1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 32 struct mempolicy; 33 struct anon_vma; 34 struct anon_vma_chain; 35 struct user_struct; 36 struct pt_regs; 37 38 extern int sysctl_page_lock_unfairness; 39 40 void init_mm_internals(void); 41 42 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 43 extern unsigned long max_mapnr; 44 45 static inline void set_max_mapnr(unsigned long limit) 46 { 47 max_mapnr = limit; 48 } 49 #else 50 static inline void set_max_mapnr(unsigned long limit) { } 51 #endif 52 53 extern atomic_long_t _totalram_pages; 54 static inline unsigned long totalram_pages(void) 55 { 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57 } 58 59 static inline void totalram_pages_inc(void) 60 { 61 atomic_long_inc(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_dec(void) 65 { 66 atomic_long_dec(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_add(long count) 70 { 71 atomic_long_add(count, &_totalram_pages); 72 } 73 74 extern void * high_memory; 75 extern int page_cluster; 76 77 #ifdef CONFIG_SYSCTL 78 extern int sysctl_legacy_va_layout; 79 #else 80 #define sysctl_legacy_va_layout 0 81 #endif 82 83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 84 extern const int mmap_rnd_bits_min; 85 extern const int mmap_rnd_bits_max; 86 extern int mmap_rnd_bits __read_mostly; 87 #endif 88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 89 extern const int mmap_rnd_compat_bits_min; 90 extern const int mmap_rnd_compat_bits_max; 91 extern int mmap_rnd_compat_bits __read_mostly; 92 #endif 93 94 #include <asm/page.h> 95 #include <asm/processor.h> 96 97 /* 98 * Architectures that support memory tagging (assigning tags to memory regions, 99 * embedding these tags into addresses that point to these memory regions, and 100 * checking that the memory and the pointer tags match on memory accesses) 101 * redefine this macro to strip tags from pointers. 102 * It's defined as noop for architectures that don't support memory tagging. 103 */ 104 #ifndef untagged_addr 105 #define untagged_addr(addr) (addr) 106 #endif 107 108 #ifndef __pa_symbol 109 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 110 #endif 111 112 #ifndef page_to_virt 113 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 114 #endif 115 116 #ifndef lm_alias 117 #define lm_alias(x) __va(__pa_symbol(x)) 118 #endif 119 120 /* 121 * To prevent common memory management code establishing 122 * a zero page mapping on a read fault. 123 * This macro should be defined within <asm/pgtable.h>. 124 * s390 does this to prevent multiplexing of hardware bits 125 * related to the physical page in case of virtualization. 126 */ 127 #ifndef mm_forbids_zeropage 128 #define mm_forbids_zeropage(X) (0) 129 #endif 130 131 /* 132 * On some architectures it is expensive to call memset() for small sizes. 133 * If an architecture decides to implement their own version of 134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 135 * define their own version of this macro in <asm/pgtable.h> 136 */ 137 #if BITS_PER_LONG == 64 138 /* This function must be updated when the size of struct page grows above 80 139 * or reduces below 56. The idea that compiler optimizes out switch() 140 * statement, and only leaves move/store instructions. Also the compiler can 141 * combine write statements if they are both assignments and can be reordered, 142 * this can result in several of the writes here being dropped. 143 */ 144 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 145 static inline void __mm_zero_struct_page(struct page *page) 146 { 147 unsigned long *_pp = (void *)page; 148 149 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 150 BUILD_BUG_ON(sizeof(struct page) & 7); 151 BUILD_BUG_ON(sizeof(struct page) < 56); 152 BUILD_BUG_ON(sizeof(struct page) > 80); 153 154 switch (sizeof(struct page)) { 155 case 80: 156 _pp[9] = 0; 157 fallthrough; 158 case 72: 159 _pp[8] = 0; 160 fallthrough; 161 case 64: 162 _pp[7] = 0; 163 fallthrough; 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173 } 174 #else 175 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176 #endif 177 178 /* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194 #define MAPCOUNT_ELF_CORE_MARGIN (5) 195 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197 extern int sysctl_max_map_count; 198 199 extern unsigned long sysctl_user_reserve_kbytes; 200 extern unsigned long sysctl_admin_reserve_kbytes; 201 202 extern int sysctl_overcommit_memory; 203 extern int sysctl_overcommit_ratio; 204 extern unsigned long sysctl_overcommit_kbytes; 205 206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 216 #else 217 #define nth_page(page,n) ((page) + (n)) 218 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 219 #endif 220 221 /* to align the pointer to the (next) page boundary */ 222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228 static inline struct folio *lru_to_folio(struct list_head *head) 229 { 230 return list_entry((head)->prev, struct folio, lru); 231 } 232 233 void setup_initial_init_mm(void *start_code, void *end_code, 234 void *end_data, void *brk); 235 236 /* 237 * Linux kernel virtual memory manager primitives. 238 * The idea being to have a "virtual" mm in the same way 239 * we have a virtual fs - giving a cleaner interface to the 240 * mm details, and allowing different kinds of memory mappings 241 * (from shared memory to executable loading to arbitrary 242 * mmap() functions). 243 */ 244 245 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 246 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 247 void vm_area_free(struct vm_area_struct *); 248 249 #ifndef CONFIG_MMU 250 extern struct rb_root nommu_region_tree; 251 extern struct rw_semaphore nommu_region_sem; 252 253 extern unsigned int kobjsize(const void *objp); 254 #endif 255 256 /* 257 * vm_flags in vm_area_struct, see mm_types.h. 258 * When changing, update also include/trace/events/mmflags.h 259 */ 260 #define VM_NONE 0x00000000 261 262 #define VM_READ 0x00000001 /* currently active flags */ 263 #define VM_WRITE 0x00000002 264 #define VM_EXEC 0x00000004 265 #define VM_SHARED 0x00000008 266 267 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 268 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 269 #define VM_MAYWRITE 0x00000020 270 #define VM_MAYEXEC 0x00000040 271 #define VM_MAYSHARE 0x00000080 272 273 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 274 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 275 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 276 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 277 278 #define VM_LOCKED 0x00002000 279 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 280 281 /* Used by sys_madvise() */ 282 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 283 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 284 285 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 286 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 287 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 288 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 289 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 290 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 291 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 292 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 293 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 294 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 295 296 #ifdef CONFIG_MEM_SOFT_DIRTY 297 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 298 #else 299 # define VM_SOFTDIRTY 0 300 #endif 301 302 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 303 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 304 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 305 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 306 307 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 308 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 309 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 310 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 311 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 312 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 313 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 314 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 315 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 316 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 317 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 318 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 319 320 #ifdef CONFIG_ARCH_HAS_PKEYS 321 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 322 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 323 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 324 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 325 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 326 #ifdef CONFIG_PPC 327 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 328 #else 329 # define VM_PKEY_BIT4 0 330 #endif 331 #endif /* CONFIG_ARCH_HAS_PKEYS */ 332 333 #if defined(CONFIG_X86) 334 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 335 #elif defined(CONFIG_PPC) 336 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 337 #elif defined(CONFIG_PARISC) 338 # define VM_GROWSUP VM_ARCH_1 339 #elif defined(CONFIG_IA64) 340 # define VM_GROWSUP VM_ARCH_1 341 #elif defined(CONFIG_SPARC64) 342 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 343 # define VM_ARCH_CLEAR VM_SPARC_ADI 344 #elif defined(CONFIG_ARM64) 345 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 346 # define VM_ARCH_CLEAR VM_ARM64_BTI 347 #elif !defined(CONFIG_MMU) 348 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 349 #endif 350 351 #if defined(CONFIG_ARM64_MTE) 352 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 353 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 354 #else 355 # define VM_MTE VM_NONE 356 # define VM_MTE_ALLOWED VM_NONE 357 #endif 358 359 #ifndef VM_GROWSUP 360 # define VM_GROWSUP VM_NONE 361 #endif 362 363 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 364 # define VM_UFFD_MINOR_BIT 37 365 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 366 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 367 # define VM_UFFD_MINOR VM_NONE 368 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 369 370 /* Bits set in the VMA until the stack is in its final location */ 371 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 372 373 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 374 375 /* Common data flag combinations */ 376 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 378 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 379 VM_MAYWRITE | VM_MAYEXEC) 380 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 382 383 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 384 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 385 #endif 386 387 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 388 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 389 #endif 390 391 #ifdef CONFIG_STACK_GROWSUP 392 #define VM_STACK VM_GROWSUP 393 #else 394 #define VM_STACK VM_GROWSDOWN 395 #endif 396 397 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 398 399 /* VMA basic access permission flags */ 400 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 401 402 403 /* 404 * Special vmas that are non-mergable, non-mlock()able. 405 */ 406 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 407 408 /* This mask prevents VMA from being scanned with khugepaged */ 409 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 410 411 /* This mask defines which mm->def_flags a process can inherit its parent */ 412 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 413 414 /* This mask is used to clear all the VMA flags used by mlock */ 415 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 416 417 /* Arch-specific flags to clear when updating VM flags on protection change */ 418 #ifndef VM_ARCH_CLEAR 419 # define VM_ARCH_CLEAR VM_NONE 420 #endif 421 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 422 423 /* 424 * mapping from the currently active vm_flags protection bits (the 425 * low four bits) to a page protection mask.. 426 */ 427 extern pgprot_t protection_map[16]; 428 429 /* 430 * The default fault flags that should be used by most of the 431 * arch-specific page fault handlers. 432 */ 433 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 434 FAULT_FLAG_KILLABLE | \ 435 FAULT_FLAG_INTERRUPTIBLE) 436 437 /** 438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 439 * @flags: Fault flags. 440 * 441 * This is mostly used for places where we want to try to avoid taking 442 * the mmap_lock for too long a time when waiting for another condition 443 * to change, in which case we can try to be polite to release the 444 * mmap_lock in the first round to avoid potential starvation of other 445 * processes that would also want the mmap_lock. 446 * 447 * Return: true if the page fault allows retry and this is the first 448 * attempt of the fault handling; false otherwise. 449 */ 450 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 451 { 452 return (flags & FAULT_FLAG_ALLOW_RETRY) && 453 (!(flags & FAULT_FLAG_TRIED)); 454 } 455 456 #define FAULT_FLAG_TRACE \ 457 { FAULT_FLAG_WRITE, "WRITE" }, \ 458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 462 { FAULT_FLAG_TRIED, "TRIED" }, \ 463 { FAULT_FLAG_USER, "USER" }, \ 464 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 467 468 /* 469 * vm_fault is filled by the pagefault handler and passed to the vma's 470 * ->fault function. The vma's ->fault is responsible for returning a bitmask 471 * of VM_FAULT_xxx flags that give details about how the fault was handled. 472 * 473 * MM layer fills up gfp_mask for page allocations but fault handler might 474 * alter it if its implementation requires a different allocation context. 475 * 476 * pgoff should be used in favour of virtual_address, if possible. 477 */ 478 struct vm_fault { 479 const struct { 480 struct vm_area_struct *vma; /* Target VMA */ 481 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 482 pgoff_t pgoff; /* Logical page offset based on vma */ 483 unsigned long address; /* Faulting virtual address - masked */ 484 unsigned long real_address; /* Faulting virtual address - unmasked */ 485 }; 486 enum fault_flag flags; /* FAULT_FLAG_xxx flags 487 * XXX: should really be 'const' */ 488 pmd_t *pmd; /* Pointer to pmd entry matching 489 * the 'address' */ 490 pud_t *pud; /* Pointer to pud entry matching 491 * the 'address' 492 */ 493 union { 494 pte_t orig_pte; /* Value of PTE at the time of fault */ 495 pmd_t orig_pmd; /* Value of PMD at the time of fault, 496 * used by PMD fault only. 497 */ 498 }; 499 500 struct page *cow_page; /* Page handler may use for COW fault */ 501 struct page *page; /* ->fault handlers should return a 502 * page here, unless VM_FAULT_NOPAGE 503 * is set (which is also implied by 504 * VM_FAULT_ERROR). 505 */ 506 /* These three entries are valid only while holding ptl lock */ 507 pte_t *pte; /* Pointer to pte entry matching 508 * the 'address'. NULL if the page 509 * table hasn't been allocated. 510 */ 511 spinlock_t *ptl; /* Page table lock. 512 * Protects pte page table if 'pte' 513 * is not NULL, otherwise pmd. 514 */ 515 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 516 * vm_ops->map_pages() sets up a page 517 * table from atomic context. 518 * do_fault_around() pre-allocates 519 * page table to avoid allocation from 520 * atomic context. 521 */ 522 }; 523 524 /* page entry size for vm->huge_fault() */ 525 enum page_entry_size { 526 PE_SIZE_PTE = 0, 527 PE_SIZE_PMD, 528 PE_SIZE_PUD, 529 }; 530 531 /* 532 * These are the virtual MM functions - opening of an area, closing and 533 * unmapping it (needed to keep files on disk up-to-date etc), pointer 534 * to the functions called when a no-page or a wp-page exception occurs. 535 */ 536 struct vm_operations_struct { 537 void (*open)(struct vm_area_struct * area); 538 /** 539 * @close: Called when the VMA is being removed from the MM. 540 * Context: User context. May sleep. Caller holds mmap_lock. 541 */ 542 void (*close)(struct vm_area_struct * area); 543 /* Called any time before splitting to check if it's allowed */ 544 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 545 int (*mremap)(struct vm_area_struct *area); 546 /* 547 * Called by mprotect() to make driver-specific permission 548 * checks before mprotect() is finalised. The VMA must not 549 * be modified. Returns 0 if eprotect() can proceed. 550 */ 551 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 552 unsigned long end, unsigned long newflags); 553 vm_fault_t (*fault)(struct vm_fault *vmf); 554 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 555 enum page_entry_size pe_size); 556 vm_fault_t (*map_pages)(struct vm_fault *vmf, 557 pgoff_t start_pgoff, pgoff_t end_pgoff); 558 unsigned long (*pagesize)(struct vm_area_struct * area); 559 560 /* notification that a previously read-only page is about to become 561 * writable, if an error is returned it will cause a SIGBUS */ 562 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 563 564 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 565 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 566 567 /* called by access_process_vm when get_user_pages() fails, typically 568 * for use by special VMAs. See also generic_access_phys() for a generic 569 * implementation useful for any iomem mapping. 570 */ 571 int (*access)(struct vm_area_struct *vma, unsigned long addr, 572 void *buf, int len, int write); 573 574 /* Called by the /proc/PID/maps code to ask the vma whether it 575 * has a special name. Returning non-NULL will also cause this 576 * vma to be dumped unconditionally. */ 577 const char *(*name)(struct vm_area_struct *vma); 578 579 #ifdef CONFIG_NUMA 580 /* 581 * set_policy() op must add a reference to any non-NULL @new mempolicy 582 * to hold the policy upon return. Caller should pass NULL @new to 583 * remove a policy and fall back to surrounding context--i.e. do not 584 * install a MPOL_DEFAULT policy, nor the task or system default 585 * mempolicy. 586 */ 587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 588 589 /* 590 * get_policy() op must add reference [mpol_get()] to any policy at 591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 592 * in mm/mempolicy.c will do this automatically. 593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 596 * must return NULL--i.e., do not "fallback" to task or system default 597 * policy. 598 */ 599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 600 unsigned long addr); 601 #endif 602 /* 603 * Called by vm_normal_page() for special PTEs to find the 604 * page for @addr. This is useful if the default behavior 605 * (using pte_page()) would not find the correct page. 606 */ 607 struct page *(*find_special_page)(struct vm_area_struct *vma, 608 unsigned long addr); 609 }; 610 611 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 612 { 613 static const struct vm_operations_struct dummy_vm_ops = {}; 614 615 memset(vma, 0, sizeof(*vma)); 616 vma->vm_mm = mm; 617 vma->vm_ops = &dummy_vm_ops; 618 INIT_LIST_HEAD(&vma->anon_vma_chain); 619 } 620 621 static inline void vma_set_anonymous(struct vm_area_struct *vma) 622 { 623 vma->vm_ops = NULL; 624 } 625 626 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 627 { 628 return !vma->vm_ops; 629 } 630 631 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 632 { 633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 634 635 if (!maybe_stack) 636 return false; 637 638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 639 VM_STACK_INCOMPLETE_SETUP) 640 return true; 641 642 return false; 643 } 644 645 static inline bool vma_is_foreign(struct vm_area_struct *vma) 646 { 647 if (!current->mm) 648 return true; 649 650 if (current->mm != vma->vm_mm) 651 return true; 652 653 return false; 654 } 655 656 static inline bool vma_is_accessible(struct vm_area_struct *vma) 657 { 658 return vma->vm_flags & VM_ACCESS_FLAGS; 659 } 660 661 #ifdef CONFIG_SHMEM 662 /* 663 * The vma_is_shmem is not inline because it is used only by slow 664 * paths in userfault. 665 */ 666 bool vma_is_shmem(struct vm_area_struct *vma); 667 #else 668 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 669 #endif 670 671 int vma_is_stack_for_current(struct vm_area_struct *vma); 672 673 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 674 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 675 676 struct mmu_gather; 677 struct inode; 678 679 static inline unsigned int compound_order(struct page *page) 680 { 681 if (!PageHead(page)) 682 return 0; 683 return page[1].compound_order; 684 } 685 686 /** 687 * folio_order - The allocation order of a folio. 688 * @folio: The folio. 689 * 690 * A folio is composed of 2^order pages. See get_order() for the definition 691 * of order. 692 * 693 * Return: The order of the folio. 694 */ 695 static inline unsigned int folio_order(struct folio *folio) 696 { 697 return compound_order(&folio->page); 698 } 699 700 #include <linux/huge_mm.h> 701 702 /* 703 * Methods to modify the page usage count. 704 * 705 * What counts for a page usage: 706 * - cache mapping (page->mapping) 707 * - private data (page->private) 708 * - page mapped in a task's page tables, each mapping 709 * is counted separately 710 * 711 * Also, many kernel routines increase the page count before a critical 712 * routine so they can be sure the page doesn't go away from under them. 713 */ 714 715 /* 716 * Drop a ref, return true if the refcount fell to zero (the page has no users) 717 */ 718 static inline int put_page_testzero(struct page *page) 719 { 720 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 721 return page_ref_dec_and_test(page); 722 } 723 724 static inline int folio_put_testzero(struct folio *folio) 725 { 726 return put_page_testzero(&folio->page); 727 } 728 729 /* 730 * Try to grab a ref unless the page has a refcount of zero, return false if 731 * that is the case. 732 * This can be called when MMU is off so it must not access 733 * any of the virtual mappings. 734 */ 735 static inline bool get_page_unless_zero(struct page *page) 736 { 737 return page_ref_add_unless(page, 1, 0); 738 } 739 740 extern int page_is_ram(unsigned long pfn); 741 742 enum { 743 REGION_INTERSECTS, 744 REGION_DISJOINT, 745 REGION_MIXED, 746 }; 747 748 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 749 unsigned long desc); 750 751 /* Support for virtually mapped pages */ 752 struct page *vmalloc_to_page(const void *addr); 753 unsigned long vmalloc_to_pfn(const void *addr); 754 755 /* 756 * Determine if an address is within the vmalloc range 757 * 758 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 759 * is no special casing required. 760 */ 761 762 #ifndef is_ioremap_addr 763 #define is_ioremap_addr(x) is_vmalloc_addr(x) 764 #endif 765 766 #ifdef CONFIG_MMU 767 extern bool is_vmalloc_addr(const void *x); 768 extern int is_vmalloc_or_module_addr(const void *x); 769 #else 770 static inline bool is_vmalloc_addr(const void *x) 771 { 772 return false; 773 } 774 static inline int is_vmalloc_or_module_addr(const void *x) 775 { 776 return 0; 777 } 778 #endif 779 780 /* 781 * How many times the entire folio is mapped as a single unit (eg by a 782 * PMD or PUD entry). This is probably not what you want, except for 783 * debugging purposes; look at folio_mapcount() or page_mapcount() 784 * instead. 785 */ 786 static inline int folio_entire_mapcount(struct folio *folio) 787 { 788 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 789 return atomic_read(folio_mapcount_ptr(folio)) + 1; 790 } 791 792 /* 793 * Mapcount of compound page as a whole, does not include mapped sub-pages. 794 * 795 * Must be called only for compound pages. 796 */ 797 static inline int compound_mapcount(struct page *page) 798 { 799 return folio_entire_mapcount(page_folio(page)); 800 } 801 802 /* 803 * The atomic page->_mapcount, starts from -1: so that transitions 804 * both from it and to it can be tracked, using atomic_inc_and_test 805 * and atomic_add_negative(-1). 806 */ 807 static inline void page_mapcount_reset(struct page *page) 808 { 809 atomic_set(&(page)->_mapcount, -1); 810 } 811 812 int __page_mapcount(struct page *page); 813 814 /* 815 * Mapcount of 0-order page; when compound sub-page, includes 816 * compound_mapcount(). 817 * 818 * Result is undefined for pages which cannot be mapped into userspace. 819 * For example SLAB or special types of pages. See function page_has_type(). 820 * They use this place in struct page differently. 821 */ 822 static inline int page_mapcount(struct page *page) 823 { 824 if (unlikely(PageCompound(page))) 825 return __page_mapcount(page); 826 return atomic_read(&page->_mapcount) + 1; 827 } 828 829 int folio_mapcount(struct folio *folio); 830 831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 832 static inline int total_mapcount(struct page *page) 833 { 834 return folio_mapcount(page_folio(page)); 835 } 836 837 #else 838 static inline int total_mapcount(struct page *page) 839 { 840 return page_mapcount(page); 841 } 842 #endif 843 844 static inline struct page *virt_to_head_page(const void *x) 845 { 846 struct page *page = virt_to_page(x); 847 848 return compound_head(page); 849 } 850 851 static inline struct folio *virt_to_folio(const void *x) 852 { 853 struct page *page = virt_to_page(x); 854 855 return page_folio(page); 856 } 857 858 void __put_page(struct page *page); 859 860 void put_pages_list(struct list_head *pages); 861 862 void split_page(struct page *page, unsigned int order); 863 void folio_copy(struct folio *dst, struct folio *src); 864 865 unsigned long nr_free_buffer_pages(void); 866 867 /* 868 * Compound pages have a destructor function. Provide a 869 * prototype for that function and accessor functions. 870 * These are _only_ valid on the head of a compound page. 871 */ 872 typedef void compound_page_dtor(struct page *); 873 874 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 875 enum compound_dtor_id { 876 NULL_COMPOUND_DTOR, 877 COMPOUND_PAGE_DTOR, 878 #ifdef CONFIG_HUGETLB_PAGE 879 HUGETLB_PAGE_DTOR, 880 #endif 881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 882 TRANSHUGE_PAGE_DTOR, 883 #endif 884 NR_COMPOUND_DTORS, 885 }; 886 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 887 888 static inline void set_compound_page_dtor(struct page *page, 889 enum compound_dtor_id compound_dtor) 890 { 891 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 892 page[1].compound_dtor = compound_dtor; 893 } 894 895 static inline void destroy_compound_page(struct page *page) 896 { 897 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 898 compound_page_dtors[page[1].compound_dtor](page); 899 } 900 901 static inline int head_compound_pincount(struct page *head) 902 { 903 return atomic_read(compound_pincount_ptr(head)); 904 } 905 906 static inline void set_compound_order(struct page *page, unsigned int order) 907 { 908 page[1].compound_order = order; 909 #ifdef CONFIG_64BIT 910 page[1].compound_nr = 1U << order; 911 #endif 912 } 913 914 /* Returns the number of pages in this potentially compound page. */ 915 static inline unsigned long compound_nr(struct page *page) 916 { 917 if (!PageHead(page)) 918 return 1; 919 #ifdef CONFIG_64BIT 920 return page[1].compound_nr; 921 #else 922 return 1UL << compound_order(page); 923 #endif 924 } 925 926 /* Returns the number of bytes in this potentially compound page. */ 927 static inline unsigned long page_size(struct page *page) 928 { 929 return PAGE_SIZE << compound_order(page); 930 } 931 932 /* Returns the number of bits needed for the number of bytes in a page */ 933 static inline unsigned int page_shift(struct page *page) 934 { 935 return PAGE_SHIFT + compound_order(page); 936 } 937 938 /** 939 * thp_order - Order of a transparent huge page. 940 * @page: Head page of a transparent huge page. 941 */ 942 static inline unsigned int thp_order(struct page *page) 943 { 944 VM_BUG_ON_PGFLAGS(PageTail(page), page); 945 return compound_order(page); 946 } 947 948 /** 949 * thp_nr_pages - The number of regular pages in this huge page. 950 * @page: The head page of a huge page. 951 */ 952 static inline int thp_nr_pages(struct page *page) 953 { 954 VM_BUG_ON_PGFLAGS(PageTail(page), page); 955 return compound_nr(page); 956 } 957 958 /** 959 * thp_size - Size of a transparent huge page. 960 * @page: Head page of a transparent huge page. 961 * 962 * Return: Number of bytes in this page. 963 */ 964 static inline unsigned long thp_size(struct page *page) 965 { 966 return PAGE_SIZE << thp_order(page); 967 } 968 969 void free_compound_page(struct page *page); 970 971 #ifdef CONFIG_MMU 972 /* 973 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 974 * servicing faults for write access. In the normal case, do always want 975 * pte_mkwrite. But get_user_pages can cause write faults for mappings 976 * that do not have writing enabled, when used by access_process_vm. 977 */ 978 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 979 { 980 if (likely(vma->vm_flags & VM_WRITE)) 981 pte = pte_mkwrite(pte); 982 return pte; 983 } 984 985 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 986 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 987 988 vm_fault_t finish_fault(struct vm_fault *vmf); 989 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 990 #endif 991 992 /* 993 * Multiple processes may "see" the same page. E.g. for untouched 994 * mappings of /dev/null, all processes see the same page full of 995 * zeroes, and text pages of executables and shared libraries have 996 * only one copy in memory, at most, normally. 997 * 998 * For the non-reserved pages, page_count(page) denotes a reference count. 999 * page_count() == 0 means the page is free. page->lru is then used for 1000 * freelist management in the buddy allocator. 1001 * page_count() > 0 means the page has been allocated. 1002 * 1003 * Pages are allocated by the slab allocator in order to provide memory 1004 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1005 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1006 * unless a particular usage is carefully commented. (the responsibility of 1007 * freeing the kmalloc memory is the caller's, of course). 1008 * 1009 * A page may be used by anyone else who does a __get_free_page(). 1010 * In this case, page_count still tracks the references, and should only 1011 * be used through the normal accessor functions. The top bits of page->flags 1012 * and page->virtual store page management information, but all other fields 1013 * are unused and could be used privately, carefully. The management of this 1014 * page is the responsibility of the one who allocated it, and those who have 1015 * subsequently been given references to it. 1016 * 1017 * The other pages (we may call them "pagecache pages") are completely 1018 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1019 * The following discussion applies only to them. 1020 * 1021 * A pagecache page contains an opaque `private' member, which belongs to the 1022 * page's address_space. Usually, this is the address of a circular list of 1023 * the page's disk buffers. PG_private must be set to tell the VM to call 1024 * into the filesystem to release these pages. 1025 * 1026 * A page may belong to an inode's memory mapping. In this case, page->mapping 1027 * is the pointer to the inode, and page->index is the file offset of the page, 1028 * in units of PAGE_SIZE. 1029 * 1030 * If pagecache pages are not associated with an inode, they are said to be 1031 * anonymous pages. These may become associated with the swapcache, and in that 1032 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1033 * 1034 * In either case (swapcache or inode backed), the pagecache itself holds one 1035 * reference to the page. Setting PG_private should also increment the 1036 * refcount. The each user mapping also has a reference to the page. 1037 * 1038 * The pagecache pages are stored in a per-mapping radix tree, which is 1039 * rooted at mapping->i_pages, and indexed by offset. 1040 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1041 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1042 * 1043 * All pagecache pages may be subject to I/O: 1044 * - inode pages may need to be read from disk, 1045 * - inode pages which have been modified and are MAP_SHARED may need 1046 * to be written back to the inode on disk, 1047 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1048 * modified may need to be swapped out to swap space and (later) to be read 1049 * back into memory. 1050 */ 1051 1052 /* 1053 * The zone field is never updated after free_area_init_core() 1054 * sets it, so none of the operations on it need to be atomic. 1055 */ 1056 1057 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1058 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1059 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1060 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1061 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1062 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1063 1064 /* 1065 * Define the bit shifts to access each section. For non-existent 1066 * sections we define the shift as 0; that plus a 0 mask ensures 1067 * the compiler will optimise away reference to them. 1068 */ 1069 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1070 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1071 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1072 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1073 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1074 1075 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1076 #ifdef NODE_NOT_IN_PAGE_FLAGS 1077 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1078 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1079 SECTIONS_PGOFF : ZONES_PGOFF) 1080 #else 1081 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1082 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1083 NODES_PGOFF : ZONES_PGOFF) 1084 #endif 1085 1086 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1087 1088 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1089 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1090 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1091 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1092 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1093 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1094 1095 static inline enum zone_type page_zonenum(const struct page *page) 1096 { 1097 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1098 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1099 } 1100 1101 static inline enum zone_type folio_zonenum(const struct folio *folio) 1102 { 1103 return page_zonenum(&folio->page); 1104 } 1105 1106 #ifdef CONFIG_ZONE_DEVICE 1107 static inline bool is_zone_device_page(const struct page *page) 1108 { 1109 return page_zonenum(page) == ZONE_DEVICE; 1110 } 1111 extern void memmap_init_zone_device(struct zone *, unsigned long, 1112 unsigned long, struct dev_pagemap *); 1113 #else 1114 static inline bool is_zone_device_page(const struct page *page) 1115 { 1116 return false; 1117 } 1118 #endif 1119 1120 static inline bool folio_is_zone_device(const struct folio *folio) 1121 { 1122 return is_zone_device_page(&folio->page); 1123 } 1124 1125 static inline bool is_zone_movable_page(const struct page *page) 1126 { 1127 return page_zonenum(page) == ZONE_MOVABLE; 1128 } 1129 1130 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1131 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1132 1133 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1134 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1135 { 1136 if (!static_branch_unlikely(&devmap_managed_key)) 1137 return false; 1138 if (!is_zone_device_page(page)) 1139 return false; 1140 return __put_devmap_managed_page_refs(page, refs); 1141 } 1142 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1143 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1144 { 1145 return false; 1146 } 1147 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1148 1149 static inline bool put_devmap_managed_page(struct page *page) 1150 { 1151 return put_devmap_managed_page_refs(page, 1); 1152 } 1153 1154 /* 127: arbitrary random number, small enough to assemble well */ 1155 #define folio_ref_zero_or_close_to_overflow(folio) \ 1156 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1157 1158 /** 1159 * folio_get - Increment the reference count on a folio. 1160 * @folio: The folio. 1161 * 1162 * Context: May be called in any context, as long as you know that 1163 * you have a refcount on the folio. If you do not already have one, 1164 * folio_try_get() may be the right interface for you to use. 1165 */ 1166 static inline void folio_get(struct folio *folio) 1167 { 1168 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1169 folio_ref_inc(folio); 1170 } 1171 1172 static inline void get_page(struct page *page) 1173 { 1174 folio_get(page_folio(page)); 1175 } 1176 1177 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1178 1179 static inline __must_check bool try_get_page(struct page *page) 1180 { 1181 page = compound_head(page); 1182 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1183 return false; 1184 page_ref_inc(page); 1185 return true; 1186 } 1187 1188 /** 1189 * folio_put - Decrement the reference count on a folio. 1190 * @folio: The folio. 1191 * 1192 * If the folio's reference count reaches zero, the memory will be 1193 * released back to the page allocator and may be used by another 1194 * allocation immediately. Do not access the memory or the struct folio 1195 * after calling folio_put() unless you can be sure that it wasn't the 1196 * last reference. 1197 * 1198 * Context: May be called in process or interrupt context, but not in NMI 1199 * context. May be called while holding a spinlock. 1200 */ 1201 static inline void folio_put(struct folio *folio) 1202 { 1203 if (folio_put_testzero(folio)) 1204 __put_page(&folio->page); 1205 } 1206 1207 /** 1208 * folio_put_refs - Reduce the reference count on a folio. 1209 * @folio: The folio. 1210 * @refs: The amount to subtract from the folio's reference count. 1211 * 1212 * If the folio's reference count reaches zero, the memory will be 1213 * released back to the page allocator and may be used by another 1214 * allocation immediately. Do not access the memory or the struct folio 1215 * after calling folio_put_refs() unless you can be sure that these weren't 1216 * the last references. 1217 * 1218 * Context: May be called in process or interrupt context, but not in NMI 1219 * context. May be called while holding a spinlock. 1220 */ 1221 static inline void folio_put_refs(struct folio *folio, int refs) 1222 { 1223 if (folio_ref_sub_and_test(folio, refs)) 1224 __put_page(&folio->page); 1225 } 1226 1227 static inline void put_page(struct page *page) 1228 { 1229 struct folio *folio = page_folio(page); 1230 1231 /* 1232 * For some devmap managed pages we need to catch refcount transition 1233 * from 2 to 1: 1234 */ 1235 if (put_devmap_managed_page(&folio->page)) 1236 return; 1237 folio_put(folio); 1238 } 1239 1240 /* 1241 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1242 * the page's refcount so that two separate items are tracked: the original page 1243 * reference count, and also a new count of how many pin_user_pages() calls were 1244 * made against the page. ("gup-pinned" is another term for the latter). 1245 * 1246 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1247 * distinct from normal pages. As such, the unpin_user_page() call (and its 1248 * variants) must be used in order to release gup-pinned pages. 1249 * 1250 * Choice of value: 1251 * 1252 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1253 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1254 * simpler, due to the fact that adding an even power of two to the page 1255 * refcount has the effect of using only the upper N bits, for the code that 1256 * counts up using the bias value. This means that the lower bits are left for 1257 * the exclusive use of the original code that increments and decrements by one 1258 * (or at least, by much smaller values than the bias value). 1259 * 1260 * Of course, once the lower bits overflow into the upper bits (and this is 1261 * OK, because subtraction recovers the original values), then visual inspection 1262 * no longer suffices to directly view the separate counts. However, for normal 1263 * applications that don't have huge page reference counts, this won't be an 1264 * issue. 1265 * 1266 * Locking: the lockless algorithm described in folio_try_get_rcu() 1267 * provides safe operation for get_user_pages(), page_mkclean() and 1268 * other calls that race to set up page table entries. 1269 */ 1270 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1271 1272 void unpin_user_page(struct page *page); 1273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1274 bool make_dirty); 1275 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1276 bool make_dirty); 1277 void unpin_user_pages(struct page **pages, unsigned long npages); 1278 1279 static inline bool is_cow_mapping(vm_flags_t flags) 1280 { 1281 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1282 } 1283 1284 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1285 #define SECTION_IN_PAGE_FLAGS 1286 #endif 1287 1288 /* 1289 * The identification function is mainly used by the buddy allocator for 1290 * determining if two pages could be buddies. We are not really identifying 1291 * the zone since we could be using the section number id if we do not have 1292 * node id available in page flags. 1293 * We only guarantee that it will return the same value for two combinable 1294 * pages in a zone. 1295 */ 1296 static inline int page_zone_id(struct page *page) 1297 { 1298 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1299 } 1300 1301 #ifdef NODE_NOT_IN_PAGE_FLAGS 1302 extern int page_to_nid(const struct page *page); 1303 #else 1304 static inline int page_to_nid(const struct page *page) 1305 { 1306 struct page *p = (struct page *)page; 1307 1308 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1309 } 1310 #endif 1311 1312 static inline int folio_nid(const struct folio *folio) 1313 { 1314 return page_to_nid(&folio->page); 1315 } 1316 1317 #ifdef CONFIG_NUMA_BALANCING 1318 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1319 { 1320 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1321 } 1322 1323 static inline int cpupid_to_pid(int cpupid) 1324 { 1325 return cpupid & LAST__PID_MASK; 1326 } 1327 1328 static inline int cpupid_to_cpu(int cpupid) 1329 { 1330 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1331 } 1332 1333 static inline int cpupid_to_nid(int cpupid) 1334 { 1335 return cpu_to_node(cpupid_to_cpu(cpupid)); 1336 } 1337 1338 static inline bool cpupid_pid_unset(int cpupid) 1339 { 1340 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1341 } 1342 1343 static inline bool cpupid_cpu_unset(int cpupid) 1344 { 1345 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1346 } 1347 1348 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1349 { 1350 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1351 } 1352 1353 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1354 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1355 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1356 { 1357 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1358 } 1359 1360 static inline int page_cpupid_last(struct page *page) 1361 { 1362 return page->_last_cpupid; 1363 } 1364 static inline void page_cpupid_reset_last(struct page *page) 1365 { 1366 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1367 } 1368 #else 1369 static inline int page_cpupid_last(struct page *page) 1370 { 1371 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1372 } 1373 1374 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1375 1376 static inline void page_cpupid_reset_last(struct page *page) 1377 { 1378 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1379 } 1380 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1381 #else /* !CONFIG_NUMA_BALANCING */ 1382 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1383 { 1384 return page_to_nid(page); /* XXX */ 1385 } 1386 1387 static inline int page_cpupid_last(struct page *page) 1388 { 1389 return page_to_nid(page); /* XXX */ 1390 } 1391 1392 static inline int cpupid_to_nid(int cpupid) 1393 { 1394 return -1; 1395 } 1396 1397 static inline int cpupid_to_pid(int cpupid) 1398 { 1399 return -1; 1400 } 1401 1402 static inline int cpupid_to_cpu(int cpupid) 1403 { 1404 return -1; 1405 } 1406 1407 static inline int cpu_pid_to_cpupid(int nid, int pid) 1408 { 1409 return -1; 1410 } 1411 1412 static inline bool cpupid_pid_unset(int cpupid) 1413 { 1414 return true; 1415 } 1416 1417 static inline void page_cpupid_reset_last(struct page *page) 1418 { 1419 } 1420 1421 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1422 { 1423 return false; 1424 } 1425 #endif /* CONFIG_NUMA_BALANCING */ 1426 1427 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1428 1429 /* 1430 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1431 * setting tags for all pages to native kernel tag value 0xff, as the default 1432 * value 0x00 maps to 0xff. 1433 */ 1434 1435 static inline u8 page_kasan_tag(const struct page *page) 1436 { 1437 u8 tag = 0xff; 1438 1439 if (kasan_enabled()) { 1440 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1441 tag ^= 0xff; 1442 } 1443 1444 return tag; 1445 } 1446 1447 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1448 { 1449 unsigned long old_flags, flags; 1450 1451 if (!kasan_enabled()) 1452 return; 1453 1454 tag ^= 0xff; 1455 old_flags = READ_ONCE(page->flags); 1456 do { 1457 flags = old_flags; 1458 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1459 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1460 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1461 } 1462 1463 static inline void page_kasan_tag_reset(struct page *page) 1464 { 1465 if (kasan_enabled()) 1466 page_kasan_tag_set(page, 0xff); 1467 } 1468 1469 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1470 1471 static inline u8 page_kasan_tag(const struct page *page) 1472 { 1473 return 0xff; 1474 } 1475 1476 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1477 static inline void page_kasan_tag_reset(struct page *page) { } 1478 1479 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1480 1481 static inline struct zone *page_zone(const struct page *page) 1482 { 1483 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1484 } 1485 1486 static inline pg_data_t *page_pgdat(const struct page *page) 1487 { 1488 return NODE_DATA(page_to_nid(page)); 1489 } 1490 1491 static inline struct zone *folio_zone(const struct folio *folio) 1492 { 1493 return page_zone(&folio->page); 1494 } 1495 1496 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1497 { 1498 return page_pgdat(&folio->page); 1499 } 1500 1501 #ifdef SECTION_IN_PAGE_FLAGS 1502 static inline void set_page_section(struct page *page, unsigned long section) 1503 { 1504 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1505 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1506 } 1507 1508 static inline unsigned long page_to_section(const struct page *page) 1509 { 1510 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1511 } 1512 #endif 1513 1514 /** 1515 * folio_pfn - Return the Page Frame Number of a folio. 1516 * @folio: The folio. 1517 * 1518 * A folio may contain multiple pages. The pages have consecutive 1519 * Page Frame Numbers. 1520 * 1521 * Return: The Page Frame Number of the first page in the folio. 1522 */ 1523 static inline unsigned long folio_pfn(struct folio *folio) 1524 { 1525 return page_to_pfn(&folio->page); 1526 } 1527 1528 static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1529 { 1530 return &folio_page(folio, 1)->compound_pincount; 1531 } 1532 1533 /** 1534 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1535 * @folio: The folio. 1536 * 1537 * This function checks if a folio has been pinned via a call to 1538 * a function in the pin_user_pages() family. 1539 * 1540 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1541 * because it means "definitely not pinned for DMA", but true means "probably 1542 * pinned for DMA, but possibly a false positive due to having at least 1543 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1544 * 1545 * False positives are OK, because: a) it's unlikely for a folio to 1546 * get that many refcounts, and b) all the callers of this routine are 1547 * expected to be able to deal gracefully with a false positive. 1548 * 1549 * For large folios, the result will be exactly correct. That's because 1550 * we have more tracking data available: the compound_pincount is used 1551 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1552 * 1553 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1554 * 1555 * Return: True, if it is likely that the page has been "dma-pinned". 1556 * False, if the page is definitely not dma-pinned. 1557 */ 1558 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1559 { 1560 if (folio_test_large(folio)) 1561 return atomic_read(folio_pincount_ptr(folio)) > 0; 1562 1563 /* 1564 * folio_ref_count() is signed. If that refcount overflows, then 1565 * folio_ref_count() returns a negative value, and callers will avoid 1566 * further incrementing the refcount. 1567 * 1568 * Here, for that overflow case, use the sign bit to count a little 1569 * bit higher via unsigned math, and thus still get an accurate result. 1570 */ 1571 return ((unsigned int)folio_ref_count(folio)) >= 1572 GUP_PIN_COUNTING_BIAS; 1573 } 1574 1575 static inline bool page_maybe_dma_pinned(struct page *page) 1576 { 1577 return folio_maybe_dma_pinned(page_folio(page)); 1578 } 1579 1580 /* 1581 * This should most likely only be called during fork() to see whether we 1582 * should break the cow immediately for an anon page on the src mm. 1583 * 1584 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1585 */ 1586 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1587 struct page *page) 1588 { 1589 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1590 1591 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1592 return false; 1593 1594 return page_maybe_dma_pinned(page); 1595 } 1596 1597 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1598 #ifdef CONFIG_MIGRATION 1599 static inline bool is_pinnable_page(struct page *page) 1600 { 1601 #ifdef CONFIG_CMA 1602 int mt = get_pageblock_migratetype(page); 1603 1604 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1605 return false; 1606 #endif 1607 return !is_zone_movable_page(page) || is_zero_pfn(page_to_pfn(page)); 1608 } 1609 #else 1610 static inline bool is_pinnable_page(struct page *page) 1611 { 1612 return true; 1613 } 1614 #endif 1615 1616 static inline bool folio_is_pinnable(struct folio *folio) 1617 { 1618 return is_pinnable_page(&folio->page); 1619 } 1620 1621 static inline void set_page_zone(struct page *page, enum zone_type zone) 1622 { 1623 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1624 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1625 } 1626 1627 static inline void set_page_node(struct page *page, unsigned long node) 1628 { 1629 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1630 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1631 } 1632 1633 static inline void set_page_links(struct page *page, enum zone_type zone, 1634 unsigned long node, unsigned long pfn) 1635 { 1636 set_page_zone(page, zone); 1637 set_page_node(page, node); 1638 #ifdef SECTION_IN_PAGE_FLAGS 1639 set_page_section(page, pfn_to_section_nr(pfn)); 1640 #endif 1641 } 1642 1643 /** 1644 * folio_nr_pages - The number of pages in the folio. 1645 * @folio: The folio. 1646 * 1647 * Return: A positive power of two. 1648 */ 1649 static inline long folio_nr_pages(struct folio *folio) 1650 { 1651 return compound_nr(&folio->page); 1652 } 1653 1654 /** 1655 * folio_next - Move to the next physical folio. 1656 * @folio: The folio we're currently operating on. 1657 * 1658 * If you have physically contiguous memory which may span more than 1659 * one folio (eg a &struct bio_vec), use this function to move from one 1660 * folio to the next. Do not use it if the memory is only virtually 1661 * contiguous as the folios are almost certainly not adjacent to each 1662 * other. This is the folio equivalent to writing ``page++``. 1663 * 1664 * Context: We assume that the folios are refcounted and/or locked at a 1665 * higher level and do not adjust the reference counts. 1666 * Return: The next struct folio. 1667 */ 1668 static inline struct folio *folio_next(struct folio *folio) 1669 { 1670 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1671 } 1672 1673 /** 1674 * folio_shift - The size of the memory described by this folio. 1675 * @folio: The folio. 1676 * 1677 * A folio represents a number of bytes which is a power-of-two in size. 1678 * This function tells you which power-of-two the folio is. See also 1679 * folio_size() and folio_order(). 1680 * 1681 * Context: The caller should have a reference on the folio to prevent 1682 * it from being split. It is not necessary for the folio to be locked. 1683 * Return: The base-2 logarithm of the size of this folio. 1684 */ 1685 static inline unsigned int folio_shift(struct folio *folio) 1686 { 1687 return PAGE_SHIFT + folio_order(folio); 1688 } 1689 1690 /** 1691 * folio_size - The number of bytes in a folio. 1692 * @folio: The folio. 1693 * 1694 * Context: The caller should have a reference on the folio to prevent 1695 * it from being split. It is not necessary for the folio to be locked. 1696 * Return: The number of bytes in this folio. 1697 */ 1698 static inline size_t folio_size(struct folio *folio) 1699 { 1700 return PAGE_SIZE << folio_order(folio); 1701 } 1702 1703 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1704 static inline int arch_make_page_accessible(struct page *page) 1705 { 1706 return 0; 1707 } 1708 #endif 1709 1710 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1711 static inline int arch_make_folio_accessible(struct folio *folio) 1712 { 1713 int ret; 1714 long i, nr = folio_nr_pages(folio); 1715 1716 for (i = 0; i < nr; i++) { 1717 ret = arch_make_page_accessible(folio_page(folio, i)); 1718 if (ret) 1719 break; 1720 } 1721 1722 return ret; 1723 } 1724 #endif 1725 1726 /* 1727 * Some inline functions in vmstat.h depend on page_zone() 1728 */ 1729 #include <linux/vmstat.h> 1730 1731 static __always_inline void *lowmem_page_address(const struct page *page) 1732 { 1733 return page_to_virt(page); 1734 } 1735 1736 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1737 #define HASHED_PAGE_VIRTUAL 1738 #endif 1739 1740 #if defined(WANT_PAGE_VIRTUAL) 1741 static inline void *page_address(const struct page *page) 1742 { 1743 return page->virtual; 1744 } 1745 static inline void set_page_address(struct page *page, void *address) 1746 { 1747 page->virtual = address; 1748 } 1749 #define page_address_init() do { } while(0) 1750 #endif 1751 1752 #if defined(HASHED_PAGE_VIRTUAL) 1753 void *page_address(const struct page *page); 1754 void set_page_address(struct page *page, void *virtual); 1755 void page_address_init(void); 1756 #endif 1757 1758 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1759 #define page_address(page) lowmem_page_address(page) 1760 #define set_page_address(page, address) do { } while(0) 1761 #define page_address_init() do { } while(0) 1762 #endif 1763 1764 static inline void *folio_address(const struct folio *folio) 1765 { 1766 return page_address(&folio->page); 1767 } 1768 1769 extern void *page_rmapping(struct page *page); 1770 extern pgoff_t __page_file_index(struct page *page); 1771 1772 /* 1773 * Return the pagecache index of the passed page. Regular pagecache pages 1774 * use ->index whereas swapcache pages use swp_offset(->private) 1775 */ 1776 static inline pgoff_t page_index(struct page *page) 1777 { 1778 if (unlikely(PageSwapCache(page))) 1779 return __page_file_index(page); 1780 return page->index; 1781 } 1782 1783 bool page_mapped(struct page *page); 1784 bool folio_mapped(struct folio *folio); 1785 1786 /* 1787 * Return true only if the page has been allocated with 1788 * ALLOC_NO_WATERMARKS and the low watermark was not 1789 * met implying that the system is under some pressure. 1790 */ 1791 static inline bool page_is_pfmemalloc(const struct page *page) 1792 { 1793 /* 1794 * lru.next has bit 1 set if the page is allocated from the 1795 * pfmemalloc reserves. Callers may simply overwrite it if 1796 * they do not need to preserve that information. 1797 */ 1798 return (uintptr_t)page->lru.next & BIT(1); 1799 } 1800 1801 /* 1802 * Only to be called by the page allocator on a freshly allocated 1803 * page. 1804 */ 1805 static inline void set_page_pfmemalloc(struct page *page) 1806 { 1807 page->lru.next = (void *)BIT(1); 1808 } 1809 1810 static inline void clear_page_pfmemalloc(struct page *page) 1811 { 1812 page->lru.next = NULL; 1813 } 1814 1815 /* 1816 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1817 */ 1818 extern void pagefault_out_of_memory(void); 1819 1820 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1821 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1822 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1823 1824 /* 1825 * Flags passed to show_mem() and show_free_areas() to suppress output in 1826 * various contexts. 1827 */ 1828 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1829 1830 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1831 1832 #ifdef CONFIG_MMU 1833 extern bool can_do_mlock(void); 1834 #else 1835 static inline bool can_do_mlock(void) { return false; } 1836 #endif 1837 extern int user_shm_lock(size_t, struct ucounts *); 1838 extern void user_shm_unlock(size_t, struct ucounts *); 1839 1840 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1841 pte_t pte); 1842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1843 pmd_t pmd); 1844 1845 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1846 unsigned long size); 1847 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1848 unsigned long size); 1849 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1850 unsigned long start, unsigned long end); 1851 1852 struct mmu_notifier_range; 1853 1854 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1855 unsigned long end, unsigned long floor, unsigned long ceiling); 1856 int 1857 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1858 int follow_pte(struct mm_struct *mm, unsigned long address, 1859 pte_t **ptepp, spinlock_t **ptlp); 1860 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1861 unsigned long *pfn); 1862 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1863 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1864 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1865 void *buf, int len, int write); 1866 1867 extern void truncate_pagecache(struct inode *inode, loff_t new); 1868 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1869 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1870 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1871 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1872 1873 #ifdef CONFIG_MMU 1874 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1875 unsigned long address, unsigned int flags, 1876 struct pt_regs *regs); 1877 extern int fixup_user_fault(struct mm_struct *mm, 1878 unsigned long address, unsigned int fault_flags, 1879 bool *unlocked); 1880 void unmap_mapping_pages(struct address_space *mapping, 1881 pgoff_t start, pgoff_t nr, bool even_cows); 1882 void unmap_mapping_range(struct address_space *mapping, 1883 loff_t const holebegin, loff_t const holelen, int even_cows); 1884 #else 1885 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1886 unsigned long address, unsigned int flags, 1887 struct pt_regs *regs) 1888 { 1889 /* should never happen if there's no MMU */ 1890 BUG(); 1891 return VM_FAULT_SIGBUS; 1892 } 1893 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1894 unsigned int fault_flags, bool *unlocked) 1895 { 1896 /* should never happen if there's no MMU */ 1897 BUG(); 1898 return -EFAULT; 1899 } 1900 static inline void unmap_mapping_pages(struct address_space *mapping, 1901 pgoff_t start, pgoff_t nr, bool even_cows) { } 1902 static inline void unmap_mapping_range(struct address_space *mapping, 1903 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1904 #endif 1905 1906 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1907 loff_t const holebegin, loff_t const holelen) 1908 { 1909 unmap_mapping_range(mapping, holebegin, holelen, 0); 1910 } 1911 1912 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1913 void *buf, int len, unsigned int gup_flags); 1914 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1915 void *buf, int len, unsigned int gup_flags); 1916 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1917 void *buf, int len, unsigned int gup_flags); 1918 1919 long get_user_pages_remote(struct mm_struct *mm, 1920 unsigned long start, unsigned long nr_pages, 1921 unsigned int gup_flags, struct page **pages, 1922 struct vm_area_struct **vmas, int *locked); 1923 long pin_user_pages_remote(struct mm_struct *mm, 1924 unsigned long start, unsigned long nr_pages, 1925 unsigned int gup_flags, struct page **pages, 1926 struct vm_area_struct **vmas, int *locked); 1927 long get_user_pages(unsigned long start, unsigned long nr_pages, 1928 unsigned int gup_flags, struct page **pages, 1929 struct vm_area_struct **vmas); 1930 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1931 unsigned int gup_flags, struct page **pages, 1932 struct vm_area_struct **vmas); 1933 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1934 struct page **pages, unsigned int gup_flags); 1935 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1936 struct page **pages, unsigned int gup_flags); 1937 1938 int get_user_pages_fast(unsigned long start, int nr_pages, 1939 unsigned int gup_flags, struct page **pages); 1940 int pin_user_pages_fast(unsigned long start, int nr_pages, 1941 unsigned int gup_flags, struct page **pages); 1942 1943 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1944 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1945 struct task_struct *task, bool bypass_rlim); 1946 1947 struct kvec; 1948 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1949 struct page **pages); 1950 struct page *get_dump_page(unsigned long addr); 1951 1952 bool folio_mark_dirty(struct folio *folio); 1953 bool set_page_dirty(struct page *page); 1954 int set_page_dirty_lock(struct page *page); 1955 1956 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1957 1958 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1959 unsigned long old_addr, struct vm_area_struct *new_vma, 1960 unsigned long new_addr, unsigned long len, 1961 bool need_rmap_locks); 1962 1963 /* 1964 * Flags used by change_protection(). For now we make it a bitmap so 1965 * that we can pass in multiple flags just like parameters. However 1966 * for now all the callers are only use one of the flags at the same 1967 * time. 1968 */ 1969 /* Whether we should allow dirty bit accounting */ 1970 #define MM_CP_DIRTY_ACCT (1UL << 0) 1971 /* Whether this protection change is for NUMA hints */ 1972 #define MM_CP_PROT_NUMA (1UL << 1) 1973 /* Whether this change is for write protecting */ 1974 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1975 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1976 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1977 MM_CP_UFFD_WP_RESOLVE) 1978 1979 extern unsigned long change_protection(struct mmu_gather *tlb, 1980 struct vm_area_struct *vma, unsigned long start, 1981 unsigned long end, pgprot_t newprot, 1982 unsigned long cp_flags); 1983 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 1984 struct vm_area_struct **pprev, unsigned long start, 1985 unsigned long end, unsigned long newflags); 1986 1987 /* 1988 * doesn't attempt to fault and will return short. 1989 */ 1990 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1991 unsigned int gup_flags, struct page **pages); 1992 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1993 unsigned int gup_flags, struct page **pages); 1994 1995 static inline bool get_user_page_fast_only(unsigned long addr, 1996 unsigned int gup_flags, struct page **pagep) 1997 { 1998 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1999 } 2000 /* 2001 * per-process(per-mm_struct) statistics. 2002 */ 2003 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2004 { 2005 long val = atomic_long_read(&mm->rss_stat.count[member]); 2006 2007 #ifdef SPLIT_RSS_COUNTING 2008 /* 2009 * counter is updated in asynchronous manner and may go to minus. 2010 * But it's never be expected number for users. 2011 */ 2012 if (val < 0) 2013 val = 0; 2014 #endif 2015 return (unsigned long)val; 2016 } 2017 2018 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2019 2020 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2021 { 2022 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2023 2024 mm_trace_rss_stat(mm, member, count); 2025 } 2026 2027 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2028 { 2029 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2030 2031 mm_trace_rss_stat(mm, member, count); 2032 } 2033 2034 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2035 { 2036 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2037 2038 mm_trace_rss_stat(mm, member, count); 2039 } 2040 2041 /* Optimized variant when page is already known not to be PageAnon */ 2042 static inline int mm_counter_file(struct page *page) 2043 { 2044 if (PageSwapBacked(page)) 2045 return MM_SHMEMPAGES; 2046 return MM_FILEPAGES; 2047 } 2048 2049 static inline int mm_counter(struct page *page) 2050 { 2051 if (PageAnon(page)) 2052 return MM_ANONPAGES; 2053 return mm_counter_file(page); 2054 } 2055 2056 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2057 { 2058 return get_mm_counter(mm, MM_FILEPAGES) + 2059 get_mm_counter(mm, MM_ANONPAGES) + 2060 get_mm_counter(mm, MM_SHMEMPAGES); 2061 } 2062 2063 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2064 { 2065 return max(mm->hiwater_rss, get_mm_rss(mm)); 2066 } 2067 2068 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2069 { 2070 return max(mm->hiwater_vm, mm->total_vm); 2071 } 2072 2073 static inline void update_hiwater_rss(struct mm_struct *mm) 2074 { 2075 unsigned long _rss = get_mm_rss(mm); 2076 2077 if ((mm)->hiwater_rss < _rss) 2078 (mm)->hiwater_rss = _rss; 2079 } 2080 2081 static inline void update_hiwater_vm(struct mm_struct *mm) 2082 { 2083 if (mm->hiwater_vm < mm->total_vm) 2084 mm->hiwater_vm = mm->total_vm; 2085 } 2086 2087 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2088 { 2089 mm->hiwater_rss = get_mm_rss(mm); 2090 } 2091 2092 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2093 struct mm_struct *mm) 2094 { 2095 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2096 2097 if (*maxrss < hiwater_rss) 2098 *maxrss = hiwater_rss; 2099 } 2100 2101 #if defined(SPLIT_RSS_COUNTING) 2102 void sync_mm_rss(struct mm_struct *mm); 2103 #else 2104 static inline void sync_mm_rss(struct mm_struct *mm) 2105 { 2106 } 2107 #endif 2108 2109 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2110 static inline int pte_special(pte_t pte) 2111 { 2112 return 0; 2113 } 2114 2115 static inline pte_t pte_mkspecial(pte_t pte) 2116 { 2117 return pte; 2118 } 2119 #endif 2120 2121 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2122 static inline int pte_devmap(pte_t pte) 2123 { 2124 return 0; 2125 } 2126 #endif 2127 2128 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2129 2130 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2131 spinlock_t **ptl); 2132 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2133 spinlock_t **ptl) 2134 { 2135 pte_t *ptep; 2136 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2137 return ptep; 2138 } 2139 2140 #ifdef __PAGETABLE_P4D_FOLDED 2141 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2142 unsigned long address) 2143 { 2144 return 0; 2145 } 2146 #else 2147 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2148 #endif 2149 2150 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2151 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2152 unsigned long address) 2153 { 2154 return 0; 2155 } 2156 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2157 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2158 2159 #else 2160 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2161 2162 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2163 { 2164 if (mm_pud_folded(mm)) 2165 return; 2166 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2167 } 2168 2169 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2170 { 2171 if (mm_pud_folded(mm)) 2172 return; 2173 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2174 } 2175 #endif 2176 2177 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2178 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2179 unsigned long address) 2180 { 2181 return 0; 2182 } 2183 2184 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2185 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2186 2187 #else 2188 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2189 2190 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2191 { 2192 if (mm_pmd_folded(mm)) 2193 return; 2194 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2195 } 2196 2197 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2198 { 2199 if (mm_pmd_folded(mm)) 2200 return; 2201 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2202 } 2203 #endif 2204 2205 #ifdef CONFIG_MMU 2206 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2207 { 2208 atomic_long_set(&mm->pgtables_bytes, 0); 2209 } 2210 2211 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2212 { 2213 return atomic_long_read(&mm->pgtables_bytes); 2214 } 2215 2216 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2217 { 2218 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2219 } 2220 2221 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2222 { 2223 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2224 } 2225 #else 2226 2227 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2228 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2229 { 2230 return 0; 2231 } 2232 2233 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2234 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2235 #endif 2236 2237 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2238 int __pte_alloc_kernel(pmd_t *pmd); 2239 2240 #if defined(CONFIG_MMU) 2241 2242 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2243 unsigned long address) 2244 { 2245 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2246 NULL : p4d_offset(pgd, address); 2247 } 2248 2249 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2250 unsigned long address) 2251 { 2252 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2253 NULL : pud_offset(p4d, address); 2254 } 2255 2256 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2257 { 2258 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2259 NULL: pmd_offset(pud, address); 2260 } 2261 #endif /* CONFIG_MMU */ 2262 2263 #if USE_SPLIT_PTE_PTLOCKS 2264 #if ALLOC_SPLIT_PTLOCKS 2265 void __init ptlock_cache_init(void); 2266 extern bool ptlock_alloc(struct page *page); 2267 extern void ptlock_free(struct page *page); 2268 2269 static inline spinlock_t *ptlock_ptr(struct page *page) 2270 { 2271 return page->ptl; 2272 } 2273 #else /* ALLOC_SPLIT_PTLOCKS */ 2274 static inline void ptlock_cache_init(void) 2275 { 2276 } 2277 2278 static inline bool ptlock_alloc(struct page *page) 2279 { 2280 return true; 2281 } 2282 2283 static inline void ptlock_free(struct page *page) 2284 { 2285 } 2286 2287 static inline spinlock_t *ptlock_ptr(struct page *page) 2288 { 2289 return &page->ptl; 2290 } 2291 #endif /* ALLOC_SPLIT_PTLOCKS */ 2292 2293 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2294 { 2295 return ptlock_ptr(pmd_page(*pmd)); 2296 } 2297 2298 static inline bool ptlock_init(struct page *page) 2299 { 2300 /* 2301 * prep_new_page() initialize page->private (and therefore page->ptl) 2302 * with 0. Make sure nobody took it in use in between. 2303 * 2304 * It can happen if arch try to use slab for page table allocation: 2305 * slab code uses page->slab_cache, which share storage with page->ptl. 2306 */ 2307 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2308 if (!ptlock_alloc(page)) 2309 return false; 2310 spin_lock_init(ptlock_ptr(page)); 2311 return true; 2312 } 2313 2314 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2315 /* 2316 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2317 */ 2318 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2319 { 2320 return &mm->page_table_lock; 2321 } 2322 static inline void ptlock_cache_init(void) {} 2323 static inline bool ptlock_init(struct page *page) { return true; } 2324 static inline void ptlock_free(struct page *page) {} 2325 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2326 2327 static inline void pgtable_init(void) 2328 { 2329 ptlock_cache_init(); 2330 pgtable_cache_init(); 2331 } 2332 2333 static inline bool pgtable_pte_page_ctor(struct page *page) 2334 { 2335 if (!ptlock_init(page)) 2336 return false; 2337 __SetPageTable(page); 2338 inc_lruvec_page_state(page, NR_PAGETABLE); 2339 return true; 2340 } 2341 2342 static inline void pgtable_pte_page_dtor(struct page *page) 2343 { 2344 ptlock_free(page); 2345 __ClearPageTable(page); 2346 dec_lruvec_page_state(page, NR_PAGETABLE); 2347 } 2348 2349 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2350 ({ \ 2351 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2352 pte_t *__pte = pte_offset_map(pmd, address); \ 2353 *(ptlp) = __ptl; \ 2354 spin_lock(__ptl); \ 2355 __pte; \ 2356 }) 2357 2358 #define pte_unmap_unlock(pte, ptl) do { \ 2359 spin_unlock(ptl); \ 2360 pte_unmap(pte); \ 2361 } while (0) 2362 2363 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2364 2365 #define pte_alloc_map(mm, pmd, address) \ 2366 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2367 2368 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2369 (pte_alloc(mm, pmd) ? \ 2370 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2371 2372 #define pte_alloc_kernel(pmd, address) \ 2373 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2374 NULL: pte_offset_kernel(pmd, address)) 2375 2376 #if USE_SPLIT_PMD_PTLOCKS 2377 2378 static struct page *pmd_to_page(pmd_t *pmd) 2379 { 2380 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2381 return virt_to_page((void *)((unsigned long) pmd & mask)); 2382 } 2383 2384 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2385 { 2386 return ptlock_ptr(pmd_to_page(pmd)); 2387 } 2388 2389 static inline bool pmd_ptlock_init(struct page *page) 2390 { 2391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2392 page->pmd_huge_pte = NULL; 2393 #endif 2394 return ptlock_init(page); 2395 } 2396 2397 static inline void pmd_ptlock_free(struct page *page) 2398 { 2399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2400 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2401 #endif 2402 ptlock_free(page); 2403 } 2404 2405 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2406 2407 #else 2408 2409 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2410 { 2411 return &mm->page_table_lock; 2412 } 2413 2414 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2415 static inline void pmd_ptlock_free(struct page *page) {} 2416 2417 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2418 2419 #endif 2420 2421 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2422 { 2423 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2424 spin_lock(ptl); 2425 return ptl; 2426 } 2427 2428 static inline bool pgtable_pmd_page_ctor(struct page *page) 2429 { 2430 if (!pmd_ptlock_init(page)) 2431 return false; 2432 __SetPageTable(page); 2433 inc_lruvec_page_state(page, NR_PAGETABLE); 2434 return true; 2435 } 2436 2437 static inline void pgtable_pmd_page_dtor(struct page *page) 2438 { 2439 pmd_ptlock_free(page); 2440 __ClearPageTable(page); 2441 dec_lruvec_page_state(page, NR_PAGETABLE); 2442 } 2443 2444 /* 2445 * No scalability reason to split PUD locks yet, but follow the same pattern 2446 * as the PMD locks to make it easier if we decide to. The VM should not be 2447 * considered ready to switch to split PUD locks yet; there may be places 2448 * which need to be converted from page_table_lock. 2449 */ 2450 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2451 { 2452 return &mm->page_table_lock; 2453 } 2454 2455 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2456 { 2457 spinlock_t *ptl = pud_lockptr(mm, pud); 2458 2459 spin_lock(ptl); 2460 return ptl; 2461 } 2462 2463 extern void __init pagecache_init(void); 2464 extern void free_initmem(void); 2465 2466 /* 2467 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2468 * into the buddy system. The freed pages will be poisoned with pattern 2469 * "poison" if it's within range [0, UCHAR_MAX]. 2470 * Return pages freed into the buddy system. 2471 */ 2472 extern unsigned long free_reserved_area(void *start, void *end, 2473 int poison, const char *s); 2474 2475 extern void adjust_managed_page_count(struct page *page, long count); 2476 extern void mem_init_print_info(void); 2477 2478 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2479 2480 /* Free the reserved page into the buddy system, so it gets managed. */ 2481 static inline void free_reserved_page(struct page *page) 2482 { 2483 ClearPageReserved(page); 2484 init_page_count(page); 2485 __free_page(page); 2486 adjust_managed_page_count(page, 1); 2487 } 2488 #define free_highmem_page(page) free_reserved_page(page) 2489 2490 static inline void mark_page_reserved(struct page *page) 2491 { 2492 SetPageReserved(page); 2493 adjust_managed_page_count(page, -1); 2494 } 2495 2496 /* 2497 * Default method to free all the __init memory into the buddy system. 2498 * The freed pages will be poisoned with pattern "poison" if it's within 2499 * range [0, UCHAR_MAX]. 2500 * Return pages freed into the buddy system. 2501 */ 2502 static inline unsigned long free_initmem_default(int poison) 2503 { 2504 extern char __init_begin[], __init_end[]; 2505 2506 return free_reserved_area(&__init_begin, &__init_end, 2507 poison, "unused kernel image (initmem)"); 2508 } 2509 2510 static inline unsigned long get_num_physpages(void) 2511 { 2512 int nid; 2513 unsigned long phys_pages = 0; 2514 2515 for_each_online_node(nid) 2516 phys_pages += node_present_pages(nid); 2517 2518 return phys_pages; 2519 } 2520 2521 /* 2522 * Using memblock node mappings, an architecture may initialise its 2523 * zones, allocate the backing mem_map and account for memory holes in an 2524 * architecture independent manner. 2525 * 2526 * An architecture is expected to register range of page frames backed by 2527 * physical memory with memblock_add[_node]() before calling 2528 * free_area_init() passing in the PFN each zone ends at. At a basic 2529 * usage, an architecture is expected to do something like 2530 * 2531 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2532 * max_highmem_pfn}; 2533 * for_each_valid_physical_page_range() 2534 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2535 * free_area_init(max_zone_pfns); 2536 */ 2537 void free_area_init(unsigned long *max_zone_pfn); 2538 unsigned long node_map_pfn_alignment(void); 2539 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2540 unsigned long end_pfn); 2541 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2542 unsigned long end_pfn); 2543 extern void get_pfn_range_for_nid(unsigned int nid, 2544 unsigned long *start_pfn, unsigned long *end_pfn); 2545 extern unsigned long find_min_pfn_with_active_regions(void); 2546 2547 #ifndef CONFIG_NUMA 2548 static inline int early_pfn_to_nid(unsigned long pfn) 2549 { 2550 return 0; 2551 } 2552 #else 2553 /* please see mm/page_alloc.c */ 2554 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2555 #endif 2556 2557 extern void set_dma_reserve(unsigned long new_dma_reserve); 2558 extern void memmap_init_range(unsigned long, int, unsigned long, 2559 unsigned long, unsigned long, enum meminit_context, 2560 struct vmem_altmap *, int migratetype); 2561 extern void setup_per_zone_wmarks(void); 2562 extern void calculate_min_free_kbytes(void); 2563 extern int __meminit init_per_zone_wmark_min(void); 2564 extern void mem_init(void); 2565 extern void __init mmap_init(void); 2566 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2567 extern long si_mem_available(void); 2568 extern void si_meminfo(struct sysinfo * val); 2569 extern void si_meminfo_node(struct sysinfo *val, int nid); 2570 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2571 extern unsigned long arch_reserved_kernel_pages(void); 2572 #endif 2573 2574 extern __printf(3, 4) 2575 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2576 2577 extern void setup_per_cpu_pageset(void); 2578 2579 /* page_alloc.c */ 2580 extern int min_free_kbytes; 2581 extern int watermark_boost_factor; 2582 extern int watermark_scale_factor; 2583 extern bool arch_has_descending_max_zone_pfns(void); 2584 2585 /* nommu.c */ 2586 extern atomic_long_t mmap_pages_allocated; 2587 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2588 2589 /* interval_tree.c */ 2590 void vma_interval_tree_insert(struct vm_area_struct *node, 2591 struct rb_root_cached *root); 2592 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2593 struct vm_area_struct *prev, 2594 struct rb_root_cached *root); 2595 void vma_interval_tree_remove(struct vm_area_struct *node, 2596 struct rb_root_cached *root); 2597 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2598 unsigned long start, unsigned long last); 2599 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2600 unsigned long start, unsigned long last); 2601 2602 #define vma_interval_tree_foreach(vma, root, start, last) \ 2603 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2604 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2605 2606 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2607 struct rb_root_cached *root); 2608 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2609 struct rb_root_cached *root); 2610 struct anon_vma_chain * 2611 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2612 unsigned long start, unsigned long last); 2613 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2614 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2615 #ifdef CONFIG_DEBUG_VM_RB 2616 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2617 #endif 2618 2619 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2620 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2621 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2622 2623 /* mmap.c */ 2624 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2625 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2626 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2627 struct vm_area_struct *expand); 2628 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2629 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2630 { 2631 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2632 } 2633 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2634 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2635 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2636 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2637 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2638 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2639 unsigned long addr, int new_below); 2640 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2641 unsigned long addr, int new_below); 2642 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2643 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2644 struct rb_node **, struct rb_node *); 2645 extern void unlink_file_vma(struct vm_area_struct *); 2646 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2647 unsigned long addr, unsigned long len, pgoff_t pgoff, 2648 bool *need_rmap_locks); 2649 extern void exit_mmap(struct mm_struct *); 2650 2651 static inline int check_data_rlimit(unsigned long rlim, 2652 unsigned long new, 2653 unsigned long start, 2654 unsigned long end_data, 2655 unsigned long start_data) 2656 { 2657 if (rlim < RLIM_INFINITY) { 2658 if (((new - start) + (end_data - start_data)) > rlim) 2659 return -ENOSPC; 2660 } 2661 2662 return 0; 2663 } 2664 2665 extern int mm_take_all_locks(struct mm_struct *mm); 2666 extern void mm_drop_all_locks(struct mm_struct *mm); 2667 2668 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2669 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2670 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2671 extern struct file *get_task_exe_file(struct task_struct *task); 2672 2673 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2674 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2675 2676 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2677 const struct vm_special_mapping *sm); 2678 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2679 unsigned long addr, unsigned long len, 2680 unsigned long flags, 2681 const struct vm_special_mapping *spec); 2682 /* This is an obsolete alternative to _install_special_mapping. */ 2683 extern int install_special_mapping(struct mm_struct *mm, 2684 unsigned long addr, unsigned long len, 2685 unsigned long flags, struct page **pages); 2686 2687 unsigned long randomize_stack_top(unsigned long stack_top); 2688 unsigned long randomize_page(unsigned long start, unsigned long range); 2689 2690 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2691 2692 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2693 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2694 struct list_head *uf); 2695 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2696 unsigned long len, unsigned long prot, unsigned long flags, 2697 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2698 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2699 struct list_head *uf, bool downgrade); 2700 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2701 struct list_head *uf); 2702 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2703 2704 #ifdef CONFIG_MMU 2705 extern int __mm_populate(unsigned long addr, unsigned long len, 2706 int ignore_errors); 2707 static inline void mm_populate(unsigned long addr, unsigned long len) 2708 { 2709 /* Ignore errors */ 2710 (void) __mm_populate(addr, len, 1); 2711 } 2712 #else 2713 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2714 #endif 2715 2716 /* These take the mm semaphore themselves */ 2717 extern int __must_check vm_brk(unsigned long, unsigned long); 2718 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2719 extern int vm_munmap(unsigned long, size_t); 2720 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2721 unsigned long, unsigned long, 2722 unsigned long, unsigned long); 2723 2724 struct vm_unmapped_area_info { 2725 #define VM_UNMAPPED_AREA_TOPDOWN 1 2726 unsigned long flags; 2727 unsigned long length; 2728 unsigned long low_limit; 2729 unsigned long high_limit; 2730 unsigned long align_mask; 2731 unsigned long align_offset; 2732 }; 2733 2734 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2735 2736 /* truncate.c */ 2737 extern void truncate_inode_pages(struct address_space *, loff_t); 2738 extern void truncate_inode_pages_range(struct address_space *, 2739 loff_t lstart, loff_t lend); 2740 extern void truncate_inode_pages_final(struct address_space *); 2741 2742 /* generic vm_area_ops exported for stackable file systems */ 2743 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2744 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2745 pgoff_t start_pgoff, pgoff_t end_pgoff); 2746 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2747 2748 extern unsigned long stack_guard_gap; 2749 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2750 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2751 2752 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2753 extern int expand_downwards(struct vm_area_struct *vma, 2754 unsigned long address); 2755 #if VM_GROWSUP 2756 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2757 #else 2758 #define expand_upwards(vma, address) (0) 2759 #endif 2760 2761 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2762 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2763 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2764 struct vm_area_struct **pprev); 2765 2766 /** 2767 * find_vma_intersection() - Look up the first VMA which intersects the interval 2768 * @mm: The process address space. 2769 * @start_addr: The inclusive start user address. 2770 * @end_addr: The exclusive end user address. 2771 * 2772 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2773 * start_addr < end_addr. 2774 */ 2775 static inline 2776 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2777 unsigned long start_addr, 2778 unsigned long end_addr) 2779 { 2780 struct vm_area_struct *vma = find_vma(mm, start_addr); 2781 2782 if (vma && end_addr <= vma->vm_start) 2783 vma = NULL; 2784 return vma; 2785 } 2786 2787 /** 2788 * vma_lookup() - Find a VMA at a specific address 2789 * @mm: The process address space. 2790 * @addr: The user address. 2791 * 2792 * Return: The vm_area_struct at the given address, %NULL otherwise. 2793 */ 2794 static inline 2795 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2796 { 2797 struct vm_area_struct *vma = find_vma(mm, addr); 2798 2799 if (vma && addr < vma->vm_start) 2800 vma = NULL; 2801 2802 return vma; 2803 } 2804 2805 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2806 { 2807 unsigned long vm_start = vma->vm_start; 2808 2809 if (vma->vm_flags & VM_GROWSDOWN) { 2810 vm_start -= stack_guard_gap; 2811 if (vm_start > vma->vm_start) 2812 vm_start = 0; 2813 } 2814 return vm_start; 2815 } 2816 2817 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2818 { 2819 unsigned long vm_end = vma->vm_end; 2820 2821 if (vma->vm_flags & VM_GROWSUP) { 2822 vm_end += stack_guard_gap; 2823 if (vm_end < vma->vm_end) 2824 vm_end = -PAGE_SIZE; 2825 } 2826 return vm_end; 2827 } 2828 2829 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2830 { 2831 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2832 } 2833 2834 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2835 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2836 unsigned long vm_start, unsigned long vm_end) 2837 { 2838 struct vm_area_struct *vma = find_vma(mm, vm_start); 2839 2840 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2841 vma = NULL; 2842 2843 return vma; 2844 } 2845 2846 static inline bool range_in_vma(struct vm_area_struct *vma, 2847 unsigned long start, unsigned long end) 2848 { 2849 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2850 } 2851 2852 #ifdef CONFIG_MMU 2853 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2854 void vma_set_page_prot(struct vm_area_struct *vma); 2855 #else 2856 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2857 { 2858 return __pgprot(0); 2859 } 2860 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2861 { 2862 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2863 } 2864 #endif 2865 2866 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2867 2868 #ifdef CONFIG_NUMA_BALANCING 2869 unsigned long change_prot_numa(struct vm_area_struct *vma, 2870 unsigned long start, unsigned long end); 2871 #endif 2872 2873 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2874 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2875 unsigned long pfn, unsigned long size, pgprot_t); 2876 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2877 unsigned long pfn, unsigned long size, pgprot_t prot); 2878 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2879 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2880 struct page **pages, unsigned long *num); 2881 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2882 unsigned long num); 2883 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2884 unsigned long num); 2885 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2886 unsigned long pfn); 2887 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2888 unsigned long pfn, pgprot_t pgprot); 2889 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2890 pfn_t pfn); 2891 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2892 pfn_t pfn, pgprot_t pgprot); 2893 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2894 unsigned long addr, pfn_t pfn); 2895 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2896 2897 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2898 unsigned long addr, struct page *page) 2899 { 2900 int err = vm_insert_page(vma, addr, page); 2901 2902 if (err == -ENOMEM) 2903 return VM_FAULT_OOM; 2904 if (err < 0 && err != -EBUSY) 2905 return VM_FAULT_SIGBUS; 2906 2907 return VM_FAULT_NOPAGE; 2908 } 2909 2910 #ifndef io_remap_pfn_range 2911 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2912 unsigned long addr, unsigned long pfn, 2913 unsigned long size, pgprot_t prot) 2914 { 2915 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2916 } 2917 #endif 2918 2919 static inline vm_fault_t vmf_error(int err) 2920 { 2921 if (err == -ENOMEM) 2922 return VM_FAULT_OOM; 2923 return VM_FAULT_SIGBUS; 2924 } 2925 2926 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2927 unsigned int foll_flags); 2928 2929 #define FOLL_WRITE 0x01 /* check pte is writable */ 2930 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2931 #define FOLL_GET 0x04 /* do get_page on page */ 2932 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2933 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2934 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2935 * and return without waiting upon it */ 2936 #define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2937 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2938 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2939 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2940 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2941 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2942 #define FOLL_COW 0x4000 /* internal GUP flag */ 2943 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2944 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2945 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2946 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2947 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2948 2949 /* 2950 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2951 * other. Here is what they mean, and how to use them: 2952 * 2953 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2954 * period _often_ under userspace control. This is in contrast to 2955 * iov_iter_get_pages(), whose usages are transient. 2956 * 2957 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2958 * lifetime enforced by the filesystem and we need guarantees that longterm 2959 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2960 * the filesystem. Ideas for this coordination include revoking the longterm 2961 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2962 * added after the problem with filesystems was found FS DAX VMAs are 2963 * specifically failed. Filesystem pages are still subject to bugs and use of 2964 * FOLL_LONGTERM should be avoided on those pages. 2965 * 2966 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2967 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2968 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2969 * is due to an incompatibility with the FS DAX check and 2970 * FAULT_FLAG_ALLOW_RETRY. 2971 * 2972 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2973 * that region. And so, CMA attempts to migrate the page before pinning, when 2974 * FOLL_LONGTERM is specified. 2975 * 2976 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2977 * but an additional pin counting system) will be invoked. This is intended for 2978 * anything that gets a page reference and then touches page data (for example, 2979 * Direct IO). This lets the filesystem know that some non-file-system entity is 2980 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2981 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2982 * a call to unpin_user_page(). 2983 * 2984 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2985 * and separate refcounting mechanisms, however, and that means that each has 2986 * its own acquire and release mechanisms: 2987 * 2988 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2989 * 2990 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2991 * 2992 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2993 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2994 * calls applied to them, and that's perfectly OK. This is a constraint on the 2995 * callers, not on the pages.) 2996 * 2997 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2998 * directly by the caller. That's in order to help avoid mismatches when 2999 * releasing pages: get_user_pages*() pages must be released via put_page(), 3000 * while pin_user_pages*() pages must be released via unpin_user_page(). 3001 * 3002 * Please see Documentation/core-api/pin_user_pages.rst for more information. 3003 */ 3004 3005 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3006 { 3007 if (vm_fault & VM_FAULT_OOM) 3008 return -ENOMEM; 3009 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3010 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3011 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3012 return -EFAULT; 3013 return 0; 3014 } 3015 3016 /* 3017 * Indicates for which pages that are write-protected in the page table, 3018 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 3019 * GUP pin will remain consistent with the pages mapped into the page tables 3020 * of the MM. 3021 * 3022 * Temporary unmapping of PageAnonExclusive() pages or clearing of 3023 * PageAnonExclusive() has to protect against concurrent GUP: 3024 * * Ordinary GUP: Using the PT lock 3025 * * GUP-fast and fork(): mm->write_protect_seq 3026 * * GUP-fast and KSM or temporary unmapping (swap, migration): 3027 * clear/invalidate+flush of the page table entry 3028 * 3029 * Must be called with the (sub)page that's actually referenced via the 3030 * page table entry, which might not necessarily be the head page for a 3031 * PTE-mapped THP. 3032 */ 3033 static inline bool gup_must_unshare(unsigned int flags, struct page *page) 3034 { 3035 /* 3036 * FOLL_WRITE is implicitly handled correctly as the page table entry 3037 * has to be writable -- and if it references (part of) an anonymous 3038 * folio, that part is required to be marked exclusive. 3039 */ 3040 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 3041 return false; 3042 /* 3043 * Note: PageAnon(page) is stable until the page is actually getting 3044 * freed. 3045 */ 3046 if (!PageAnon(page)) 3047 return false; 3048 /* 3049 * Note that PageKsm() pages cannot be exclusive, and consequently, 3050 * cannot get pinned. 3051 */ 3052 return !PageAnonExclusive(page); 3053 } 3054 3055 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3056 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3057 unsigned long size, pte_fn_t fn, void *data); 3058 extern int apply_to_existing_page_range(struct mm_struct *mm, 3059 unsigned long address, unsigned long size, 3060 pte_fn_t fn, void *data); 3061 3062 extern void init_mem_debugging_and_hardening(void); 3063 #ifdef CONFIG_PAGE_POISONING 3064 extern void __kernel_poison_pages(struct page *page, int numpages); 3065 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3066 extern bool _page_poisoning_enabled_early; 3067 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3068 static inline bool page_poisoning_enabled(void) 3069 { 3070 return _page_poisoning_enabled_early; 3071 } 3072 /* 3073 * For use in fast paths after init_mem_debugging() has run, or when a 3074 * false negative result is not harmful when called too early. 3075 */ 3076 static inline bool page_poisoning_enabled_static(void) 3077 { 3078 return static_branch_unlikely(&_page_poisoning_enabled); 3079 } 3080 static inline void kernel_poison_pages(struct page *page, int numpages) 3081 { 3082 if (page_poisoning_enabled_static()) 3083 __kernel_poison_pages(page, numpages); 3084 } 3085 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3086 { 3087 if (page_poisoning_enabled_static()) 3088 __kernel_unpoison_pages(page, numpages); 3089 } 3090 #else 3091 static inline bool page_poisoning_enabled(void) { return false; } 3092 static inline bool page_poisoning_enabled_static(void) { return false; } 3093 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3094 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3095 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3096 #endif 3097 3098 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3099 static inline bool want_init_on_alloc(gfp_t flags) 3100 { 3101 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3102 &init_on_alloc)) 3103 return true; 3104 return flags & __GFP_ZERO; 3105 } 3106 3107 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3108 static inline bool want_init_on_free(void) 3109 { 3110 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3111 &init_on_free); 3112 } 3113 3114 extern bool _debug_pagealloc_enabled_early; 3115 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3116 3117 static inline bool debug_pagealloc_enabled(void) 3118 { 3119 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3120 _debug_pagealloc_enabled_early; 3121 } 3122 3123 /* 3124 * For use in fast paths after init_debug_pagealloc() has run, or when a 3125 * false negative result is not harmful when called too early. 3126 */ 3127 static inline bool debug_pagealloc_enabled_static(void) 3128 { 3129 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3130 return false; 3131 3132 return static_branch_unlikely(&_debug_pagealloc_enabled); 3133 } 3134 3135 #ifdef CONFIG_DEBUG_PAGEALLOC 3136 /* 3137 * To support DEBUG_PAGEALLOC architecture must ensure that 3138 * __kernel_map_pages() never fails 3139 */ 3140 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3141 3142 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3143 { 3144 if (debug_pagealloc_enabled_static()) 3145 __kernel_map_pages(page, numpages, 1); 3146 } 3147 3148 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3149 { 3150 if (debug_pagealloc_enabled_static()) 3151 __kernel_map_pages(page, numpages, 0); 3152 } 3153 #else /* CONFIG_DEBUG_PAGEALLOC */ 3154 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3155 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3156 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3157 3158 #ifdef __HAVE_ARCH_GATE_AREA 3159 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3160 extern int in_gate_area_no_mm(unsigned long addr); 3161 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3162 #else 3163 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3164 { 3165 return NULL; 3166 } 3167 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3168 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3169 { 3170 return 0; 3171 } 3172 #endif /* __HAVE_ARCH_GATE_AREA */ 3173 3174 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3175 3176 #ifdef CONFIG_SYSCTL 3177 extern int sysctl_drop_caches; 3178 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3179 loff_t *); 3180 #endif 3181 3182 void drop_slab(void); 3183 3184 #ifndef CONFIG_MMU 3185 #define randomize_va_space 0 3186 #else 3187 extern int randomize_va_space; 3188 #endif 3189 3190 const char * arch_vma_name(struct vm_area_struct *vma); 3191 #ifdef CONFIG_MMU 3192 void print_vma_addr(char *prefix, unsigned long rip); 3193 #else 3194 static inline void print_vma_addr(char *prefix, unsigned long rip) 3195 { 3196 } 3197 #endif 3198 3199 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 3200 int vmemmap_remap_free(unsigned long start, unsigned long end, 3201 unsigned long reuse); 3202 int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3203 unsigned long reuse, gfp_t gfp_mask); 3204 #endif 3205 3206 void *sparse_buffer_alloc(unsigned long size); 3207 struct page * __populate_section_memmap(unsigned long pfn, 3208 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3209 struct dev_pagemap *pgmap); 3210 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3211 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3212 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3213 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3214 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3215 struct vmem_altmap *altmap, struct page *reuse); 3216 void *vmemmap_alloc_block(unsigned long size, int node); 3217 struct vmem_altmap; 3218 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3219 struct vmem_altmap *altmap); 3220 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3221 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3222 int node, struct vmem_altmap *altmap); 3223 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3224 struct vmem_altmap *altmap); 3225 void vmemmap_populate_print_last(void); 3226 #ifdef CONFIG_MEMORY_HOTPLUG 3227 void vmemmap_free(unsigned long start, unsigned long end, 3228 struct vmem_altmap *altmap); 3229 #endif 3230 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3231 unsigned long nr_pages); 3232 3233 enum mf_flags { 3234 MF_COUNT_INCREASED = 1 << 0, 3235 MF_ACTION_REQUIRED = 1 << 1, 3236 MF_MUST_KILL = 1 << 2, 3237 MF_SOFT_OFFLINE = 1 << 3, 3238 MF_UNPOISON = 1 << 4, 3239 MF_SW_SIMULATED = 1 << 5, 3240 }; 3241 extern int memory_failure(unsigned long pfn, int flags); 3242 extern void memory_failure_queue(unsigned long pfn, int flags); 3243 extern void memory_failure_queue_kick(int cpu); 3244 extern int unpoison_memory(unsigned long pfn); 3245 extern int sysctl_memory_failure_early_kill; 3246 extern int sysctl_memory_failure_recovery; 3247 extern void shake_page(struct page *p); 3248 extern atomic_long_t num_poisoned_pages __read_mostly; 3249 extern int soft_offline_page(unsigned long pfn, int flags); 3250 #ifdef CONFIG_MEMORY_FAILURE 3251 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags); 3252 #else 3253 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 3254 { 3255 return 0; 3256 } 3257 #endif 3258 3259 #ifndef arch_memory_failure 3260 static inline int arch_memory_failure(unsigned long pfn, int flags) 3261 { 3262 return -ENXIO; 3263 } 3264 #endif 3265 3266 #ifndef arch_is_platform_page 3267 static inline bool arch_is_platform_page(u64 paddr) 3268 { 3269 return false; 3270 } 3271 #endif 3272 3273 /* 3274 * Error handlers for various types of pages. 3275 */ 3276 enum mf_result { 3277 MF_IGNORED, /* Error: cannot be handled */ 3278 MF_FAILED, /* Error: handling failed */ 3279 MF_DELAYED, /* Will be handled later */ 3280 MF_RECOVERED, /* Successfully recovered */ 3281 }; 3282 3283 enum mf_action_page_type { 3284 MF_MSG_KERNEL, 3285 MF_MSG_KERNEL_HIGH_ORDER, 3286 MF_MSG_SLAB, 3287 MF_MSG_DIFFERENT_COMPOUND, 3288 MF_MSG_HUGE, 3289 MF_MSG_FREE_HUGE, 3290 MF_MSG_NON_PMD_HUGE, 3291 MF_MSG_UNMAP_FAILED, 3292 MF_MSG_DIRTY_SWAPCACHE, 3293 MF_MSG_CLEAN_SWAPCACHE, 3294 MF_MSG_DIRTY_MLOCKED_LRU, 3295 MF_MSG_CLEAN_MLOCKED_LRU, 3296 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3297 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3298 MF_MSG_DIRTY_LRU, 3299 MF_MSG_CLEAN_LRU, 3300 MF_MSG_TRUNCATED_LRU, 3301 MF_MSG_BUDDY, 3302 MF_MSG_DAX, 3303 MF_MSG_UNSPLIT_THP, 3304 MF_MSG_UNKNOWN, 3305 }; 3306 3307 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3308 extern void clear_huge_page(struct page *page, 3309 unsigned long addr_hint, 3310 unsigned int pages_per_huge_page); 3311 extern void copy_user_huge_page(struct page *dst, struct page *src, 3312 unsigned long addr_hint, 3313 struct vm_area_struct *vma, 3314 unsigned int pages_per_huge_page); 3315 extern long copy_huge_page_from_user(struct page *dst_page, 3316 const void __user *usr_src, 3317 unsigned int pages_per_huge_page, 3318 bool allow_pagefault); 3319 3320 /** 3321 * vma_is_special_huge - Are transhuge page-table entries considered special? 3322 * @vma: Pointer to the struct vm_area_struct to consider 3323 * 3324 * Whether transhuge page-table entries are considered "special" following 3325 * the definition in vm_normal_page(). 3326 * 3327 * Return: true if transhuge page-table entries should be considered special, 3328 * false otherwise. 3329 */ 3330 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3331 { 3332 return vma_is_dax(vma) || (vma->vm_file && 3333 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3334 } 3335 3336 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3337 3338 #ifdef CONFIG_DEBUG_PAGEALLOC 3339 extern unsigned int _debug_guardpage_minorder; 3340 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3341 3342 static inline unsigned int debug_guardpage_minorder(void) 3343 { 3344 return _debug_guardpage_minorder; 3345 } 3346 3347 static inline bool debug_guardpage_enabled(void) 3348 { 3349 return static_branch_unlikely(&_debug_guardpage_enabled); 3350 } 3351 3352 static inline bool page_is_guard(struct page *page) 3353 { 3354 if (!debug_guardpage_enabled()) 3355 return false; 3356 3357 return PageGuard(page); 3358 } 3359 #else 3360 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3361 static inline bool debug_guardpage_enabled(void) { return false; } 3362 static inline bool page_is_guard(struct page *page) { return false; } 3363 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3364 3365 #if MAX_NUMNODES > 1 3366 void __init setup_nr_node_ids(void); 3367 #else 3368 static inline void setup_nr_node_ids(void) {} 3369 #endif 3370 3371 extern int memcmp_pages(struct page *page1, struct page *page2); 3372 3373 static inline int pages_identical(struct page *page1, struct page *page2) 3374 { 3375 return !memcmp_pages(page1, page2); 3376 } 3377 3378 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3379 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3380 pgoff_t first_index, pgoff_t nr, 3381 pgoff_t bitmap_pgoff, 3382 unsigned long *bitmap, 3383 pgoff_t *start, 3384 pgoff_t *end); 3385 3386 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3387 pgoff_t first_index, pgoff_t nr); 3388 #endif 3389 3390 extern int sysctl_nr_trim_pages; 3391 3392 #ifdef CONFIG_PRINTK 3393 void mem_dump_obj(void *object); 3394 #else 3395 static inline void mem_dump_obj(void *object) {} 3396 #endif 3397 3398 /** 3399 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3400 * @seals: the seals to check 3401 * @vma: the vma to operate on 3402 * 3403 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3404 * the vma flags. Return 0 if check pass, or <0 for errors. 3405 */ 3406 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3407 { 3408 if (seals & F_SEAL_FUTURE_WRITE) { 3409 /* 3410 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3411 * "future write" seal active. 3412 */ 3413 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3414 return -EPERM; 3415 3416 /* 3417 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3418 * MAP_SHARED and read-only, take care to not allow mprotect to 3419 * revert protections on such mappings. Do this only for shared 3420 * mappings. For private mappings, don't need to mask 3421 * VM_MAYWRITE as we still want them to be COW-writable. 3422 */ 3423 if (vma->vm_flags & VM_SHARED) 3424 vma->vm_flags &= ~(VM_MAYWRITE); 3425 } 3426 3427 return 0; 3428 } 3429 3430 #ifdef CONFIG_ANON_VMA_NAME 3431 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3432 unsigned long len_in, 3433 struct anon_vma_name *anon_name); 3434 #else 3435 static inline int 3436 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3437 unsigned long len_in, struct anon_vma_name *anon_name) { 3438 return 0; 3439 } 3440 #endif 3441 3442 /* 3443 * Whether to drop the pte markers, for example, the uffd-wp information for 3444 * file-backed memory. This should only be specified when we will completely 3445 * drop the page in the mm, either by truncation or unmapping of the vma. By 3446 * default, the flag is not set. 3447 */ 3448 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 3449 3450 #endif /* _LINUX_MM_H */ 3451