xref: /linux-6.15/include/linux/mm.h (revision 27d9a0fd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 /*
102  * Architectures that support memory tagging (assigning tags to memory regions,
103  * embedding these tags into addresses that point to these memory regions, and
104  * checking that the memory and the pointer tags match on memory accesses)
105  * redefine this macro to strip tags from pointers.
106  * It's defined as noop for architectures that don't support memory tagging.
107  */
108 #ifndef untagged_addr
109 #define untagged_addr(addr) (addr)
110 #endif
111 
112 #ifndef __pa_symbol
113 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115 
116 #ifndef page_to_virt
117 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119 
120 #ifndef lm_alias
121 #define lm_alias(x)	__va(__pa_symbol(x))
122 #endif
123 
124 /*
125  * To prevent common memory management code establishing
126  * a zero page mapping on a read fault.
127  * This macro should be defined within <asm/pgtable.h>.
128  * s390 does this to prevent multiplexing of hardware bits
129  * related to the physical page in case of virtualization.
130  */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X)	(0)
133 #endif
134 
135 /*
136  * On some architectures it is expensive to call memset() for small sizes.
137  * If an architecture decides to implement their own version of
138  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139  * define their own version of this macro in <asm/pgtable.h>
140  */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 96
143  * or reduces below 56. The idea that compiler optimizes out switch()
144  * statement, and only leaves move/store instructions. Also the compiler can
145  * combine write statements if they are both assignments and can be reordered,
146  * this can result in several of the writes here being dropped.
147  */
148 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151 	unsigned long *_pp = (void *)page;
152 
153 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
154 	BUILD_BUG_ON(sizeof(struct page) & 7);
155 	BUILD_BUG_ON(sizeof(struct page) < 56);
156 	BUILD_BUG_ON(sizeof(struct page) > 96);
157 
158 	switch (sizeof(struct page)) {
159 	case 96:
160 		_pp[11] = 0;
161 		fallthrough;
162 	case 88:
163 		_pp[10] = 0;
164 		fallthrough;
165 	case 80:
166 		_pp[9] = 0;
167 		fallthrough;
168 	case 72:
169 		_pp[8] = 0;
170 		fallthrough;
171 	case 64:
172 		_pp[7] = 0;
173 		fallthrough;
174 	case 56:
175 		_pp[6] = 0;
176 		_pp[5] = 0;
177 		_pp[4] = 0;
178 		_pp[3] = 0;
179 		_pp[2] = 0;
180 		_pp[1] = 0;
181 		_pp[0] = 0;
182 	}
183 }
184 #else
185 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
186 #endif
187 
188 /*
189  * Default maximum number of active map areas, this limits the number of vmas
190  * per mm struct. Users can overwrite this number by sysctl but there is a
191  * problem.
192  *
193  * When a program's coredump is generated as ELF format, a section is created
194  * per a vma. In ELF, the number of sections is represented in unsigned short.
195  * This means the number of sections should be smaller than 65535 at coredump.
196  * Because the kernel adds some informative sections to a image of program at
197  * generating coredump, we need some margin. The number of extra sections is
198  * 1-3 now and depends on arch. We use "5" as safe margin, here.
199  *
200  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
201  * not a hard limit any more. Although some userspace tools can be surprised by
202  * that.
203  */
204 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
205 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
206 
207 extern int sysctl_max_map_count;
208 
209 extern unsigned long sysctl_user_reserve_kbytes;
210 extern unsigned long sysctl_admin_reserve_kbytes;
211 
212 extern int sysctl_overcommit_memory;
213 extern int sysctl_overcommit_ratio;
214 extern unsigned long sysctl_overcommit_kbytes;
215 
216 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
217 		loff_t *);
218 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
219 		loff_t *);
220 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
221 		loff_t *);
222 
223 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
224 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
225 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
226 #else
227 #define nth_page(page,n) ((page) + (n))
228 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
229 #endif
230 
231 /* to align the pointer to the (next) page boundary */
232 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
233 
234 /* to align the pointer to the (prev) page boundary */
235 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
236 
237 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
238 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
239 
240 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
241 static inline struct folio *lru_to_folio(struct list_head *head)
242 {
243 	return list_entry((head)->prev, struct folio, lru);
244 }
245 
246 void setup_initial_init_mm(void *start_code, void *end_code,
247 			   void *end_data, void *brk);
248 
249 /*
250  * Linux kernel virtual memory manager primitives.
251  * The idea being to have a "virtual" mm in the same way
252  * we have a virtual fs - giving a cleaner interface to the
253  * mm details, and allowing different kinds of memory mappings
254  * (from shared memory to executable loading to arbitrary
255  * mmap() functions).
256  */
257 
258 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
259 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
260 void vm_area_free(struct vm_area_struct *);
261 /* Use only if VMA has no other users */
262 void __vm_area_free(struct vm_area_struct *vma);
263 
264 #ifndef CONFIG_MMU
265 extern struct rb_root nommu_region_tree;
266 extern struct rw_semaphore nommu_region_sem;
267 
268 extern unsigned int kobjsize(const void *objp);
269 #endif
270 
271 /*
272  * vm_flags in vm_area_struct, see mm_types.h.
273  * When changing, update also include/trace/events/mmflags.h
274  */
275 #define VM_NONE		0x00000000
276 
277 #define VM_READ		0x00000001	/* currently active flags */
278 #define VM_WRITE	0x00000002
279 #define VM_EXEC		0x00000004
280 #define VM_SHARED	0x00000008
281 
282 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
283 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
284 #define VM_MAYWRITE	0x00000020
285 #define VM_MAYEXEC	0x00000040
286 #define VM_MAYSHARE	0x00000080
287 
288 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
289 #ifdef CONFIG_MMU
290 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
291 #else /* CONFIG_MMU */
292 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
293 #define VM_UFFD_MISSING	0
294 #endif /* CONFIG_MMU */
295 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
296 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
297 
298 #define VM_LOCKED	0x00002000
299 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
300 
301 					/* Used by sys_madvise() */
302 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
303 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
304 
305 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
306 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
307 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
308 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
309 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
310 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
311 #define VM_SYNC		0x00800000	/* Synchronous page faults */
312 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
313 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
314 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
315 
316 #ifdef CONFIG_MEM_SOFT_DIRTY
317 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
318 #else
319 # define VM_SOFTDIRTY	0
320 #endif
321 
322 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
323 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
324 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
325 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
326 
327 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
328 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
338 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
339 
340 #ifdef CONFIG_ARCH_HAS_PKEYS
341 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
342 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
343 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
344 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
345 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
346 #ifdef CONFIG_PPC
347 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
348 #else
349 # define VM_PKEY_BIT4  0
350 #endif
351 #endif /* CONFIG_ARCH_HAS_PKEYS */
352 
353 #if defined(CONFIG_X86)
354 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
355 #elif defined(CONFIG_PPC)
356 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
357 #elif defined(CONFIG_PARISC)
358 # define VM_GROWSUP	VM_ARCH_1
359 #elif defined(CONFIG_IA64)
360 # define VM_GROWSUP	VM_ARCH_1
361 #elif defined(CONFIG_SPARC64)
362 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
363 # define VM_ARCH_CLEAR	VM_SPARC_ADI
364 #elif defined(CONFIG_ARM64)
365 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
366 # define VM_ARCH_CLEAR	VM_ARM64_BTI
367 #elif !defined(CONFIG_MMU)
368 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
369 #endif
370 
371 #if defined(CONFIG_ARM64_MTE)
372 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
373 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
374 #else
375 # define VM_MTE		VM_NONE
376 # define VM_MTE_ALLOWED	VM_NONE
377 #endif
378 
379 #ifndef VM_GROWSUP
380 # define VM_GROWSUP	VM_NONE
381 #endif
382 
383 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
384 # define VM_UFFD_MINOR_BIT	37
385 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
386 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
387 # define VM_UFFD_MINOR		VM_NONE
388 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
389 
390 /* Bits set in the VMA until the stack is in its final location */
391 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
392 
393 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
394 
395 /* Common data flag combinations */
396 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
397 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
398 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
399 				 VM_MAYWRITE | VM_MAYEXEC)
400 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
401 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
402 
403 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
404 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
405 #endif
406 
407 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
408 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
409 #endif
410 
411 #ifdef CONFIG_STACK_GROWSUP
412 #define VM_STACK	VM_GROWSUP
413 #else
414 #define VM_STACK	VM_GROWSDOWN
415 #endif
416 
417 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
418 
419 /* VMA basic access permission flags */
420 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
421 
422 
423 /*
424  * Special vmas that are non-mergable, non-mlock()able.
425  */
426 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
427 
428 /* This mask prevents VMA from being scanned with khugepaged */
429 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
430 
431 /* This mask defines which mm->def_flags a process can inherit its parent */
432 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
433 
434 /* This mask represents all the VMA flag bits used by mlock */
435 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
436 
437 /* Arch-specific flags to clear when updating VM flags on protection change */
438 #ifndef VM_ARCH_CLEAR
439 # define VM_ARCH_CLEAR	VM_NONE
440 #endif
441 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
442 
443 /*
444  * mapping from the currently active vm_flags protection bits (the
445  * low four bits) to a page protection mask..
446  */
447 
448 /*
449  * The default fault flags that should be used by most of the
450  * arch-specific page fault handlers.
451  */
452 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
453 			     FAULT_FLAG_KILLABLE | \
454 			     FAULT_FLAG_INTERRUPTIBLE)
455 
456 /**
457  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
458  * @flags: Fault flags.
459  *
460  * This is mostly used for places where we want to try to avoid taking
461  * the mmap_lock for too long a time when waiting for another condition
462  * to change, in which case we can try to be polite to release the
463  * mmap_lock in the first round to avoid potential starvation of other
464  * processes that would also want the mmap_lock.
465  *
466  * Return: true if the page fault allows retry and this is the first
467  * attempt of the fault handling; false otherwise.
468  */
469 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
470 {
471 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
472 	    (!(flags & FAULT_FLAG_TRIED));
473 }
474 
475 #define FAULT_FLAG_TRACE \
476 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
477 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
478 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
479 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
480 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
481 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
482 	{ FAULT_FLAG_USER,		"USER" }, \
483 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
484 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
485 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
486 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
487 
488 /*
489  * vm_fault is filled by the pagefault handler and passed to the vma's
490  * ->fault function. The vma's ->fault is responsible for returning a bitmask
491  * of VM_FAULT_xxx flags that give details about how the fault was handled.
492  *
493  * MM layer fills up gfp_mask for page allocations but fault handler might
494  * alter it if its implementation requires a different allocation context.
495  *
496  * pgoff should be used in favour of virtual_address, if possible.
497  */
498 struct vm_fault {
499 	const struct {
500 		struct vm_area_struct *vma;	/* Target VMA */
501 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
502 		pgoff_t pgoff;			/* Logical page offset based on vma */
503 		unsigned long address;		/* Faulting virtual address - masked */
504 		unsigned long real_address;	/* Faulting virtual address - unmasked */
505 	};
506 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
507 					 * XXX: should really be 'const' */
508 	pmd_t *pmd;			/* Pointer to pmd entry matching
509 					 * the 'address' */
510 	pud_t *pud;			/* Pointer to pud entry matching
511 					 * the 'address'
512 					 */
513 	union {
514 		pte_t orig_pte;		/* Value of PTE at the time of fault */
515 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
516 					 * used by PMD fault only.
517 					 */
518 	};
519 
520 	struct page *cow_page;		/* Page handler may use for COW fault */
521 	struct page *page;		/* ->fault handlers should return a
522 					 * page here, unless VM_FAULT_NOPAGE
523 					 * is set (which is also implied by
524 					 * VM_FAULT_ERROR).
525 					 */
526 	/* These three entries are valid only while holding ptl lock */
527 	pte_t *pte;			/* Pointer to pte entry matching
528 					 * the 'address'. NULL if the page
529 					 * table hasn't been allocated.
530 					 */
531 	spinlock_t *ptl;		/* Page table lock.
532 					 * Protects pte page table if 'pte'
533 					 * is not NULL, otherwise pmd.
534 					 */
535 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
536 					 * vm_ops->map_pages() sets up a page
537 					 * table from atomic context.
538 					 * do_fault_around() pre-allocates
539 					 * page table to avoid allocation from
540 					 * atomic context.
541 					 */
542 };
543 
544 /* page entry size for vm->huge_fault() */
545 enum page_entry_size {
546 	PE_SIZE_PTE = 0,
547 	PE_SIZE_PMD,
548 	PE_SIZE_PUD,
549 };
550 
551 /*
552  * These are the virtual MM functions - opening of an area, closing and
553  * unmapping it (needed to keep files on disk up-to-date etc), pointer
554  * to the functions called when a no-page or a wp-page exception occurs.
555  */
556 struct vm_operations_struct {
557 	void (*open)(struct vm_area_struct * area);
558 	/**
559 	 * @close: Called when the VMA is being removed from the MM.
560 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
561 	 */
562 	void (*close)(struct vm_area_struct * area);
563 	/* Called any time before splitting to check if it's allowed */
564 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
565 	int (*mremap)(struct vm_area_struct *area);
566 	/*
567 	 * Called by mprotect() to make driver-specific permission
568 	 * checks before mprotect() is finalised.   The VMA must not
569 	 * be modified.  Returns 0 if mprotect() can proceed.
570 	 */
571 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
572 			unsigned long end, unsigned long newflags);
573 	vm_fault_t (*fault)(struct vm_fault *vmf);
574 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
575 			enum page_entry_size pe_size);
576 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
577 			pgoff_t start_pgoff, pgoff_t end_pgoff);
578 	unsigned long (*pagesize)(struct vm_area_struct * area);
579 
580 	/* notification that a previously read-only page is about to become
581 	 * writable, if an error is returned it will cause a SIGBUS */
582 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
583 
584 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
585 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
586 
587 	/* called by access_process_vm when get_user_pages() fails, typically
588 	 * for use by special VMAs. See also generic_access_phys() for a generic
589 	 * implementation useful for any iomem mapping.
590 	 */
591 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
592 		      void *buf, int len, int write);
593 
594 	/* Called by the /proc/PID/maps code to ask the vma whether it
595 	 * has a special name.  Returning non-NULL will also cause this
596 	 * vma to be dumped unconditionally. */
597 	const char *(*name)(struct vm_area_struct *vma);
598 
599 #ifdef CONFIG_NUMA
600 	/*
601 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
602 	 * to hold the policy upon return.  Caller should pass NULL @new to
603 	 * remove a policy and fall back to surrounding context--i.e. do not
604 	 * install a MPOL_DEFAULT policy, nor the task or system default
605 	 * mempolicy.
606 	 */
607 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
608 
609 	/*
610 	 * get_policy() op must add reference [mpol_get()] to any policy at
611 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
612 	 * in mm/mempolicy.c will do this automatically.
613 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
614 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
615 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
616 	 * must return NULL--i.e., do not "fallback" to task or system default
617 	 * policy.
618 	 */
619 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
620 					unsigned long addr);
621 #endif
622 	/*
623 	 * Called by vm_normal_page() for special PTEs to find the
624 	 * page for @addr.  This is useful if the default behavior
625 	 * (using pte_page()) would not find the correct page.
626 	 */
627 	struct page *(*find_special_page)(struct vm_area_struct *vma,
628 					  unsigned long addr);
629 };
630 
631 #ifdef CONFIG_NUMA_BALANCING
632 static inline void vma_numab_state_init(struct vm_area_struct *vma)
633 {
634 	vma->numab_state = NULL;
635 }
636 static inline void vma_numab_state_free(struct vm_area_struct *vma)
637 {
638 	kfree(vma->numab_state);
639 }
640 #else
641 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
642 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
643 #endif /* CONFIG_NUMA_BALANCING */
644 
645 #ifdef CONFIG_PER_VMA_LOCK
646 /*
647  * Try to read-lock a vma. The function is allowed to occasionally yield false
648  * locked result to avoid performance overhead, in which case we fall back to
649  * using mmap_lock. The function should never yield false unlocked result.
650  */
651 static inline bool vma_start_read(struct vm_area_struct *vma)
652 {
653 	/* Check before locking. A race might cause false locked result. */
654 	if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
655 		return false;
656 
657 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
658 		return false;
659 
660 	/*
661 	 * Overflow might produce false locked result.
662 	 * False unlocked result is impossible because we modify and check
663 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
664 	 * modification invalidates all existing locks.
665 	 */
666 	if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
667 		up_read(&vma->vm_lock->lock);
668 		return false;
669 	}
670 	return true;
671 }
672 
673 static inline void vma_end_read(struct vm_area_struct *vma)
674 {
675 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
676 	up_read(&vma->vm_lock->lock);
677 	rcu_read_unlock();
678 }
679 
680 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
681 {
682 	mmap_assert_write_locked(vma->vm_mm);
683 
684 	/*
685 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
686 	 * mm->mm_lock_seq can't be concurrently modified.
687 	 */
688 	*mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
689 	return (vma->vm_lock_seq == *mm_lock_seq);
690 }
691 
692 static inline void vma_start_write(struct vm_area_struct *vma)
693 {
694 	int mm_lock_seq;
695 
696 	if (__is_vma_write_locked(vma, &mm_lock_seq))
697 		return;
698 
699 	down_write(&vma->vm_lock->lock);
700 	vma->vm_lock_seq = mm_lock_seq;
701 	up_write(&vma->vm_lock->lock);
702 }
703 
704 static inline bool vma_try_start_write(struct vm_area_struct *vma)
705 {
706 	int mm_lock_seq;
707 
708 	if (__is_vma_write_locked(vma, &mm_lock_seq))
709 		return true;
710 
711 	if (!down_write_trylock(&vma->vm_lock->lock))
712 		return false;
713 
714 	vma->vm_lock_seq = mm_lock_seq;
715 	up_write(&vma->vm_lock->lock);
716 	return true;
717 }
718 
719 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
720 {
721 	int mm_lock_seq;
722 
723 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
724 }
725 
726 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
727 {
728 	/* When detaching vma should be write-locked */
729 	if (detached)
730 		vma_assert_write_locked(vma);
731 	vma->detached = detached;
732 }
733 
734 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
735 					  unsigned long address);
736 
737 #else /* CONFIG_PER_VMA_LOCK */
738 
739 static inline void vma_init_lock(struct vm_area_struct *vma) {}
740 static inline bool vma_start_read(struct vm_area_struct *vma)
741 		{ return false; }
742 static inline void vma_end_read(struct vm_area_struct *vma) {}
743 static inline void vma_start_write(struct vm_area_struct *vma) {}
744 static inline bool vma_try_start_write(struct vm_area_struct *vma)
745 		{ return true; }
746 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
747 static inline void vma_mark_detached(struct vm_area_struct *vma,
748 				     bool detached) {}
749 
750 #endif /* CONFIG_PER_VMA_LOCK */
751 
752 /*
753  * WARNING: vma_init does not initialize vma->vm_lock.
754  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
755  */
756 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
757 {
758 	static const struct vm_operations_struct dummy_vm_ops = {};
759 
760 	memset(vma, 0, sizeof(*vma));
761 	vma->vm_mm = mm;
762 	vma->vm_ops = &dummy_vm_ops;
763 	INIT_LIST_HEAD(&vma->anon_vma_chain);
764 	vma_mark_detached(vma, false);
765 	vma_numab_state_init(vma);
766 }
767 
768 /* Use when VMA is not part of the VMA tree and needs no locking */
769 static inline void vm_flags_init(struct vm_area_struct *vma,
770 				 vm_flags_t flags)
771 {
772 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
773 }
774 
775 /* Use when VMA is part of the VMA tree and modifications need coordination */
776 static inline void vm_flags_reset(struct vm_area_struct *vma,
777 				  vm_flags_t flags)
778 {
779 	vma_start_write(vma);
780 	vm_flags_init(vma, flags);
781 }
782 
783 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
784 				       vm_flags_t flags)
785 {
786 	vma_start_write(vma);
787 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
788 }
789 
790 static inline void vm_flags_set(struct vm_area_struct *vma,
791 				vm_flags_t flags)
792 {
793 	vma_start_write(vma);
794 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
795 }
796 
797 static inline void vm_flags_clear(struct vm_area_struct *vma,
798 				  vm_flags_t flags)
799 {
800 	vma_start_write(vma);
801 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
802 }
803 
804 /*
805  * Use only if VMA is not part of the VMA tree or has no other users and
806  * therefore needs no locking.
807  */
808 static inline void __vm_flags_mod(struct vm_area_struct *vma,
809 				  vm_flags_t set, vm_flags_t clear)
810 {
811 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
812 }
813 
814 /*
815  * Use only when the order of set/clear operations is unimportant, otherwise
816  * use vm_flags_{set|clear} explicitly.
817  */
818 static inline void vm_flags_mod(struct vm_area_struct *vma,
819 				vm_flags_t set, vm_flags_t clear)
820 {
821 	vma_start_write(vma);
822 	__vm_flags_mod(vma, set, clear);
823 }
824 
825 static inline void vma_set_anonymous(struct vm_area_struct *vma)
826 {
827 	vma->vm_ops = NULL;
828 }
829 
830 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
831 {
832 	return !vma->vm_ops;
833 }
834 
835 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
836 {
837 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
838 
839 	if (!maybe_stack)
840 		return false;
841 
842 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
843 						VM_STACK_INCOMPLETE_SETUP)
844 		return true;
845 
846 	return false;
847 }
848 
849 static inline bool vma_is_foreign(struct vm_area_struct *vma)
850 {
851 	if (!current->mm)
852 		return true;
853 
854 	if (current->mm != vma->vm_mm)
855 		return true;
856 
857 	return false;
858 }
859 
860 static inline bool vma_is_accessible(struct vm_area_struct *vma)
861 {
862 	return vma->vm_flags & VM_ACCESS_FLAGS;
863 }
864 
865 static inline
866 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
867 {
868 	return mas_find(&vmi->mas, max - 1);
869 }
870 
871 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
872 {
873 	/*
874 	 * Uses mas_find() to get the first VMA when the iterator starts.
875 	 * Calling mas_next() could skip the first entry.
876 	 */
877 	return mas_find(&vmi->mas, ULONG_MAX);
878 }
879 
880 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
881 {
882 	return mas_prev(&vmi->mas, 0);
883 }
884 
885 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
886 {
887 	return vmi->mas.index;
888 }
889 
890 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
891 {
892 	return vmi->mas.last + 1;
893 }
894 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
895 				      unsigned long count)
896 {
897 	return mas_expected_entries(&vmi->mas, count);
898 }
899 
900 /* Free any unused preallocations */
901 static inline void vma_iter_free(struct vma_iterator *vmi)
902 {
903 	mas_destroy(&vmi->mas);
904 }
905 
906 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
907 				      struct vm_area_struct *vma)
908 {
909 	vmi->mas.index = vma->vm_start;
910 	vmi->mas.last = vma->vm_end - 1;
911 	mas_store(&vmi->mas, vma);
912 	if (unlikely(mas_is_err(&vmi->mas)))
913 		return -ENOMEM;
914 
915 	return 0;
916 }
917 
918 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
919 {
920 	mas_pause(&vmi->mas);
921 }
922 
923 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
924 {
925 	mas_set(&vmi->mas, addr);
926 }
927 
928 #define for_each_vma(__vmi, __vma)					\
929 	while (((__vma) = vma_next(&(__vmi))) != NULL)
930 
931 /* The MM code likes to work with exclusive end addresses */
932 #define for_each_vma_range(__vmi, __vma, __end)				\
933 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
934 
935 #ifdef CONFIG_SHMEM
936 /*
937  * The vma_is_shmem is not inline because it is used only by slow
938  * paths in userfault.
939  */
940 bool vma_is_shmem(struct vm_area_struct *vma);
941 bool vma_is_anon_shmem(struct vm_area_struct *vma);
942 #else
943 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
944 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
945 #endif
946 
947 int vma_is_stack_for_current(struct vm_area_struct *vma);
948 
949 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
950 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
951 
952 struct mmu_gather;
953 struct inode;
954 
955 /*
956  * compound_order() can be called without holding a reference, which means
957  * that niceties like page_folio() don't work.  These callers should be
958  * prepared to handle wild return values.  For example, PG_head may be
959  * set before _folio_order is initialised, or this may be a tail page.
960  * See compaction.c for some good examples.
961  */
962 static inline unsigned int compound_order(struct page *page)
963 {
964 	struct folio *folio = (struct folio *)page;
965 
966 	if (!test_bit(PG_head, &folio->flags))
967 		return 0;
968 	return folio->_folio_order;
969 }
970 
971 /**
972  * folio_order - The allocation order of a folio.
973  * @folio: The folio.
974  *
975  * A folio is composed of 2^order pages.  See get_order() for the definition
976  * of order.
977  *
978  * Return: The order of the folio.
979  */
980 static inline unsigned int folio_order(struct folio *folio)
981 {
982 	if (!folio_test_large(folio))
983 		return 0;
984 	return folio->_folio_order;
985 }
986 
987 #include <linux/huge_mm.h>
988 
989 /*
990  * Methods to modify the page usage count.
991  *
992  * What counts for a page usage:
993  * - cache mapping   (page->mapping)
994  * - private data    (page->private)
995  * - page mapped in a task's page tables, each mapping
996  *   is counted separately
997  *
998  * Also, many kernel routines increase the page count before a critical
999  * routine so they can be sure the page doesn't go away from under them.
1000  */
1001 
1002 /*
1003  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1004  */
1005 static inline int put_page_testzero(struct page *page)
1006 {
1007 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1008 	return page_ref_dec_and_test(page);
1009 }
1010 
1011 static inline int folio_put_testzero(struct folio *folio)
1012 {
1013 	return put_page_testzero(&folio->page);
1014 }
1015 
1016 /*
1017  * Try to grab a ref unless the page has a refcount of zero, return false if
1018  * that is the case.
1019  * This can be called when MMU is off so it must not access
1020  * any of the virtual mappings.
1021  */
1022 static inline bool get_page_unless_zero(struct page *page)
1023 {
1024 	return page_ref_add_unless(page, 1, 0);
1025 }
1026 
1027 static inline struct folio *folio_get_nontail_page(struct page *page)
1028 {
1029 	if (unlikely(!get_page_unless_zero(page)))
1030 		return NULL;
1031 	return (struct folio *)page;
1032 }
1033 
1034 extern int page_is_ram(unsigned long pfn);
1035 
1036 enum {
1037 	REGION_INTERSECTS,
1038 	REGION_DISJOINT,
1039 	REGION_MIXED,
1040 };
1041 
1042 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1043 		      unsigned long desc);
1044 
1045 /* Support for virtually mapped pages */
1046 struct page *vmalloc_to_page(const void *addr);
1047 unsigned long vmalloc_to_pfn(const void *addr);
1048 
1049 /*
1050  * Determine if an address is within the vmalloc range
1051  *
1052  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1053  * is no special casing required.
1054  */
1055 
1056 #ifndef is_ioremap_addr
1057 #define is_ioremap_addr(x) is_vmalloc_addr(x)
1058 #endif
1059 
1060 #ifdef CONFIG_MMU
1061 extern bool is_vmalloc_addr(const void *x);
1062 extern int is_vmalloc_or_module_addr(const void *x);
1063 #else
1064 static inline bool is_vmalloc_addr(const void *x)
1065 {
1066 	return false;
1067 }
1068 static inline int is_vmalloc_or_module_addr(const void *x)
1069 {
1070 	return 0;
1071 }
1072 #endif
1073 
1074 /*
1075  * How many times the entire folio is mapped as a single unit (eg by a
1076  * PMD or PUD entry).  This is probably not what you want, except for
1077  * debugging purposes - it does not include PTE-mapped sub-pages; look
1078  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1079  */
1080 static inline int folio_entire_mapcount(struct folio *folio)
1081 {
1082 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1083 	return atomic_read(&folio->_entire_mapcount) + 1;
1084 }
1085 
1086 /*
1087  * The atomic page->_mapcount, starts from -1: so that transitions
1088  * both from it and to it can be tracked, using atomic_inc_and_test
1089  * and atomic_add_negative(-1).
1090  */
1091 static inline void page_mapcount_reset(struct page *page)
1092 {
1093 	atomic_set(&(page)->_mapcount, -1);
1094 }
1095 
1096 /**
1097  * page_mapcount() - Number of times this precise page is mapped.
1098  * @page: The page.
1099  *
1100  * The number of times this page is mapped.  If this page is part of
1101  * a large folio, it includes the number of times this page is mapped
1102  * as part of that folio.
1103  *
1104  * The result is undefined for pages which cannot be mapped into userspace.
1105  * For example SLAB or special types of pages. See function page_has_type().
1106  * They use this field in struct page differently.
1107  */
1108 static inline int page_mapcount(struct page *page)
1109 {
1110 	int mapcount = atomic_read(&page->_mapcount) + 1;
1111 
1112 	if (unlikely(PageCompound(page)))
1113 		mapcount += folio_entire_mapcount(page_folio(page));
1114 
1115 	return mapcount;
1116 }
1117 
1118 int folio_total_mapcount(struct folio *folio);
1119 
1120 /**
1121  * folio_mapcount() - Calculate the number of mappings of this folio.
1122  * @folio: The folio.
1123  *
1124  * A large folio tracks both how many times the entire folio is mapped,
1125  * and how many times each individual page in the folio is mapped.
1126  * This function calculates the total number of times the folio is
1127  * mapped.
1128  *
1129  * Return: The number of times this folio is mapped.
1130  */
1131 static inline int folio_mapcount(struct folio *folio)
1132 {
1133 	if (likely(!folio_test_large(folio)))
1134 		return atomic_read(&folio->_mapcount) + 1;
1135 	return folio_total_mapcount(folio);
1136 }
1137 
1138 static inline int total_mapcount(struct page *page)
1139 {
1140 	if (likely(!PageCompound(page)))
1141 		return atomic_read(&page->_mapcount) + 1;
1142 	return folio_total_mapcount(page_folio(page));
1143 }
1144 
1145 static inline bool folio_large_is_mapped(struct folio *folio)
1146 {
1147 	/*
1148 	 * Reading _entire_mapcount below could be omitted if hugetlb
1149 	 * participated in incrementing nr_pages_mapped when compound mapped.
1150 	 */
1151 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1152 		atomic_read(&folio->_entire_mapcount) >= 0;
1153 }
1154 
1155 /**
1156  * folio_mapped - Is this folio mapped into userspace?
1157  * @folio: The folio.
1158  *
1159  * Return: True if any page in this folio is referenced by user page tables.
1160  */
1161 static inline bool folio_mapped(struct folio *folio)
1162 {
1163 	if (likely(!folio_test_large(folio)))
1164 		return atomic_read(&folio->_mapcount) >= 0;
1165 	return folio_large_is_mapped(folio);
1166 }
1167 
1168 /*
1169  * Return true if this page is mapped into pagetables.
1170  * For compound page it returns true if any sub-page of compound page is mapped,
1171  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1172  */
1173 static inline bool page_mapped(struct page *page)
1174 {
1175 	if (likely(!PageCompound(page)))
1176 		return atomic_read(&page->_mapcount) >= 0;
1177 	return folio_large_is_mapped(page_folio(page));
1178 }
1179 
1180 static inline struct page *virt_to_head_page(const void *x)
1181 {
1182 	struct page *page = virt_to_page(x);
1183 
1184 	return compound_head(page);
1185 }
1186 
1187 static inline struct folio *virt_to_folio(const void *x)
1188 {
1189 	struct page *page = virt_to_page(x);
1190 
1191 	return page_folio(page);
1192 }
1193 
1194 void __folio_put(struct folio *folio);
1195 
1196 void put_pages_list(struct list_head *pages);
1197 
1198 void split_page(struct page *page, unsigned int order);
1199 void folio_copy(struct folio *dst, struct folio *src);
1200 
1201 unsigned long nr_free_buffer_pages(void);
1202 
1203 /*
1204  * Compound pages have a destructor function.  Provide a
1205  * prototype for that function and accessor functions.
1206  * These are _only_ valid on the head of a compound page.
1207  */
1208 typedef void compound_page_dtor(struct page *);
1209 
1210 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1211 enum compound_dtor_id {
1212 	NULL_COMPOUND_DTOR,
1213 	COMPOUND_PAGE_DTOR,
1214 #ifdef CONFIG_HUGETLB_PAGE
1215 	HUGETLB_PAGE_DTOR,
1216 #endif
1217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1218 	TRANSHUGE_PAGE_DTOR,
1219 #endif
1220 	NR_COMPOUND_DTORS,
1221 };
1222 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
1223 
1224 static inline void set_compound_page_dtor(struct page *page,
1225 		enum compound_dtor_id compound_dtor)
1226 {
1227 	struct folio *folio = (struct folio *)page;
1228 
1229 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1230 	VM_BUG_ON_PAGE(!PageHead(page), page);
1231 	folio->_folio_dtor = compound_dtor;
1232 }
1233 
1234 static inline void folio_set_compound_dtor(struct folio *folio,
1235 		enum compound_dtor_id compound_dtor)
1236 {
1237 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1238 	folio->_folio_dtor = compound_dtor;
1239 }
1240 
1241 void destroy_large_folio(struct folio *folio);
1242 
1243 static inline void set_compound_order(struct page *page, unsigned int order)
1244 {
1245 	struct folio *folio = (struct folio *)page;
1246 
1247 	folio->_folio_order = order;
1248 #ifdef CONFIG_64BIT
1249 	folio->_folio_nr_pages = 1U << order;
1250 #endif
1251 }
1252 
1253 /* Returns the number of bytes in this potentially compound page. */
1254 static inline unsigned long page_size(struct page *page)
1255 {
1256 	return PAGE_SIZE << compound_order(page);
1257 }
1258 
1259 /* Returns the number of bits needed for the number of bytes in a page */
1260 static inline unsigned int page_shift(struct page *page)
1261 {
1262 	return PAGE_SHIFT + compound_order(page);
1263 }
1264 
1265 /**
1266  * thp_order - Order of a transparent huge page.
1267  * @page: Head page of a transparent huge page.
1268  */
1269 static inline unsigned int thp_order(struct page *page)
1270 {
1271 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1272 	return compound_order(page);
1273 }
1274 
1275 /**
1276  * thp_size - Size of a transparent huge page.
1277  * @page: Head page of a transparent huge page.
1278  *
1279  * Return: Number of bytes in this page.
1280  */
1281 static inline unsigned long thp_size(struct page *page)
1282 {
1283 	return PAGE_SIZE << thp_order(page);
1284 }
1285 
1286 void free_compound_page(struct page *page);
1287 
1288 #ifdef CONFIG_MMU
1289 /*
1290  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1291  * servicing faults for write access.  In the normal case, do always want
1292  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1293  * that do not have writing enabled, when used by access_process_vm.
1294  */
1295 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1296 {
1297 	if (likely(vma->vm_flags & VM_WRITE))
1298 		pte = pte_mkwrite(pte);
1299 	return pte;
1300 }
1301 
1302 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1303 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1304 
1305 vm_fault_t finish_fault(struct vm_fault *vmf);
1306 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1307 #endif
1308 
1309 /*
1310  * Multiple processes may "see" the same page. E.g. for untouched
1311  * mappings of /dev/null, all processes see the same page full of
1312  * zeroes, and text pages of executables and shared libraries have
1313  * only one copy in memory, at most, normally.
1314  *
1315  * For the non-reserved pages, page_count(page) denotes a reference count.
1316  *   page_count() == 0 means the page is free. page->lru is then used for
1317  *   freelist management in the buddy allocator.
1318  *   page_count() > 0  means the page has been allocated.
1319  *
1320  * Pages are allocated by the slab allocator in order to provide memory
1321  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1322  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1323  * unless a particular usage is carefully commented. (the responsibility of
1324  * freeing the kmalloc memory is the caller's, of course).
1325  *
1326  * A page may be used by anyone else who does a __get_free_page().
1327  * In this case, page_count still tracks the references, and should only
1328  * be used through the normal accessor functions. The top bits of page->flags
1329  * and page->virtual store page management information, but all other fields
1330  * are unused and could be used privately, carefully. The management of this
1331  * page is the responsibility of the one who allocated it, and those who have
1332  * subsequently been given references to it.
1333  *
1334  * The other pages (we may call them "pagecache pages") are completely
1335  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1336  * The following discussion applies only to them.
1337  *
1338  * A pagecache page contains an opaque `private' member, which belongs to the
1339  * page's address_space. Usually, this is the address of a circular list of
1340  * the page's disk buffers. PG_private must be set to tell the VM to call
1341  * into the filesystem to release these pages.
1342  *
1343  * A page may belong to an inode's memory mapping. In this case, page->mapping
1344  * is the pointer to the inode, and page->index is the file offset of the page,
1345  * in units of PAGE_SIZE.
1346  *
1347  * If pagecache pages are not associated with an inode, they are said to be
1348  * anonymous pages. These may become associated with the swapcache, and in that
1349  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1350  *
1351  * In either case (swapcache or inode backed), the pagecache itself holds one
1352  * reference to the page. Setting PG_private should also increment the
1353  * refcount. The each user mapping also has a reference to the page.
1354  *
1355  * The pagecache pages are stored in a per-mapping radix tree, which is
1356  * rooted at mapping->i_pages, and indexed by offset.
1357  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1358  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1359  *
1360  * All pagecache pages may be subject to I/O:
1361  * - inode pages may need to be read from disk,
1362  * - inode pages which have been modified and are MAP_SHARED may need
1363  *   to be written back to the inode on disk,
1364  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1365  *   modified may need to be swapped out to swap space and (later) to be read
1366  *   back into memory.
1367  */
1368 
1369 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1370 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1371 
1372 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1373 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1374 {
1375 	if (!static_branch_unlikely(&devmap_managed_key))
1376 		return false;
1377 	if (!is_zone_device_page(page))
1378 		return false;
1379 	return __put_devmap_managed_page_refs(page, refs);
1380 }
1381 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1382 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1383 {
1384 	return false;
1385 }
1386 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1387 
1388 static inline bool put_devmap_managed_page(struct page *page)
1389 {
1390 	return put_devmap_managed_page_refs(page, 1);
1391 }
1392 
1393 /* 127: arbitrary random number, small enough to assemble well */
1394 #define folio_ref_zero_or_close_to_overflow(folio) \
1395 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1396 
1397 /**
1398  * folio_get - Increment the reference count on a folio.
1399  * @folio: The folio.
1400  *
1401  * Context: May be called in any context, as long as you know that
1402  * you have a refcount on the folio.  If you do not already have one,
1403  * folio_try_get() may be the right interface for you to use.
1404  */
1405 static inline void folio_get(struct folio *folio)
1406 {
1407 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1408 	folio_ref_inc(folio);
1409 }
1410 
1411 static inline void get_page(struct page *page)
1412 {
1413 	folio_get(page_folio(page));
1414 }
1415 
1416 static inline __must_check bool try_get_page(struct page *page)
1417 {
1418 	page = compound_head(page);
1419 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1420 		return false;
1421 	page_ref_inc(page);
1422 	return true;
1423 }
1424 
1425 /**
1426  * folio_put - Decrement the reference count on a folio.
1427  * @folio: The folio.
1428  *
1429  * If the folio's reference count reaches zero, the memory will be
1430  * released back to the page allocator and may be used by another
1431  * allocation immediately.  Do not access the memory or the struct folio
1432  * after calling folio_put() unless you can be sure that it wasn't the
1433  * last reference.
1434  *
1435  * Context: May be called in process or interrupt context, but not in NMI
1436  * context.  May be called while holding a spinlock.
1437  */
1438 static inline void folio_put(struct folio *folio)
1439 {
1440 	if (folio_put_testzero(folio))
1441 		__folio_put(folio);
1442 }
1443 
1444 /**
1445  * folio_put_refs - Reduce the reference count on a folio.
1446  * @folio: The folio.
1447  * @refs: The amount to subtract from the folio's reference count.
1448  *
1449  * If the folio's reference count reaches zero, the memory will be
1450  * released back to the page allocator and may be used by another
1451  * allocation immediately.  Do not access the memory or the struct folio
1452  * after calling folio_put_refs() unless you can be sure that these weren't
1453  * the last references.
1454  *
1455  * Context: May be called in process or interrupt context, but not in NMI
1456  * context.  May be called while holding a spinlock.
1457  */
1458 static inline void folio_put_refs(struct folio *folio, int refs)
1459 {
1460 	if (folio_ref_sub_and_test(folio, refs))
1461 		__folio_put(folio);
1462 }
1463 
1464 /*
1465  * union release_pages_arg - an array of pages or folios
1466  *
1467  * release_pages() releases a simple array of multiple pages, and
1468  * accepts various different forms of said page array: either
1469  * a regular old boring array of pages, an array of folios, or
1470  * an array of encoded page pointers.
1471  *
1472  * The transparent union syntax for this kind of "any of these
1473  * argument types" is all kinds of ugly, so look away.
1474  */
1475 typedef union {
1476 	struct page **pages;
1477 	struct folio **folios;
1478 	struct encoded_page **encoded_pages;
1479 } release_pages_arg __attribute__ ((__transparent_union__));
1480 
1481 void release_pages(release_pages_arg, int nr);
1482 
1483 /**
1484  * folios_put - Decrement the reference count on an array of folios.
1485  * @folios: The folios.
1486  * @nr: How many folios there are.
1487  *
1488  * Like folio_put(), but for an array of folios.  This is more efficient
1489  * than writing the loop yourself as it will optimise the locks which
1490  * need to be taken if the folios are freed.
1491  *
1492  * Context: May be called in process or interrupt context, but not in NMI
1493  * context.  May be called while holding a spinlock.
1494  */
1495 static inline void folios_put(struct folio **folios, unsigned int nr)
1496 {
1497 	release_pages(folios, nr);
1498 }
1499 
1500 static inline void put_page(struct page *page)
1501 {
1502 	struct folio *folio = page_folio(page);
1503 
1504 	/*
1505 	 * For some devmap managed pages we need to catch refcount transition
1506 	 * from 2 to 1:
1507 	 */
1508 	if (put_devmap_managed_page(&folio->page))
1509 		return;
1510 	folio_put(folio);
1511 }
1512 
1513 /*
1514  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1515  * the page's refcount so that two separate items are tracked: the original page
1516  * reference count, and also a new count of how many pin_user_pages() calls were
1517  * made against the page. ("gup-pinned" is another term for the latter).
1518  *
1519  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1520  * distinct from normal pages. As such, the unpin_user_page() call (and its
1521  * variants) must be used in order to release gup-pinned pages.
1522  *
1523  * Choice of value:
1524  *
1525  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1526  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1527  * simpler, due to the fact that adding an even power of two to the page
1528  * refcount has the effect of using only the upper N bits, for the code that
1529  * counts up using the bias value. This means that the lower bits are left for
1530  * the exclusive use of the original code that increments and decrements by one
1531  * (or at least, by much smaller values than the bias value).
1532  *
1533  * Of course, once the lower bits overflow into the upper bits (and this is
1534  * OK, because subtraction recovers the original values), then visual inspection
1535  * no longer suffices to directly view the separate counts. However, for normal
1536  * applications that don't have huge page reference counts, this won't be an
1537  * issue.
1538  *
1539  * Locking: the lockless algorithm described in folio_try_get_rcu()
1540  * provides safe operation for get_user_pages(), page_mkclean() and
1541  * other calls that race to set up page table entries.
1542  */
1543 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1544 
1545 void unpin_user_page(struct page *page);
1546 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1547 				 bool make_dirty);
1548 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1549 				      bool make_dirty);
1550 void unpin_user_pages(struct page **pages, unsigned long npages);
1551 
1552 static inline bool is_cow_mapping(vm_flags_t flags)
1553 {
1554 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1555 }
1556 
1557 #ifndef CONFIG_MMU
1558 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1559 {
1560 	/*
1561 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1562 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1563 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1564 	 * underlying memory if ptrace is active, so this is only possible if
1565 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1566 	 * write permissions later.
1567 	 */
1568 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1569 }
1570 #endif
1571 
1572 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1573 #define SECTION_IN_PAGE_FLAGS
1574 #endif
1575 
1576 /*
1577  * The identification function is mainly used by the buddy allocator for
1578  * determining if two pages could be buddies. We are not really identifying
1579  * the zone since we could be using the section number id if we do not have
1580  * node id available in page flags.
1581  * We only guarantee that it will return the same value for two combinable
1582  * pages in a zone.
1583  */
1584 static inline int page_zone_id(struct page *page)
1585 {
1586 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1587 }
1588 
1589 #ifdef NODE_NOT_IN_PAGE_FLAGS
1590 extern int page_to_nid(const struct page *page);
1591 #else
1592 static inline int page_to_nid(const struct page *page)
1593 {
1594 	struct page *p = (struct page *)page;
1595 
1596 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1597 }
1598 #endif
1599 
1600 static inline int folio_nid(const struct folio *folio)
1601 {
1602 	return page_to_nid(&folio->page);
1603 }
1604 
1605 #ifdef CONFIG_NUMA_BALANCING
1606 /* page access time bits needs to hold at least 4 seconds */
1607 #define PAGE_ACCESS_TIME_MIN_BITS	12
1608 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1609 #define PAGE_ACCESS_TIME_BUCKETS				\
1610 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1611 #else
1612 #define PAGE_ACCESS_TIME_BUCKETS	0
1613 #endif
1614 
1615 #define PAGE_ACCESS_TIME_MASK				\
1616 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1617 
1618 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1619 {
1620 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1621 }
1622 
1623 static inline int cpupid_to_pid(int cpupid)
1624 {
1625 	return cpupid & LAST__PID_MASK;
1626 }
1627 
1628 static inline int cpupid_to_cpu(int cpupid)
1629 {
1630 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1631 }
1632 
1633 static inline int cpupid_to_nid(int cpupid)
1634 {
1635 	return cpu_to_node(cpupid_to_cpu(cpupid));
1636 }
1637 
1638 static inline bool cpupid_pid_unset(int cpupid)
1639 {
1640 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1641 }
1642 
1643 static inline bool cpupid_cpu_unset(int cpupid)
1644 {
1645 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1646 }
1647 
1648 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1649 {
1650 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1651 }
1652 
1653 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1654 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1655 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1656 {
1657 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1658 }
1659 
1660 static inline int page_cpupid_last(struct page *page)
1661 {
1662 	return page->_last_cpupid;
1663 }
1664 static inline void page_cpupid_reset_last(struct page *page)
1665 {
1666 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1667 }
1668 #else
1669 static inline int page_cpupid_last(struct page *page)
1670 {
1671 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1672 }
1673 
1674 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1675 
1676 static inline void page_cpupid_reset_last(struct page *page)
1677 {
1678 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1679 }
1680 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1681 
1682 static inline int xchg_page_access_time(struct page *page, int time)
1683 {
1684 	int last_time;
1685 
1686 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1687 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1688 }
1689 
1690 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1691 {
1692 	unsigned int pid_bit;
1693 
1694 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1695 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1696 		__set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1697 	}
1698 }
1699 #else /* !CONFIG_NUMA_BALANCING */
1700 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1701 {
1702 	return page_to_nid(page); /* XXX */
1703 }
1704 
1705 static inline int xchg_page_access_time(struct page *page, int time)
1706 {
1707 	return 0;
1708 }
1709 
1710 static inline int page_cpupid_last(struct page *page)
1711 {
1712 	return page_to_nid(page); /* XXX */
1713 }
1714 
1715 static inline int cpupid_to_nid(int cpupid)
1716 {
1717 	return -1;
1718 }
1719 
1720 static inline int cpupid_to_pid(int cpupid)
1721 {
1722 	return -1;
1723 }
1724 
1725 static inline int cpupid_to_cpu(int cpupid)
1726 {
1727 	return -1;
1728 }
1729 
1730 static inline int cpu_pid_to_cpupid(int nid, int pid)
1731 {
1732 	return -1;
1733 }
1734 
1735 static inline bool cpupid_pid_unset(int cpupid)
1736 {
1737 	return true;
1738 }
1739 
1740 static inline void page_cpupid_reset_last(struct page *page)
1741 {
1742 }
1743 
1744 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1745 {
1746 	return false;
1747 }
1748 
1749 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1750 {
1751 }
1752 #endif /* CONFIG_NUMA_BALANCING */
1753 
1754 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1755 
1756 /*
1757  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1758  * setting tags for all pages to native kernel tag value 0xff, as the default
1759  * value 0x00 maps to 0xff.
1760  */
1761 
1762 static inline u8 page_kasan_tag(const struct page *page)
1763 {
1764 	u8 tag = 0xff;
1765 
1766 	if (kasan_enabled()) {
1767 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1768 		tag ^= 0xff;
1769 	}
1770 
1771 	return tag;
1772 }
1773 
1774 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1775 {
1776 	unsigned long old_flags, flags;
1777 
1778 	if (!kasan_enabled())
1779 		return;
1780 
1781 	tag ^= 0xff;
1782 	old_flags = READ_ONCE(page->flags);
1783 	do {
1784 		flags = old_flags;
1785 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1786 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1787 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1788 }
1789 
1790 static inline void page_kasan_tag_reset(struct page *page)
1791 {
1792 	if (kasan_enabled())
1793 		page_kasan_tag_set(page, 0xff);
1794 }
1795 
1796 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1797 
1798 static inline u8 page_kasan_tag(const struct page *page)
1799 {
1800 	return 0xff;
1801 }
1802 
1803 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1804 static inline void page_kasan_tag_reset(struct page *page) { }
1805 
1806 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1807 
1808 static inline struct zone *page_zone(const struct page *page)
1809 {
1810 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1811 }
1812 
1813 static inline pg_data_t *page_pgdat(const struct page *page)
1814 {
1815 	return NODE_DATA(page_to_nid(page));
1816 }
1817 
1818 static inline struct zone *folio_zone(const struct folio *folio)
1819 {
1820 	return page_zone(&folio->page);
1821 }
1822 
1823 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1824 {
1825 	return page_pgdat(&folio->page);
1826 }
1827 
1828 #ifdef SECTION_IN_PAGE_FLAGS
1829 static inline void set_page_section(struct page *page, unsigned long section)
1830 {
1831 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1832 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1833 }
1834 
1835 static inline unsigned long page_to_section(const struct page *page)
1836 {
1837 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1838 }
1839 #endif
1840 
1841 /**
1842  * folio_pfn - Return the Page Frame Number of a folio.
1843  * @folio: The folio.
1844  *
1845  * A folio may contain multiple pages.  The pages have consecutive
1846  * Page Frame Numbers.
1847  *
1848  * Return: The Page Frame Number of the first page in the folio.
1849  */
1850 static inline unsigned long folio_pfn(struct folio *folio)
1851 {
1852 	return page_to_pfn(&folio->page);
1853 }
1854 
1855 static inline struct folio *pfn_folio(unsigned long pfn)
1856 {
1857 	return page_folio(pfn_to_page(pfn));
1858 }
1859 
1860 /**
1861  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1862  * @folio: The folio.
1863  *
1864  * This function checks if a folio has been pinned via a call to
1865  * a function in the pin_user_pages() family.
1866  *
1867  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1868  * because it means "definitely not pinned for DMA", but true means "probably
1869  * pinned for DMA, but possibly a false positive due to having at least
1870  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1871  *
1872  * False positives are OK, because: a) it's unlikely for a folio to
1873  * get that many refcounts, and b) all the callers of this routine are
1874  * expected to be able to deal gracefully with a false positive.
1875  *
1876  * For large folios, the result will be exactly correct. That's because
1877  * we have more tracking data available: the _pincount field is used
1878  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1879  *
1880  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1881  *
1882  * Return: True, if it is likely that the page has been "dma-pinned".
1883  * False, if the page is definitely not dma-pinned.
1884  */
1885 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1886 {
1887 	if (folio_test_large(folio))
1888 		return atomic_read(&folio->_pincount) > 0;
1889 
1890 	/*
1891 	 * folio_ref_count() is signed. If that refcount overflows, then
1892 	 * folio_ref_count() returns a negative value, and callers will avoid
1893 	 * further incrementing the refcount.
1894 	 *
1895 	 * Here, for that overflow case, use the sign bit to count a little
1896 	 * bit higher via unsigned math, and thus still get an accurate result.
1897 	 */
1898 	return ((unsigned int)folio_ref_count(folio)) >=
1899 		GUP_PIN_COUNTING_BIAS;
1900 }
1901 
1902 static inline bool page_maybe_dma_pinned(struct page *page)
1903 {
1904 	return folio_maybe_dma_pinned(page_folio(page));
1905 }
1906 
1907 /*
1908  * This should most likely only be called during fork() to see whether we
1909  * should break the cow immediately for an anon page on the src mm.
1910  *
1911  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1912  */
1913 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1914 					  struct page *page)
1915 {
1916 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1917 
1918 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1919 		return false;
1920 
1921 	return page_maybe_dma_pinned(page);
1922 }
1923 
1924 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1925 #ifdef CONFIG_MIGRATION
1926 static inline bool is_longterm_pinnable_page(struct page *page)
1927 {
1928 #ifdef CONFIG_CMA
1929 	int mt = get_pageblock_migratetype(page);
1930 
1931 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1932 		return false;
1933 #endif
1934 	/* The zero page may always be pinned */
1935 	if (is_zero_pfn(page_to_pfn(page)))
1936 		return true;
1937 
1938 	/* Coherent device memory must always allow eviction. */
1939 	if (is_device_coherent_page(page))
1940 		return false;
1941 
1942 	/* Otherwise, non-movable zone pages can be pinned. */
1943 	return !is_zone_movable_page(page);
1944 }
1945 #else
1946 static inline bool is_longterm_pinnable_page(struct page *page)
1947 {
1948 	return true;
1949 }
1950 #endif
1951 
1952 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1953 {
1954 	return is_longterm_pinnable_page(&folio->page);
1955 }
1956 
1957 static inline void set_page_zone(struct page *page, enum zone_type zone)
1958 {
1959 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1960 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1961 }
1962 
1963 static inline void set_page_node(struct page *page, unsigned long node)
1964 {
1965 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1966 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1967 }
1968 
1969 static inline void set_page_links(struct page *page, enum zone_type zone,
1970 	unsigned long node, unsigned long pfn)
1971 {
1972 	set_page_zone(page, zone);
1973 	set_page_node(page, node);
1974 #ifdef SECTION_IN_PAGE_FLAGS
1975 	set_page_section(page, pfn_to_section_nr(pfn));
1976 #endif
1977 }
1978 
1979 /**
1980  * folio_nr_pages - The number of pages in the folio.
1981  * @folio: The folio.
1982  *
1983  * Return: A positive power of two.
1984  */
1985 static inline long folio_nr_pages(struct folio *folio)
1986 {
1987 	if (!folio_test_large(folio))
1988 		return 1;
1989 #ifdef CONFIG_64BIT
1990 	return folio->_folio_nr_pages;
1991 #else
1992 	return 1L << folio->_folio_order;
1993 #endif
1994 }
1995 
1996 /*
1997  * compound_nr() returns the number of pages in this potentially compound
1998  * page.  compound_nr() can be called on a tail page, and is defined to
1999  * return 1 in that case.
2000  */
2001 static inline unsigned long compound_nr(struct page *page)
2002 {
2003 	struct folio *folio = (struct folio *)page;
2004 
2005 	if (!test_bit(PG_head, &folio->flags))
2006 		return 1;
2007 #ifdef CONFIG_64BIT
2008 	return folio->_folio_nr_pages;
2009 #else
2010 	return 1L << folio->_folio_order;
2011 #endif
2012 }
2013 
2014 /**
2015  * thp_nr_pages - The number of regular pages in this huge page.
2016  * @page: The head page of a huge page.
2017  */
2018 static inline int thp_nr_pages(struct page *page)
2019 {
2020 	return folio_nr_pages((struct folio *)page);
2021 }
2022 
2023 /**
2024  * folio_next - Move to the next physical folio.
2025  * @folio: The folio we're currently operating on.
2026  *
2027  * If you have physically contiguous memory which may span more than
2028  * one folio (eg a &struct bio_vec), use this function to move from one
2029  * folio to the next.  Do not use it if the memory is only virtually
2030  * contiguous as the folios are almost certainly not adjacent to each
2031  * other.  This is the folio equivalent to writing ``page++``.
2032  *
2033  * Context: We assume that the folios are refcounted and/or locked at a
2034  * higher level and do not adjust the reference counts.
2035  * Return: The next struct folio.
2036  */
2037 static inline struct folio *folio_next(struct folio *folio)
2038 {
2039 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2040 }
2041 
2042 /**
2043  * folio_shift - The size of the memory described by this folio.
2044  * @folio: The folio.
2045  *
2046  * A folio represents a number of bytes which is a power-of-two in size.
2047  * This function tells you which power-of-two the folio is.  See also
2048  * folio_size() and folio_order().
2049  *
2050  * Context: The caller should have a reference on the folio to prevent
2051  * it from being split.  It is not necessary for the folio to be locked.
2052  * Return: The base-2 logarithm of the size of this folio.
2053  */
2054 static inline unsigned int folio_shift(struct folio *folio)
2055 {
2056 	return PAGE_SHIFT + folio_order(folio);
2057 }
2058 
2059 /**
2060  * folio_size - The number of bytes in a folio.
2061  * @folio: The folio.
2062  *
2063  * Context: The caller should have a reference on the folio to prevent
2064  * it from being split.  It is not necessary for the folio to be locked.
2065  * Return: The number of bytes in this folio.
2066  */
2067 static inline size_t folio_size(struct folio *folio)
2068 {
2069 	return PAGE_SIZE << folio_order(folio);
2070 }
2071 
2072 /**
2073  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2074  * @folio: The folio.
2075  *
2076  * folio_estimated_sharers() aims to serve as a function to efficiently
2077  * estimate the number of processes sharing a folio. This is done by
2078  * looking at the precise mapcount of the first subpage in the folio, and
2079  * assuming the other subpages are the same. This may not be true for large
2080  * folios. If you want exact mapcounts for exact calculations, look at
2081  * page_mapcount() or folio_total_mapcount().
2082  *
2083  * Return: The estimated number of processes sharing a folio.
2084  */
2085 static inline int folio_estimated_sharers(struct folio *folio)
2086 {
2087 	return page_mapcount(folio_page(folio, 0));
2088 }
2089 
2090 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2091 static inline int arch_make_page_accessible(struct page *page)
2092 {
2093 	return 0;
2094 }
2095 #endif
2096 
2097 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2098 static inline int arch_make_folio_accessible(struct folio *folio)
2099 {
2100 	int ret;
2101 	long i, nr = folio_nr_pages(folio);
2102 
2103 	for (i = 0; i < nr; i++) {
2104 		ret = arch_make_page_accessible(folio_page(folio, i));
2105 		if (ret)
2106 			break;
2107 	}
2108 
2109 	return ret;
2110 }
2111 #endif
2112 
2113 /*
2114  * Some inline functions in vmstat.h depend on page_zone()
2115  */
2116 #include <linux/vmstat.h>
2117 
2118 static __always_inline void *lowmem_page_address(const struct page *page)
2119 {
2120 	return page_to_virt(page);
2121 }
2122 
2123 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2124 #define HASHED_PAGE_VIRTUAL
2125 #endif
2126 
2127 #if defined(WANT_PAGE_VIRTUAL)
2128 static inline void *page_address(const struct page *page)
2129 {
2130 	return page->virtual;
2131 }
2132 static inline void set_page_address(struct page *page, void *address)
2133 {
2134 	page->virtual = address;
2135 }
2136 #define page_address_init()  do { } while(0)
2137 #endif
2138 
2139 #if defined(HASHED_PAGE_VIRTUAL)
2140 void *page_address(const struct page *page);
2141 void set_page_address(struct page *page, void *virtual);
2142 void page_address_init(void);
2143 #endif
2144 
2145 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2146 #define page_address(page) lowmem_page_address(page)
2147 #define set_page_address(page, address)  do { } while(0)
2148 #define page_address_init()  do { } while(0)
2149 #endif
2150 
2151 static inline void *folio_address(const struct folio *folio)
2152 {
2153 	return page_address(&folio->page);
2154 }
2155 
2156 extern void *page_rmapping(struct page *page);
2157 extern pgoff_t __page_file_index(struct page *page);
2158 
2159 /*
2160  * Return the pagecache index of the passed page.  Regular pagecache pages
2161  * use ->index whereas swapcache pages use swp_offset(->private)
2162  */
2163 static inline pgoff_t page_index(struct page *page)
2164 {
2165 	if (unlikely(PageSwapCache(page)))
2166 		return __page_file_index(page);
2167 	return page->index;
2168 }
2169 
2170 /*
2171  * Return true only if the page has been allocated with
2172  * ALLOC_NO_WATERMARKS and the low watermark was not
2173  * met implying that the system is under some pressure.
2174  */
2175 static inline bool page_is_pfmemalloc(const struct page *page)
2176 {
2177 	/*
2178 	 * lru.next has bit 1 set if the page is allocated from the
2179 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2180 	 * they do not need to preserve that information.
2181 	 */
2182 	return (uintptr_t)page->lru.next & BIT(1);
2183 }
2184 
2185 /*
2186  * Return true only if the folio has been allocated with
2187  * ALLOC_NO_WATERMARKS and the low watermark was not
2188  * met implying that the system is under some pressure.
2189  */
2190 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2191 {
2192 	/*
2193 	 * lru.next has bit 1 set if the page is allocated from the
2194 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2195 	 * they do not need to preserve that information.
2196 	 */
2197 	return (uintptr_t)folio->lru.next & BIT(1);
2198 }
2199 
2200 /*
2201  * Only to be called by the page allocator on a freshly allocated
2202  * page.
2203  */
2204 static inline void set_page_pfmemalloc(struct page *page)
2205 {
2206 	page->lru.next = (void *)BIT(1);
2207 }
2208 
2209 static inline void clear_page_pfmemalloc(struct page *page)
2210 {
2211 	page->lru.next = NULL;
2212 }
2213 
2214 /*
2215  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2216  */
2217 extern void pagefault_out_of_memory(void);
2218 
2219 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2220 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2221 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2222 
2223 /*
2224  * Flags passed to show_mem() and show_free_areas() to suppress output in
2225  * various contexts.
2226  */
2227 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
2228 
2229 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2230 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2231 {
2232 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2233 }
2234 
2235 /*
2236  * Parameter block passed down to zap_pte_range in exceptional cases.
2237  */
2238 struct zap_details {
2239 	struct folio *single_folio;	/* Locked folio to be unmapped */
2240 	bool even_cows;			/* Zap COWed private pages too? */
2241 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2242 };
2243 
2244 /*
2245  * Whether to drop the pte markers, for example, the uffd-wp information for
2246  * file-backed memory.  This should only be specified when we will completely
2247  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2248  * default, the flag is not set.
2249  */
2250 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2251 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2252 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2253 
2254 #ifdef CONFIG_SCHED_MM_CID
2255 void sched_mm_cid_before_execve(struct task_struct *t);
2256 void sched_mm_cid_after_execve(struct task_struct *t);
2257 void sched_mm_cid_fork(struct task_struct *t);
2258 void sched_mm_cid_exit_signals(struct task_struct *t);
2259 static inline int task_mm_cid(struct task_struct *t)
2260 {
2261 	return t->mm_cid;
2262 }
2263 #else
2264 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2265 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2266 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2267 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2268 static inline int task_mm_cid(struct task_struct *t)
2269 {
2270 	/*
2271 	 * Use the processor id as a fall-back when the mm cid feature is
2272 	 * disabled. This provides functional per-cpu data structure accesses
2273 	 * in user-space, althrough it won't provide the memory usage benefits.
2274 	 */
2275 	return raw_smp_processor_id();
2276 }
2277 #endif
2278 
2279 #ifdef CONFIG_MMU
2280 extern bool can_do_mlock(void);
2281 #else
2282 static inline bool can_do_mlock(void) { return false; }
2283 #endif
2284 extern int user_shm_lock(size_t, struct ucounts *);
2285 extern void user_shm_unlock(size_t, struct ucounts *);
2286 
2287 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2288 			     pte_t pte);
2289 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2290 			     pte_t pte);
2291 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2292 				pmd_t pmd);
2293 
2294 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2295 		  unsigned long size);
2296 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2297 			   unsigned long size, struct zap_details *details);
2298 static inline void zap_vma_pages(struct vm_area_struct *vma)
2299 {
2300 	zap_page_range_single(vma, vma->vm_start,
2301 			      vma->vm_end - vma->vm_start, NULL);
2302 }
2303 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2304 		struct vm_area_struct *start_vma, unsigned long start,
2305 		unsigned long end, bool mm_wr_locked);
2306 
2307 struct mmu_notifier_range;
2308 
2309 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2310 		unsigned long end, unsigned long floor, unsigned long ceiling);
2311 int
2312 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2313 int follow_pte(struct mm_struct *mm, unsigned long address,
2314 	       pte_t **ptepp, spinlock_t **ptlp);
2315 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2316 	unsigned long *pfn);
2317 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2318 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2319 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2320 			void *buf, int len, int write);
2321 
2322 extern void truncate_pagecache(struct inode *inode, loff_t new);
2323 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2324 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2325 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2326 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2327 
2328 #ifdef CONFIG_MMU
2329 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2330 				  unsigned long address, unsigned int flags,
2331 				  struct pt_regs *regs);
2332 extern int fixup_user_fault(struct mm_struct *mm,
2333 			    unsigned long address, unsigned int fault_flags,
2334 			    bool *unlocked);
2335 void unmap_mapping_pages(struct address_space *mapping,
2336 		pgoff_t start, pgoff_t nr, bool even_cows);
2337 void unmap_mapping_range(struct address_space *mapping,
2338 		loff_t const holebegin, loff_t const holelen, int even_cows);
2339 #else
2340 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2341 					 unsigned long address, unsigned int flags,
2342 					 struct pt_regs *regs)
2343 {
2344 	/* should never happen if there's no MMU */
2345 	BUG();
2346 	return VM_FAULT_SIGBUS;
2347 }
2348 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2349 		unsigned int fault_flags, bool *unlocked)
2350 {
2351 	/* should never happen if there's no MMU */
2352 	BUG();
2353 	return -EFAULT;
2354 }
2355 static inline void unmap_mapping_pages(struct address_space *mapping,
2356 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2357 static inline void unmap_mapping_range(struct address_space *mapping,
2358 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2359 #endif
2360 
2361 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2362 		loff_t const holebegin, loff_t const holelen)
2363 {
2364 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2365 }
2366 
2367 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2368 		void *buf, int len, unsigned int gup_flags);
2369 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2370 		void *buf, int len, unsigned int gup_flags);
2371 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2372 			      void *buf, int len, unsigned int gup_flags);
2373 
2374 long get_user_pages_remote(struct mm_struct *mm,
2375 			    unsigned long start, unsigned long nr_pages,
2376 			    unsigned int gup_flags, struct page **pages,
2377 			    struct vm_area_struct **vmas, int *locked);
2378 long pin_user_pages_remote(struct mm_struct *mm,
2379 			   unsigned long start, unsigned long nr_pages,
2380 			   unsigned int gup_flags, struct page **pages,
2381 			   struct vm_area_struct **vmas, int *locked);
2382 long get_user_pages(unsigned long start, unsigned long nr_pages,
2383 			    unsigned int gup_flags, struct page **pages,
2384 			    struct vm_area_struct **vmas);
2385 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2386 		    unsigned int gup_flags, struct page **pages,
2387 		    struct vm_area_struct **vmas);
2388 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2389 		    struct page **pages, unsigned int gup_flags);
2390 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2391 		    struct page **pages, unsigned int gup_flags);
2392 
2393 int get_user_pages_fast(unsigned long start, int nr_pages,
2394 			unsigned int gup_flags, struct page **pages);
2395 int pin_user_pages_fast(unsigned long start, int nr_pages,
2396 			unsigned int gup_flags, struct page **pages);
2397 
2398 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2399 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2400 			struct task_struct *task, bool bypass_rlim);
2401 
2402 struct kvec;
2403 struct page *get_dump_page(unsigned long addr);
2404 
2405 bool folio_mark_dirty(struct folio *folio);
2406 bool set_page_dirty(struct page *page);
2407 int set_page_dirty_lock(struct page *page);
2408 
2409 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2410 
2411 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2412 		unsigned long old_addr, struct vm_area_struct *new_vma,
2413 		unsigned long new_addr, unsigned long len,
2414 		bool need_rmap_locks);
2415 
2416 /*
2417  * Flags used by change_protection().  For now we make it a bitmap so
2418  * that we can pass in multiple flags just like parameters.  However
2419  * for now all the callers are only use one of the flags at the same
2420  * time.
2421  */
2422 /*
2423  * Whether we should manually check if we can map individual PTEs writable,
2424  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2425  * PTEs automatically in a writable mapping.
2426  */
2427 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2428 /* Whether this protection change is for NUMA hints */
2429 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2430 /* Whether this change is for write protecting */
2431 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2432 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2433 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2434 					    MM_CP_UFFD_WP_RESOLVE)
2435 
2436 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2437 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2438 {
2439 	/*
2440 	 * We want to check manually if we can change individual PTEs writable
2441 	 * if we can't do that automatically for all PTEs in a mapping. For
2442 	 * private mappings, that's always the case when we have write
2443 	 * permissions as we properly have to handle COW.
2444 	 */
2445 	if (vma->vm_flags & VM_SHARED)
2446 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2447 	return !!(vma->vm_flags & VM_WRITE);
2448 
2449 }
2450 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2451 			     pte_t pte);
2452 extern long change_protection(struct mmu_gather *tlb,
2453 			      struct vm_area_struct *vma, unsigned long start,
2454 			      unsigned long end, unsigned long cp_flags);
2455 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2456 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2457 	  unsigned long start, unsigned long end, unsigned long newflags);
2458 
2459 /*
2460  * doesn't attempt to fault and will return short.
2461  */
2462 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2463 			     unsigned int gup_flags, struct page **pages);
2464 
2465 static inline bool get_user_page_fast_only(unsigned long addr,
2466 			unsigned int gup_flags, struct page **pagep)
2467 {
2468 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2469 }
2470 /*
2471  * per-process(per-mm_struct) statistics.
2472  */
2473 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2474 {
2475 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2476 }
2477 
2478 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2479 
2480 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2481 {
2482 	percpu_counter_add(&mm->rss_stat[member], value);
2483 
2484 	mm_trace_rss_stat(mm, member);
2485 }
2486 
2487 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2488 {
2489 	percpu_counter_inc(&mm->rss_stat[member]);
2490 
2491 	mm_trace_rss_stat(mm, member);
2492 }
2493 
2494 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2495 {
2496 	percpu_counter_dec(&mm->rss_stat[member]);
2497 
2498 	mm_trace_rss_stat(mm, member);
2499 }
2500 
2501 /* Optimized variant when page is already known not to be PageAnon */
2502 static inline int mm_counter_file(struct page *page)
2503 {
2504 	if (PageSwapBacked(page))
2505 		return MM_SHMEMPAGES;
2506 	return MM_FILEPAGES;
2507 }
2508 
2509 static inline int mm_counter(struct page *page)
2510 {
2511 	if (PageAnon(page))
2512 		return MM_ANONPAGES;
2513 	return mm_counter_file(page);
2514 }
2515 
2516 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2517 {
2518 	return get_mm_counter(mm, MM_FILEPAGES) +
2519 		get_mm_counter(mm, MM_ANONPAGES) +
2520 		get_mm_counter(mm, MM_SHMEMPAGES);
2521 }
2522 
2523 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2524 {
2525 	return max(mm->hiwater_rss, get_mm_rss(mm));
2526 }
2527 
2528 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2529 {
2530 	return max(mm->hiwater_vm, mm->total_vm);
2531 }
2532 
2533 static inline void update_hiwater_rss(struct mm_struct *mm)
2534 {
2535 	unsigned long _rss = get_mm_rss(mm);
2536 
2537 	if ((mm)->hiwater_rss < _rss)
2538 		(mm)->hiwater_rss = _rss;
2539 }
2540 
2541 static inline void update_hiwater_vm(struct mm_struct *mm)
2542 {
2543 	if (mm->hiwater_vm < mm->total_vm)
2544 		mm->hiwater_vm = mm->total_vm;
2545 }
2546 
2547 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2548 {
2549 	mm->hiwater_rss = get_mm_rss(mm);
2550 }
2551 
2552 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2553 					 struct mm_struct *mm)
2554 {
2555 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2556 
2557 	if (*maxrss < hiwater_rss)
2558 		*maxrss = hiwater_rss;
2559 }
2560 
2561 #if defined(SPLIT_RSS_COUNTING)
2562 void sync_mm_rss(struct mm_struct *mm);
2563 #else
2564 static inline void sync_mm_rss(struct mm_struct *mm)
2565 {
2566 }
2567 #endif
2568 
2569 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2570 static inline int pte_special(pte_t pte)
2571 {
2572 	return 0;
2573 }
2574 
2575 static inline pte_t pte_mkspecial(pte_t pte)
2576 {
2577 	return pte;
2578 }
2579 #endif
2580 
2581 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2582 static inline int pte_devmap(pte_t pte)
2583 {
2584 	return 0;
2585 }
2586 #endif
2587 
2588 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2589 			       spinlock_t **ptl);
2590 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2591 				    spinlock_t **ptl)
2592 {
2593 	pte_t *ptep;
2594 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2595 	return ptep;
2596 }
2597 
2598 #ifdef __PAGETABLE_P4D_FOLDED
2599 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2600 						unsigned long address)
2601 {
2602 	return 0;
2603 }
2604 #else
2605 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2606 #endif
2607 
2608 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2609 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2610 						unsigned long address)
2611 {
2612 	return 0;
2613 }
2614 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2615 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2616 
2617 #else
2618 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2619 
2620 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2621 {
2622 	if (mm_pud_folded(mm))
2623 		return;
2624 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2625 }
2626 
2627 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2628 {
2629 	if (mm_pud_folded(mm))
2630 		return;
2631 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2632 }
2633 #endif
2634 
2635 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2636 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2637 						unsigned long address)
2638 {
2639 	return 0;
2640 }
2641 
2642 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2643 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2644 
2645 #else
2646 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2647 
2648 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2649 {
2650 	if (mm_pmd_folded(mm))
2651 		return;
2652 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2653 }
2654 
2655 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2656 {
2657 	if (mm_pmd_folded(mm))
2658 		return;
2659 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2660 }
2661 #endif
2662 
2663 #ifdef CONFIG_MMU
2664 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2665 {
2666 	atomic_long_set(&mm->pgtables_bytes, 0);
2667 }
2668 
2669 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2670 {
2671 	return atomic_long_read(&mm->pgtables_bytes);
2672 }
2673 
2674 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2675 {
2676 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2677 }
2678 
2679 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2680 {
2681 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2682 }
2683 #else
2684 
2685 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2686 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2687 {
2688 	return 0;
2689 }
2690 
2691 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2692 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2693 #endif
2694 
2695 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2696 int __pte_alloc_kernel(pmd_t *pmd);
2697 
2698 #if defined(CONFIG_MMU)
2699 
2700 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2701 		unsigned long address)
2702 {
2703 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2704 		NULL : p4d_offset(pgd, address);
2705 }
2706 
2707 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2708 		unsigned long address)
2709 {
2710 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2711 		NULL : pud_offset(p4d, address);
2712 }
2713 
2714 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2715 {
2716 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2717 		NULL: pmd_offset(pud, address);
2718 }
2719 #endif /* CONFIG_MMU */
2720 
2721 #if USE_SPLIT_PTE_PTLOCKS
2722 #if ALLOC_SPLIT_PTLOCKS
2723 void __init ptlock_cache_init(void);
2724 extern bool ptlock_alloc(struct page *page);
2725 extern void ptlock_free(struct page *page);
2726 
2727 static inline spinlock_t *ptlock_ptr(struct page *page)
2728 {
2729 	return page->ptl;
2730 }
2731 #else /* ALLOC_SPLIT_PTLOCKS */
2732 static inline void ptlock_cache_init(void)
2733 {
2734 }
2735 
2736 static inline bool ptlock_alloc(struct page *page)
2737 {
2738 	return true;
2739 }
2740 
2741 static inline void ptlock_free(struct page *page)
2742 {
2743 }
2744 
2745 static inline spinlock_t *ptlock_ptr(struct page *page)
2746 {
2747 	return &page->ptl;
2748 }
2749 #endif /* ALLOC_SPLIT_PTLOCKS */
2750 
2751 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2752 {
2753 	return ptlock_ptr(pmd_page(*pmd));
2754 }
2755 
2756 static inline bool ptlock_init(struct page *page)
2757 {
2758 	/*
2759 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2760 	 * with 0. Make sure nobody took it in use in between.
2761 	 *
2762 	 * It can happen if arch try to use slab for page table allocation:
2763 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2764 	 */
2765 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2766 	if (!ptlock_alloc(page))
2767 		return false;
2768 	spin_lock_init(ptlock_ptr(page));
2769 	return true;
2770 }
2771 
2772 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2773 /*
2774  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2775  */
2776 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2777 {
2778 	return &mm->page_table_lock;
2779 }
2780 static inline void ptlock_cache_init(void) {}
2781 static inline bool ptlock_init(struct page *page) { return true; }
2782 static inline void ptlock_free(struct page *page) {}
2783 #endif /* USE_SPLIT_PTE_PTLOCKS */
2784 
2785 static inline bool pgtable_pte_page_ctor(struct page *page)
2786 {
2787 	if (!ptlock_init(page))
2788 		return false;
2789 	__SetPageTable(page);
2790 	inc_lruvec_page_state(page, NR_PAGETABLE);
2791 	return true;
2792 }
2793 
2794 static inline void pgtable_pte_page_dtor(struct page *page)
2795 {
2796 	ptlock_free(page);
2797 	__ClearPageTable(page);
2798 	dec_lruvec_page_state(page, NR_PAGETABLE);
2799 }
2800 
2801 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2802 ({							\
2803 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2804 	pte_t *__pte = pte_offset_map(pmd, address);	\
2805 	*(ptlp) = __ptl;				\
2806 	spin_lock(__ptl);				\
2807 	__pte;						\
2808 })
2809 
2810 #define pte_unmap_unlock(pte, ptl)	do {		\
2811 	spin_unlock(ptl);				\
2812 	pte_unmap(pte);					\
2813 } while (0)
2814 
2815 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2816 
2817 #define pte_alloc_map(mm, pmd, address)			\
2818 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2819 
2820 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2821 	(pte_alloc(mm, pmd) ?			\
2822 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2823 
2824 #define pte_alloc_kernel(pmd, address)			\
2825 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2826 		NULL: pte_offset_kernel(pmd, address))
2827 
2828 #if USE_SPLIT_PMD_PTLOCKS
2829 
2830 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2831 {
2832 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2833 	return virt_to_page((void *)((unsigned long) pmd & mask));
2834 }
2835 
2836 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2837 {
2838 	return ptlock_ptr(pmd_pgtable_page(pmd));
2839 }
2840 
2841 static inline bool pmd_ptlock_init(struct page *page)
2842 {
2843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2844 	page->pmd_huge_pte = NULL;
2845 #endif
2846 	return ptlock_init(page);
2847 }
2848 
2849 static inline void pmd_ptlock_free(struct page *page)
2850 {
2851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2852 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2853 #endif
2854 	ptlock_free(page);
2855 }
2856 
2857 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2858 
2859 #else
2860 
2861 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2862 {
2863 	return &mm->page_table_lock;
2864 }
2865 
2866 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2867 static inline void pmd_ptlock_free(struct page *page) {}
2868 
2869 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2870 
2871 #endif
2872 
2873 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2874 {
2875 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2876 	spin_lock(ptl);
2877 	return ptl;
2878 }
2879 
2880 static inline bool pgtable_pmd_page_ctor(struct page *page)
2881 {
2882 	if (!pmd_ptlock_init(page))
2883 		return false;
2884 	__SetPageTable(page);
2885 	inc_lruvec_page_state(page, NR_PAGETABLE);
2886 	return true;
2887 }
2888 
2889 static inline void pgtable_pmd_page_dtor(struct page *page)
2890 {
2891 	pmd_ptlock_free(page);
2892 	__ClearPageTable(page);
2893 	dec_lruvec_page_state(page, NR_PAGETABLE);
2894 }
2895 
2896 /*
2897  * No scalability reason to split PUD locks yet, but follow the same pattern
2898  * as the PMD locks to make it easier if we decide to.  The VM should not be
2899  * considered ready to switch to split PUD locks yet; there may be places
2900  * which need to be converted from page_table_lock.
2901  */
2902 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2903 {
2904 	return &mm->page_table_lock;
2905 }
2906 
2907 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2908 {
2909 	spinlock_t *ptl = pud_lockptr(mm, pud);
2910 
2911 	spin_lock(ptl);
2912 	return ptl;
2913 }
2914 
2915 extern void __init pagecache_init(void);
2916 extern void free_initmem(void);
2917 
2918 /*
2919  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2920  * into the buddy system. The freed pages will be poisoned with pattern
2921  * "poison" if it's within range [0, UCHAR_MAX].
2922  * Return pages freed into the buddy system.
2923  */
2924 extern unsigned long free_reserved_area(void *start, void *end,
2925 					int poison, const char *s);
2926 
2927 extern void adjust_managed_page_count(struct page *page, long count);
2928 
2929 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2930 
2931 /* Free the reserved page into the buddy system, so it gets managed. */
2932 static inline void free_reserved_page(struct page *page)
2933 {
2934 	ClearPageReserved(page);
2935 	init_page_count(page);
2936 	__free_page(page);
2937 	adjust_managed_page_count(page, 1);
2938 }
2939 #define free_highmem_page(page) free_reserved_page(page)
2940 
2941 static inline void mark_page_reserved(struct page *page)
2942 {
2943 	SetPageReserved(page);
2944 	adjust_managed_page_count(page, -1);
2945 }
2946 
2947 /*
2948  * Default method to free all the __init memory into the buddy system.
2949  * The freed pages will be poisoned with pattern "poison" if it's within
2950  * range [0, UCHAR_MAX].
2951  * Return pages freed into the buddy system.
2952  */
2953 static inline unsigned long free_initmem_default(int poison)
2954 {
2955 	extern char __init_begin[], __init_end[];
2956 
2957 	return free_reserved_area(&__init_begin, &__init_end,
2958 				  poison, "unused kernel image (initmem)");
2959 }
2960 
2961 static inline unsigned long get_num_physpages(void)
2962 {
2963 	int nid;
2964 	unsigned long phys_pages = 0;
2965 
2966 	for_each_online_node(nid)
2967 		phys_pages += node_present_pages(nid);
2968 
2969 	return phys_pages;
2970 }
2971 
2972 /*
2973  * Using memblock node mappings, an architecture may initialise its
2974  * zones, allocate the backing mem_map and account for memory holes in an
2975  * architecture independent manner.
2976  *
2977  * An architecture is expected to register range of page frames backed by
2978  * physical memory with memblock_add[_node]() before calling
2979  * free_area_init() passing in the PFN each zone ends at. At a basic
2980  * usage, an architecture is expected to do something like
2981  *
2982  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2983  * 							 max_highmem_pfn};
2984  * for_each_valid_physical_page_range()
2985  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2986  * free_area_init(max_zone_pfns);
2987  */
2988 void free_area_init(unsigned long *max_zone_pfn);
2989 unsigned long node_map_pfn_alignment(void);
2990 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2991 						unsigned long end_pfn);
2992 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2993 						unsigned long end_pfn);
2994 extern void get_pfn_range_for_nid(unsigned int nid,
2995 			unsigned long *start_pfn, unsigned long *end_pfn);
2996 
2997 #ifndef CONFIG_NUMA
2998 static inline int early_pfn_to_nid(unsigned long pfn)
2999 {
3000 	return 0;
3001 }
3002 #else
3003 /* please see mm/page_alloc.c */
3004 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3005 #endif
3006 
3007 extern void set_dma_reserve(unsigned long new_dma_reserve);
3008 extern void memmap_init_range(unsigned long, int, unsigned long,
3009 		unsigned long, unsigned long, enum meminit_context,
3010 		struct vmem_altmap *, int migratetype);
3011 extern void setup_per_zone_wmarks(void);
3012 extern void calculate_min_free_kbytes(void);
3013 extern int __meminit init_per_zone_wmark_min(void);
3014 extern void mem_init(void);
3015 extern void __init mmap_init(void);
3016 
3017 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3018 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3019 {
3020 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3021 }
3022 extern long si_mem_available(void);
3023 extern void si_meminfo(struct sysinfo * val);
3024 extern void si_meminfo_node(struct sysinfo *val, int nid);
3025 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3026 extern unsigned long arch_reserved_kernel_pages(void);
3027 #endif
3028 
3029 extern __printf(3, 4)
3030 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3031 
3032 extern void setup_per_cpu_pageset(void);
3033 
3034 /* page_alloc.c */
3035 extern int min_free_kbytes;
3036 extern int watermark_boost_factor;
3037 extern int watermark_scale_factor;
3038 
3039 /* nommu.c */
3040 extern atomic_long_t mmap_pages_allocated;
3041 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3042 
3043 /* interval_tree.c */
3044 void vma_interval_tree_insert(struct vm_area_struct *node,
3045 			      struct rb_root_cached *root);
3046 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3047 				    struct vm_area_struct *prev,
3048 				    struct rb_root_cached *root);
3049 void vma_interval_tree_remove(struct vm_area_struct *node,
3050 			      struct rb_root_cached *root);
3051 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3052 				unsigned long start, unsigned long last);
3053 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3054 				unsigned long start, unsigned long last);
3055 
3056 #define vma_interval_tree_foreach(vma, root, start, last)		\
3057 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3058 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3059 
3060 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3061 				   struct rb_root_cached *root);
3062 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3063 				   struct rb_root_cached *root);
3064 struct anon_vma_chain *
3065 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3066 				  unsigned long start, unsigned long last);
3067 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3068 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3069 #ifdef CONFIG_DEBUG_VM_RB
3070 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3071 #endif
3072 
3073 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3074 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3075 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3076 
3077 /* mmap.c */
3078 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3079 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3080 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3081 		      struct vm_area_struct *next);
3082 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3083 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3084 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3085 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3086 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3087 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3088 	struct anon_vma_name *);
3089 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3090 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3091 		       unsigned long addr, int new_below);
3092 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3093 			 unsigned long addr, int new_below);
3094 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3095 extern void unlink_file_vma(struct vm_area_struct *);
3096 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3097 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3098 	bool *need_rmap_locks);
3099 extern void exit_mmap(struct mm_struct *);
3100 
3101 static inline int check_data_rlimit(unsigned long rlim,
3102 				    unsigned long new,
3103 				    unsigned long start,
3104 				    unsigned long end_data,
3105 				    unsigned long start_data)
3106 {
3107 	if (rlim < RLIM_INFINITY) {
3108 		if (((new - start) + (end_data - start_data)) > rlim)
3109 			return -ENOSPC;
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 extern int mm_take_all_locks(struct mm_struct *mm);
3116 extern void mm_drop_all_locks(struct mm_struct *mm);
3117 
3118 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3119 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3120 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3121 extern struct file *get_task_exe_file(struct task_struct *task);
3122 
3123 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3124 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3125 
3126 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3127 				   const struct vm_special_mapping *sm);
3128 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3129 				   unsigned long addr, unsigned long len,
3130 				   unsigned long flags,
3131 				   const struct vm_special_mapping *spec);
3132 /* This is an obsolete alternative to _install_special_mapping. */
3133 extern int install_special_mapping(struct mm_struct *mm,
3134 				   unsigned long addr, unsigned long len,
3135 				   unsigned long flags, struct page **pages);
3136 
3137 unsigned long randomize_stack_top(unsigned long stack_top);
3138 unsigned long randomize_page(unsigned long start, unsigned long range);
3139 
3140 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3141 
3142 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3143 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3144 	struct list_head *uf);
3145 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3146 	unsigned long len, unsigned long prot, unsigned long flags,
3147 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3148 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3149 			 unsigned long start, size_t len, struct list_head *uf,
3150 			 bool downgrade);
3151 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3152 		     struct list_head *uf);
3153 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3154 
3155 #ifdef CONFIG_MMU
3156 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3157 			 unsigned long start, unsigned long end,
3158 			 struct list_head *uf, bool downgrade);
3159 extern int __mm_populate(unsigned long addr, unsigned long len,
3160 			 int ignore_errors);
3161 static inline void mm_populate(unsigned long addr, unsigned long len)
3162 {
3163 	/* Ignore errors */
3164 	(void) __mm_populate(addr, len, 1);
3165 }
3166 #else
3167 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3168 #endif
3169 
3170 /* These take the mm semaphore themselves */
3171 extern int __must_check vm_brk(unsigned long, unsigned long);
3172 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3173 extern int vm_munmap(unsigned long, size_t);
3174 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3175         unsigned long, unsigned long,
3176         unsigned long, unsigned long);
3177 
3178 struct vm_unmapped_area_info {
3179 #define VM_UNMAPPED_AREA_TOPDOWN 1
3180 	unsigned long flags;
3181 	unsigned long length;
3182 	unsigned long low_limit;
3183 	unsigned long high_limit;
3184 	unsigned long align_mask;
3185 	unsigned long align_offset;
3186 };
3187 
3188 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3189 
3190 /* truncate.c */
3191 extern void truncate_inode_pages(struct address_space *, loff_t);
3192 extern void truncate_inode_pages_range(struct address_space *,
3193 				       loff_t lstart, loff_t lend);
3194 extern void truncate_inode_pages_final(struct address_space *);
3195 
3196 /* generic vm_area_ops exported for stackable file systems */
3197 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3198 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3199 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3200 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3201 
3202 extern unsigned long stack_guard_gap;
3203 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3204 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
3205 
3206 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3207 extern int expand_downwards(struct vm_area_struct *vma,
3208 		unsigned long address);
3209 #if VM_GROWSUP
3210 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
3211 #else
3212   #define expand_upwards(vma, address) (0)
3213 #endif
3214 
3215 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3216 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3217 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3218 					     struct vm_area_struct **pprev);
3219 
3220 /*
3221  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3222  * NULL if none.  Assume start_addr < end_addr.
3223  */
3224 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3225 			unsigned long start_addr, unsigned long end_addr);
3226 
3227 /**
3228  * vma_lookup() - Find a VMA at a specific address
3229  * @mm: The process address space.
3230  * @addr: The user address.
3231  *
3232  * Return: The vm_area_struct at the given address, %NULL otherwise.
3233  */
3234 static inline
3235 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3236 {
3237 	return mtree_load(&mm->mm_mt, addr);
3238 }
3239 
3240 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3241 {
3242 	unsigned long vm_start = vma->vm_start;
3243 
3244 	if (vma->vm_flags & VM_GROWSDOWN) {
3245 		vm_start -= stack_guard_gap;
3246 		if (vm_start > vma->vm_start)
3247 			vm_start = 0;
3248 	}
3249 	return vm_start;
3250 }
3251 
3252 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3253 {
3254 	unsigned long vm_end = vma->vm_end;
3255 
3256 	if (vma->vm_flags & VM_GROWSUP) {
3257 		vm_end += stack_guard_gap;
3258 		if (vm_end < vma->vm_end)
3259 			vm_end = -PAGE_SIZE;
3260 	}
3261 	return vm_end;
3262 }
3263 
3264 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3265 {
3266 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3267 }
3268 
3269 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3270 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3271 				unsigned long vm_start, unsigned long vm_end)
3272 {
3273 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3274 
3275 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3276 		vma = NULL;
3277 
3278 	return vma;
3279 }
3280 
3281 static inline bool range_in_vma(struct vm_area_struct *vma,
3282 				unsigned long start, unsigned long end)
3283 {
3284 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3285 }
3286 
3287 #ifdef CONFIG_MMU
3288 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3289 void vma_set_page_prot(struct vm_area_struct *vma);
3290 #else
3291 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3292 {
3293 	return __pgprot(0);
3294 }
3295 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3296 {
3297 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3298 }
3299 #endif
3300 
3301 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3302 
3303 #ifdef CONFIG_NUMA_BALANCING
3304 unsigned long change_prot_numa(struct vm_area_struct *vma,
3305 			unsigned long start, unsigned long end);
3306 #endif
3307 
3308 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3309 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3310 			unsigned long pfn, unsigned long size, pgprot_t);
3311 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3312 		unsigned long pfn, unsigned long size, pgprot_t prot);
3313 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3314 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3315 			struct page **pages, unsigned long *num);
3316 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3317 				unsigned long num);
3318 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3319 				unsigned long num);
3320 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3321 			unsigned long pfn);
3322 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3323 			unsigned long pfn, pgprot_t pgprot);
3324 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3325 			pfn_t pfn);
3326 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3327 		unsigned long addr, pfn_t pfn);
3328 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3329 
3330 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3331 				unsigned long addr, struct page *page)
3332 {
3333 	int err = vm_insert_page(vma, addr, page);
3334 
3335 	if (err == -ENOMEM)
3336 		return VM_FAULT_OOM;
3337 	if (err < 0 && err != -EBUSY)
3338 		return VM_FAULT_SIGBUS;
3339 
3340 	return VM_FAULT_NOPAGE;
3341 }
3342 
3343 #ifndef io_remap_pfn_range
3344 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3345 				     unsigned long addr, unsigned long pfn,
3346 				     unsigned long size, pgprot_t prot)
3347 {
3348 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3349 }
3350 #endif
3351 
3352 static inline vm_fault_t vmf_error(int err)
3353 {
3354 	if (err == -ENOMEM)
3355 		return VM_FAULT_OOM;
3356 	return VM_FAULT_SIGBUS;
3357 }
3358 
3359 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3360 			 unsigned int foll_flags);
3361 
3362 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3363 {
3364 	if (vm_fault & VM_FAULT_OOM)
3365 		return -ENOMEM;
3366 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3367 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3368 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3369 		return -EFAULT;
3370 	return 0;
3371 }
3372 
3373 /*
3374  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3375  * a (NUMA hinting) fault is required.
3376  */
3377 static inline bool gup_can_follow_protnone(unsigned int flags)
3378 {
3379 	/*
3380 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3381 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3382 	 * application behaviour and we should avoid triggering NUMA hinting
3383 	 * faults.
3384 	 */
3385 	return flags & FOLL_FORCE;
3386 }
3387 
3388 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3389 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3390 			       unsigned long size, pte_fn_t fn, void *data);
3391 extern int apply_to_existing_page_range(struct mm_struct *mm,
3392 				   unsigned long address, unsigned long size,
3393 				   pte_fn_t fn, void *data);
3394 
3395 #ifdef CONFIG_PAGE_POISONING
3396 extern void __kernel_poison_pages(struct page *page, int numpages);
3397 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3398 extern bool _page_poisoning_enabled_early;
3399 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3400 static inline bool page_poisoning_enabled(void)
3401 {
3402 	return _page_poisoning_enabled_early;
3403 }
3404 /*
3405  * For use in fast paths after init_mem_debugging() has run, or when a
3406  * false negative result is not harmful when called too early.
3407  */
3408 static inline bool page_poisoning_enabled_static(void)
3409 {
3410 	return static_branch_unlikely(&_page_poisoning_enabled);
3411 }
3412 static inline void kernel_poison_pages(struct page *page, int numpages)
3413 {
3414 	if (page_poisoning_enabled_static())
3415 		__kernel_poison_pages(page, numpages);
3416 }
3417 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3418 {
3419 	if (page_poisoning_enabled_static())
3420 		__kernel_unpoison_pages(page, numpages);
3421 }
3422 #else
3423 static inline bool page_poisoning_enabled(void) { return false; }
3424 static inline bool page_poisoning_enabled_static(void) { return false; }
3425 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3426 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3427 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3428 #endif
3429 
3430 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3431 static inline bool want_init_on_alloc(gfp_t flags)
3432 {
3433 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3434 				&init_on_alloc))
3435 		return true;
3436 	return flags & __GFP_ZERO;
3437 }
3438 
3439 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3440 static inline bool want_init_on_free(void)
3441 {
3442 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3443 				   &init_on_free);
3444 }
3445 
3446 extern bool _debug_pagealloc_enabled_early;
3447 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3448 
3449 static inline bool debug_pagealloc_enabled(void)
3450 {
3451 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3452 		_debug_pagealloc_enabled_early;
3453 }
3454 
3455 /*
3456  * For use in fast paths after init_debug_pagealloc() has run, or when a
3457  * false negative result is not harmful when called too early.
3458  */
3459 static inline bool debug_pagealloc_enabled_static(void)
3460 {
3461 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3462 		return false;
3463 
3464 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3465 }
3466 
3467 #ifdef CONFIG_DEBUG_PAGEALLOC
3468 /*
3469  * To support DEBUG_PAGEALLOC architecture must ensure that
3470  * __kernel_map_pages() never fails
3471  */
3472 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3473 
3474 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3475 {
3476 	if (debug_pagealloc_enabled_static())
3477 		__kernel_map_pages(page, numpages, 1);
3478 }
3479 
3480 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3481 {
3482 	if (debug_pagealloc_enabled_static())
3483 		__kernel_map_pages(page, numpages, 0);
3484 }
3485 #else	/* CONFIG_DEBUG_PAGEALLOC */
3486 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3487 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3488 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3489 
3490 #ifdef __HAVE_ARCH_GATE_AREA
3491 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3492 extern int in_gate_area_no_mm(unsigned long addr);
3493 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3494 #else
3495 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3496 {
3497 	return NULL;
3498 }
3499 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3500 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3501 {
3502 	return 0;
3503 }
3504 #endif	/* __HAVE_ARCH_GATE_AREA */
3505 
3506 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3507 
3508 #ifdef CONFIG_SYSCTL
3509 extern int sysctl_drop_caches;
3510 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3511 		loff_t *);
3512 #endif
3513 
3514 void drop_slab(void);
3515 
3516 #ifndef CONFIG_MMU
3517 #define randomize_va_space 0
3518 #else
3519 extern int randomize_va_space;
3520 #endif
3521 
3522 const char * arch_vma_name(struct vm_area_struct *vma);
3523 #ifdef CONFIG_MMU
3524 void print_vma_addr(char *prefix, unsigned long rip);
3525 #else
3526 static inline void print_vma_addr(char *prefix, unsigned long rip)
3527 {
3528 }
3529 #endif
3530 
3531 void *sparse_buffer_alloc(unsigned long size);
3532 struct page * __populate_section_memmap(unsigned long pfn,
3533 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3534 		struct dev_pagemap *pgmap);
3535 void pmd_init(void *addr);
3536 void pud_init(void *addr);
3537 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3538 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3539 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3540 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3541 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3542 			    struct vmem_altmap *altmap, struct page *reuse);
3543 void *vmemmap_alloc_block(unsigned long size, int node);
3544 struct vmem_altmap;
3545 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3546 			      struct vmem_altmap *altmap);
3547 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3548 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3549 		     unsigned long addr, unsigned long next);
3550 int vmemmap_check_pmd(pmd_t *pmd, int node,
3551 		      unsigned long addr, unsigned long next);
3552 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3553 			       int node, struct vmem_altmap *altmap);
3554 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3555 			       int node, struct vmem_altmap *altmap);
3556 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3557 		struct vmem_altmap *altmap);
3558 void vmemmap_populate_print_last(void);
3559 #ifdef CONFIG_MEMORY_HOTPLUG
3560 void vmemmap_free(unsigned long start, unsigned long end,
3561 		struct vmem_altmap *altmap);
3562 #endif
3563 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3564 				  unsigned long nr_pages);
3565 
3566 enum mf_flags {
3567 	MF_COUNT_INCREASED = 1 << 0,
3568 	MF_ACTION_REQUIRED = 1 << 1,
3569 	MF_MUST_KILL = 1 << 2,
3570 	MF_SOFT_OFFLINE = 1 << 3,
3571 	MF_UNPOISON = 1 << 4,
3572 	MF_SW_SIMULATED = 1 << 5,
3573 	MF_NO_RETRY = 1 << 6,
3574 };
3575 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3576 		      unsigned long count, int mf_flags);
3577 extern int memory_failure(unsigned long pfn, int flags);
3578 extern void memory_failure_queue_kick(int cpu);
3579 extern int unpoison_memory(unsigned long pfn);
3580 extern int sysctl_memory_failure_early_kill;
3581 extern int sysctl_memory_failure_recovery;
3582 extern void shake_page(struct page *p);
3583 extern atomic_long_t num_poisoned_pages __read_mostly;
3584 extern int soft_offline_page(unsigned long pfn, int flags);
3585 #ifdef CONFIG_MEMORY_FAILURE
3586 extern void memory_failure_queue(unsigned long pfn, int flags);
3587 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3588 					bool *migratable_cleared);
3589 void num_poisoned_pages_inc(unsigned long pfn);
3590 void num_poisoned_pages_sub(unsigned long pfn, long i);
3591 #else
3592 static inline void memory_failure_queue(unsigned long pfn, int flags)
3593 {
3594 }
3595 
3596 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3597 					bool *migratable_cleared)
3598 {
3599 	return 0;
3600 }
3601 
3602 static inline void num_poisoned_pages_inc(unsigned long pfn)
3603 {
3604 }
3605 
3606 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3607 {
3608 }
3609 #endif
3610 
3611 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3612 extern void memblk_nr_poison_inc(unsigned long pfn);
3613 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3614 #else
3615 static inline void memblk_nr_poison_inc(unsigned long pfn)
3616 {
3617 }
3618 
3619 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3620 {
3621 }
3622 #endif
3623 
3624 #ifndef arch_memory_failure
3625 static inline int arch_memory_failure(unsigned long pfn, int flags)
3626 {
3627 	return -ENXIO;
3628 }
3629 #endif
3630 
3631 #ifndef arch_is_platform_page
3632 static inline bool arch_is_platform_page(u64 paddr)
3633 {
3634 	return false;
3635 }
3636 #endif
3637 
3638 /*
3639  * Error handlers for various types of pages.
3640  */
3641 enum mf_result {
3642 	MF_IGNORED,	/* Error: cannot be handled */
3643 	MF_FAILED,	/* Error: handling failed */
3644 	MF_DELAYED,	/* Will be handled later */
3645 	MF_RECOVERED,	/* Successfully recovered */
3646 };
3647 
3648 enum mf_action_page_type {
3649 	MF_MSG_KERNEL,
3650 	MF_MSG_KERNEL_HIGH_ORDER,
3651 	MF_MSG_SLAB,
3652 	MF_MSG_DIFFERENT_COMPOUND,
3653 	MF_MSG_HUGE,
3654 	MF_MSG_FREE_HUGE,
3655 	MF_MSG_UNMAP_FAILED,
3656 	MF_MSG_DIRTY_SWAPCACHE,
3657 	MF_MSG_CLEAN_SWAPCACHE,
3658 	MF_MSG_DIRTY_MLOCKED_LRU,
3659 	MF_MSG_CLEAN_MLOCKED_LRU,
3660 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3661 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3662 	MF_MSG_DIRTY_LRU,
3663 	MF_MSG_CLEAN_LRU,
3664 	MF_MSG_TRUNCATED_LRU,
3665 	MF_MSG_BUDDY,
3666 	MF_MSG_DAX,
3667 	MF_MSG_UNSPLIT_THP,
3668 	MF_MSG_UNKNOWN,
3669 };
3670 
3671 /*
3672  * Sysfs entries for memory failure handling statistics.
3673  */
3674 extern const struct attribute_group memory_failure_attr_group;
3675 
3676 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3677 extern void clear_huge_page(struct page *page,
3678 			    unsigned long addr_hint,
3679 			    unsigned int pages_per_huge_page);
3680 extern void copy_user_huge_page(struct page *dst, struct page *src,
3681 				unsigned long addr_hint,
3682 				struct vm_area_struct *vma,
3683 				unsigned int pages_per_huge_page);
3684 extern long copy_huge_page_from_user(struct page *dst_page,
3685 				const void __user *usr_src,
3686 				unsigned int pages_per_huge_page,
3687 				bool allow_pagefault);
3688 
3689 /**
3690  * vma_is_special_huge - Are transhuge page-table entries considered special?
3691  * @vma: Pointer to the struct vm_area_struct to consider
3692  *
3693  * Whether transhuge page-table entries are considered "special" following
3694  * the definition in vm_normal_page().
3695  *
3696  * Return: true if transhuge page-table entries should be considered special,
3697  * false otherwise.
3698  */
3699 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3700 {
3701 	return vma_is_dax(vma) || (vma->vm_file &&
3702 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3703 }
3704 
3705 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3706 
3707 #ifdef CONFIG_DEBUG_PAGEALLOC
3708 extern unsigned int _debug_guardpage_minorder;
3709 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3710 
3711 static inline unsigned int debug_guardpage_minorder(void)
3712 {
3713 	return _debug_guardpage_minorder;
3714 }
3715 
3716 static inline bool debug_guardpage_enabled(void)
3717 {
3718 	return static_branch_unlikely(&_debug_guardpage_enabled);
3719 }
3720 
3721 static inline bool page_is_guard(struct page *page)
3722 {
3723 	if (!debug_guardpage_enabled())
3724 		return false;
3725 
3726 	return PageGuard(page);
3727 }
3728 #else
3729 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3730 static inline bool debug_guardpage_enabled(void) { return false; }
3731 static inline bool page_is_guard(struct page *page) { return false; }
3732 #endif /* CONFIG_DEBUG_PAGEALLOC */
3733 
3734 #if MAX_NUMNODES > 1
3735 void __init setup_nr_node_ids(void);
3736 #else
3737 static inline void setup_nr_node_ids(void) {}
3738 #endif
3739 
3740 extern int memcmp_pages(struct page *page1, struct page *page2);
3741 
3742 static inline int pages_identical(struct page *page1, struct page *page2)
3743 {
3744 	return !memcmp_pages(page1, page2);
3745 }
3746 
3747 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3748 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3749 						pgoff_t first_index, pgoff_t nr,
3750 						pgoff_t bitmap_pgoff,
3751 						unsigned long *bitmap,
3752 						pgoff_t *start,
3753 						pgoff_t *end);
3754 
3755 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3756 				      pgoff_t first_index, pgoff_t nr);
3757 #endif
3758 
3759 extern int sysctl_nr_trim_pages;
3760 
3761 #ifdef CONFIG_PRINTK
3762 void mem_dump_obj(void *object);
3763 #else
3764 static inline void mem_dump_obj(void *object) {}
3765 #endif
3766 
3767 /**
3768  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3769  * @seals: the seals to check
3770  * @vma: the vma to operate on
3771  *
3772  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3773  * the vma flags.  Return 0 if check pass, or <0 for errors.
3774  */
3775 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3776 {
3777 	if (seals & F_SEAL_FUTURE_WRITE) {
3778 		/*
3779 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3780 		 * "future write" seal active.
3781 		 */
3782 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3783 			return -EPERM;
3784 
3785 		/*
3786 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3787 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3788 		 * revert protections on such mappings. Do this only for shared
3789 		 * mappings. For private mappings, don't need to mask
3790 		 * VM_MAYWRITE as we still want them to be COW-writable.
3791 		 */
3792 		if (vma->vm_flags & VM_SHARED)
3793 			vm_flags_clear(vma, VM_MAYWRITE);
3794 	}
3795 
3796 	return 0;
3797 }
3798 
3799 #ifdef CONFIG_ANON_VMA_NAME
3800 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3801 			  unsigned long len_in,
3802 			  struct anon_vma_name *anon_name);
3803 #else
3804 static inline int
3805 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3806 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3807 	return 0;
3808 }
3809 #endif
3810 
3811 #endif /* _LINUX_MM_H */
3812