_CLEAN_MLOCKED_LRU, 2355 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2356 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2357 MF_MSG_DIRTY_LRU, 2358 MF_MSG_CLEAN_LRU, 2359 MF_MSG_TRUNCATED_LRU, 2360 MF_MSG_BUDDY, 2361 MF_MSG_BUDDY_2ND, 2362 MF_MSG_UNKNOWN, 2363 }; 2364 2365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2366 extern void clear_huge_page(struct page *page, 2367 unsigned long addr, 2368 unsigned int pages_per_huge_page); 2369 extern void copy_user_huge_page(struct page *dst, struct page *src, 2370 unsigned long addr, struct vm_area_struct *vma, 2371 unsigned int pages_per_huge_page); 2372 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2373 2374 extern struct page_ext_operations debug_guardpage_ops; 2375 extern struct page_ext_operations page_poisoning_ops; 2376 2377 #ifdef CONFIG_DEBUG_PAGEALLOC 2378 extern unsigned int _debug_guardpage_minorder; 2379 extern bool _debug_guardpage_enabled; 2380 2381 static inline unsigned int debug_guardpage_minorder(void) 2382 { 2383 return _debug_guardpage_minorder; 2384 } 2385 2386 static inline bool debug_guardpage_enabled(void) 2387 { 2388 return _debug_guardpage_enabled; 2389 } 2390 2391 static inline bool page_is_guard(struct page *page) 2392 { 2393 struct page_ext *page_ext; 2394 2395 if (!debug_guardpage_enabled()) 2396 return false; 2397 2398 page_ext = lookup_page_ext(page); 2399 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2400 } 2401 #else 2402 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2403 static inline bool debug_guardpage_enabled(void) { return false; } 2404 static inline bool page_is_guard(struct page *page) { return false; } 2405 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2406 2407 #if MAX_NUMNODES > 1 2408 void __init setup_nr_node_ids(void); 2409 #else 2410 static inline void setup_nr_node_ids(void) {} 2411 #endif 2412 2413 #endif /* __KERNEL__ */ 2414 #endif /* _LINUX_MM_H */ 2415