1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 /* 102 * Architectures that support memory tagging (assigning tags to memory regions, 103 * embedding these tags into addresses that point to these memory regions, and 104 * checking that the memory and the pointer tags match on memory accesses) 105 * redefine this macro to strip tags from pointers. 106 * It's defined as noop for architectures that don't support memory tagging. 107 */ 108 #ifndef untagged_addr 109 #define untagged_addr(addr) (addr) 110 #endif 111 112 #ifndef __pa_symbol 113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114 #endif 115 116 #ifndef page_to_virt 117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118 #endif 119 120 #ifndef lm_alias 121 #define lm_alias(x) __va(__pa_symbol(x)) 122 #endif 123 124 /* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131 #ifndef mm_forbids_zeropage 132 #define mm_forbids_zeropage(X) (0) 133 #endif 134 135 /* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141 #if BITS_PER_LONG == 64 142 /* This function must be updated when the size of struct page grows above 96 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statements if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149 static inline void __mm_zero_struct_page(struct page *page) 150 { 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 96); 157 158 switch (sizeof(struct page)) { 159 case 96: 160 _pp[11] = 0; 161 fallthrough; 162 case 88: 163 _pp[10] = 0; 164 fallthrough; 165 case 80: 166 _pp[9] = 0; 167 fallthrough; 168 case 72: 169 _pp[8] = 0; 170 fallthrough; 171 case 64: 172 _pp[7] = 0; 173 fallthrough; 174 case 56: 175 _pp[6] = 0; 176 _pp[5] = 0; 177 _pp[4] = 0; 178 _pp[3] = 0; 179 _pp[2] = 0; 180 _pp[1] = 0; 181 _pp[0] = 0; 182 } 183 } 184 #else 185 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 186 #endif 187 188 /* 189 * Default maximum number of active map areas, this limits the number of vmas 190 * per mm struct. Users can overwrite this number by sysctl but there is a 191 * problem. 192 * 193 * When a program's coredump is generated as ELF format, a section is created 194 * per a vma. In ELF, the number of sections is represented in unsigned short. 195 * This means the number of sections should be smaller than 65535 at coredump. 196 * Because the kernel adds some informative sections to a image of program at 197 * generating coredump, we need some margin. The number of extra sections is 198 * 1-3 now and depends on arch. We use "5" as safe margin, here. 199 * 200 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 201 * not a hard limit any more. Although some userspace tools can be surprised by 202 * that. 203 */ 204 #define MAPCOUNT_ELF_CORE_MARGIN (5) 205 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 206 207 extern int sysctl_max_map_count; 208 209 extern unsigned long sysctl_user_reserve_kbytes; 210 extern unsigned long sysctl_admin_reserve_kbytes; 211 212 extern int sysctl_overcommit_memory; 213 extern int sysctl_overcommit_ratio; 214 extern unsigned long sysctl_overcommit_kbytes; 215 216 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 219 loff_t *); 220 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 221 loff_t *); 222 223 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 224 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 225 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 226 #else 227 #define nth_page(page,n) ((page) + (n)) 228 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 229 #endif 230 231 /* to align the pointer to the (next) page boundary */ 232 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 233 234 /* to align the pointer to the (prev) page boundary */ 235 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 236 237 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 238 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 239 240 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 241 static inline struct folio *lru_to_folio(struct list_head *head) 242 { 243 return list_entry((head)->prev, struct folio, lru); 244 } 245 246 void setup_initial_init_mm(void *start_code, void *end_code, 247 void *end_data, void *brk); 248 249 /* 250 * Linux kernel virtual memory manager primitives. 251 * The idea being to have a "virtual" mm in the same way 252 * we have a virtual fs - giving a cleaner interface to the 253 * mm details, and allowing different kinds of memory mappings 254 * (from shared memory to executable loading to arbitrary 255 * mmap() functions). 256 */ 257 258 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 259 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 260 void vm_area_free(struct vm_area_struct *); 261 /* Use only if VMA has no other users */ 262 void __vm_area_free(struct vm_area_struct *vma); 263 264 #ifndef CONFIG_MMU 265 extern struct rb_root nommu_region_tree; 266 extern struct rw_semaphore nommu_region_sem; 267 268 extern unsigned int kobjsize(const void *objp); 269 #endif 270 271 /* 272 * vm_flags in vm_area_struct, see mm_types.h. 273 * When changing, update also include/trace/events/mmflags.h 274 */ 275 #define VM_NONE 0x00000000 276 277 #define VM_READ 0x00000001 /* currently active flags */ 278 #define VM_WRITE 0x00000002 279 #define VM_EXEC 0x00000004 280 #define VM_SHARED 0x00000008 281 282 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 283 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 284 #define VM_MAYWRITE 0x00000020 285 #define VM_MAYEXEC 0x00000040 286 #define VM_MAYSHARE 0x00000080 287 288 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 289 #ifdef CONFIG_MMU 290 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 291 #else /* CONFIG_MMU */ 292 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 293 #define VM_UFFD_MISSING 0 294 #endif /* CONFIG_MMU */ 295 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 296 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 297 298 #define VM_LOCKED 0x00002000 299 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 300 301 /* Used by sys_madvise() */ 302 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 303 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 304 305 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 306 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 307 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 308 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 309 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 310 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 311 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 312 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 313 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 314 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 315 316 #ifdef CONFIG_MEM_SOFT_DIRTY 317 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 318 #else 319 # define VM_SOFTDIRTY 0 320 #endif 321 322 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 323 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 324 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 325 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 326 327 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 328 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 329 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 330 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 331 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 332 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 333 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 334 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 335 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 336 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 337 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 338 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 339 340 #ifdef CONFIG_ARCH_HAS_PKEYS 341 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 342 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 343 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 344 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 345 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 346 #ifdef CONFIG_PPC 347 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 348 #else 349 # define VM_PKEY_BIT4 0 350 #endif 351 #endif /* CONFIG_ARCH_HAS_PKEYS */ 352 353 #if defined(CONFIG_X86) 354 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 355 #elif defined(CONFIG_PPC) 356 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 357 #elif defined(CONFIG_PARISC) 358 # define VM_GROWSUP VM_ARCH_1 359 #elif defined(CONFIG_IA64) 360 # define VM_GROWSUP VM_ARCH_1 361 #elif defined(CONFIG_SPARC64) 362 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 363 # define VM_ARCH_CLEAR VM_SPARC_ADI 364 #elif defined(CONFIG_ARM64) 365 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 366 # define VM_ARCH_CLEAR VM_ARM64_BTI 367 #elif !defined(CONFIG_MMU) 368 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 369 #endif 370 371 #if defined(CONFIG_ARM64_MTE) 372 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 373 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 374 #else 375 # define VM_MTE VM_NONE 376 # define VM_MTE_ALLOWED VM_NONE 377 #endif 378 379 #ifndef VM_GROWSUP 380 # define VM_GROWSUP VM_NONE 381 #endif 382 383 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 384 # define VM_UFFD_MINOR_BIT 37 385 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 386 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 387 # define VM_UFFD_MINOR VM_NONE 388 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 389 390 /* Bits set in the VMA until the stack is in its final location */ 391 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 392 393 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 394 395 /* Common data flag combinations */ 396 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 397 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 398 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 399 VM_MAYWRITE | VM_MAYEXEC) 400 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 401 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 402 403 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 404 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 405 #endif 406 407 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 408 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 409 #endif 410 411 #ifdef CONFIG_STACK_GROWSUP 412 #define VM_STACK VM_GROWSUP 413 #else 414 #define VM_STACK VM_GROWSDOWN 415 #endif 416 417 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 418 419 /* VMA basic access permission flags */ 420 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 421 422 423 /* 424 * Special vmas that are non-mergable, non-mlock()able. 425 */ 426 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 427 428 /* This mask prevents VMA from being scanned with khugepaged */ 429 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 430 431 /* This mask defines which mm->def_flags a process can inherit its parent */ 432 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 433 434 /* This mask represents all the VMA flag bits used by mlock */ 435 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 436 437 /* Arch-specific flags to clear when updating VM flags on protection change */ 438 #ifndef VM_ARCH_CLEAR 439 # define VM_ARCH_CLEAR VM_NONE 440 #endif 441 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 442 443 /* 444 * mapping from the currently active vm_flags protection bits (the 445 * low four bits) to a page protection mask.. 446 */ 447 448 /* 449 * The default fault flags that should be used by most of the 450 * arch-specific page fault handlers. 451 */ 452 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 453 FAULT_FLAG_KILLABLE | \ 454 FAULT_FLAG_INTERRUPTIBLE) 455 456 /** 457 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 458 * @flags: Fault flags. 459 * 460 * This is mostly used for places where we want to try to avoid taking 461 * the mmap_lock for too long a time when waiting for another condition 462 * to change, in which case we can try to be polite to release the 463 * mmap_lock in the first round to avoid potential starvation of other 464 * processes that would also want the mmap_lock. 465 * 466 * Return: true if the page fault allows retry and this is the first 467 * attempt of the fault handling; false otherwise. 468 */ 469 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 470 { 471 return (flags & FAULT_FLAG_ALLOW_RETRY) && 472 (!(flags & FAULT_FLAG_TRIED)); 473 } 474 475 #define FAULT_FLAG_TRACE \ 476 { FAULT_FLAG_WRITE, "WRITE" }, \ 477 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 478 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 479 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 480 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 481 { FAULT_FLAG_TRIED, "TRIED" }, \ 482 { FAULT_FLAG_USER, "USER" }, \ 483 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 484 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 485 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 486 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 487 488 /* 489 * vm_fault is filled by the pagefault handler and passed to the vma's 490 * ->fault function. The vma's ->fault is responsible for returning a bitmask 491 * of VM_FAULT_xxx flags that give details about how the fault was handled. 492 * 493 * MM layer fills up gfp_mask for page allocations but fault handler might 494 * alter it if its implementation requires a different allocation context. 495 * 496 * pgoff should be used in favour of virtual_address, if possible. 497 */ 498 struct vm_fault { 499 const struct { 500 struct vm_area_struct *vma; /* Target VMA */ 501 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 502 pgoff_t pgoff; /* Logical page offset based on vma */ 503 unsigned long address; /* Faulting virtual address - masked */ 504 unsigned long real_address; /* Faulting virtual address - unmasked */ 505 }; 506 enum fault_flag flags; /* FAULT_FLAG_xxx flags 507 * XXX: should really be 'const' */ 508 pmd_t *pmd; /* Pointer to pmd entry matching 509 * the 'address' */ 510 pud_t *pud; /* Pointer to pud entry matching 511 * the 'address' 512 */ 513 union { 514 pte_t orig_pte; /* Value of PTE at the time of fault */ 515 pmd_t orig_pmd; /* Value of PMD at the time of fault, 516 * used by PMD fault only. 517 */ 518 }; 519 520 struct page *cow_page; /* Page handler may use for COW fault */ 521 struct page *page; /* ->fault handlers should return a 522 * page here, unless VM_FAULT_NOPAGE 523 * is set (which is also implied by 524 * VM_FAULT_ERROR). 525 */ 526 /* These three entries are valid only while holding ptl lock */ 527 pte_t *pte; /* Pointer to pte entry matching 528 * the 'address'. NULL if the page 529 * table hasn't been allocated. 530 */ 531 spinlock_t *ptl; /* Page table lock. 532 * Protects pte page table if 'pte' 533 * is not NULL, otherwise pmd. 534 */ 535 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 536 * vm_ops->map_pages() sets up a page 537 * table from atomic context. 538 * do_fault_around() pre-allocates 539 * page table to avoid allocation from 540 * atomic context. 541 */ 542 }; 543 544 /* page entry size for vm->huge_fault() */ 545 enum page_entry_size { 546 PE_SIZE_PTE = 0, 547 PE_SIZE_PMD, 548 PE_SIZE_PUD, 549 }; 550 551 /* 552 * These are the virtual MM functions - opening of an area, closing and 553 * unmapping it (needed to keep files on disk up-to-date etc), pointer 554 * to the functions called when a no-page or a wp-page exception occurs. 555 */ 556 struct vm_operations_struct { 557 void (*open)(struct vm_area_struct * area); 558 /** 559 * @close: Called when the VMA is being removed from the MM. 560 * Context: User context. May sleep. Caller holds mmap_lock. 561 */ 562 void (*close)(struct vm_area_struct * area); 563 /* Called any time before splitting to check if it's allowed */ 564 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 565 int (*mremap)(struct vm_area_struct *area); 566 /* 567 * Called by mprotect() to make driver-specific permission 568 * checks before mprotect() is finalised. The VMA must not 569 * be modified. Returns 0 if mprotect() can proceed. 570 */ 571 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 572 unsigned long end, unsigned long newflags); 573 vm_fault_t (*fault)(struct vm_fault *vmf); 574 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 575 enum page_entry_size pe_size); 576 vm_fault_t (*map_pages)(struct vm_fault *vmf, 577 pgoff_t start_pgoff, pgoff_t end_pgoff); 578 unsigned long (*pagesize)(struct vm_area_struct * area); 579 580 /* notification that a previously read-only page is about to become 581 * writable, if an error is returned it will cause a SIGBUS */ 582 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 583 584 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 585 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 586 587 /* called by access_process_vm when get_user_pages() fails, typically 588 * for use by special VMAs. See also generic_access_phys() for a generic 589 * implementation useful for any iomem mapping. 590 */ 591 int (*access)(struct vm_area_struct *vma, unsigned long addr, 592 void *buf, int len, int write); 593 594 /* Called by the /proc/PID/maps code to ask the vma whether it 595 * has a special name. Returning non-NULL will also cause this 596 * vma to be dumped unconditionally. */ 597 const char *(*name)(struct vm_area_struct *vma); 598 599 #ifdef CONFIG_NUMA 600 /* 601 * set_policy() op must add a reference to any non-NULL @new mempolicy 602 * to hold the policy upon return. Caller should pass NULL @new to 603 * remove a policy and fall back to surrounding context--i.e. do not 604 * install a MPOL_DEFAULT policy, nor the task or system default 605 * mempolicy. 606 */ 607 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 608 609 /* 610 * get_policy() op must add reference [mpol_get()] to any policy at 611 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 612 * in mm/mempolicy.c will do this automatically. 613 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 614 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 615 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 616 * must return NULL--i.e., do not "fallback" to task or system default 617 * policy. 618 */ 619 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 620 unsigned long addr); 621 #endif 622 /* 623 * Called by vm_normal_page() for special PTEs to find the 624 * page for @addr. This is useful if the default behavior 625 * (using pte_page()) would not find the correct page. 626 */ 627 struct page *(*find_special_page)(struct vm_area_struct *vma, 628 unsigned long addr); 629 }; 630 631 #ifdef CONFIG_NUMA_BALANCING 632 static inline void vma_numab_state_init(struct vm_area_struct *vma) 633 { 634 vma->numab_state = NULL; 635 } 636 static inline void vma_numab_state_free(struct vm_area_struct *vma) 637 { 638 kfree(vma->numab_state); 639 } 640 #else 641 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 642 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 643 #endif /* CONFIG_NUMA_BALANCING */ 644 645 #ifdef CONFIG_PER_VMA_LOCK 646 /* 647 * Try to read-lock a vma. The function is allowed to occasionally yield false 648 * locked result to avoid performance overhead, in which case we fall back to 649 * using mmap_lock. The function should never yield false unlocked result. 650 */ 651 static inline bool vma_start_read(struct vm_area_struct *vma) 652 { 653 /* Check before locking. A race might cause false locked result. */ 654 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq)) 655 return false; 656 657 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 658 return false; 659 660 /* 661 * Overflow might produce false locked result. 662 * False unlocked result is impossible because we modify and check 663 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 664 * modification invalidates all existing locks. 665 */ 666 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) { 667 up_read(&vma->vm_lock->lock); 668 return false; 669 } 670 return true; 671 } 672 673 static inline void vma_end_read(struct vm_area_struct *vma) 674 { 675 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 676 up_read(&vma->vm_lock->lock); 677 rcu_read_unlock(); 678 } 679 680 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 681 { 682 mmap_assert_write_locked(vma->vm_mm); 683 684 /* 685 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 686 * mm->mm_lock_seq can't be concurrently modified. 687 */ 688 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq); 689 return (vma->vm_lock_seq == *mm_lock_seq); 690 } 691 692 static inline void vma_start_write(struct vm_area_struct *vma) 693 { 694 int mm_lock_seq; 695 696 if (__is_vma_write_locked(vma, &mm_lock_seq)) 697 return; 698 699 down_write(&vma->vm_lock->lock); 700 vma->vm_lock_seq = mm_lock_seq; 701 up_write(&vma->vm_lock->lock); 702 } 703 704 static inline bool vma_try_start_write(struct vm_area_struct *vma) 705 { 706 int mm_lock_seq; 707 708 if (__is_vma_write_locked(vma, &mm_lock_seq)) 709 return true; 710 711 if (!down_write_trylock(&vma->vm_lock->lock)) 712 return false; 713 714 vma->vm_lock_seq = mm_lock_seq; 715 up_write(&vma->vm_lock->lock); 716 return true; 717 } 718 719 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 720 { 721 int mm_lock_seq; 722 723 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 724 } 725 726 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 727 { 728 /* When detaching vma should be write-locked */ 729 if (detached) 730 vma_assert_write_locked(vma); 731 vma->detached = detached; 732 } 733 734 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 735 unsigned long address); 736 737 #else /* CONFIG_PER_VMA_LOCK */ 738 739 static inline void vma_init_lock(struct vm_area_struct *vma) {} 740 static inline bool vma_start_read(struct vm_area_struct *vma) 741 { return false; } 742 static inline void vma_end_read(struct vm_area_struct *vma) {} 743 static inline void vma_start_write(struct vm_area_struct *vma) {} 744 static inline bool vma_try_start_write(struct vm_area_struct *vma) 745 { return true; } 746 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {} 747 static inline void vma_mark_detached(struct vm_area_struct *vma, 748 bool detached) {} 749 750 #endif /* CONFIG_PER_VMA_LOCK */ 751 752 /* 753 * WARNING: vma_init does not initialize vma->vm_lock. 754 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 755 */ 756 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 757 { 758 static const struct vm_operations_struct dummy_vm_ops = {}; 759 760 memset(vma, 0, sizeof(*vma)); 761 vma->vm_mm = mm; 762 vma->vm_ops = &dummy_vm_ops; 763 INIT_LIST_HEAD(&vma->anon_vma_chain); 764 vma_mark_detached(vma, false); 765 vma_numab_state_init(vma); 766 } 767 768 /* Use when VMA is not part of the VMA tree and needs no locking */ 769 static inline void vm_flags_init(struct vm_area_struct *vma, 770 vm_flags_t flags) 771 { 772 ACCESS_PRIVATE(vma, __vm_flags) = flags; 773 } 774 775 /* Use when VMA is part of the VMA tree and modifications need coordination */ 776 static inline void vm_flags_reset(struct vm_area_struct *vma, 777 vm_flags_t flags) 778 { 779 vma_start_write(vma); 780 vm_flags_init(vma, flags); 781 } 782 783 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 784 vm_flags_t flags) 785 { 786 vma_start_write(vma); 787 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 788 } 789 790 static inline void vm_flags_set(struct vm_area_struct *vma, 791 vm_flags_t flags) 792 { 793 vma_start_write(vma); 794 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 795 } 796 797 static inline void vm_flags_clear(struct vm_area_struct *vma, 798 vm_flags_t flags) 799 { 800 vma_start_write(vma); 801 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 802 } 803 804 /* 805 * Use only if VMA is not part of the VMA tree or has no other users and 806 * therefore needs no locking. 807 */ 808 static inline void __vm_flags_mod(struct vm_area_struct *vma, 809 vm_flags_t set, vm_flags_t clear) 810 { 811 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 812 } 813 814 /* 815 * Use only when the order of set/clear operations is unimportant, otherwise 816 * use vm_flags_{set|clear} explicitly. 817 */ 818 static inline void vm_flags_mod(struct vm_area_struct *vma, 819 vm_flags_t set, vm_flags_t clear) 820 { 821 vma_start_write(vma); 822 __vm_flags_mod(vma, set, clear); 823 } 824 825 static inline void vma_set_anonymous(struct vm_area_struct *vma) 826 { 827 vma->vm_ops = NULL; 828 } 829 830 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 831 { 832 return !vma->vm_ops; 833 } 834 835 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 836 { 837 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 838 839 if (!maybe_stack) 840 return false; 841 842 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 843 VM_STACK_INCOMPLETE_SETUP) 844 return true; 845 846 return false; 847 } 848 849 static inline bool vma_is_foreign(struct vm_area_struct *vma) 850 { 851 if (!current->mm) 852 return true; 853 854 if (current->mm != vma->vm_mm) 855 return true; 856 857 return false; 858 } 859 860 static inline bool vma_is_accessible(struct vm_area_struct *vma) 861 { 862 return vma->vm_flags & VM_ACCESS_FLAGS; 863 } 864 865 static inline 866 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 867 { 868 return mas_find(&vmi->mas, max - 1); 869 } 870 871 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 872 { 873 /* 874 * Uses mas_find() to get the first VMA when the iterator starts. 875 * Calling mas_next() could skip the first entry. 876 */ 877 return mas_find(&vmi->mas, ULONG_MAX); 878 } 879 880 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 881 { 882 return mas_prev(&vmi->mas, 0); 883 } 884 885 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 886 { 887 return vmi->mas.index; 888 } 889 890 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 891 { 892 return vmi->mas.last + 1; 893 } 894 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 895 unsigned long count) 896 { 897 return mas_expected_entries(&vmi->mas, count); 898 } 899 900 /* Free any unused preallocations */ 901 static inline void vma_iter_free(struct vma_iterator *vmi) 902 { 903 mas_destroy(&vmi->mas); 904 } 905 906 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 907 struct vm_area_struct *vma) 908 { 909 vmi->mas.index = vma->vm_start; 910 vmi->mas.last = vma->vm_end - 1; 911 mas_store(&vmi->mas, vma); 912 if (unlikely(mas_is_err(&vmi->mas))) 913 return -ENOMEM; 914 915 return 0; 916 } 917 918 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 919 { 920 mas_pause(&vmi->mas); 921 } 922 923 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 924 { 925 mas_set(&vmi->mas, addr); 926 } 927 928 #define for_each_vma(__vmi, __vma) \ 929 while (((__vma) = vma_next(&(__vmi))) != NULL) 930 931 /* The MM code likes to work with exclusive end addresses */ 932 #define for_each_vma_range(__vmi, __vma, __end) \ 933 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 934 935 #ifdef CONFIG_SHMEM 936 /* 937 * The vma_is_shmem is not inline because it is used only by slow 938 * paths in userfault. 939 */ 940 bool vma_is_shmem(struct vm_area_struct *vma); 941 bool vma_is_anon_shmem(struct vm_area_struct *vma); 942 #else 943 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 944 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 945 #endif 946 947 int vma_is_stack_for_current(struct vm_area_struct *vma); 948 949 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 950 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 951 952 struct mmu_gather; 953 struct inode; 954 955 /* 956 * compound_order() can be called without holding a reference, which means 957 * that niceties like page_folio() don't work. These callers should be 958 * prepared to handle wild return values. For example, PG_head may be 959 * set before _folio_order is initialised, or this may be a tail page. 960 * See compaction.c for some good examples. 961 */ 962 static inline unsigned int compound_order(struct page *page) 963 { 964 struct folio *folio = (struct folio *)page; 965 966 if (!test_bit(PG_head, &folio->flags)) 967 return 0; 968 return folio->_folio_order; 969 } 970 971 /** 972 * folio_order - The allocation order of a folio. 973 * @folio: The folio. 974 * 975 * A folio is composed of 2^order pages. See get_order() for the definition 976 * of order. 977 * 978 * Return: The order of the folio. 979 */ 980 static inline unsigned int folio_order(struct folio *folio) 981 { 982 if (!folio_test_large(folio)) 983 return 0; 984 return folio->_folio_order; 985 } 986 987 #include <linux/huge_mm.h> 988 989 /* 990 * Methods to modify the page usage count. 991 * 992 * What counts for a page usage: 993 * - cache mapping (page->mapping) 994 * - private data (page->private) 995 * - page mapped in a task's page tables, each mapping 996 * is counted separately 997 * 998 * Also, many kernel routines increase the page count before a critical 999 * routine so they can be sure the page doesn't go away from under them. 1000 */ 1001 1002 /* 1003 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1004 */ 1005 static inline int put_page_testzero(struct page *page) 1006 { 1007 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1008 return page_ref_dec_and_test(page); 1009 } 1010 1011 static inline int folio_put_testzero(struct folio *folio) 1012 { 1013 return put_page_testzero(&folio->page); 1014 } 1015 1016 /* 1017 * Try to grab a ref unless the page has a refcount of zero, return false if 1018 * that is the case. 1019 * This can be called when MMU is off so it must not access 1020 * any of the virtual mappings. 1021 */ 1022 static inline bool get_page_unless_zero(struct page *page) 1023 { 1024 return page_ref_add_unless(page, 1, 0); 1025 } 1026 1027 static inline struct folio *folio_get_nontail_page(struct page *page) 1028 { 1029 if (unlikely(!get_page_unless_zero(page))) 1030 return NULL; 1031 return (struct folio *)page; 1032 } 1033 1034 extern int page_is_ram(unsigned long pfn); 1035 1036 enum { 1037 REGION_INTERSECTS, 1038 REGION_DISJOINT, 1039 REGION_MIXED, 1040 }; 1041 1042 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1043 unsigned long desc); 1044 1045 /* Support for virtually mapped pages */ 1046 struct page *vmalloc_to_page(const void *addr); 1047 unsigned long vmalloc_to_pfn(const void *addr); 1048 1049 /* 1050 * Determine if an address is within the vmalloc range 1051 * 1052 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1053 * is no special casing required. 1054 */ 1055 1056 #ifndef is_ioremap_addr 1057 #define is_ioremap_addr(x) is_vmalloc_addr(x) 1058 #endif 1059 1060 #ifdef CONFIG_MMU 1061 extern bool is_vmalloc_addr(const void *x); 1062 extern int is_vmalloc_or_module_addr(const void *x); 1063 #else 1064 static inline bool is_vmalloc_addr(const void *x) 1065 { 1066 return false; 1067 } 1068 static inline int is_vmalloc_or_module_addr(const void *x) 1069 { 1070 return 0; 1071 } 1072 #endif 1073 1074 /* 1075 * How many times the entire folio is mapped as a single unit (eg by a 1076 * PMD or PUD entry). This is probably not what you want, except for 1077 * debugging purposes - it does not include PTE-mapped sub-pages; look 1078 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1079 */ 1080 static inline int folio_entire_mapcount(struct folio *folio) 1081 { 1082 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1083 return atomic_read(&folio->_entire_mapcount) + 1; 1084 } 1085 1086 /* 1087 * The atomic page->_mapcount, starts from -1: so that transitions 1088 * both from it and to it can be tracked, using atomic_inc_and_test 1089 * and atomic_add_negative(-1). 1090 */ 1091 static inline void page_mapcount_reset(struct page *page) 1092 { 1093 atomic_set(&(page)->_mapcount, -1); 1094 } 1095 1096 /** 1097 * page_mapcount() - Number of times this precise page is mapped. 1098 * @page: The page. 1099 * 1100 * The number of times this page is mapped. If this page is part of 1101 * a large folio, it includes the number of times this page is mapped 1102 * as part of that folio. 1103 * 1104 * The result is undefined for pages which cannot be mapped into userspace. 1105 * For example SLAB or special types of pages. See function page_has_type(). 1106 * They use this field in struct page differently. 1107 */ 1108 static inline int page_mapcount(struct page *page) 1109 { 1110 int mapcount = atomic_read(&page->_mapcount) + 1; 1111 1112 if (unlikely(PageCompound(page))) 1113 mapcount += folio_entire_mapcount(page_folio(page)); 1114 1115 return mapcount; 1116 } 1117 1118 int folio_total_mapcount(struct folio *folio); 1119 1120 /** 1121 * folio_mapcount() - Calculate the number of mappings of this folio. 1122 * @folio: The folio. 1123 * 1124 * A large folio tracks both how many times the entire folio is mapped, 1125 * and how many times each individual page in the folio is mapped. 1126 * This function calculates the total number of times the folio is 1127 * mapped. 1128 * 1129 * Return: The number of times this folio is mapped. 1130 */ 1131 static inline int folio_mapcount(struct folio *folio) 1132 { 1133 if (likely(!folio_test_large(folio))) 1134 return atomic_read(&folio->_mapcount) + 1; 1135 return folio_total_mapcount(folio); 1136 } 1137 1138 static inline int total_mapcount(struct page *page) 1139 { 1140 if (likely(!PageCompound(page))) 1141 return atomic_read(&page->_mapcount) + 1; 1142 return folio_total_mapcount(page_folio(page)); 1143 } 1144 1145 static inline bool folio_large_is_mapped(struct folio *folio) 1146 { 1147 /* 1148 * Reading _entire_mapcount below could be omitted if hugetlb 1149 * participated in incrementing nr_pages_mapped when compound mapped. 1150 */ 1151 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1152 atomic_read(&folio->_entire_mapcount) >= 0; 1153 } 1154 1155 /** 1156 * folio_mapped - Is this folio mapped into userspace? 1157 * @folio: The folio. 1158 * 1159 * Return: True if any page in this folio is referenced by user page tables. 1160 */ 1161 static inline bool folio_mapped(struct folio *folio) 1162 { 1163 if (likely(!folio_test_large(folio))) 1164 return atomic_read(&folio->_mapcount) >= 0; 1165 return folio_large_is_mapped(folio); 1166 } 1167 1168 /* 1169 * Return true if this page is mapped into pagetables. 1170 * For compound page it returns true if any sub-page of compound page is mapped, 1171 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1172 */ 1173 static inline bool page_mapped(struct page *page) 1174 { 1175 if (likely(!PageCompound(page))) 1176 return atomic_read(&page->_mapcount) >= 0; 1177 return folio_large_is_mapped(page_folio(page)); 1178 } 1179 1180 static inline struct page *virt_to_head_page(const void *x) 1181 { 1182 struct page *page = virt_to_page(x); 1183 1184 return compound_head(page); 1185 } 1186 1187 static inline struct folio *virt_to_folio(const void *x) 1188 { 1189 struct page *page = virt_to_page(x); 1190 1191 return page_folio(page); 1192 } 1193 1194 void __folio_put(struct folio *folio); 1195 1196 void put_pages_list(struct list_head *pages); 1197 1198 void split_page(struct page *page, unsigned int order); 1199 void folio_copy(struct folio *dst, struct folio *src); 1200 1201 unsigned long nr_free_buffer_pages(void); 1202 1203 /* 1204 * Compound pages have a destructor function. Provide a 1205 * prototype for that function and accessor functions. 1206 * These are _only_ valid on the head of a compound page. 1207 */ 1208 typedef void compound_page_dtor(struct page *); 1209 1210 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 1211 enum compound_dtor_id { 1212 NULL_COMPOUND_DTOR, 1213 COMPOUND_PAGE_DTOR, 1214 #ifdef CONFIG_HUGETLB_PAGE 1215 HUGETLB_PAGE_DTOR, 1216 #endif 1217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1218 TRANSHUGE_PAGE_DTOR, 1219 #endif 1220 NR_COMPOUND_DTORS, 1221 }; 1222 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 1223 1224 static inline void set_compound_page_dtor(struct page *page, 1225 enum compound_dtor_id compound_dtor) 1226 { 1227 struct folio *folio = (struct folio *)page; 1228 1229 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 1230 VM_BUG_ON_PAGE(!PageHead(page), page); 1231 folio->_folio_dtor = compound_dtor; 1232 } 1233 1234 static inline void folio_set_compound_dtor(struct folio *folio, 1235 enum compound_dtor_id compound_dtor) 1236 { 1237 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1238 folio->_folio_dtor = compound_dtor; 1239 } 1240 1241 void destroy_large_folio(struct folio *folio); 1242 1243 static inline void set_compound_order(struct page *page, unsigned int order) 1244 { 1245 struct folio *folio = (struct folio *)page; 1246 1247 folio->_folio_order = order; 1248 #ifdef CONFIG_64BIT 1249 folio->_folio_nr_pages = 1U << order; 1250 #endif 1251 } 1252 1253 /* Returns the number of bytes in this potentially compound page. */ 1254 static inline unsigned long page_size(struct page *page) 1255 { 1256 return PAGE_SIZE << compound_order(page); 1257 } 1258 1259 /* Returns the number of bits needed for the number of bytes in a page */ 1260 static inline unsigned int page_shift(struct page *page) 1261 { 1262 return PAGE_SHIFT + compound_order(page); 1263 } 1264 1265 /** 1266 * thp_order - Order of a transparent huge page. 1267 * @page: Head page of a transparent huge page. 1268 */ 1269 static inline unsigned int thp_order(struct page *page) 1270 { 1271 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1272 return compound_order(page); 1273 } 1274 1275 /** 1276 * thp_size - Size of a transparent huge page. 1277 * @page: Head page of a transparent huge page. 1278 * 1279 * Return: Number of bytes in this page. 1280 */ 1281 static inline unsigned long thp_size(struct page *page) 1282 { 1283 return PAGE_SIZE << thp_order(page); 1284 } 1285 1286 void free_compound_page(struct page *page); 1287 1288 #ifdef CONFIG_MMU 1289 /* 1290 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1291 * servicing faults for write access. In the normal case, do always want 1292 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1293 * that do not have writing enabled, when used by access_process_vm. 1294 */ 1295 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1296 { 1297 if (likely(vma->vm_flags & VM_WRITE)) 1298 pte = pte_mkwrite(pte); 1299 return pte; 1300 } 1301 1302 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1303 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1304 1305 vm_fault_t finish_fault(struct vm_fault *vmf); 1306 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1307 #endif 1308 1309 /* 1310 * Multiple processes may "see" the same page. E.g. for untouched 1311 * mappings of /dev/null, all processes see the same page full of 1312 * zeroes, and text pages of executables and shared libraries have 1313 * only one copy in memory, at most, normally. 1314 * 1315 * For the non-reserved pages, page_count(page) denotes a reference count. 1316 * page_count() == 0 means the page is free. page->lru is then used for 1317 * freelist management in the buddy allocator. 1318 * page_count() > 0 means the page has been allocated. 1319 * 1320 * Pages are allocated by the slab allocator in order to provide memory 1321 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1322 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1323 * unless a particular usage is carefully commented. (the responsibility of 1324 * freeing the kmalloc memory is the caller's, of course). 1325 * 1326 * A page may be used by anyone else who does a __get_free_page(). 1327 * In this case, page_count still tracks the references, and should only 1328 * be used through the normal accessor functions. The top bits of page->flags 1329 * and page->virtual store page management information, but all other fields 1330 * are unused and could be used privately, carefully. The management of this 1331 * page is the responsibility of the one who allocated it, and those who have 1332 * subsequently been given references to it. 1333 * 1334 * The other pages (we may call them "pagecache pages") are completely 1335 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1336 * The following discussion applies only to them. 1337 * 1338 * A pagecache page contains an opaque `private' member, which belongs to the 1339 * page's address_space. Usually, this is the address of a circular list of 1340 * the page's disk buffers. PG_private must be set to tell the VM to call 1341 * into the filesystem to release these pages. 1342 * 1343 * A page may belong to an inode's memory mapping. In this case, page->mapping 1344 * is the pointer to the inode, and page->index is the file offset of the page, 1345 * in units of PAGE_SIZE. 1346 * 1347 * If pagecache pages are not associated with an inode, they are said to be 1348 * anonymous pages. These may become associated with the swapcache, and in that 1349 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1350 * 1351 * In either case (swapcache or inode backed), the pagecache itself holds one 1352 * reference to the page. Setting PG_private should also increment the 1353 * refcount. The each user mapping also has a reference to the page. 1354 * 1355 * The pagecache pages are stored in a per-mapping radix tree, which is 1356 * rooted at mapping->i_pages, and indexed by offset. 1357 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1358 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1359 * 1360 * All pagecache pages may be subject to I/O: 1361 * - inode pages may need to be read from disk, 1362 * - inode pages which have been modified and are MAP_SHARED may need 1363 * to be written back to the inode on disk, 1364 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1365 * modified may need to be swapped out to swap space and (later) to be read 1366 * back into memory. 1367 */ 1368 1369 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1370 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1371 1372 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1373 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1374 { 1375 if (!static_branch_unlikely(&devmap_managed_key)) 1376 return false; 1377 if (!is_zone_device_page(page)) 1378 return false; 1379 return __put_devmap_managed_page_refs(page, refs); 1380 } 1381 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1382 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1383 { 1384 return false; 1385 } 1386 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1387 1388 static inline bool put_devmap_managed_page(struct page *page) 1389 { 1390 return put_devmap_managed_page_refs(page, 1); 1391 } 1392 1393 /* 127: arbitrary random number, small enough to assemble well */ 1394 #define folio_ref_zero_or_close_to_overflow(folio) \ 1395 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1396 1397 /** 1398 * folio_get - Increment the reference count on a folio. 1399 * @folio: The folio. 1400 * 1401 * Context: May be called in any context, as long as you know that 1402 * you have a refcount on the folio. If you do not already have one, 1403 * folio_try_get() may be the right interface for you to use. 1404 */ 1405 static inline void folio_get(struct folio *folio) 1406 { 1407 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1408 folio_ref_inc(folio); 1409 } 1410 1411 static inline void get_page(struct page *page) 1412 { 1413 folio_get(page_folio(page)); 1414 } 1415 1416 static inline __must_check bool try_get_page(struct page *page) 1417 { 1418 page = compound_head(page); 1419 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1420 return false; 1421 page_ref_inc(page); 1422 return true; 1423 } 1424 1425 /** 1426 * folio_put - Decrement the reference count on a folio. 1427 * @folio: The folio. 1428 * 1429 * If the folio's reference count reaches zero, the memory will be 1430 * released back to the page allocator and may be used by another 1431 * allocation immediately. Do not access the memory or the struct folio 1432 * after calling folio_put() unless you can be sure that it wasn't the 1433 * last reference. 1434 * 1435 * Context: May be called in process or interrupt context, but not in NMI 1436 * context. May be called while holding a spinlock. 1437 */ 1438 static inline void folio_put(struct folio *folio) 1439 { 1440 if (folio_put_testzero(folio)) 1441 __folio_put(folio); 1442 } 1443 1444 /** 1445 * folio_put_refs - Reduce the reference count on a folio. 1446 * @folio: The folio. 1447 * @refs: The amount to subtract from the folio's reference count. 1448 * 1449 * If the folio's reference count reaches zero, the memory will be 1450 * released back to the page allocator and may be used by another 1451 * allocation immediately. Do not access the memory or the struct folio 1452 * after calling folio_put_refs() unless you can be sure that these weren't 1453 * the last references. 1454 * 1455 * Context: May be called in process or interrupt context, but not in NMI 1456 * context. May be called while holding a spinlock. 1457 */ 1458 static inline void folio_put_refs(struct folio *folio, int refs) 1459 { 1460 if (folio_ref_sub_and_test(folio, refs)) 1461 __folio_put(folio); 1462 } 1463 1464 /* 1465 * union release_pages_arg - an array of pages or folios 1466 * 1467 * release_pages() releases a simple array of multiple pages, and 1468 * accepts various different forms of said page array: either 1469 * a regular old boring array of pages, an array of folios, or 1470 * an array of encoded page pointers. 1471 * 1472 * The transparent union syntax for this kind of "any of these 1473 * argument types" is all kinds of ugly, so look away. 1474 */ 1475 typedef union { 1476 struct page **pages; 1477 struct folio **folios; 1478 struct encoded_page **encoded_pages; 1479 } release_pages_arg __attribute__ ((__transparent_union__)); 1480 1481 void release_pages(release_pages_arg, int nr); 1482 1483 /** 1484 * folios_put - Decrement the reference count on an array of folios. 1485 * @folios: The folios. 1486 * @nr: How many folios there are. 1487 * 1488 * Like folio_put(), but for an array of folios. This is more efficient 1489 * than writing the loop yourself as it will optimise the locks which 1490 * need to be taken if the folios are freed. 1491 * 1492 * Context: May be called in process or interrupt context, but not in NMI 1493 * context. May be called while holding a spinlock. 1494 */ 1495 static inline void folios_put(struct folio **folios, unsigned int nr) 1496 { 1497 release_pages(folios, nr); 1498 } 1499 1500 static inline void put_page(struct page *page) 1501 { 1502 struct folio *folio = page_folio(page); 1503 1504 /* 1505 * For some devmap managed pages we need to catch refcount transition 1506 * from 2 to 1: 1507 */ 1508 if (put_devmap_managed_page(&folio->page)) 1509 return; 1510 folio_put(folio); 1511 } 1512 1513 /* 1514 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1515 * the page's refcount so that two separate items are tracked: the original page 1516 * reference count, and also a new count of how many pin_user_pages() calls were 1517 * made against the page. ("gup-pinned" is another term for the latter). 1518 * 1519 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1520 * distinct from normal pages. As such, the unpin_user_page() call (and its 1521 * variants) must be used in order to release gup-pinned pages. 1522 * 1523 * Choice of value: 1524 * 1525 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1526 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1527 * simpler, due to the fact that adding an even power of two to the page 1528 * refcount has the effect of using only the upper N bits, for the code that 1529 * counts up using the bias value. This means that the lower bits are left for 1530 * the exclusive use of the original code that increments and decrements by one 1531 * (or at least, by much smaller values than the bias value). 1532 * 1533 * Of course, once the lower bits overflow into the upper bits (and this is 1534 * OK, because subtraction recovers the original values), then visual inspection 1535 * no longer suffices to directly view the separate counts. However, for normal 1536 * applications that don't have huge page reference counts, this won't be an 1537 * issue. 1538 * 1539 * Locking: the lockless algorithm described in folio_try_get_rcu() 1540 * provides safe operation for get_user_pages(), page_mkclean() and 1541 * other calls that race to set up page table entries. 1542 */ 1543 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1544 1545 void unpin_user_page(struct page *page); 1546 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1547 bool make_dirty); 1548 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1549 bool make_dirty); 1550 void unpin_user_pages(struct page **pages, unsigned long npages); 1551 1552 static inline bool is_cow_mapping(vm_flags_t flags) 1553 { 1554 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1555 } 1556 1557 #ifndef CONFIG_MMU 1558 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1559 { 1560 /* 1561 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1562 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1563 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1564 * underlying memory if ptrace is active, so this is only possible if 1565 * ptrace does not apply. Note that there is no mprotect() to upgrade 1566 * write permissions later. 1567 */ 1568 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1569 } 1570 #endif 1571 1572 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1573 #define SECTION_IN_PAGE_FLAGS 1574 #endif 1575 1576 /* 1577 * The identification function is mainly used by the buddy allocator for 1578 * determining if two pages could be buddies. We are not really identifying 1579 * the zone since we could be using the section number id if we do not have 1580 * node id available in page flags. 1581 * We only guarantee that it will return the same value for two combinable 1582 * pages in a zone. 1583 */ 1584 static inline int page_zone_id(struct page *page) 1585 { 1586 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1587 } 1588 1589 #ifdef NODE_NOT_IN_PAGE_FLAGS 1590 extern int page_to_nid(const struct page *page); 1591 #else 1592 static inline int page_to_nid(const struct page *page) 1593 { 1594 struct page *p = (struct page *)page; 1595 1596 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1597 } 1598 #endif 1599 1600 static inline int folio_nid(const struct folio *folio) 1601 { 1602 return page_to_nid(&folio->page); 1603 } 1604 1605 #ifdef CONFIG_NUMA_BALANCING 1606 /* page access time bits needs to hold at least 4 seconds */ 1607 #define PAGE_ACCESS_TIME_MIN_BITS 12 1608 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1609 #define PAGE_ACCESS_TIME_BUCKETS \ 1610 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1611 #else 1612 #define PAGE_ACCESS_TIME_BUCKETS 0 1613 #endif 1614 1615 #define PAGE_ACCESS_TIME_MASK \ 1616 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1617 1618 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1619 { 1620 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1621 } 1622 1623 static inline int cpupid_to_pid(int cpupid) 1624 { 1625 return cpupid & LAST__PID_MASK; 1626 } 1627 1628 static inline int cpupid_to_cpu(int cpupid) 1629 { 1630 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1631 } 1632 1633 static inline int cpupid_to_nid(int cpupid) 1634 { 1635 return cpu_to_node(cpupid_to_cpu(cpupid)); 1636 } 1637 1638 static inline bool cpupid_pid_unset(int cpupid) 1639 { 1640 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1641 } 1642 1643 static inline bool cpupid_cpu_unset(int cpupid) 1644 { 1645 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1646 } 1647 1648 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1649 { 1650 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1651 } 1652 1653 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1654 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1655 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1656 { 1657 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1658 } 1659 1660 static inline int page_cpupid_last(struct page *page) 1661 { 1662 return page->_last_cpupid; 1663 } 1664 static inline void page_cpupid_reset_last(struct page *page) 1665 { 1666 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1667 } 1668 #else 1669 static inline int page_cpupid_last(struct page *page) 1670 { 1671 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1672 } 1673 1674 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1675 1676 static inline void page_cpupid_reset_last(struct page *page) 1677 { 1678 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1679 } 1680 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1681 1682 static inline int xchg_page_access_time(struct page *page, int time) 1683 { 1684 int last_time; 1685 1686 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1687 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1688 } 1689 1690 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1691 { 1692 unsigned int pid_bit; 1693 1694 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1695 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) { 1696 __set_bit(pid_bit, &vma->numab_state->access_pids[1]); 1697 } 1698 } 1699 #else /* !CONFIG_NUMA_BALANCING */ 1700 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1701 { 1702 return page_to_nid(page); /* XXX */ 1703 } 1704 1705 static inline int xchg_page_access_time(struct page *page, int time) 1706 { 1707 return 0; 1708 } 1709 1710 static inline int page_cpupid_last(struct page *page) 1711 { 1712 return page_to_nid(page); /* XXX */ 1713 } 1714 1715 static inline int cpupid_to_nid(int cpupid) 1716 { 1717 return -1; 1718 } 1719 1720 static inline int cpupid_to_pid(int cpupid) 1721 { 1722 return -1; 1723 } 1724 1725 static inline int cpupid_to_cpu(int cpupid) 1726 { 1727 return -1; 1728 } 1729 1730 static inline int cpu_pid_to_cpupid(int nid, int pid) 1731 { 1732 return -1; 1733 } 1734 1735 static inline bool cpupid_pid_unset(int cpupid) 1736 { 1737 return true; 1738 } 1739 1740 static inline void page_cpupid_reset_last(struct page *page) 1741 { 1742 } 1743 1744 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1745 { 1746 return false; 1747 } 1748 1749 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1750 { 1751 } 1752 #endif /* CONFIG_NUMA_BALANCING */ 1753 1754 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1755 1756 /* 1757 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1758 * setting tags for all pages to native kernel tag value 0xff, as the default 1759 * value 0x00 maps to 0xff. 1760 */ 1761 1762 static inline u8 page_kasan_tag(const struct page *page) 1763 { 1764 u8 tag = 0xff; 1765 1766 if (kasan_enabled()) { 1767 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1768 tag ^= 0xff; 1769 } 1770 1771 return tag; 1772 } 1773 1774 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1775 { 1776 unsigned long old_flags, flags; 1777 1778 if (!kasan_enabled()) 1779 return; 1780 1781 tag ^= 0xff; 1782 old_flags = READ_ONCE(page->flags); 1783 do { 1784 flags = old_flags; 1785 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1786 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1787 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1788 } 1789 1790 static inline void page_kasan_tag_reset(struct page *page) 1791 { 1792 if (kasan_enabled()) 1793 page_kasan_tag_set(page, 0xff); 1794 } 1795 1796 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1797 1798 static inline u8 page_kasan_tag(const struct page *page) 1799 { 1800 return 0xff; 1801 } 1802 1803 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1804 static inline void page_kasan_tag_reset(struct page *page) { } 1805 1806 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1807 1808 static inline struct zone *page_zone(const struct page *page) 1809 { 1810 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1811 } 1812 1813 static inline pg_data_t *page_pgdat(const struct page *page) 1814 { 1815 return NODE_DATA(page_to_nid(page)); 1816 } 1817 1818 static inline struct zone *folio_zone(const struct folio *folio) 1819 { 1820 return page_zone(&folio->page); 1821 } 1822 1823 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1824 { 1825 return page_pgdat(&folio->page); 1826 } 1827 1828 #ifdef SECTION_IN_PAGE_FLAGS 1829 static inline void set_page_section(struct page *page, unsigned long section) 1830 { 1831 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1832 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1833 } 1834 1835 static inline unsigned long page_to_section(const struct page *page) 1836 { 1837 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1838 } 1839 #endif 1840 1841 /** 1842 * folio_pfn - Return the Page Frame Number of a folio. 1843 * @folio: The folio. 1844 * 1845 * A folio may contain multiple pages. The pages have consecutive 1846 * Page Frame Numbers. 1847 * 1848 * Return: The Page Frame Number of the first page in the folio. 1849 */ 1850 static inline unsigned long folio_pfn(struct folio *folio) 1851 { 1852 return page_to_pfn(&folio->page); 1853 } 1854 1855 static inline struct folio *pfn_folio(unsigned long pfn) 1856 { 1857 return page_folio(pfn_to_page(pfn)); 1858 } 1859 1860 /** 1861 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1862 * @folio: The folio. 1863 * 1864 * This function checks if a folio has been pinned via a call to 1865 * a function in the pin_user_pages() family. 1866 * 1867 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1868 * because it means "definitely not pinned for DMA", but true means "probably 1869 * pinned for DMA, but possibly a false positive due to having at least 1870 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1871 * 1872 * False positives are OK, because: a) it's unlikely for a folio to 1873 * get that many refcounts, and b) all the callers of this routine are 1874 * expected to be able to deal gracefully with a false positive. 1875 * 1876 * For large folios, the result will be exactly correct. That's because 1877 * we have more tracking data available: the _pincount field is used 1878 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1879 * 1880 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1881 * 1882 * Return: True, if it is likely that the page has been "dma-pinned". 1883 * False, if the page is definitely not dma-pinned. 1884 */ 1885 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1886 { 1887 if (folio_test_large(folio)) 1888 return atomic_read(&folio->_pincount) > 0; 1889 1890 /* 1891 * folio_ref_count() is signed. If that refcount overflows, then 1892 * folio_ref_count() returns a negative value, and callers will avoid 1893 * further incrementing the refcount. 1894 * 1895 * Here, for that overflow case, use the sign bit to count a little 1896 * bit higher via unsigned math, and thus still get an accurate result. 1897 */ 1898 return ((unsigned int)folio_ref_count(folio)) >= 1899 GUP_PIN_COUNTING_BIAS; 1900 } 1901 1902 static inline bool page_maybe_dma_pinned(struct page *page) 1903 { 1904 return folio_maybe_dma_pinned(page_folio(page)); 1905 } 1906 1907 /* 1908 * This should most likely only be called during fork() to see whether we 1909 * should break the cow immediately for an anon page on the src mm. 1910 * 1911 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1912 */ 1913 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1914 struct page *page) 1915 { 1916 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1917 1918 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1919 return false; 1920 1921 return page_maybe_dma_pinned(page); 1922 } 1923 1924 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1925 #ifdef CONFIG_MIGRATION 1926 static inline bool is_longterm_pinnable_page(struct page *page) 1927 { 1928 #ifdef CONFIG_CMA 1929 int mt = get_pageblock_migratetype(page); 1930 1931 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1932 return false; 1933 #endif 1934 /* The zero page may always be pinned */ 1935 if (is_zero_pfn(page_to_pfn(page))) 1936 return true; 1937 1938 /* Coherent device memory must always allow eviction. */ 1939 if (is_device_coherent_page(page)) 1940 return false; 1941 1942 /* Otherwise, non-movable zone pages can be pinned. */ 1943 return !is_zone_movable_page(page); 1944 } 1945 #else 1946 static inline bool is_longterm_pinnable_page(struct page *page) 1947 { 1948 return true; 1949 } 1950 #endif 1951 1952 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1953 { 1954 return is_longterm_pinnable_page(&folio->page); 1955 } 1956 1957 static inline void set_page_zone(struct page *page, enum zone_type zone) 1958 { 1959 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1960 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1961 } 1962 1963 static inline void set_page_node(struct page *page, unsigned long node) 1964 { 1965 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1966 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1967 } 1968 1969 static inline void set_page_links(struct page *page, enum zone_type zone, 1970 unsigned long node, unsigned long pfn) 1971 { 1972 set_page_zone(page, zone); 1973 set_page_node(page, node); 1974 #ifdef SECTION_IN_PAGE_FLAGS 1975 set_page_section(page, pfn_to_section_nr(pfn)); 1976 #endif 1977 } 1978 1979 /** 1980 * folio_nr_pages - The number of pages in the folio. 1981 * @folio: The folio. 1982 * 1983 * Return: A positive power of two. 1984 */ 1985 static inline long folio_nr_pages(struct folio *folio) 1986 { 1987 if (!folio_test_large(folio)) 1988 return 1; 1989 #ifdef CONFIG_64BIT 1990 return folio->_folio_nr_pages; 1991 #else 1992 return 1L << folio->_folio_order; 1993 #endif 1994 } 1995 1996 /* 1997 * compound_nr() returns the number of pages in this potentially compound 1998 * page. compound_nr() can be called on a tail page, and is defined to 1999 * return 1 in that case. 2000 */ 2001 static inline unsigned long compound_nr(struct page *page) 2002 { 2003 struct folio *folio = (struct folio *)page; 2004 2005 if (!test_bit(PG_head, &folio->flags)) 2006 return 1; 2007 #ifdef CONFIG_64BIT 2008 return folio->_folio_nr_pages; 2009 #else 2010 return 1L << folio->_folio_order; 2011 #endif 2012 } 2013 2014 /** 2015 * thp_nr_pages - The number of regular pages in this huge page. 2016 * @page: The head page of a huge page. 2017 */ 2018 static inline int thp_nr_pages(struct page *page) 2019 { 2020 return folio_nr_pages((struct folio *)page); 2021 } 2022 2023 /** 2024 * folio_next - Move to the next physical folio. 2025 * @folio: The folio we're currently operating on. 2026 * 2027 * If you have physically contiguous memory which may span more than 2028 * one folio (eg a &struct bio_vec), use this function to move from one 2029 * folio to the next. Do not use it if the memory is only virtually 2030 * contiguous as the folios are almost certainly not adjacent to each 2031 * other. This is the folio equivalent to writing ``page++``. 2032 * 2033 * Context: We assume that the folios are refcounted and/or locked at a 2034 * higher level and do not adjust the reference counts. 2035 * Return: The next struct folio. 2036 */ 2037 static inline struct folio *folio_next(struct folio *folio) 2038 { 2039 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2040 } 2041 2042 /** 2043 * folio_shift - The size of the memory described by this folio. 2044 * @folio: The folio. 2045 * 2046 * A folio represents a number of bytes which is a power-of-two in size. 2047 * This function tells you which power-of-two the folio is. See also 2048 * folio_size() and folio_order(). 2049 * 2050 * Context: The caller should have a reference on the folio to prevent 2051 * it from being split. It is not necessary for the folio to be locked. 2052 * Return: The base-2 logarithm of the size of this folio. 2053 */ 2054 static inline unsigned int folio_shift(struct folio *folio) 2055 { 2056 return PAGE_SHIFT + folio_order(folio); 2057 } 2058 2059 /** 2060 * folio_size - The number of bytes in a folio. 2061 * @folio: The folio. 2062 * 2063 * Context: The caller should have a reference on the folio to prevent 2064 * it from being split. It is not necessary for the folio to be locked. 2065 * Return: The number of bytes in this folio. 2066 */ 2067 static inline size_t folio_size(struct folio *folio) 2068 { 2069 return PAGE_SIZE << folio_order(folio); 2070 } 2071 2072 /** 2073 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2074 * @folio: The folio. 2075 * 2076 * folio_estimated_sharers() aims to serve as a function to efficiently 2077 * estimate the number of processes sharing a folio. This is done by 2078 * looking at the precise mapcount of the first subpage in the folio, and 2079 * assuming the other subpages are the same. This may not be true for large 2080 * folios. If you want exact mapcounts for exact calculations, look at 2081 * page_mapcount() or folio_total_mapcount(). 2082 * 2083 * Return: The estimated number of processes sharing a folio. 2084 */ 2085 static inline int folio_estimated_sharers(struct folio *folio) 2086 { 2087 return page_mapcount(folio_page(folio, 0)); 2088 } 2089 2090 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2091 static inline int arch_make_page_accessible(struct page *page) 2092 { 2093 return 0; 2094 } 2095 #endif 2096 2097 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2098 static inline int arch_make_folio_accessible(struct folio *folio) 2099 { 2100 int ret; 2101 long i, nr = folio_nr_pages(folio); 2102 2103 for (i = 0; i < nr; i++) { 2104 ret = arch_make_page_accessible(folio_page(folio, i)); 2105 if (ret) 2106 break; 2107 } 2108 2109 return ret; 2110 } 2111 #endif 2112 2113 /* 2114 * Some inline functions in vmstat.h depend on page_zone() 2115 */ 2116 #include <linux/vmstat.h> 2117 2118 static __always_inline void *lowmem_page_address(const struct page *page) 2119 { 2120 return page_to_virt(page); 2121 } 2122 2123 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2124 #define HASHED_PAGE_VIRTUAL 2125 #endif 2126 2127 #if defined(WANT_PAGE_VIRTUAL) 2128 static inline void *page_address(const struct page *page) 2129 { 2130 return page->virtual; 2131 } 2132 static inline void set_page_address(struct page *page, void *address) 2133 { 2134 page->virtual = address; 2135 } 2136 #define page_address_init() do { } while(0) 2137 #endif 2138 2139 #if defined(HASHED_PAGE_VIRTUAL) 2140 void *page_address(const struct page *page); 2141 void set_page_address(struct page *page, void *virtual); 2142 void page_address_init(void); 2143 #endif 2144 2145 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2146 #define page_address(page) lowmem_page_address(page) 2147 #define set_page_address(page, address) do { } while(0) 2148 #define page_address_init() do { } while(0) 2149 #endif 2150 2151 static inline void *folio_address(const struct folio *folio) 2152 { 2153 return page_address(&folio->page); 2154 } 2155 2156 extern void *page_rmapping(struct page *page); 2157 extern pgoff_t __page_file_index(struct page *page); 2158 2159 /* 2160 * Return the pagecache index of the passed page. Regular pagecache pages 2161 * use ->index whereas swapcache pages use swp_offset(->private) 2162 */ 2163 static inline pgoff_t page_index(struct page *page) 2164 { 2165 if (unlikely(PageSwapCache(page))) 2166 return __page_file_index(page); 2167 return page->index; 2168 } 2169 2170 /* 2171 * Return true only if the page has been allocated with 2172 * ALLOC_NO_WATERMARKS and the low watermark was not 2173 * met implying that the system is under some pressure. 2174 */ 2175 static inline bool page_is_pfmemalloc(const struct page *page) 2176 { 2177 /* 2178 * lru.next has bit 1 set if the page is allocated from the 2179 * pfmemalloc reserves. Callers may simply overwrite it if 2180 * they do not need to preserve that information. 2181 */ 2182 return (uintptr_t)page->lru.next & BIT(1); 2183 } 2184 2185 /* 2186 * Return true only if the folio has been allocated with 2187 * ALLOC_NO_WATERMARKS and the low watermark was not 2188 * met implying that the system is under some pressure. 2189 */ 2190 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2191 { 2192 /* 2193 * lru.next has bit 1 set if the page is allocated from the 2194 * pfmemalloc reserves. Callers may simply overwrite it if 2195 * they do not need to preserve that information. 2196 */ 2197 return (uintptr_t)folio->lru.next & BIT(1); 2198 } 2199 2200 /* 2201 * Only to be called by the page allocator on a freshly allocated 2202 * page. 2203 */ 2204 static inline void set_page_pfmemalloc(struct page *page) 2205 { 2206 page->lru.next = (void *)BIT(1); 2207 } 2208 2209 static inline void clear_page_pfmemalloc(struct page *page) 2210 { 2211 page->lru.next = NULL; 2212 } 2213 2214 /* 2215 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2216 */ 2217 extern void pagefault_out_of_memory(void); 2218 2219 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2220 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2221 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2222 2223 /* 2224 * Flags passed to show_mem() and show_free_areas() to suppress output in 2225 * various contexts. 2226 */ 2227 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 2228 2229 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2230 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 2231 { 2232 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 2233 } 2234 2235 /* 2236 * Parameter block passed down to zap_pte_range in exceptional cases. 2237 */ 2238 struct zap_details { 2239 struct folio *single_folio; /* Locked folio to be unmapped */ 2240 bool even_cows; /* Zap COWed private pages too? */ 2241 zap_flags_t zap_flags; /* Extra flags for zapping */ 2242 }; 2243 2244 /* 2245 * Whether to drop the pte markers, for example, the uffd-wp information for 2246 * file-backed memory. This should only be specified when we will completely 2247 * drop the page in the mm, either by truncation or unmapping of the vma. By 2248 * default, the flag is not set. 2249 */ 2250 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2251 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2252 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2253 2254 #ifdef CONFIG_SCHED_MM_CID 2255 void sched_mm_cid_before_execve(struct task_struct *t); 2256 void sched_mm_cid_after_execve(struct task_struct *t); 2257 void sched_mm_cid_fork(struct task_struct *t); 2258 void sched_mm_cid_exit_signals(struct task_struct *t); 2259 static inline int task_mm_cid(struct task_struct *t) 2260 { 2261 return t->mm_cid; 2262 } 2263 #else 2264 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2265 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2266 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2267 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2268 static inline int task_mm_cid(struct task_struct *t) 2269 { 2270 /* 2271 * Use the processor id as a fall-back when the mm cid feature is 2272 * disabled. This provides functional per-cpu data structure accesses 2273 * in user-space, althrough it won't provide the memory usage benefits. 2274 */ 2275 return raw_smp_processor_id(); 2276 } 2277 #endif 2278 2279 #ifdef CONFIG_MMU 2280 extern bool can_do_mlock(void); 2281 #else 2282 static inline bool can_do_mlock(void) { return false; } 2283 #endif 2284 extern int user_shm_lock(size_t, struct ucounts *); 2285 extern void user_shm_unlock(size_t, struct ucounts *); 2286 2287 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2288 pte_t pte); 2289 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2290 pte_t pte); 2291 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2292 pmd_t pmd); 2293 2294 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2295 unsigned long size); 2296 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2297 unsigned long size, struct zap_details *details); 2298 static inline void zap_vma_pages(struct vm_area_struct *vma) 2299 { 2300 zap_page_range_single(vma, vma->vm_start, 2301 vma->vm_end - vma->vm_start, NULL); 2302 } 2303 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2304 struct vm_area_struct *start_vma, unsigned long start, 2305 unsigned long end, bool mm_wr_locked); 2306 2307 struct mmu_notifier_range; 2308 2309 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2310 unsigned long end, unsigned long floor, unsigned long ceiling); 2311 int 2312 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2313 int follow_pte(struct mm_struct *mm, unsigned long address, 2314 pte_t **ptepp, spinlock_t **ptlp); 2315 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2316 unsigned long *pfn); 2317 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2318 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2319 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2320 void *buf, int len, int write); 2321 2322 extern void truncate_pagecache(struct inode *inode, loff_t new); 2323 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2324 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2325 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2326 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2327 2328 #ifdef CONFIG_MMU 2329 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2330 unsigned long address, unsigned int flags, 2331 struct pt_regs *regs); 2332 extern int fixup_user_fault(struct mm_struct *mm, 2333 unsigned long address, unsigned int fault_flags, 2334 bool *unlocked); 2335 void unmap_mapping_pages(struct address_space *mapping, 2336 pgoff_t start, pgoff_t nr, bool even_cows); 2337 void unmap_mapping_range(struct address_space *mapping, 2338 loff_t const holebegin, loff_t const holelen, int even_cows); 2339 #else 2340 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2341 unsigned long address, unsigned int flags, 2342 struct pt_regs *regs) 2343 { 2344 /* should never happen if there's no MMU */ 2345 BUG(); 2346 return VM_FAULT_SIGBUS; 2347 } 2348 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2349 unsigned int fault_flags, bool *unlocked) 2350 { 2351 /* should never happen if there's no MMU */ 2352 BUG(); 2353 return -EFAULT; 2354 } 2355 static inline void unmap_mapping_pages(struct address_space *mapping, 2356 pgoff_t start, pgoff_t nr, bool even_cows) { } 2357 static inline void unmap_mapping_range(struct address_space *mapping, 2358 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2359 #endif 2360 2361 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2362 loff_t const holebegin, loff_t const holelen) 2363 { 2364 unmap_mapping_range(mapping, holebegin, holelen, 0); 2365 } 2366 2367 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2368 void *buf, int len, unsigned int gup_flags); 2369 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2370 void *buf, int len, unsigned int gup_flags); 2371 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2372 void *buf, int len, unsigned int gup_flags); 2373 2374 long get_user_pages_remote(struct mm_struct *mm, 2375 unsigned long start, unsigned long nr_pages, 2376 unsigned int gup_flags, struct page **pages, 2377 struct vm_area_struct **vmas, int *locked); 2378 long pin_user_pages_remote(struct mm_struct *mm, 2379 unsigned long start, unsigned long nr_pages, 2380 unsigned int gup_flags, struct page **pages, 2381 struct vm_area_struct **vmas, int *locked); 2382 long get_user_pages(unsigned long start, unsigned long nr_pages, 2383 unsigned int gup_flags, struct page **pages, 2384 struct vm_area_struct **vmas); 2385 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2386 unsigned int gup_flags, struct page **pages, 2387 struct vm_area_struct **vmas); 2388 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2389 struct page **pages, unsigned int gup_flags); 2390 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2391 struct page **pages, unsigned int gup_flags); 2392 2393 int get_user_pages_fast(unsigned long start, int nr_pages, 2394 unsigned int gup_flags, struct page **pages); 2395 int pin_user_pages_fast(unsigned long start, int nr_pages, 2396 unsigned int gup_flags, struct page **pages); 2397 2398 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2399 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2400 struct task_struct *task, bool bypass_rlim); 2401 2402 struct kvec; 2403 struct page *get_dump_page(unsigned long addr); 2404 2405 bool folio_mark_dirty(struct folio *folio); 2406 bool set_page_dirty(struct page *page); 2407 int set_page_dirty_lock(struct page *page); 2408 2409 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2410 2411 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2412 unsigned long old_addr, struct vm_area_struct *new_vma, 2413 unsigned long new_addr, unsigned long len, 2414 bool need_rmap_locks); 2415 2416 /* 2417 * Flags used by change_protection(). For now we make it a bitmap so 2418 * that we can pass in multiple flags just like parameters. However 2419 * for now all the callers are only use one of the flags at the same 2420 * time. 2421 */ 2422 /* 2423 * Whether we should manually check if we can map individual PTEs writable, 2424 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2425 * PTEs automatically in a writable mapping. 2426 */ 2427 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2428 /* Whether this protection change is for NUMA hints */ 2429 #define MM_CP_PROT_NUMA (1UL << 1) 2430 /* Whether this change is for write protecting */ 2431 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2432 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2433 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2434 MM_CP_UFFD_WP_RESOLVE) 2435 2436 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2437 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2438 { 2439 /* 2440 * We want to check manually if we can change individual PTEs writable 2441 * if we can't do that automatically for all PTEs in a mapping. For 2442 * private mappings, that's always the case when we have write 2443 * permissions as we properly have to handle COW. 2444 */ 2445 if (vma->vm_flags & VM_SHARED) 2446 return vma_wants_writenotify(vma, vma->vm_page_prot); 2447 return !!(vma->vm_flags & VM_WRITE); 2448 2449 } 2450 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2451 pte_t pte); 2452 extern long change_protection(struct mmu_gather *tlb, 2453 struct vm_area_struct *vma, unsigned long start, 2454 unsigned long end, unsigned long cp_flags); 2455 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2456 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2457 unsigned long start, unsigned long end, unsigned long newflags); 2458 2459 /* 2460 * doesn't attempt to fault and will return short. 2461 */ 2462 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2463 unsigned int gup_flags, struct page **pages); 2464 2465 static inline bool get_user_page_fast_only(unsigned long addr, 2466 unsigned int gup_flags, struct page **pagep) 2467 { 2468 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2469 } 2470 /* 2471 * per-process(per-mm_struct) statistics. 2472 */ 2473 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2474 { 2475 return percpu_counter_read_positive(&mm->rss_stat[member]); 2476 } 2477 2478 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2479 2480 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2481 { 2482 percpu_counter_add(&mm->rss_stat[member], value); 2483 2484 mm_trace_rss_stat(mm, member); 2485 } 2486 2487 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2488 { 2489 percpu_counter_inc(&mm->rss_stat[member]); 2490 2491 mm_trace_rss_stat(mm, member); 2492 } 2493 2494 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2495 { 2496 percpu_counter_dec(&mm->rss_stat[member]); 2497 2498 mm_trace_rss_stat(mm, member); 2499 } 2500 2501 /* Optimized variant when page is already known not to be PageAnon */ 2502 static inline int mm_counter_file(struct page *page) 2503 { 2504 if (PageSwapBacked(page)) 2505 return MM_SHMEMPAGES; 2506 return MM_FILEPAGES; 2507 } 2508 2509 static inline int mm_counter(struct page *page) 2510 { 2511 if (PageAnon(page)) 2512 return MM_ANONPAGES; 2513 return mm_counter_file(page); 2514 } 2515 2516 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2517 { 2518 return get_mm_counter(mm, MM_FILEPAGES) + 2519 get_mm_counter(mm, MM_ANONPAGES) + 2520 get_mm_counter(mm, MM_SHMEMPAGES); 2521 } 2522 2523 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2524 { 2525 return max(mm->hiwater_rss, get_mm_rss(mm)); 2526 } 2527 2528 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2529 { 2530 return max(mm->hiwater_vm, mm->total_vm); 2531 } 2532 2533 static inline void update_hiwater_rss(struct mm_struct *mm) 2534 { 2535 unsigned long _rss = get_mm_rss(mm); 2536 2537 if ((mm)->hiwater_rss < _rss) 2538 (mm)->hiwater_rss = _rss; 2539 } 2540 2541 static inline void update_hiwater_vm(struct mm_struct *mm) 2542 { 2543 if (mm->hiwater_vm < mm->total_vm) 2544 mm->hiwater_vm = mm->total_vm; 2545 } 2546 2547 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2548 { 2549 mm->hiwater_rss = get_mm_rss(mm); 2550 } 2551 2552 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2553 struct mm_struct *mm) 2554 { 2555 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2556 2557 if (*maxrss < hiwater_rss) 2558 *maxrss = hiwater_rss; 2559 } 2560 2561 #if defined(SPLIT_RSS_COUNTING) 2562 void sync_mm_rss(struct mm_struct *mm); 2563 #else 2564 static inline void sync_mm_rss(struct mm_struct *mm) 2565 { 2566 } 2567 #endif 2568 2569 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2570 static inline int pte_special(pte_t pte) 2571 { 2572 return 0; 2573 } 2574 2575 static inline pte_t pte_mkspecial(pte_t pte) 2576 { 2577 return pte; 2578 } 2579 #endif 2580 2581 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2582 static inline int pte_devmap(pte_t pte) 2583 { 2584 return 0; 2585 } 2586 #endif 2587 2588 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2589 spinlock_t **ptl); 2590 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2591 spinlock_t **ptl) 2592 { 2593 pte_t *ptep; 2594 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2595 return ptep; 2596 } 2597 2598 #ifdef __PAGETABLE_P4D_FOLDED 2599 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2600 unsigned long address) 2601 { 2602 return 0; 2603 } 2604 #else 2605 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2606 #endif 2607 2608 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2609 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2610 unsigned long address) 2611 { 2612 return 0; 2613 } 2614 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2615 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2616 2617 #else 2618 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2619 2620 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2621 { 2622 if (mm_pud_folded(mm)) 2623 return; 2624 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2625 } 2626 2627 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2628 { 2629 if (mm_pud_folded(mm)) 2630 return; 2631 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2632 } 2633 #endif 2634 2635 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2636 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2637 unsigned long address) 2638 { 2639 return 0; 2640 } 2641 2642 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2643 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2644 2645 #else 2646 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2647 2648 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2649 { 2650 if (mm_pmd_folded(mm)) 2651 return; 2652 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2653 } 2654 2655 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2656 { 2657 if (mm_pmd_folded(mm)) 2658 return; 2659 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2660 } 2661 #endif 2662 2663 #ifdef CONFIG_MMU 2664 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2665 { 2666 atomic_long_set(&mm->pgtables_bytes, 0); 2667 } 2668 2669 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2670 { 2671 return atomic_long_read(&mm->pgtables_bytes); 2672 } 2673 2674 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2675 { 2676 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2677 } 2678 2679 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2680 { 2681 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2682 } 2683 #else 2684 2685 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2686 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2687 { 2688 return 0; 2689 } 2690 2691 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2692 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2693 #endif 2694 2695 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2696 int __pte_alloc_kernel(pmd_t *pmd); 2697 2698 #if defined(CONFIG_MMU) 2699 2700 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2701 unsigned long address) 2702 { 2703 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2704 NULL : p4d_offset(pgd, address); 2705 } 2706 2707 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2708 unsigned long address) 2709 { 2710 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2711 NULL : pud_offset(p4d, address); 2712 } 2713 2714 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2715 { 2716 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2717 NULL: pmd_offset(pud, address); 2718 } 2719 #endif /* CONFIG_MMU */ 2720 2721 #if USE_SPLIT_PTE_PTLOCKS 2722 #if ALLOC_SPLIT_PTLOCKS 2723 void __init ptlock_cache_init(void); 2724 extern bool ptlock_alloc(struct page *page); 2725 extern void ptlock_free(struct page *page); 2726 2727 static inline spinlock_t *ptlock_ptr(struct page *page) 2728 { 2729 return page->ptl; 2730 } 2731 #else /* ALLOC_SPLIT_PTLOCKS */ 2732 static inline void ptlock_cache_init(void) 2733 { 2734 } 2735 2736 static inline bool ptlock_alloc(struct page *page) 2737 { 2738 return true; 2739 } 2740 2741 static inline void ptlock_free(struct page *page) 2742 { 2743 } 2744 2745 static inline spinlock_t *ptlock_ptr(struct page *page) 2746 { 2747 return &page->ptl; 2748 } 2749 #endif /* ALLOC_SPLIT_PTLOCKS */ 2750 2751 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2752 { 2753 return ptlock_ptr(pmd_page(*pmd)); 2754 } 2755 2756 static inline bool ptlock_init(struct page *page) 2757 { 2758 /* 2759 * prep_new_page() initialize page->private (and therefore page->ptl) 2760 * with 0. Make sure nobody took it in use in between. 2761 * 2762 * It can happen if arch try to use slab for page table allocation: 2763 * slab code uses page->slab_cache, which share storage with page->ptl. 2764 */ 2765 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2766 if (!ptlock_alloc(page)) 2767 return false; 2768 spin_lock_init(ptlock_ptr(page)); 2769 return true; 2770 } 2771 2772 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2773 /* 2774 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2775 */ 2776 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2777 { 2778 return &mm->page_table_lock; 2779 } 2780 static inline void ptlock_cache_init(void) {} 2781 static inline bool ptlock_init(struct page *page) { return true; } 2782 static inline void ptlock_free(struct page *page) {} 2783 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2784 2785 static inline bool pgtable_pte_page_ctor(struct page *page) 2786 { 2787 if (!ptlock_init(page)) 2788 return false; 2789 __SetPageTable(page); 2790 inc_lruvec_page_state(page, NR_PAGETABLE); 2791 return true; 2792 } 2793 2794 static inline void pgtable_pte_page_dtor(struct page *page) 2795 { 2796 ptlock_free(page); 2797 __ClearPageTable(page); 2798 dec_lruvec_page_state(page, NR_PAGETABLE); 2799 } 2800 2801 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2802 ({ \ 2803 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2804 pte_t *__pte = pte_offset_map(pmd, address); \ 2805 *(ptlp) = __ptl; \ 2806 spin_lock(__ptl); \ 2807 __pte; \ 2808 }) 2809 2810 #define pte_unmap_unlock(pte, ptl) do { \ 2811 spin_unlock(ptl); \ 2812 pte_unmap(pte); \ 2813 } while (0) 2814 2815 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2816 2817 #define pte_alloc_map(mm, pmd, address) \ 2818 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2819 2820 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2821 (pte_alloc(mm, pmd) ? \ 2822 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2823 2824 #define pte_alloc_kernel(pmd, address) \ 2825 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2826 NULL: pte_offset_kernel(pmd, address)) 2827 2828 #if USE_SPLIT_PMD_PTLOCKS 2829 2830 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2831 { 2832 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2833 return virt_to_page((void *)((unsigned long) pmd & mask)); 2834 } 2835 2836 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2837 { 2838 return ptlock_ptr(pmd_pgtable_page(pmd)); 2839 } 2840 2841 static inline bool pmd_ptlock_init(struct page *page) 2842 { 2843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2844 page->pmd_huge_pte = NULL; 2845 #endif 2846 return ptlock_init(page); 2847 } 2848 2849 static inline void pmd_ptlock_free(struct page *page) 2850 { 2851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2852 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2853 #endif 2854 ptlock_free(page); 2855 } 2856 2857 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2858 2859 #else 2860 2861 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2862 { 2863 return &mm->page_table_lock; 2864 } 2865 2866 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2867 static inline void pmd_ptlock_free(struct page *page) {} 2868 2869 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2870 2871 #endif 2872 2873 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2874 { 2875 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2876 spin_lock(ptl); 2877 return ptl; 2878 } 2879 2880 static inline bool pgtable_pmd_page_ctor(struct page *page) 2881 { 2882 if (!pmd_ptlock_init(page)) 2883 return false; 2884 __SetPageTable(page); 2885 inc_lruvec_page_state(page, NR_PAGETABLE); 2886 return true; 2887 } 2888 2889 static inline void pgtable_pmd_page_dtor(struct page *page) 2890 { 2891 pmd_ptlock_free(page); 2892 __ClearPageTable(page); 2893 dec_lruvec_page_state(page, NR_PAGETABLE); 2894 } 2895 2896 /* 2897 * No scalability reason to split PUD locks yet, but follow the same pattern 2898 * as the PMD locks to make it easier if we decide to. The VM should not be 2899 * considered ready to switch to split PUD locks yet; there may be places 2900 * which need to be converted from page_table_lock. 2901 */ 2902 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2903 { 2904 return &mm->page_table_lock; 2905 } 2906 2907 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2908 { 2909 spinlock_t *ptl = pud_lockptr(mm, pud); 2910 2911 spin_lock(ptl); 2912 return ptl; 2913 } 2914 2915 extern void __init pagecache_init(void); 2916 extern void free_initmem(void); 2917 2918 /* 2919 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2920 * into the buddy system. The freed pages will be poisoned with pattern 2921 * "poison" if it's within range [0, UCHAR_MAX]. 2922 * Return pages freed into the buddy system. 2923 */ 2924 extern unsigned long free_reserved_area(void *start, void *end, 2925 int poison, const char *s); 2926 2927 extern void adjust_managed_page_count(struct page *page, long count); 2928 2929 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2930 2931 /* Free the reserved page into the buddy system, so it gets managed. */ 2932 static inline void free_reserved_page(struct page *page) 2933 { 2934 ClearPageReserved(page); 2935 init_page_count(page); 2936 __free_page(page); 2937 adjust_managed_page_count(page, 1); 2938 } 2939 #define free_highmem_page(page) free_reserved_page(page) 2940 2941 static inline void mark_page_reserved(struct page *page) 2942 { 2943 SetPageReserved(page); 2944 adjust_managed_page_count(page, -1); 2945 } 2946 2947 /* 2948 * Default method to free all the __init memory into the buddy system. 2949 * The freed pages will be poisoned with pattern "poison" if it's within 2950 * range [0, UCHAR_MAX]. 2951 * Return pages freed into the buddy system. 2952 */ 2953 static inline unsigned long free_initmem_default(int poison) 2954 { 2955 extern char __init_begin[], __init_end[]; 2956 2957 return free_reserved_area(&__init_begin, &__init_end, 2958 poison, "unused kernel image (initmem)"); 2959 } 2960 2961 static inline unsigned long get_num_physpages(void) 2962 { 2963 int nid; 2964 unsigned long phys_pages = 0; 2965 2966 for_each_online_node(nid) 2967 phys_pages += node_present_pages(nid); 2968 2969 return phys_pages; 2970 } 2971 2972 /* 2973 * Using memblock node mappings, an architecture may initialise its 2974 * zones, allocate the backing mem_map and account for memory holes in an 2975 * architecture independent manner. 2976 * 2977 * An architecture is expected to register range of page frames backed by 2978 * physical memory with memblock_add[_node]() before calling 2979 * free_area_init() passing in the PFN each zone ends at. At a basic 2980 * usage, an architecture is expected to do something like 2981 * 2982 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2983 * max_highmem_pfn}; 2984 * for_each_valid_physical_page_range() 2985 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2986 * free_area_init(max_zone_pfns); 2987 */ 2988 void free_area_init(unsigned long *max_zone_pfn); 2989 unsigned long node_map_pfn_alignment(void); 2990 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2991 unsigned long end_pfn); 2992 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2993 unsigned long end_pfn); 2994 extern void get_pfn_range_for_nid(unsigned int nid, 2995 unsigned long *start_pfn, unsigned long *end_pfn); 2996 2997 #ifndef CONFIG_NUMA 2998 static inline int early_pfn_to_nid(unsigned long pfn) 2999 { 3000 return 0; 3001 } 3002 #else 3003 /* please see mm/page_alloc.c */ 3004 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3005 #endif 3006 3007 extern void set_dma_reserve(unsigned long new_dma_reserve); 3008 extern void memmap_init_range(unsigned long, int, unsigned long, 3009 unsigned long, unsigned long, enum meminit_context, 3010 struct vmem_altmap *, int migratetype); 3011 extern void setup_per_zone_wmarks(void); 3012 extern void calculate_min_free_kbytes(void); 3013 extern int __meminit init_per_zone_wmark_min(void); 3014 extern void mem_init(void); 3015 extern void __init mmap_init(void); 3016 3017 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3018 static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 3019 { 3020 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 3021 } 3022 extern long si_mem_available(void); 3023 extern void si_meminfo(struct sysinfo * val); 3024 extern void si_meminfo_node(struct sysinfo *val, int nid); 3025 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3026 extern unsigned long arch_reserved_kernel_pages(void); 3027 #endif 3028 3029 extern __printf(3, 4) 3030 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3031 3032 extern void setup_per_cpu_pageset(void); 3033 3034 /* page_alloc.c */ 3035 extern int min_free_kbytes; 3036 extern int watermark_boost_factor; 3037 extern int watermark_scale_factor; 3038 3039 /* nommu.c */ 3040 extern atomic_long_t mmap_pages_allocated; 3041 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3042 3043 /* interval_tree.c */ 3044 void vma_interval_tree_insert(struct vm_area_struct *node, 3045 struct rb_root_cached *root); 3046 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3047 struct vm_area_struct *prev, 3048 struct rb_root_cached *root); 3049 void vma_interval_tree_remove(struct vm_area_struct *node, 3050 struct rb_root_cached *root); 3051 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3052 unsigned long start, unsigned long last); 3053 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3054 unsigned long start, unsigned long last); 3055 3056 #define vma_interval_tree_foreach(vma, root, start, last) \ 3057 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3058 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3059 3060 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3061 struct rb_root_cached *root); 3062 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3063 struct rb_root_cached *root); 3064 struct anon_vma_chain * 3065 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3066 unsigned long start, unsigned long last); 3067 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3068 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3069 #ifdef CONFIG_DEBUG_VM_RB 3070 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3071 #endif 3072 3073 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3074 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3075 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3076 3077 /* mmap.c */ 3078 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3079 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3080 unsigned long start, unsigned long end, pgoff_t pgoff, 3081 struct vm_area_struct *next); 3082 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3083 unsigned long start, unsigned long end, pgoff_t pgoff); 3084 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi, 3085 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, 3086 unsigned long end, unsigned long vm_flags, struct anon_vma *, 3087 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, 3088 struct anon_vma_name *); 3089 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3090 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3091 unsigned long addr, int new_below); 3092 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3093 unsigned long addr, int new_below); 3094 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3095 extern void unlink_file_vma(struct vm_area_struct *); 3096 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3097 unsigned long addr, unsigned long len, pgoff_t pgoff, 3098 bool *need_rmap_locks); 3099 extern void exit_mmap(struct mm_struct *); 3100 3101 static inline int check_data_rlimit(unsigned long rlim, 3102 unsigned long new, 3103 unsigned long start, 3104 unsigned long end_data, 3105 unsigned long start_data) 3106 { 3107 if (rlim < RLIM_INFINITY) { 3108 if (((new - start) + (end_data - start_data)) > rlim) 3109 return -ENOSPC; 3110 } 3111 3112 return 0; 3113 } 3114 3115 extern int mm_take_all_locks(struct mm_struct *mm); 3116 extern void mm_drop_all_locks(struct mm_struct *mm); 3117 3118 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3119 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3120 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3121 extern struct file *get_task_exe_file(struct task_struct *task); 3122 3123 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3124 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3125 3126 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3127 const struct vm_special_mapping *sm); 3128 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3129 unsigned long addr, unsigned long len, 3130 unsigned long flags, 3131 const struct vm_special_mapping *spec); 3132 /* This is an obsolete alternative to _install_special_mapping. */ 3133 extern int install_special_mapping(struct mm_struct *mm, 3134 unsigned long addr, unsigned long len, 3135 unsigned long flags, struct page **pages); 3136 3137 unsigned long randomize_stack_top(unsigned long stack_top); 3138 unsigned long randomize_page(unsigned long start, unsigned long range); 3139 3140 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3141 3142 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3143 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3144 struct list_head *uf); 3145 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3146 unsigned long len, unsigned long prot, unsigned long flags, 3147 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 3148 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3149 unsigned long start, size_t len, struct list_head *uf, 3150 bool downgrade); 3151 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3152 struct list_head *uf); 3153 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3154 3155 #ifdef CONFIG_MMU 3156 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3157 unsigned long start, unsigned long end, 3158 struct list_head *uf, bool downgrade); 3159 extern int __mm_populate(unsigned long addr, unsigned long len, 3160 int ignore_errors); 3161 static inline void mm_populate(unsigned long addr, unsigned long len) 3162 { 3163 /* Ignore errors */ 3164 (void) __mm_populate(addr, len, 1); 3165 } 3166 #else 3167 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3168 #endif 3169 3170 /* These take the mm semaphore themselves */ 3171 extern int __must_check vm_brk(unsigned long, unsigned long); 3172 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3173 extern int vm_munmap(unsigned long, size_t); 3174 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3175 unsigned long, unsigned long, 3176 unsigned long, unsigned long); 3177 3178 struct vm_unmapped_area_info { 3179 #define VM_UNMAPPED_AREA_TOPDOWN 1 3180 unsigned long flags; 3181 unsigned long length; 3182 unsigned long low_limit; 3183 unsigned long high_limit; 3184 unsigned long align_mask; 3185 unsigned long align_offset; 3186 }; 3187 3188 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3189 3190 /* truncate.c */ 3191 extern void truncate_inode_pages(struct address_space *, loff_t); 3192 extern void truncate_inode_pages_range(struct address_space *, 3193 loff_t lstart, loff_t lend); 3194 extern void truncate_inode_pages_final(struct address_space *); 3195 3196 /* generic vm_area_ops exported for stackable file systems */ 3197 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3198 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3199 pgoff_t start_pgoff, pgoff_t end_pgoff); 3200 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3201 3202 extern unsigned long stack_guard_gap; 3203 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3204 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 3205 3206 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3207 extern int expand_downwards(struct vm_area_struct *vma, 3208 unsigned long address); 3209 #if VM_GROWSUP 3210 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 3211 #else 3212 #define expand_upwards(vma, address) (0) 3213 #endif 3214 3215 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3216 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3217 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3218 struct vm_area_struct **pprev); 3219 3220 /* 3221 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3222 * NULL if none. Assume start_addr < end_addr. 3223 */ 3224 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3225 unsigned long start_addr, unsigned long end_addr); 3226 3227 /** 3228 * vma_lookup() - Find a VMA at a specific address 3229 * @mm: The process address space. 3230 * @addr: The user address. 3231 * 3232 * Return: The vm_area_struct at the given address, %NULL otherwise. 3233 */ 3234 static inline 3235 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3236 { 3237 return mtree_load(&mm->mm_mt, addr); 3238 } 3239 3240 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3241 { 3242 unsigned long vm_start = vma->vm_start; 3243 3244 if (vma->vm_flags & VM_GROWSDOWN) { 3245 vm_start -= stack_guard_gap; 3246 if (vm_start > vma->vm_start) 3247 vm_start = 0; 3248 } 3249 return vm_start; 3250 } 3251 3252 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3253 { 3254 unsigned long vm_end = vma->vm_end; 3255 3256 if (vma->vm_flags & VM_GROWSUP) { 3257 vm_end += stack_guard_gap; 3258 if (vm_end < vma->vm_end) 3259 vm_end = -PAGE_SIZE; 3260 } 3261 return vm_end; 3262 } 3263 3264 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3265 { 3266 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3267 } 3268 3269 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3270 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3271 unsigned long vm_start, unsigned long vm_end) 3272 { 3273 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3274 3275 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3276 vma = NULL; 3277 3278 return vma; 3279 } 3280 3281 static inline bool range_in_vma(struct vm_area_struct *vma, 3282 unsigned long start, unsigned long end) 3283 { 3284 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3285 } 3286 3287 #ifdef CONFIG_MMU 3288 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3289 void vma_set_page_prot(struct vm_area_struct *vma); 3290 #else 3291 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3292 { 3293 return __pgprot(0); 3294 } 3295 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3296 { 3297 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3298 } 3299 #endif 3300 3301 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3302 3303 #ifdef CONFIG_NUMA_BALANCING 3304 unsigned long change_prot_numa(struct vm_area_struct *vma, 3305 unsigned long start, unsigned long end); 3306 #endif 3307 3308 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 3309 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3310 unsigned long pfn, unsigned long size, pgprot_t); 3311 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3312 unsigned long pfn, unsigned long size, pgprot_t prot); 3313 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3314 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3315 struct page **pages, unsigned long *num); 3316 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3317 unsigned long num); 3318 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3319 unsigned long num); 3320 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3321 unsigned long pfn); 3322 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3323 unsigned long pfn, pgprot_t pgprot); 3324 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3325 pfn_t pfn); 3326 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3327 unsigned long addr, pfn_t pfn); 3328 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3329 3330 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3331 unsigned long addr, struct page *page) 3332 { 3333 int err = vm_insert_page(vma, addr, page); 3334 3335 if (err == -ENOMEM) 3336 return VM_FAULT_OOM; 3337 if (err < 0 && err != -EBUSY) 3338 return VM_FAULT_SIGBUS; 3339 3340 return VM_FAULT_NOPAGE; 3341 } 3342 3343 #ifndef io_remap_pfn_range 3344 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3345 unsigned long addr, unsigned long pfn, 3346 unsigned long size, pgprot_t prot) 3347 { 3348 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3349 } 3350 #endif 3351 3352 static inline vm_fault_t vmf_error(int err) 3353 { 3354 if (err == -ENOMEM) 3355 return VM_FAULT_OOM; 3356 return VM_FAULT_SIGBUS; 3357 } 3358 3359 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3360 unsigned int foll_flags); 3361 3362 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3363 { 3364 if (vm_fault & VM_FAULT_OOM) 3365 return -ENOMEM; 3366 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3367 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3368 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3369 return -EFAULT; 3370 return 0; 3371 } 3372 3373 /* 3374 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3375 * a (NUMA hinting) fault is required. 3376 */ 3377 static inline bool gup_can_follow_protnone(unsigned int flags) 3378 { 3379 /* 3380 * FOLL_FORCE has to be able to make progress even if the VMA is 3381 * inaccessible. Further, FOLL_FORCE access usually does not represent 3382 * application behaviour and we should avoid triggering NUMA hinting 3383 * faults. 3384 */ 3385 return flags & FOLL_FORCE; 3386 } 3387 3388 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3389 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3390 unsigned long size, pte_fn_t fn, void *data); 3391 extern int apply_to_existing_page_range(struct mm_struct *mm, 3392 unsigned long address, unsigned long size, 3393 pte_fn_t fn, void *data); 3394 3395 #ifdef CONFIG_PAGE_POISONING 3396 extern void __kernel_poison_pages(struct page *page, int numpages); 3397 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3398 extern bool _page_poisoning_enabled_early; 3399 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3400 static inline bool page_poisoning_enabled(void) 3401 { 3402 return _page_poisoning_enabled_early; 3403 } 3404 /* 3405 * For use in fast paths after init_mem_debugging() has run, or when a 3406 * false negative result is not harmful when called too early. 3407 */ 3408 static inline bool page_poisoning_enabled_static(void) 3409 { 3410 return static_branch_unlikely(&_page_poisoning_enabled); 3411 } 3412 static inline void kernel_poison_pages(struct page *page, int numpages) 3413 { 3414 if (page_poisoning_enabled_static()) 3415 __kernel_poison_pages(page, numpages); 3416 } 3417 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3418 { 3419 if (page_poisoning_enabled_static()) 3420 __kernel_unpoison_pages(page, numpages); 3421 } 3422 #else 3423 static inline bool page_poisoning_enabled(void) { return false; } 3424 static inline bool page_poisoning_enabled_static(void) { return false; } 3425 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3426 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3427 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3428 #endif 3429 3430 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3431 static inline bool want_init_on_alloc(gfp_t flags) 3432 { 3433 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3434 &init_on_alloc)) 3435 return true; 3436 return flags & __GFP_ZERO; 3437 } 3438 3439 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3440 static inline bool want_init_on_free(void) 3441 { 3442 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3443 &init_on_free); 3444 } 3445 3446 extern bool _debug_pagealloc_enabled_early; 3447 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3448 3449 static inline bool debug_pagealloc_enabled(void) 3450 { 3451 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3452 _debug_pagealloc_enabled_early; 3453 } 3454 3455 /* 3456 * For use in fast paths after init_debug_pagealloc() has run, or when a 3457 * false negative result is not harmful when called too early. 3458 */ 3459 static inline bool debug_pagealloc_enabled_static(void) 3460 { 3461 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3462 return false; 3463 3464 return static_branch_unlikely(&_debug_pagealloc_enabled); 3465 } 3466 3467 #ifdef CONFIG_DEBUG_PAGEALLOC 3468 /* 3469 * To support DEBUG_PAGEALLOC architecture must ensure that 3470 * __kernel_map_pages() never fails 3471 */ 3472 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3473 3474 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3475 { 3476 if (debug_pagealloc_enabled_static()) 3477 __kernel_map_pages(page, numpages, 1); 3478 } 3479 3480 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3481 { 3482 if (debug_pagealloc_enabled_static()) 3483 __kernel_map_pages(page, numpages, 0); 3484 } 3485 #else /* CONFIG_DEBUG_PAGEALLOC */ 3486 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3487 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3488 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3489 3490 #ifdef __HAVE_ARCH_GATE_AREA 3491 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3492 extern int in_gate_area_no_mm(unsigned long addr); 3493 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3494 #else 3495 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3496 { 3497 return NULL; 3498 } 3499 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3500 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3501 { 3502 return 0; 3503 } 3504 #endif /* __HAVE_ARCH_GATE_AREA */ 3505 3506 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3507 3508 #ifdef CONFIG_SYSCTL 3509 extern int sysctl_drop_caches; 3510 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3511 loff_t *); 3512 #endif 3513 3514 void drop_slab(void); 3515 3516 #ifndef CONFIG_MMU 3517 #define randomize_va_space 0 3518 #else 3519 extern int randomize_va_space; 3520 #endif 3521 3522 const char * arch_vma_name(struct vm_area_struct *vma); 3523 #ifdef CONFIG_MMU 3524 void print_vma_addr(char *prefix, unsigned long rip); 3525 #else 3526 static inline void print_vma_addr(char *prefix, unsigned long rip) 3527 { 3528 } 3529 #endif 3530 3531 void *sparse_buffer_alloc(unsigned long size); 3532 struct page * __populate_section_memmap(unsigned long pfn, 3533 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3534 struct dev_pagemap *pgmap); 3535 void pmd_init(void *addr); 3536 void pud_init(void *addr); 3537 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3538 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3539 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3540 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3541 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3542 struct vmem_altmap *altmap, struct page *reuse); 3543 void *vmemmap_alloc_block(unsigned long size, int node); 3544 struct vmem_altmap; 3545 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3546 struct vmem_altmap *altmap); 3547 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3548 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3549 unsigned long addr, unsigned long next); 3550 int vmemmap_check_pmd(pmd_t *pmd, int node, 3551 unsigned long addr, unsigned long next); 3552 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3553 int node, struct vmem_altmap *altmap); 3554 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3555 int node, struct vmem_altmap *altmap); 3556 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3557 struct vmem_altmap *altmap); 3558 void vmemmap_populate_print_last(void); 3559 #ifdef CONFIG_MEMORY_HOTPLUG 3560 void vmemmap_free(unsigned long start, unsigned long end, 3561 struct vmem_altmap *altmap); 3562 #endif 3563 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3564 unsigned long nr_pages); 3565 3566 enum mf_flags { 3567 MF_COUNT_INCREASED = 1 << 0, 3568 MF_ACTION_REQUIRED = 1 << 1, 3569 MF_MUST_KILL = 1 << 2, 3570 MF_SOFT_OFFLINE = 1 << 3, 3571 MF_UNPOISON = 1 << 4, 3572 MF_SW_SIMULATED = 1 << 5, 3573 MF_NO_RETRY = 1 << 6, 3574 }; 3575 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3576 unsigned long count, int mf_flags); 3577 extern int memory_failure(unsigned long pfn, int flags); 3578 extern void memory_failure_queue_kick(int cpu); 3579 extern int unpoison_memory(unsigned long pfn); 3580 extern int sysctl_memory_failure_early_kill; 3581 extern int sysctl_memory_failure_recovery; 3582 extern void shake_page(struct page *p); 3583 extern atomic_long_t num_poisoned_pages __read_mostly; 3584 extern int soft_offline_page(unsigned long pfn, int flags); 3585 #ifdef CONFIG_MEMORY_FAILURE 3586 extern void memory_failure_queue(unsigned long pfn, int flags); 3587 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3588 bool *migratable_cleared); 3589 void num_poisoned_pages_inc(unsigned long pfn); 3590 void num_poisoned_pages_sub(unsigned long pfn, long i); 3591 #else 3592 static inline void memory_failure_queue(unsigned long pfn, int flags) 3593 { 3594 } 3595 3596 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3597 bool *migratable_cleared) 3598 { 3599 return 0; 3600 } 3601 3602 static inline void num_poisoned_pages_inc(unsigned long pfn) 3603 { 3604 } 3605 3606 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3607 { 3608 } 3609 #endif 3610 3611 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3612 extern void memblk_nr_poison_inc(unsigned long pfn); 3613 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3614 #else 3615 static inline void memblk_nr_poison_inc(unsigned long pfn) 3616 { 3617 } 3618 3619 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3620 { 3621 } 3622 #endif 3623 3624 #ifndef arch_memory_failure 3625 static inline int arch_memory_failure(unsigned long pfn, int flags) 3626 { 3627 return -ENXIO; 3628 } 3629 #endif 3630 3631 #ifndef arch_is_platform_page 3632 static inline bool arch_is_platform_page(u64 paddr) 3633 { 3634 return false; 3635 } 3636 #endif 3637 3638 /* 3639 * Error handlers for various types of pages. 3640 */ 3641 enum mf_result { 3642 MF_IGNORED, /* Error: cannot be handled */ 3643 MF_FAILED, /* Error: handling failed */ 3644 MF_DELAYED, /* Will be handled later */ 3645 MF_RECOVERED, /* Successfully recovered */ 3646 }; 3647 3648 enum mf_action_page_type { 3649 MF_MSG_KERNEL, 3650 MF_MSG_KERNEL_HIGH_ORDER, 3651 MF_MSG_SLAB, 3652 MF_MSG_DIFFERENT_COMPOUND, 3653 MF_MSG_HUGE, 3654 MF_MSG_FREE_HUGE, 3655 MF_MSG_UNMAP_FAILED, 3656 MF_MSG_DIRTY_SWAPCACHE, 3657 MF_MSG_CLEAN_SWAPCACHE, 3658 MF_MSG_DIRTY_MLOCKED_LRU, 3659 MF_MSG_CLEAN_MLOCKED_LRU, 3660 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3661 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3662 MF_MSG_DIRTY_LRU, 3663 MF_MSG_CLEAN_LRU, 3664 MF_MSG_TRUNCATED_LRU, 3665 MF_MSG_BUDDY, 3666 MF_MSG_DAX, 3667 MF_MSG_UNSPLIT_THP, 3668 MF_MSG_UNKNOWN, 3669 }; 3670 3671 /* 3672 * Sysfs entries for memory failure handling statistics. 3673 */ 3674 extern const struct attribute_group memory_failure_attr_group; 3675 3676 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3677 extern void clear_huge_page(struct page *page, 3678 unsigned long addr_hint, 3679 unsigned int pages_per_huge_page); 3680 extern void copy_user_huge_page(struct page *dst, struct page *src, 3681 unsigned long addr_hint, 3682 struct vm_area_struct *vma, 3683 unsigned int pages_per_huge_page); 3684 extern long copy_huge_page_from_user(struct page *dst_page, 3685 const void __user *usr_src, 3686 unsigned int pages_per_huge_page, 3687 bool allow_pagefault); 3688 3689 /** 3690 * vma_is_special_huge - Are transhuge page-table entries considered special? 3691 * @vma: Pointer to the struct vm_area_struct to consider 3692 * 3693 * Whether transhuge page-table entries are considered "special" following 3694 * the definition in vm_normal_page(). 3695 * 3696 * Return: true if transhuge page-table entries should be considered special, 3697 * false otherwise. 3698 */ 3699 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3700 { 3701 return vma_is_dax(vma) || (vma->vm_file && 3702 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3703 } 3704 3705 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3706 3707 #ifdef CONFIG_DEBUG_PAGEALLOC 3708 extern unsigned int _debug_guardpage_minorder; 3709 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3710 3711 static inline unsigned int debug_guardpage_minorder(void) 3712 { 3713 return _debug_guardpage_minorder; 3714 } 3715 3716 static inline bool debug_guardpage_enabled(void) 3717 { 3718 return static_branch_unlikely(&_debug_guardpage_enabled); 3719 } 3720 3721 static inline bool page_is_guard(struct page *page) 3722 { 3723 if (!debug_guardpage_enabled()) 3724 return false; 3725 3726 return PageGuard(page); 3727 } 3728 #else 3729 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3730 static inline bool debug_guardpage_enabled(void) { return false; } 3731 static inline bool page_is_guard(struct page *page) { return false; } 3732 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3733 3734 #if MAX_NUMNODES > 1 3735 void __init setup_nr_node_ids(void); 3736 #else 3737 static inline void setup_nr_node_ids(void) {} 3738 #endif 3739 3740 extern int memcmp_pages(struct page *page1, struct page *page2); 3741 3742 static inline int pages_identical(struct page *page1, struct page *page2) 3743 { 3744 return !memcmp_pages(page1, page2); 3745 } 3746 3747 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3748 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3749 pgoff_t first_index, pgoff_t nr, 3750 pgoff_t bitmap_pgoff, 3751 unsigned long *bitmap, 3752 pgoff_t *start, 3753 pgoff_t *end); 3754 3755 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3756 pgoff_t first_index, pgoff_t nr); 3757 #endif 3758 3759 extern int sysctl_nr_trim_pages; 3760 3761 #ifdef CONFIG_PRINTK 3762 void mem_dump_obj(void *object); 3763 #else 3764 static inline void mem_dump_obj(void *object) {} 3765 #endif 3766 3767 /** 3768 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3769 * @seals: the seals to check 3770 * @vma: the vma to operate on 3771 * 3772 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3773 * the vma flags. Return 0 if check pass, or <0 for errors. 3774 */ 3775 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3776 { 3777 if (seals & F_SEAL_FUTURE_WRITE) { 3778 /* 3779 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3780 * "future write" seal active. 3781 */ 3782 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3783 return -EPERM; 3784 3785 /* 3786 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3787 * MAP_SHARED and read-only, take care to not allow mprotect to 3788 * revert protections on such mappings. Do this only for shared 3789 * mappings. For private mappings, don't need to mask 3790 * VM_MAYWRITE as we still want them to be COW-writable. 3791 */ 3792 if (vma->vm_flags & VM_SHARED) 3793 vm_flags_clear(vma, VM_MAYWRITE); 3794 } 3795 3796 return 0; 3797 } 3798 3799 #ifdef CONFIG_ANON_VMA_NAME 3800 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3801 unsigned long len_in, 3802 struct anon_vma_name *anon_name); 3803 #else 3804 static inline int 3805 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3806 unsigned long len_in, struct anon_vma_name *anon_name) { 3807 return 0; 3808 } 3809 #endif 3810 3811 #endif /* _LINUX_MM_H */ 3812