xref: /linux-6.15/include/linux/mm.h (revision 261a9af6)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
18 
19 struct mempolicy;
20 struct anon_vma;
21 struct file_ra_state;
22 struct user_struct;
23 struct writeback_control;
24 
25 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr;
27 #endif
28 
29 extern unsigned long num_physpages;
30 extern unsigned long totalram_pages;
31 extern void * high_memory;
32 extern int page_cluster;
33 
34 #ifdef CONFIG_SYSCTL
35 extern int sysctl_legacy_va_layout;
36 #else
37 #define sysctl_legacy_va_layout 0
38 #endif
39 
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
43 
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45 
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48 
49 /*
50  * Linux kernel virtual memory manager primitives.
51  * The idea being to have a "virtual" mm in the same way
52  * we have a virtual fs - giving a cleaner interface to the
53  * mm details, and allowing different kinds of memory mappings
54  * (from shared memory to executable loading to arbitrary
55  * mmap() functions).
56  */
57 
58 extern struct kmem_cache *vm_area_cachep;
59 
60 #ifndef CONFIG_MMU
61 extern struct rb_root nommu_region_tree;
62 extern struct rw_semaphore nommu_region_sem;
63 
64 extern unsigned int kobjsize(const void *objp);
65 #endif
66 
67 /*
68  * vm_flags in vm_area_struct, see mm_types.h.
69  */
70 #define VM_READ		0x00000001	/* currently active flags */
71 #define VM_WRITE	0x00000002
72 #define VM_EXEC		0x00000004
73 #define VM_SHARED	0x00000008
74 
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
77 #define VM_MAYWRITE	0x00000020
78 #define VM_MAYEXEC	0x00000040
79 #define VM_MAYSHARE	0x00000080
80 
81 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP	0x00000200
84 #else
85 #define VM_GROWSUP	0x00000000
86 #define VM_NOHUGEPAGE	0x00000200	/* MADV_NOHUGEPAGE marked this vma */
87 #endif
88 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
90 
91 #define VM_EXECUTABLE	0x00001000
92 #define VM_LOCKED	0x00002000
93 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
94 
95 					/* Used by sys_madvise() */
96 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
97 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
98 
99 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
101 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
102 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
103 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
104 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
105 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
107 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
108 #else
109 #define VM_HUGEPAGE	0x01000000	/* MADV_HUGEPAGE marked this vma */
110 #endif
111 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
112 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
113 
114 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
115 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
116 #define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
117 #define VM_PFN_AT_MMAP	0x40000000	/* PFNMAP vma that is fully mapped at mmap time */
118 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
119 
120 /* Bits set in the VMA until the stack is in its final location */
121 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
122 
123 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125 #endif
126 
127 #ifdef CONFIG_STACK_GROWSUP
128 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129 #else
130 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131 #endif
132 
133 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
134 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
135 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
136 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
137 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
138 
139 /*
140  * Special vmas that are non-mergable, non-mlock()able.
141  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
142  */
143 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
144 
145 /*
146  * mapping from the currently active vm_flags protection bits (the
147  * low four bits) to a page protection mask..
148  */
149 extern pgprot_t protection_map[16];
150 
151 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
152 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
153 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
154 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
155 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
156 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
157 
158 /*
159  * This interface is used by x86 PAT code to identify a pfn mapping that is
160  * linear over entire vma. This is to optimize PAT code that deals with
161  * marking the physical region with a particular prot. This is not for generic
162  * mm use. Note also that this check will not work if the pfn mapping is
163  * linear for a vma starting at physical address 0. In which case PAT code
164  * falls back to slow path of reserving physical range page by page.
165  */
166 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
167 {
168 	return !!(vma->vm_flags & VM_PFN_AT_MMAP);
169 }
170 
171 static inline int is_pfn_mapping(struct vm_area_struct *vma)
172 {
173 	return !!(vma->vm_flags & VM_PFNMAP);
174 }
175 
176 /*
177  * vm_fault is filled by the the pagefault handler and passed to the vma's
178  * ->fault function. The vma's ->fault is responsible for returning a bitmask
179  * of VM_FAULT_xxx flags that give details about how the fault was handled.
180  *
181  * pgoff should be used in favour of virtual_address, if possible. If pgoff
182  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
183  * mapping support.
184  */
185 struct vm_fault {
186 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
187 	pgoff_t pgoff;			/* Logical page offset based on vma */
188 	void __user *virtual_address;	/* Faulting virtual address */
189 
190 	struct page *page;		/* ->fault handlers should return a
191 					 * page here, unless VM_FAULT_NOPAGE
192 					 * is set (which is also implied by
193 					 * VM_FAULT_ERROR).
194 					 */
195 };
196 
197 /*
198  * These are the virtual MM functions - opening of an area, closing and
199  * unmapping it (needed to keep files on disk up-to-date etc), pointer
200  * to the functions called when a no-page or a wp-page exception occurs.
201  */
202 struct vm_operations_struct {
203 	void (*open)(struct vm_area_struct * area);
204 	void (*close)(struct vm_area_struct * area);
205 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
206 
207 	/* notification that a previously read-only page is about to become
208 	 * writable, if an error is returned it will cause a SIGBUS */
209 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
210 
211 	/* called by access_process_vm when get_user_pages() fails, typically
212 	 * for use by special VMAs that can switch between memory and hardware
213 	 */
214 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
215 		      void *buf, int len, int write);
216 #ifdef CONFIG_NUMA
217 	/*
218 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
219 	 * to hold the policy upon return.  Caller should pass NULL @new to
220 	 * remove a policy and fall back to surrounding context--i.e. do not
221 	 * install a MPOL_DEFAULT policy, nor the task or system default
222 	 * mempolicy.
223 	 */
224 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
225 
226 	/*
227 	 * get_policy() op must add reference [mpol_get()] to any policy at
228 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
229 	 * in mm/mempolicy.c will do this automatically.
230 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
231 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
232 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
233 	 * must return NULL--i.e., do not "fallback" to task or system default
234 	 * policy.
235 	 */
236 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
237 					unsigned long addr);
238 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
239 		const nodemask_t *to, unsigned long flags);
240 #endif
241 };
242 
243 struct mmu_gather;
244 struct inode;
245 
246 #define page_private(page)		((page)->private)
247 #define set_page_private(page, v)	((page)->private = (v))
248 
249 /*
250  * FIXME: take this include out, include page-flags.h in
251  * files which need it (119 of them)
252  */
253 #include <linux/page-flags.h>
254 #include <linux/huge_mm.h>
255 
256 /*
257  * Methods to modify the page usage count.
258  *
259  * What counts for a page usage:
260  * - cache mapping   (page->mapping)
261  * - private data    (page->private)
262  * - page mapped in a task's page tables, each mapping
263  *   is counted separately
264  *
265  * Also, many kernel routines increase the page count before a critical
266  * routine so they can be sure the page doesn't go away from under them.
267  */
268 
269 /*
270  * Drop a ref, return true if the refcount fell to zero (the page has no users)
271  */
272 static inline int put_page_testzero(struct page *page)
273 {
274 	VM_BUG_ON(atomic_read(&page->_count) == 0);
275 	return atomic_dec_and_test(&page->_count);
276 }
277 
278 /*
279  * Try to grab a ref unless the page has a refcount of zero, return false if
280  * that is the case.
281  */
282 static inline int get_page_unless_zero(struct page *page)
283 {
284 	return atomic_inc_not_zero(&page->_count);
285 }
286 
287 extern int page_is_ram(unsigned long pfn);
288 
289 /* Support for virtually mapped pages */
290 struct page *vmalloc_to_page(const void *addr);
291 unsigned long vmalloc_to_pfn(const void *addr);
292 
293 /*
294  * Determine if an address is within the vmalloc range
295  *
296  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
297  * is no special casing required.
298  */
299 static inline int is_vmalloc_addr(const void *x)
300 {
301 #ifdef CONFIG_MMU
302 	unsigned long addr = (unsigned long)x;
303 
304 	return addr >= VMALLOC_START && addr < VMALLOC_END;
305 #else
306 	return 0;
307 #endif
308 }
309 #ifdef CONFIG_MMU
310 extern int is_vmalloc_or_module_addr(const void *x);
311 #else
312 static inline int is_vmalloc_or_module_addr(const void *x)
313 {
314 	return 0;
315 }
316 #endif
317 
318 static inline void compound_lock(struct page *page)
319 {
320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 	bit_spin_lock(PG_compound_lock, &page->flags);
322 #endif
323 }
324 
325 static inline void compound_unlock(struct page *page)
326 {
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 	bit_spin_unlock(PG_compound_lock, &page->flags);
329 #endif
330 }
331 
332 static inline unsigned long compound_lock_irqsave(struct page *page)
333 {
334 	unsigned long uninitialized_var(flags);
335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 	local_irq_save(flags);
337 	compound_lock(page);
338 #endif
339 	return flags;
340 }
341 
342 static inline void compound_unlock_irqrestore(struct page *page,
343 					      unsigned long flags)
344 {
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 	compound_unlock(page);
347 	local_irq_restore(flags);
348 #endif
349 }
350 
351 static inline struct page *compound_head(struct page *page)
352 {
353 	if (unlikely(PageTail(page)))
354 		return page->first_page;
355 	return page;
356 }
357 
358 static inline int page_count(struct page *page)
359 {
360 	return atomic_read(&compound_head(page)->_count);
361 }
362 
363 static inline void get_page(struct page *page)
364 {
365 	/*
366 	 * Getting a normal page or the head of a compound page
367 	 * requires to already have an elevated page->_count. Only if
368 	 * we're getting a tail page, the elevated page->_count is
369 	 * required only in the head page, so for tail pages the
370 	 * bugcheck only verifies that the page->_count isn't
371 	 * negative.
372 	 */
373 	VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
374 	atomic_inc(&page->_count);
375 	/*
376 	 * Getting a tail page will elevate both the head and tail
377 	 * page->_count(s).
378 	 */
379 	if (unlikely(PageTail(page))) {
380 		/*
381 		 * This is safe only because
382 		 * __split_huge_page_refcount can't run under
383 		 * get_page().
384 		 */
385 		VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
386 		atomic_inc(&page->first_page->_count);
387 	}
388 }
389 
390 static inline struct page *virt_to_head_page(const void *x)
391 {
392 	struct page *page = virt_to_page(x);
393 	return compound_head(page);
394 }
395 
396 /*
397  * Setup the page count before being freed into the page allocator for
398  * the first time (boot or memory hotplug)
399  */
400 static inline void init_page_count(struct page *page)
401 {
402 	atomic_set(&page->_count, 1);
403 }
404 
405 /*
406  * PageBuddy() indicate that the page is free and in the buddy system
407  * (see mm/page_alloc.c).
408  *
409  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
410  * -2 so that an underflow of the page_mapcount() won't be mistaken
411  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
412  * efficiently by most CPU architectures.
413  */
414 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
415 
416 static inline int PageBuddy(struct page *page)
417 {
418 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
419 }
420 
421 static inline void __SetPageBuddy(struct page *page)
422 {
423 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
424 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
425 }
426 
427 static inline void __ClearPageBuddy(struct page *page)
428 {
429 	VM_BUG_ON(!PageBuddy(page));
430 	atomic_set(&page->_mapcount, -1);
431 }
432 
433 void put_page(struct page *page);
434 void put_pages_list(struct list_head *pages);
435 
436 void split_page(struct page *page, unsigned int order);
437 int split_free_page(struct page *page);
438 
439 /*
440  * Compound pages have a destructor function.  Provide a
441  * prototype for that function and accessor functions.
442  * These are _only_ valid on the head of a PG_compound page.
443  */
444 typedef void compound_page_dtor(struct page *);
445 
446 static inline void set_compound_page_dtor(struct page *page,
447 						compound_page_dtor *dtor)
448 {
449 	page[1].lru.next = (void *)dtor;
450 }
451 
452 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
453 {
454 	return (compound_page_dtor *)page[1].lru.next;
455 }
456 
457 static inline int compound_order(struct page *page)
458 {
459 	if (!PageHead(page))
460 		return 0;
461 	return (unsigned long)page[1].lru.prev;
462 }
463 
464 static inline int compound_trans_order(struct page *page)
465 {
466 	int order;
467 	unsigned long flags;
468 
469 	if (!PageHead(page))
470 		return 0;
471 
472 	flags = compound_lock_irqsave(page);
473 	order = compound_order(page);
474 	compound_unlock_irqrestore(page, flags);
475 	return order;
476 }
477 
478 static inline void set_compound_order(struct page *page, unsigned long order)
479 {
480 	page[1].lru.prev = (void *)order;
481 }
482 
483 #ifdef CONFIG_MMU
484 /*
485  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
486  * servicing faults for write access.  In the normal case, do always want
487  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
488  * that do not have writing enabled, when used by access_process_vm.
489  */
490 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
491 {
492 	if (likely(vma->vm_flags & VM_WRITE))
493 		pte = pte_mkwrite(pte);
494 	return pte;
495 }
496 #endif
497 
498 /*
499  * Multiple processes may "see" the same page. E.g. for untouched
500  * mappings of /dev/null, all processes see the same page full of
501  * zeroes, and text pages of executables and shared libraries have
502  * only one copy in memory, at most, normally.
503  *
504  * For the non-reserved pages, page_count(page) denotes a reference count.
505  *   page_count() == 0 means the page is free. page->lru is then used for
506  *   freelist management in the buddy allocator.
507  *   page_count() > 0  means the page has been allocated.
508  *
509  * Pages are allocated by the slab allocator in order to provide memory
510  * to kmalloc and kmem_cache_alloc. In this case, the management of the
511  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
512  * unless a particular usage is carefully commented. (the responsibility of
513  * freeing the kmalloc memory is the caller's, of course).
514  *
515  * A page may be used by anyone else who does a __get_free_page().
516  * In this case, page_count still tracks the references, and should only
517  * be used through the normal accessor functions. The top bits of page->flags
518  * and page->virtual store page management information, but all other fields
519  * are unused and could be used privately, carefully. The management of this
520  * page is the responsibility of the one who allocated it, and those who have
521  * subsequently been given references to it.
522  *
523  * The other pages (we may call them "pagecache pages") are completely
524  * managed by the Linux memory manager: I/O, buffers, swapping etc.
525  * The following discussion applies only to them.
526  *
527  * A pagecache page contains an opaque `private' member, which belongs to the
528  * page's address_space. Usually, this is the address of a circular list of
529  * the page's disk buffers. PG_private must be set to tell the VM to call
530  * into the filesystem to release these pages.
531  *
532  * A page may belong to an inode's memory mapping. In this case, page->mapping
533  * is the pointer to the inode, and page->index is the file offset of the page,
534  * in units of PAGE_CACHE_SIZE.
535  *
536  * If pagecache pages are not associated with an inode, they are said to be
537  * anonymous pages. These may become associated with the swapcache, and in that
538  * case PG_swapcache is set, and page->private is an offset into the swapcache.
539  *
540  * In either case (swapcache or inode backed), the pagecache itself holds one
541  * reference to the page. Setting PG_private should also increment the
542  * refcount. The each user mapping also has a reference to the page.
543  *
544  * The pagecache pages are stored in a per-mapping radix tree, which is
545  * rooted at mapping->page_tree, and indexed by offset.
546  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
547  * lists, we instead now tag pages as dirty/writeback in the radix tree.
548  *
549  * All pagecache pages may be subject to I/O:
550  * - inode pages may need to be read from disk,
551  * - inode pages which have been modified and are MAP_SHARED may need
552  *   to be written back to the inode on disk,
553  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
554  *   modified may need to be swapped out to swap space and (later) to be read
555  *   back into memory.
556  */
557 
558 /*
559  * The zone field is never updated after free_area_init_core()
560  * sets it, so none of the operations on it need to be atomic.
561  */
562 
563 
564 /*
565  * page->flags layout:
566  *
567  * There are three possibilities for how page->flags get
568  * laid out.  The first is for the normal case, without
569  * sparsemem.  The second is for sparsemem when there is
570  * plenty of space for node and section.  The last is when
571  * we have run out of space and have to fall back to an
572  * alternate (slower) way of determining the node.
573  *
574  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
575  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
576  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
577  */
578 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
579 #define SECTIONS_WIDTH		SECTIONS_SHIFT
580 #else
581 #define SECTIONS_WIDTH		0
582 #endif
583 
584 #define ZONES_WIDTH		ZONES_SHIFT
585 
586 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
587 #define NODES_WIDTH		NODES_SHIFT
588 #else
589 #ifdef CONFIG_SPARSEMEM_VMEMMAP
590 #error "Vmemmap: No space for nodes field in page flags"
591 #endif
592 #define NODES_WIDTH		0
593 #endif
594 
595 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
596 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
597 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
598 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
599 
600 /*
601  * We are going to use the flags for the page to node mapping if its in
602  * there.  This includes the case where there is no node, so it is implicit.
603  */
604 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
605 #define NODE_NOT_IN_PAGE_FLAGS
606 #endif
607 
608 /*
609  * Define the bit shifts to access each section.  For non-existent
610  * sections we define the shift as 0; that plus a 0 mask ensures
611  * the compiler will optimise away reference to them.
612  */
613 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
614 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
615 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
616 
617 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
618 #ifdef NODE_NOT_IN_PAGE_FLAGS
619 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
620 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
621 						SECTIONS_PGOFF : ZONES_PGOFF)
622 #else
623 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
624 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
625 						NODES_PGOFF : ZONES_PGOFF)
626 #endif
627 
628 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
629 
630 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
631 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632 #endif
633 
634 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
635 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
636 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
637 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
638 
639 static inline enum zone_type page_zonenum(struct page *page)
640 {
641 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
642 }
643 
644 /*
645  * The identification function is only used by the buddy allocator for
646  * determining if two pages could be buddies. We are not really
647  * identifying a zone since we could be using a the section number
648  * id if we have not node id available in page flags.
649  * We guarantee only that it will return the same value for two
650  * combinable pages in a zone.
651  */
652 static inline int page_zone_id(struct page *page)
653 {
654 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
655 }
656 
657 static inline int zone_to_nid(struct zone *zone)
658 {
659 #ifdef CONFIG_NUMA
660 	return zone->node;
661 #else
662 	return 0;
663 #endif
664 }
665 
666 #ifdef NODE_NOT_IN_PAGE_FLAGS
667 extern int page_to_nid(struct page *page);
668 #else
669 static inline int page_to_nid(struct page *page)
670 {
671 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
672 }
673 #endif
674 
675 static inline struct zone *page_zone(struct page *page)
676 {
677 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
678 }
679 
680 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
681 static inline void set_page_section(struct page *page, unsigned long section)
682 {
683 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
684 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
685 }
686 
687 static inline unsigned long page_to_section(struct page *page)
688 {
689 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
690 }
691 #endif
692 
693 static inline void set_page_zone(struct page *page, enum zone_type zone)
694 {
695 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
696 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
697 }
698 
699 static inline void set_page_node(struct page *page, unsigned long node)
700 {
701 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
702 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
703 }
704 
705 static inline void set_page_links(struct page *page, enum zone_type zone,
706 	unsigned long node, unsigned long pfn)
707 {
708 	set_page_zone(page, zone);
709 	set_page_node(page, node);
710 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
711 	set_page_section(page, pfn_to_section_nr(pfn));
712 #endif
713 }
714 
715 /*
716  * Some inline functions in vmstat.h depend on page_zone()
717  */
718 #include <linux/vmstat.h>
719 
720 static __always_inline void *lowmem_page_address(struct page *page)
721 {
722 	return __va(PFN_PHYS(page_to_pfn(page)));
723 }
724 
725 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
726 #define HASHED_PAGE_VIRTUAL
727 #endif
728 
729 #if defined(WANT_PAGE_VIRTUAL)
730 #define page_address(page) ((page)->virtual)
731 #define set_page_address(page, address)			\
732 	do {						\
733 		(page)->virtual = (address);		\
734 	} while(0)
735 #define page_address_init()  do { } while(0)
736 #endif
737 
738 #if defined(HASHED_PAGE_VIRTUAL)
739 void *page_address(struct page *page);
740 void set_page_address(struct page *page, void *virtual);
741 void page_address_init(void);
742 #endif
743 
744 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
745 #define page_address(page) lowmem_page_address(page)
746 #define set_page_address(page, address)  do { } while(0)
747 #define page_address_init()  do { } while(0)
748 #endif
749 
750 /*
751  * On an anonymous page mapped into a user virtual memory area,
752  * page->mapping points to its anon_vma, not to a struct address_space;
753  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
754  *
755  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
756  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
757  * and then page->mapping points, not to an anon_vma, but to a private
758  * structure which KSM associates with that merged page.  See ksm.h.
759  *
760  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
761  *
762  * Please note that, confusingly, "page_mapping" refers to the inode
763  * address_space which maps the page from disk; whereas "page_mapped"
764  * refers to user virtual address space into which the page is mapped.
765  */
766 #define PAGE_MAPPING_ANON	1
767 #define PAGE_MAPPING_KSM	2
768 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
769 
770 extern struct address_space swapper_space;
771 static inline struct address_space *page_mapping(struct page *page)
772 {
773 	struct address_space *mapping = page->mapping;
774 
775 	VM_BUG_ON(PageSlab(page));
776 	if (unlikely(PageSwapCache(page)))
777 		mapping = &swapper_space;
778 	else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
779 		mapping = NULL;
780 	return mapping;
781 }
782 
783 /* Neutral page->mapping pointer to address_space or anon_vma or other */
784 static inline void *page_rmapping(struct page *page)
785 {
786 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
787 }
788 
789 static inline int PageAnon(struct page *page)
790 {
791 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
792 }
793 
794 /*
795  * Return the pagecache index of the passed page.  Regular pagecache pages
796  * use ->index whereas swapcache pages use ->private
797  */
798 static inline pgoff_t page_index(struct page *page)
799 {
800 	if (unlikely(PageSwapCache(page)))
801 		return page_private(page);
802 	return page->index;
803 }
804 
805 /*
806  * The atomic page->_mapcount, like _count, starts from -1:
807  * so that transitions both from it and to it can be tracked,
808  * using atomic_inc_and_test and atomic_add_negative(-1).
809  */
810 static inline void reset_page_mapcount(struct page *page)
811 {
812 	atomic_set(&(page)->_mapcount, -1);
813 }
814 
815 static inline int page_mapcount(struct page *page)
816 {
817 	return atomic_read(&(page)->_mapcount) + 1;
818 }
819 
820 /*
821  * Return true if this page is mapped into pagetables.
822  */
823 static inline int page_mapped(struct page *page)
824 {
825 	return atomic_read(&(page)->_mapcount) >= 0;
826 }
827 
828 /*
829  * Different kinds of faults, as returned by handle_mm_fault().
830  * Used to decide whether a process gets delivered SIGBUS or
831  * just gets major/minor fault counters bumped up.
832  */
833 
834 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
835 
836 #define VM_FAULT_OOM	0x0001
837 #define VM_FAULT_SIGBUS	0x0002
838 #define VM_FAULT_MAJOR	0x0004
839 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
840 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
841 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
842 
843 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
844 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
845 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
846 
847 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
848 
849 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
850 			 VM_FAULT_HWPOISON_LARGE)
851 
852 /* Encode hstate index for a hwpoisoned large page */
853 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
854 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
855 
856 /*
857  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
858  */
859 extern void pagefault_out_of_memory(void);
860 
861 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
862 
863 /*
864  * Flags passed to show_mem() and show_free_areas() to suppress output in
865  * various contexts.
866  */
867 #define SHOW_MEM_FILTER_NODES	(0x0001u)	/* filter disallowed nodes */
868 
869 extern void show_free_areas(unsigned int flags);
870 extern bool skip_free_areas_node(unsigned int flags, int nid);
871 
872 int shmem_lock(struct file *file, int lock, struct user_struct *user);
873 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
874 int shmem_zero_setup(struct vm_area_struct *);
875 
876 extern int can_do_mlock(void);
877 extern int user_shm_lock(size_t, struct user_struct *);
878 extern void user_shm_unlock(size_t, struct user_struct *);
879 
880 /*
881  * Parameter block passed down to zap_pte_range in exceptional cases.
882  */
883 struct zap_details {
884 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
885 	struct address_space *check_mapping;	/* Check page->mapping if set */
886 	pgoff_t	first_index;			/* Lowest page->index to unmap */
887 	pgoff_t last_index;			/* Highest page->index to unmap */
888 };
889 
890 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
891 		pte_t pte);
892 
893 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
894 		unsigned long size);
895 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
896 		unsigned long size, struct zap_details *);
897 unsigned long unmap_vmas(struct mmu_gather *tlb,
898 		struct vm_area_struct *start_vma, unsigned long start_addr,
899 		unsigned long end_addr, unsigned long *nr_accounted,
900 		struct zap_details *);
901 
902 /**
903  * mm_walk - callbacks for walk_page_range
904  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
905  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
906  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
907  *	       this handler is required to be able to handle
908  *	       pmd_trans_huge() pmds.  They may simply choose to
909  *	       split_huge_page() instead of handling it explicitly.
910  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
911  * @pte_hole: if set, called for each hole at all levels
912  * @hugetlb_entry: if set, called for each hugetlb entry
913  *
914  * (see walk_page_range for more details)
915  */
916 struct mm_walk {
917 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
918 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
919 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
920 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
921 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
922 	int (*hugetlb_entry)(pte_t *, unsigned long,
923 			     unsigned long, unsigned long, struct mm_walk *);
924 	struct mm_struct *mm;
925 	void *private;
926 };
927 
928 int walk_page_range(unsigned long addr, unsigned long end,
929 		struct mm_walk *walk);
930 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
931 		unsigned long end, unsigned long floor, unsigned long ceiling);
932 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
933 			struct vm_area_struct *vma);
934 void unmap_mapping_range(struct address_space *mapping,
935 		loff_t const holebegin, loff_t const holelen, int even_cows);
936 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
937 	unsigned long *pfn);
938 int follow_phys(struct vm_area_struct *vma, unsigned long address,
939 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
940 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
941 			void *buf, int len, int write);
942 
943 static inline void unmap_shared_mapping_range(struct address_space *mapping,
944 		loff_t const holebegin, loff_t const holelen)
945 {
946 	unmap_mapping_range(mapping, holebegin, holelen, 0);
947 }
948 
949 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
950 extern void truncate_setsize(struct inode *inode, loff_t newsize);
951 extern int vmtruncate(struct inode *inode, loff_t offset);
952 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
953 
954 int truncate_inode_page(struct address_space *mapping, struct page *page);
955 int generic_error_remove_page(struct address_space *mapping, struct page *page);
956 
957 int invalidate_inode_page(struct page *page);
958 
959 #ifdef CONFIG_MMU
960 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
961 			unsigned long address, unsigned int flags);
962 #else
963 static inline int handle_mm_fault(struct mm_struct *mm,
964 			struct vm_area_struct *vma, unsigned long address,
965 			unsigned int flags)
966 {
967 	/* should never happen if there's no MMU */
968 	BUG();
969 	return VM_FAULT_SIGBUS;
970 }
971 #endif
972 
973 extern int make_pages_present(unsigned long addr, unsigned long end);
974 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
975 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
976 		void *buf, int len, int write);
977 
978 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
979 		     unsigned long start, int len, unsigned int foll_flags,
980 		     struct page **pages, struct vm_area_struct **vmas,
981 		     int *nonblocking);
982 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
983 			unsigned long start, int nr_pages, int write, int force,
984 			struct page **pages, struct vm_area_struct **vmas);
985 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
986 			struct page **pages);
987 struct page *get_dump_page(unsigned long addr);
988 
989 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
990 extern void do_invalidatepage(struct page *page, unsigned long offset);
991 
992 int __set_page_dirty_nobuffers(struct page *page);
993 int __set_page_dirty_no_writeback(struct page *page);
994 int redirty_page_for_writepage(struct writeback_control *wbc,
995 				struct page *page);
996 void account_page_dirtied(struct page *page, struct address_space *mapping);
997 void account_page_writeback(struct page *page);
998 int set_page_dirty(struct page *page);
999 int set_page_dirty_lock(struct page *page);
1000 int clear_page_dirty_for_io(struct page *page);
1001 
1002 /* Is the vma a continuation of the stack vma above it? */
1003 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1004 {
1005 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1006 }
1007 
1008 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1009 					     unsigned long addr)
1010 {
1011 	return (vma->vm_flags & VM_GROWSDOWN) &&
1012 		(vma->vm_start == addr) &&
1013 		!vma_growsdown(vma->vm_prev, addr);
1014 }
1015 
1016 /* Is the vma a continuation of the stack vma below it? */
1017 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1018 {
1019 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1020 }
1021 
1022 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1023 					   unsigned long addr)
1024 {
1025 	return (vma->vm_flags & VM_GROWSUP) &&
1026 		(vma->vm_end == addr) &&
1027 		!vma_growsup(vma->vm_next, addr);
1028 }
1029 
1030 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1031 		unsigned long old_addr, struct vm_area_struct *new_vma,
1032 		unsigned long new_addr, unsigned long len);
1033 extern unsigned long do_mremap(unsigned long addr,
1034 			       unsigned long old_len, unsigned long new_len,
1035 			       unsigned long flags, unsigned long new_addr);
1036 extern int mprotect_fixup(struct vm_area_struct *vma,
1037 			  struct vm_area_struct **pprev, unsigned long start,
1038 			  unsigned long end, unsigned long newflags);
1039 
1040 /*
1041  * doesn't attempt to fault and will return short.
1042  */
1043 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1044 			  struct page **pages);
1045 /*
1046  * per-process(per-mm_struct) statistics.
1047  */
1048 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1049 {
1050 	atomic_long_set(&mm->rss_stat.count[member], value);
1051 }
1052 
1053 #if defined(SPLIT_RSS_COUNTING)
1054 unsigned long get_mm_counter(struct mm_struct *mm, int member);
1055 #else
1056 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1057 {
1058 	return atomic_long_read(&mm->rss_stat.count[member]);
1059 }
1060 #endif
1061 
1062 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1063 {
1064 	atomic_long_add(value, &mm->rss_stat.count[member]);
1065 }
1066 
1067 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1068 {
1069 	atomic_long_inc(&mm->rss_stat.count[member]);
1070 }
1071 
1072 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1073 {
1074 	atomic_long_dec(&mm->rss_stat.count[member]);
1075 }
1076 
1077 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1078 {
1079 	return get_mm_counter(mm, MM_FILEPAGES) +
1080 		get_mm_counter(mm, MM_ANONPAGES);
1081 }
1082 
1083 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1084 {
1085 	return max(mm->hiwater_rss, get_mm_rss(mm));
1086 }
1087 
1088 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1089 {
1090 	return max(mm->hiwater_vm, mm->total_vm);
1091 }
1092 
1093 static inline void update_hiwater_rss(struct mm_struct *mm)
1094 {
1095 	unsigned long _rss = get_mm_rss(mm);
1096 
1097 	if ((mm)->hiwater_rss < _rss)
1098 		(mm)->hiwater_rss = _rss;
1099 }
1100 
1101 static inline void update_hiwater_vm(struct mm_struct *mm)
1102 {
1103 	if (mm->hiwater_vm < mm->total_vm)
1104 		mm->hiwater_vm = mm->total_vm;
1105 }
1106 
1107 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1108 					 struct mm_struct *mm)
1109 {
1110 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1111 
1112 	if (*maxrss < hiwater_rss)
1113 		*maxrss = hiwater_rss;
1114 }
1115 
1116 #if defined(SPLIT_RSS_COUNTING)
1117 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1118 #else
1119 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1120 {
1121 }
1122 #endif
1123 
1124 /*
1125  * This struct is used to pass information from page reclaim to the shrinkers.
1126  * We consolidate the values for easier extention later.
1127  */
1128 struct shrink_control {
1129 	gfp_t gfp_mask;
1130 
1131 	/* How many slab objects shrinker() should scan and try to reclaim */
1132 	unsigned long nr_to_scan;
1133 };
1134 
1135 /*
1136  * A callback you can register to apply pressure to ageable caches.
1137  *
1138  * 'sc' is passed shrink_control which includes a count 'nr_to_scan'
1139  * and a 'gfpmask'.  It should look through the least-recently-used
1140  * 'nr_to_scan' entries and attempt to free them up.  It should return
1141  * the number of objects which remain in the cache.  If it returns -1, it means
1142  * it cannot do any scanning at this time (eg. there is a risk of deadlock).
1143  *
1144  * The 'gfpmask' refers to the allocation we are currently trying to
1145  * fulfil.
1146  *
1147  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1148  * querying the cache size, so a fastpath for that case is appropriate.
1149  */
1150 struct shrinker {
1151 	int (*shrink)(struct shrinker *, struct shrink_control *sc);
1152 	int seeks;	/* seeks to recreate an obj */
1153 
1154 	/* These are for internal use */
1155 	struct list_head list;
1156 	long nr;	/* objs pending delete */
1157 };
1158 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1159 extern void register_shrinker(struct shrinker *);
1160 extern void unregister_shrinker(struct shrinker *);
1161 
1162 int vma_wants_writenotify(struct vm_area_struct *vma);
1163 
1164 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1165 			       spinlock_t **ptl);
1166 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1167 				    spinlock_t **ptl)
1168 {
1169 	pte_t *ptep;
1170 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1171 	return ptep;
1172 }
1173 
1174 #ifdef __PAGETABLE_PUD_FOLDED
1175 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1176 						unsigned long address)
1177 {
1178 	return 0;
1179 }
1180 #else
1181 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1182 #endif
1183 
1184 #ifdef __PAGETABLE_PMD_FOLDED
1185 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1186 						unsigned long address)
1187 {
1188 	return 0;
1189 }
1190 #else
1191 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1192 #endif
1193 
1194 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1195 		pmd_t *pmd, unsigned long address);
1196 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1197 
1198 /*
1199  * The following ifdef needed to get the 4level-fixup.h header to work.
1200  * Remove it when 4level-fixup.h has been removed.
1201  */
1202 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1203 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1204 {
1205 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1206 		NULL: pud_offset(pgd, address);
1207 }
1208 
1209 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1210 {
1211 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1212 		NULL: pmd_offset(pud, address);
1213 }
1214 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1215 
1216 #if USE_SPLIT_PTLOCKS
1217 /*
1218  * We tuck a spinlock to guard each pagetable page into its struct page,
1219  * at page->private, with BUILD_BUG_ON to make sure that this will not
1220  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1221  * When freeing, reset page->mapping so free_pages_check won't complain.
1222  */
1223 #define __pte_lockptr(page)	&((page)->ptl)
1224 #define pte_lock_init(_page)	do {					\
1225 	spin_lock_init(__pte_lockptr(_page));				\
1226 } while (0)
1227 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1228 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1229 #else	/* !USE_SPLIT_PTLOCKS */
1230 /*
1231  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1232  */
1233 #define pte_lock_init(page)	do {} while (0)
1234 #define pte_lock_deinit(page)	do {} while (0)
1235 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1236 #endif /* USE_SPLIT_PTLOCKS */
1237 
1238 static inline void pgtable_page_ctor(struct page *page)
1239 {
1240 	pte_lock_init(page);
1241 	inc_zone_page_state(page, NR_PAGETABLE);
1242 }
1243 
1244 static inline void pgtable_page_dtor(struct page *page)
1245 {
1246 	pte_lock_deinit(page);
1247 	dec_zone_page_state(page, NR_PAGETABLE);
1248 }
1249 
1250 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1251 ({							\
1252 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1253 	pte_t *__pte = pte_offset_map(pmd, address);	\
1254 	*(ptlp) = __ptl;				\
1255 	spin_lock(__ptl);				\
1256 	__pte;						\
1257 })
1258 
1259 #define pte_unmap_unlock(pte, ptl)	do {		\
1260 	spin_unlock(ptl);				\
1261 	pte_unmap(pte);					\
1262 } while (0)
1263 
1264 #define pte_alloc_map(mm, vma, pmd, address)				\
1265 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1266 							pmd, address))?	\
1267 	 NULL: pte_offset_map(pmd, address))
1268 
1269 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1270 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1271 							pmd, address))?	\
1272 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1273 
1274 #define pte_alloc_kernel(pmd, address)			\
1275 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1276 		NULL: pte_offset_kernel(pmd, address))
1277 
1278 extern void free_area_init(unsigned long * zones_size);
1279 extern void free_area_init_node(int nid, unsigned long * zones_size,
1280 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1281 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1282 /*
1283  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1284  * zones, allocate the backing mem_map and account for memory holes in a more
1285  * architecture independent manner. This is a substitute for creating the
1286  * zone_sizes[] and zholes_size[] arrays and passing them to
1287  * free_area_init_node()
1288  *
1289  * An architecture is expected to register range of page frames backed by
1290  * physical memory with add_active_range() before calling
1291  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1292  * usage, an architecture is expected to do something like
1293  *
1294  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1295  * 							 max_highmem_pfn};
1296  * for_each_valid_physical_page_range()
1297  * 	add_active_range(node_id, start_pfn, end_pfn)
1298  * free_area_init_nodes(max_zone_pfns);
1299  *
1300  * If the architecture guarantees that there are no holes in the ranges
1301  * registered with add_active_range(), free_bootmem_active_regions()
1302  * will call free_bootmem_node() for each registered physical page range.
1303  * Similarly sparse_memory_present_with_active_regions() calls
1304  * memory_present() for each range when SPARSEMEM is enabled.
1305  *
1306  * See mm/page_alloc.c for more information on each function exposed by
1307  * CONFIG_ARCH_POPULATES_NODE_MAP
1308  */
1309 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1310 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1311 					unsigned long end_pfn);
1312 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1313 					unsigned long end_pfn);
1314 extern void remove_all_active_ranges(void);
1315 void sort_node_map(void);
1316 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1317 						unsigned long end_pfn);
1318 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1319 						unsigned long end_pfn);
1320 extern void get_pfn_range_for_nid(unsigned int nid,
1321 			unsigned long *start_pfn, unsigned long *end_pfn);
1322 extern unsigned long find_min_pfn_with_active_regions(void);
1323 extern void free_bootmem_with_active_regions(int nid,
1324 						unsigned long max_low_pfn);
1325 int add_from_early_node_map(struct range *range, int az,
1326 				   int nr_range, int nid);
1327 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1328 					u64 goal, u64 limit);
1329 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1330 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1331 extern void sparse_memory_present_with_active_regions(int nid);
1332 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1333 
1334 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1335     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1336 static inline int __early_pfn_to_nid(unsigned long pfn)
1337 {
1338 	return 0;
1339 }
1340 #else
1341 /* please see mm/page_alloc.c */
1342 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1343 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1344 /* there is a per-arch backend function. */
1345 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1346 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1347 #endif
1348 
1349 extern void set_dma_reserve(unsigned long new_dma_reserve);
1350 extern void memmap_init_zone(unsigned long, int, unsigned long,
1351 				unsigned long, enum memmap_context);
1352 extern void setup_per_zone_wmarks(void);
1353 extern int __meminit init_per_zone_wmark_min(void);
1354 extern void mem_init(void);
1355 extern void __init mmap_init(void);
1356 extern void show_mem(unsigned int flags);
1357 extern void si_meminfo(struct sysinfo * val);
1358 extern void si_meminfo_node(struct sysinfo *val, int nid);
1359 extern int after_bootmem;
1360 
1361 extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1362 
1363 extern void setup_per_cpu_pageset(void);
1364 
1365 extern void zone_pcp_update(struct zone *zone);
1366 
1367 /* nommu.c */
1368 extern atomic_long_t mmap_pages_allocated;
1369 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1370 
1371 /* prio_tree.c */
1372 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1373 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1374 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1375 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1376 	struct prio_tree_iter *iter);
1377 
1378 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1379 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1380 		(vma = vma_prio_tree_next(vma, iter)); )
1381 
1382 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1383 					struct list_head *list)
1384 {
1385 	vma->shared.vm_set.parent = NULL;
1386 	list_add_tail(&vma->shared.vm_set.list, list);
1387 }
1388 
1389 /* mmap.c */
1390 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1391 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1392 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1393 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1394 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1395 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1396 	struct mempolicy *);
1397 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1398 extern int split_vma(struct mm_struct *,
1399 	struct vm_area_struct *, unsigned long addr, int new_below);
1400 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1401 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1402 	struct rb_node **, struct rb_node *);
1403 extern void unlink_file_vma(struct vm_area_struct *);
1404 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1405 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1406 extern void exit_mmap(struct mm_struct *);
1407 
1408 extern int mm_take_all_locks(struct mm_struct *mm);
1409 extern void mm_drop_all_locks(struct mm_struct *mm);
1410 
1411 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1412 extern void added_exe_file_vma(struct mm_struct *mm);
1413 extern void removed_exe_file_vma(struct mm_struct *mm);
1414 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1415 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1416 
1417 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1418 extern int install_special_mapping(struct mm_struct *mm,
1419 				   unsigned long addr, unsigned long len,
1420 				   unsigned long flags, struct page **pages);
1421 
1422 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1423 
1424 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1425 	unsigned long len, unsigned long prot,
1426 	unsigned long flag, unsigned long pgoff);
1427 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1428 	unsigned long len, unsigned long flags,
1429 	vm_flags_t vm_flags, unsigned long pgoff);
1430 
1431 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1432 	unsigned long len, unsigned long prot,
1433 	unsigned long flag, unsigned long offset)
1434 {
1435 	unsigned long ret = -EINVAL;
1436 	if ((offset + PAGE_ALIGN(len)) < offset)
1437 		goto out;
1438 	if (!(offset & ~PAGE_MASK))
1439 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1440 out:
1441 	return ret;
1442 }
1443 
1444 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1445 
1446 extern unsigned long do_brk(unsigned long, unsigned long);
1447 
1448 /* filemap.c */
1449 extern unsigned long page_unuse(struct page *);
1450 extern void truncate_inode_pages(struct address_space *, loff_t);
1451 extern void truncate_inode_pages_range(struct address_space *,
1452 				       loff_t lstart, loff_t lend);
1453 
1454 /* generic vm_area_ops exported for stackable file systems */
1455 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1456 
1457 /* mm/page-writeback.c */
1458 int write_one_page(struct page *page, int wait);
1459 void task_dirty_inc(struct task_struct *tsk);
1460 
1461 /* readahead.c */
1462 #define VM_MAX_READAHEAD	128	/* kbytes */
1463 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1464 
1465 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1466 			pgoff_t offset, unsigned long nr_to_read);
1467 
1468 void page_cache_sync_readahead(struct address_space *mapping,
1469 			       struct file_ra_state *ra,
1470 			       struct file *filp,
1471 			       pgoff_t offset,
1472 			       unsigned long size);
1473 
1474 void page_cache_async_readahead(struct address_space *mapping,
1475 				struct file_ra_state *ra,
1476 				struct file *filp,
1477 				struct page *pg,
1478 				pgoff_t offset,
1479 				unsigned long size);
1480 
1481 unsigned long max_sane_readahead(unsigned long nr);
1482 unsigned long ra_submit(struct file_ra_state *ra,
1483 			struct address_space *mapping,
1484 			struct file *filp);
1485 
1486 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1487 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1488 
1489 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1490 extern int expand_downwards(struct vm_area_struct *vma,
1491 		unsigned long address);
1492 #if VM_GROWSUP
1493 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1494 #else
1495   #define expand_upwards(vma, address) do { } while (0)
1496 #endif
1497 
1498 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1499 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1500 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1501 					     struct vm_area_struct **pprev);
1502 
1503 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1504    NULL if none.  Assume start_addr < end_addr. */
1505 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1506 {
1507 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1508 
1509 	if (vma && end_addr <= vma->vm_start)
1510 		vma = NULL;
1511 	return vma;
1512 }
1513 
1514 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1515 {
1516 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1517 }
1518 
1519 #ifdef CONFIG_MMU
1520 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1521 #else
1522 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1523 {
1524 	return __pgprot(0);
1525 }
1526 #endif
1527 
1528 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1529 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1530 			unsigned long pfn, unsigned long size, pgprot_t);
1531 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1532 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1533 			unsigned long pfn);
1534 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1535 			unsigned long pfn);
1536 
1537 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1538 			unsigned int foll_flags);
1539 #define FOLL_WRITE	0x01	/* check pte is writable */
1540 #define FOLL_TOUCH	0x02	/* mark page accessed */
1541 #define FOLL_GET	0x04	/* do get_page on page */
1542 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1543 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1544 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1545 				 * and return without waiting upon it */
1546 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1547 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1548 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1549 
1550 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1551 			void *data);
1552 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1553 			       unsigned long size, pte_fn_t fn, void *data);
1554 
1555 #ifdef CONFIG_PROC_FS
1556 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1557 #else
1558 static inline void vm_stat_account(struct mm_struct *mm,
1559 			unsigned long flags, struct file *file, long pages)
1560 {
1561 }
1562 #endif /* CONFIG_PROC_FS */
1563 
1564 #ifdef CONFIG_DEBUG_PAGEALLOC
1565 extern int debug_pagealloc_enabled;
1566 
1567 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1568 
1569 static inline void enable_debug_pagealloc(void)
1570 {
1571 	debug_pagealloc_enabled = 1;
1572 }
1573 #ifdef CONFIG_HIBERNATION
1574 extern bool kernel_page_present(struct page *page);
1575 #endif /* CONFIG_HIBERNATION */
1576 #else
1577 static inline void
1578 kernel_map_pages(struct page *page, int numpages, int enable) {}
1579 static inline void enable_debug_pagealloc(void)
1580 {
1581 }
1582 #ifdef CONFIG_HIBERNATION
1583 static inline bool kernel_page_present(struct page *page) { return true; }
1584 #endif /* CONFIG_HIBERNATION */
1585 #endif
1586 
1587 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1588 #ifdef	__HAVE_ARCH_GATE_AREA
1589 int in_gate_area_no_mm(unsigned long addr);
1590 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1591 #else
1592 int in_gate_area_no_mm(unsigned long addr);
1593 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1594 #endif	/* __HAVE_ARCH_GATE_AREA */
1595 
1596 int drop_caches_sysctl_handler(struct ctl_table *, int,
1597 					void __user *, size_t *, loff_t *);
1598 unsigned long shrink_slab(struct shrink_control *shrink,
1599 			  unsigned long nr_pages_scanned,
1600 			  unsigned long lru_pages);
1601 
1602 #ifndef CONFIG_MMU
1603 #define randomize_va_space 0
1604 #else
1605 extern int randomize_va_space;
1606 #endif
1607 
1608 const char * arch_vma_name(struct vm_area_struct *vma);
1609 void print_vma_addr(char *prefix, unsigned long rip);
1610 
1611 void sparse_mem_maps_populate_node(struct page **map_map,
1612 				   unsigned long pnum_begin,
1613 				   unsigned long pnum_end,
1614 				   unsigned long map_count,
1615 				   int nodeid);
1616 
1617 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1618 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1619 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1620 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1621 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1622 void *vmemmap_alloc_block(unsigned long size, int node);
1623 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1624 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1625 int vmemmap_populate_basepages(struct page *start_page,
1626 						unsigned long pages, int node);
1627 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1628 void vmemmap_populate_print_last(void);
1629 
1630 
1631 enum mf_flags {
1632 	MF_COUNT_INCREASED = 1 << 0,
1633 };
1634 extern void memory_failure(unsigned long pfn, int trapno);
1635 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1636 extern int unpoison_memory(unsigned long pfn);
1637 extern int sysctl_memory_failure_early_kill;
1638 extern int sysctl_memory_failure_recovery;
1639 extern void shake_page(struct page *p, int access);
1640 extern atomic_long_t mce_bad_pages;
1641 extern int soft_offline_page(struct page *page, int flags);
1642 
1643 extern void dump_page(struct page *page);
1644 
1645 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1646 extern void clear_huge_page(struct page *page,
1647 			    unsigned long addr,
1648 			    unsigned int pages_per_huge_page);
1649 extern void copy_user_huge_page(struct page *dst, struct page *src,
1650 				unsigned long addr, struct vm_area_struct *vma,
1651 				unsigned int pages_per_huge_page);
1652 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1653 
1654 #endif /* __KERNEL__ */
1655 #endif /* _LINUX_MM_H */
1656