1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36 extern unsigned long max_mapnr; 37 38 static inline void set_max_mapnr(unsigned long limit) 39 { 40 max_mapnr = limit; 41 } 42 #else 43 static inline void set_max_mapnr(unsigned long limit) { } 44 #endif 45 46 extern unsigned long totalram_pages; 47 extern void * high_memory; 48 extern int page_cluster; 49 50 #ifdef CONFIG_SYSCTL 51 extern int sysctl_legacy_va_layout; 52 #else 53 #define sysctl_legacy_va_layout 0 54 #endif 55 56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57 extern const int mmap_rnd_bits_min; 58 extern const int mmap_rnd_bits_max; 59 extern int mmap_rnd_bits __read_mostly; 60 #endif 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62 extern const int mmap_rnd_compat_bits_min; 63 extern const int mmap_rnd_compat_bits_max; 64 extern int mmap_rnd_compat_bits __read_mostly; 65 #endif 66 67 #include <asm/page.h> 68 #include <asm/pgtable.h> 69 #include <asm/processor.h> 70 71 #ifndef __pa_symbol 72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73 #endif 74 75 /* 76 * To prevent common memory management code establishing 77 * a zero page mapping on a read fault. 78 * This macro should be defined within <asm/pgtable.h>. 79 * s390 does this to prevent multiplexing of hardware bits 80 * related to the physical page in case of virtualization. 81 */ 82 #ifndef mm_forbids_zeropage 83 #define mm_forbids_zeropage(X) (0) 84 #endif 85 86 /* 87 * Default maximum number of active map areas, this limits the number of vmas 88 * per mm struct. Users can overwrite this number by sysctl but there is a 89 * problem. 90 * 91 * When a program's coredump is generated as ELF format, a section is created 92 * per a vma. In ELF, the number of sections is represented in unsigned short. 93 * This means the number of sections should be smaller than 65535 at coredump. 94 * Because the kernel adds some informative sections to a image of program at 95 * generating coredump, we need some margin. The number of extra sections is 96 * 1-3 now and depends on arch. We use "5" as safe margin, here. 97 * 98 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 99 * not a hard limit any more. Although some userspace tools can be surprised by 100 * that. 101 */ 102 #define MAPCOUNT_ELF_CORE_MARGIN (5) 103 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 104 105 extern int sysctl_max_map_count; 106 107 extern unsigned long sysctl_user_reserve_kbytes; 108 extern unsigned long sysctl_admin_reserve_kbytes; 109 110 extern int sysctl_overcommit_memory; 111 extern int sysctl_overcommit_ratio; 112 extern unsigned long sysctl_overcommit_kbytes; 113 114 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 115 size_t *, loff_t *); 116 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 117 size_t *, loff_t *); 118 119 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 120 121 /* to align the pointer to the (next) page boundary */ 122 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 123 124 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 125 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 126 127 /* 128 * Linux kernel virtual memory manager primitives. 129 * The idea being to have a "virtual" mm in the same way 130 * we have a virtual fs - giving a cleaner interface to the 131 * mm details, and allowing different kinds of memory mappings 132 * (from shared memory to executable loading to arbitrary 133 * mmap() functions). 134 */ 135 136 extern struct kmem_cache *vm_area_cachep; 137 138 #ifndef CONFIG_MMU 139 extern struct rb_root nommu_region_tree; 140 extern struct rw_semaphore nommu_region_sem; 141 142 extern unsigned int kobjsize(const void *objp); 143 #endif 144 145 /* 146 * vm_flags in vm_area_struct, see mm_types.h. 147 * When changing, update also include/trace/events/mmflags.h 148 */ 149 #define VM_NONE 0x00000000 150 151 #define VM_READ 0x00000001 /* currently active flags */ 152 #define VM_WRITE 0x00000002 153 #define VM_EXEC 0x00000004 154 #define VM_SHARED 0x00000008 155 156 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 157 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 158 #define VM_MAYWRITE 0x00000020 159 #define VM_MAYEXEC 0x00000040 160 #define VM_MAYSHARE 0x00000080 161 162 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 163 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 164 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 165 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 166 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 167 168 #define VM_LOCKED 0x00002000 169 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 170 171 /* Used by sys_madvise() */ 172 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 173 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 174 175 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 176 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 177 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 178 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 179 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 180 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 181 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 182 #define VM_ARCH_2 0x02000000 183 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 184 185 #ifdef CONFIG_MEM_SOFT_DIRTY 186 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 187 #else 188 # define VM_SOFTDIRTY 0 189 #endif 190 191 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 192 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 193 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 194 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 195 196 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 197 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 198 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 199 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 200 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 201 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 202 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 203 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 204 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 205 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 206 207 #if defined(CONFIG_X86) 208 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 209 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 210 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 211 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 212 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 213 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 214 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 215 #endif 216 #elif defined(CONFIG_PPC) 217 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 218 #elif defined(CONFIG_PARISC) 219 # define VM_GROWSUP VM_ARCH_1 220 #elif defined(CONFIG_METAG) 221 # define VM_GROWSUP VM_ARCH_1 222 #elif defined(CONFIG_IA64) 223 # define VM_GROWSUP VM_ARCH_1 224 #elif !defined(CONFIG_MMU) 225 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 226 #endif 227 228 #if defined(CONFIG_X86) 229 /* MPX specific bounds table or bounds directory */ 230 # define VM_MPX VM_ARCH_2 231 #endif 232 233 #ifndef VM_GROWSUP 234 # define VM_GROWSUP VM_NONE 235 #endif 236 237 /* Bits set in the VMA until the stack is in its final location */ 238 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 239 240 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 241 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 242 #endif 243 244 #ifdef CONFIG_STACK_GROWSUP 245 #define VM_STACK VM_GROWSUP 246 #else 247 #define VM_STACK VM_GROWSDOWN 248 #endif 249 250 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 251 252 /* 253 * Special vmas that are non-mergable, non-mlock()able. 254 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 255 */ 256 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 257 258 /* This mask defines which mm->def_flags a process can inherit its parent */ 259 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 260 261 /* This mask is used to clear all the VMA flags used by mlock */ 262 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 263 264 /* 265 * mapping from the currently active vm_flags protection bits (the 266 * low four bits) to a page protection mask.. 267 */ 268 extern pgprot_t protection_map[16]; 269 270 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 271 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 272 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 273 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 274 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 275 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 276 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 277 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 278 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 279 280 /* 281 * vm_fault is filled by the the pagefault handler and passed to the vma's 282 * ->fault function. The vma's ->fault is responsible for returning a bitmask 283 * of VM_FAULT_xxx flags that give details about how the fault was handled. 284 * 285 * MM layer fills up gfp_mask for page allocations but fault handler might 286 * alter it if its implementation requires a different allocation context. 287 * 288 * pgoff should be used in favour of virtual_address, if possible. 289 */ 290 struct vm_fault { 291 unsigned int flags; /* FAULT_FLAG_xxx flags */ 292 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 293 pgoff_t pgoff; /* Logical page offset based on vma */ 294 void __user *virtual_address; /* Faulting virtual address */ 295 296 struct page *cow_page; /* Handler may choose to COW */ 297 struct page *page; /* ->fault handlers should return a 298 * page here, unless VM_FAULT_NOPAGE 299 * is set (which is also implied by 300 * VM_FAULT_ERROR). 301 */ 302 /* for ->map_pages() only */ 303 pgoff_t max_pgoff; /* map pages for offset from pgoff till 304 * max_pgoff inclusive */ 305 pte_t *pte; /* pte entry associated with ->pgoff */ 306 }; 307 308 /* 309 * These are the virtual MM functions - opening of an area, closing and 310 * unmapping it (needed to keep files on disk up-to-date etc), pointer 311 * to the functions called when a no-page or a wp-page exception occurs. 312 */ 313 struct vm_operations_struct { 314 void (*open)(struct vm_area_struct * area); 315 void (*close)(struct vm_area_struct * area); 316 int (*mremap)(struct vm_area_struct * area); 317 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 318 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 319 pmd_t *, unsigned int flags); 320 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 321 322 /* notification that a previously read-only page is about to become 323 * writable, if an error is returned it will cause a SIGBUS */ 324 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 325 326 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 327 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 328 329 /* called by access_process_vm when get_user_pages() fails, typically 330 * for use by special VMAs that can switch between memory and hardware 331 */ 332 int (*access)(struct vm_area_struct *vma, unsigned long addr, 333 void *buf, int len, int write); 334 335 /* Called by the /proc/PID/maps code to ask the vma whether it 336 * has a special name. Returning non-NULL will also cause this 337 * vma to be dumped unconditionally. */ 338 const char *(*name)(struct vm_area_struct *vma); 339 340 #ifdef CONFIG_NUMA 341 /* 342 * set_policy() op must add a reference to any non-NULL @new mempolicy 343 * to hold the policy upon return. Caller should pass NULL @new to 344 * remove a policy and fall back to surrounding context--i.e. do not 345 * install a MPOL_DEFAULT policy, nor the task or system default 346 * mempolicy. 347 */ 348 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 349 350 /* 351 * get_policy() op must add reference [mpol_get()] to any policy at 352 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 353 * in mm/mempolicy.c will do this automatically. 354 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 355 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 356 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 357 * must return NULL--i.e., do not "fallback" to task or system default 358 * policy. 359 */ 360 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 361 unsigned long addr); 362 #endif 363 /* 364 * Called by vm_normal_page() for special PTEs to find the 365 * page for @addr. This is useful if the default behavior 366 * (using pte_page()) would not find the correct page. 367 */ 368 struct page *(*find_special_page)(struct vm_area_struct *vma, 369 unsigned long addr); 370 }; 371 372 struct mmu_gather; 373 struct inode; 374 375 #define page_private(page) ((page)->private) 376 #define set_page_private(page, v) ((page)->private = (v)) 377 378 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 379 static inline int pmd_devmap(pmd_t pmd) 380 { 381 return 0; 382 } 383 #endif 384 385 /* 386 * FIXME: take this include out, include page-flags.h in 387 * files which need it (119 of them) 388 */ 389 #include <linux/page-flags.h> 390 #include <linux/huge_mm.h> 391 392 /* 393 * Methods to modify the page usage count. 394 * 395 * What counts for a page usage: 396 * - cache mapping (page->mapping) 397 * - private data (page->private) 398 * - page mapped in a task's page tables, each mapping 399 * is counted separately 400 * 401 * Also, many kernel routines increase the page count before a critical 402 * routine so they can be sure the page doesn't go away from under them. 403 */ 404 405 /* 406 * Drop a ref, return true if the refcount fell to zero (the page has no users) 407 */ 408 static inline int put_page_testzero(struct page *page) 409 { 410 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 411 return page_ref_dec_and_test(page); 412 } 413 414 /* 415 * Try to grab a ref unless the page has a refcount of zero, return false if 416 * that is the case. 417 * This can be called when MMU is off so it must not access 418 * any of the virtual mappings. 419 */ 420 static inline int get_page_unless_zero(struct page *page) 421 { 422 return page_ref_add_unless(page, 1, 0); 423 } 424 425 extern int page_is_ram(unsigned long pfn); 426 427 enum { 428 REGION_INTERSECTS, 429 REGION_DISJOINT, 430 REGION_MIXED, 431 }; 432 433 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 434 unsigned long desc); 435 436 /* Support for virtually mapped pages */ 437 struct page *vmalloc_to_page(const void *addr); 438 unsigned long vmalloc_to_pfn(const void *addr); 439 440 /* 441 * Determine if an address is within the vmalloc range 442 * 443 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 444 * is no special casing required. 445 */ 446 static inline int is_vmalloc_addr(const void *x) 447 { 448 #ifdef CONFIG_MMU 449 unsigned long addr = (unsigned long)x; 450 451 return addr >= VMALLOC_START && addr < VMALLOC_END; 452 #else 453 return 0; 454 #endif 455 } 456 #ifdef CONFIG_MMU 457 extern int is_vmalloc_or_module_addr(const void *x); 458 #else 459 static inline int is_vmalloc_or_module_addr(const void *x) 460 { 461 return 0; 462 } 463 #endif 464 465 extern void kvfree(const void *addr); 466 467 static inline atomic_t *compound_mapcount_ptr(struct page *page) 468 { 469 return &page[1].compound_mapcount; 470 } 471 472 static inline int compound_mapcount(struct page *page) 473 { 474 if (!PageCompound(page)) 475 return 0; 476 page = compound_head(page); 477 return atomic_read(compound_mapcount_ptr(page)) + 1; 478 } 479 480 /* 481 * The atomic page->_mapcount, starts from -1: so that transitions 482 * both from it and to it can be tracked, using atomic_inc_and_test 483 * and atomic_add_negative(-1). 484 */ 485 static inline void page_mapcount_reset(struct page *page) 486 { 487 atomic_set(&(page)->_mapcount, -1); 488 } 489 490 int __page_mapcount(struct page *page); 491 492 static inline int page_mapcount(struct page *page) 493 { 494 VM_BUG_ON_PAGE(PageSlab(page), page); 495 496 if (unlikely(PageCompound(page))) 497 return __page_mapcount(page); 498 return atomic_read(&page->_mapcount) + 1; 499 } 500 501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 502 int total_mapcount(struct page *page); 503 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 504 #else 505 static inline int total_mapcount(struct page *page) 506 { 507 return page_mapcount(page); 508 } 509 static inline int page_trans_huge_mapcount(struct page *page, 510 int *total_mapcount) 511 { 512 int mapcount = page_mapcount(page); 513 if (total_mapcount) 514 *total_mapcount = mapcount; 515 return mapcount; 516 } 517 #endif 518 519 static inline struct page *virt_to_head_page(const void *x) 520 { 521 struct page *page = virt_to_page(x); 522 523 return compound_head(page); 524 } 525 526 void __put_page(struct page *page); 527 528 void put_pages_list(struct list_head *pages); 529 530 void split_page(struct page *page, unsigned int order); 531 int split_free_page(struct page *page); 532 533 /* 534 * Compound pages have a destructor function. Provide a 535 * prototype for that function and accessor functions. 536 * These are _only_ valid on the head of a compound page. 537 */ 538 typedef void compound_page_dtor(struct page *); 539 540 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 541 enum compound_dtor_id { 542 NULL_COMPOUND_DTOR, 543 COMPOUND_PAGE_DTOR, 544 #ifdef CONFIG_HUGETLB_PAGE 545 HUGETLB_PAGE_DTOR, 546 #endif 547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 548 TRANSHUGE_PAGE_DTOR, 549 #endif 550 NR_COMPOUND_DTORS, 551 }; 552 extern compound_page_dtor * const compound_page_dtors[]; 553 554 static inline void set_compound_page_dtor(struct page *page, 555 enum compound_dtor_id compound_dtor) 556 { 557 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 558 page[1].compound_dtor = compound_dtor; 559 } 560 561 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 562 { 563 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 564 return compound_page_dtors[page[1].compound_dtor]; 565 } 566 567 static inline unsigned int compound_order(struct page *page) 568 { 569 if (!PageHead(page)) 570 return 0; 571 return page[1].compound_order; 572 } 573 574 static inline void set_compound_order(struct page *page, unsigned int order) 575 { 576 page[1].compound_order = order; 577 } 578 579 void free_compound_page(struct page *page); 580 581 #ifdef CONFIG_MMU 582 /* 583 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 584 * servicing faults for write access. In the normal case, do always want 585 * pte_mkwrite. But get_user_pages can cause write faults for mappings 586 * that do not have writing enabled, when used by access_process_vm. 587 */ 588 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 589 { 590 if (likely(vma->vm_flags & VM_WRITE)) 591 pte = pte_mkwrite(pte); 592 return pte; 593 } 594 595 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 596 struct page *page, pte_t *pte, bool write, bool anon); 597 #endif 598 599 /* 600 * Multiple processes may "see" the same page. E.g. for untouched 601 * mappings of /dev/null, all processes see the same page full of 602 * zeroes, and text pages of executables and shared libraries have 603 * only one copy in memory, at most, normally. 604 * 605 * For the non-reserved pages, page_count(page) denotes a reference count. 606 * page_count() == 0 means the page is free. page->lru is then used for 607 * freelist management in the buddy allocator. 608 * page_count() > 0 means the page has been allocated. 609 * 610 * Pages are allocated by the slab allocator in order to provide memory 611 * to kmalloc and kmem_cache_alloc. In this case, the management of the 612 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 613 * unless a particular usage is carefully commented. (the responsibility of 614 * freeing the kmalloc memory is the caller's, of course). 615 * 616 * A page may be used by anyone else who does a __get_free_page(). 617 * In this case, page_count still tracks the references, and should only 618 * be used through the normal accessor functions. The top bits of page->flags 619 * and page->virtual store page management information, but all other fields 620 * are unused and could be used privately, carefully. The management of this 621 * page is the responsibility of the one who allocated it, and those who have 622 * subsequently been given references to it. 623 * 624 * The other pages (we may call them "pagecache pages") are completely 625 * managed by the Linux memory manager: I/O, buffers, swapping etc. 626 * The following discussion applies only to them. 627 * 628 * A pagecache page contains an opaque `private' member, which belongs to the 629 * page's address_space. Usually, this is the address of a circular list of 630 * the page's disk buffers. PG_private must be set to tell the VM to call 631 * into the filesystem to release these pages. 632 * 633 * A page may belong to an inode's memory mapping. In this case, page->mapping 634 * is the pointer to the inode, and page->index is the file offset of the page, 635 * in units of PAGE_SIZE. 636 * 637 * If pagecache pages are not associated with an inode, they are said to be 638 * anonymous pages. These may become associated with the swapcache, and in that 639 * case PG_swapcache is set, and page->private is an offset into the swapcache. 640 * 641 * In either case (swapcache or inode backed), the pagecache itself holds one 642 * reference to the page. Setting PG_private should also increment the 643 * refcount. The each user mapping also has a reference to the page. 644 * 645 * The pagecache pages are stored in a per-mapping radix tree, which is 646 * rooted at mapping->page_tree, and indexed by offset. 647 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 648 * lists, we instead now tag pages as dirty/writeback in the radix tree. 649 * 650 * All pagecache pages may be subject to I/O: 651 * - inode pages may need to be read from disk, 652 * - inode pages which have been modified and are MAP_SHARED may need 653 * to be written back to the inode on disk, 654 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 655 * modified may need to be swapped out to swap space and (later) to be read 656 * back into memory. 657 */ 658 659 /* 660 * The zone field is never updated after free_area_init_core() 661 * sets it, so none of the operations on it need to be atomic. 662 */ 663 664 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 665 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 666 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 667 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 668 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 669 670 /* 671 * Define the bit shifts to access each section. For non-existent 672 * sections we define the shift as 0; that plus a 0 mask ensures 673 * the compiler will optimise away reference to them. 674 */ 675 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 676 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 677 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 678 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 679 680 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 681 #ifdef NODE_NOT_IN_PAGE_FLAGS 682 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 683 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 684 SECTIONS_PGOFF : ZONES_PGOFF) 685 #else 686 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 687 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 688 NODES_PGOFF : ZONES_PGOFF) 689 #endif 690 691 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 692 693 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 694 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 695 #endif 696 697 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 698 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 699 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 700 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 701 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 702 703 static inline enum zone_type page_zonenum(const struct page *page) 704 { 705 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 706 } 707 708 #ifdef CONFIG_ZONE_DEVICE 709 void get_zone_device_page(struct page *page); 710 void put_zone_device_page(struct page *page); 711 static inline bool is_zone_device_page(const struct page *page) 712 { 713 return page_zonenum(page) == ZONE_DEVICE; 714 } 715 #else 716 static inline void get_zone_device_page(struct page *page) 717 { 718 } 719 static inline void put_zone_device_page(struct page *page) 720 { 721 } 722 static inline bool is_zone_device_page(const struct page *page) 723 { 724 return false; 725 } 726 #endif 727 728 static inline void get_page(struct page *page) 729 { 730 page = compound_head(page); 731 /* 732 * Getting a normal page or the head of a compound page 733 * requires to already have an elevated page->_count. 734 */ 735 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 736 page_ref_inc(page); 737 738 if (unlikely(is_zone_device_page(page))) 739 get_zone_device_page(page); 740 } 741 742 static inline void put_page(struct page *page) 743 { 744 page = compound_head(page); 745 746 if (put_page_testzero(page)) 747 __put_page(page); 748 749 if (unlikely(is_zone_device_page(page))) 750 put_zone_device_page(page); 751 } 752 753 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 754 #define SECTION_IN_PAGE_FLAGS 755 #endif 756 757 /* 758 * The identification function is mainly used by the buddy allocator for 759 * determining if two pages could be buddies. We are not really identifying 760 * the zone since we could be using the section number id if we do not have 761 * node id available in page flags. 762 * We only guarantee that it will return the same value for two combinable 763 * pages in a zone. 764 */ 765 static inline int page_zone_id(struct page *page) 766 { 767 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 768 } 769 770 static inline int zone_to_nid(struct zone *zone) 771 { 772 #ifdef CONFIG_NUMA 773 return zone->node; 774 #else 775 return 0; 776 #endif 777 } 778 779 #ifdef NODE_NOT_IN_PAGE_FLAGS 780 extern int page_to_nid(const struct page *page); 781 #else 782 static inline int page_to_nid(const struct page *page) 783 { 784 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 785 } 786 #endif 787 788 #ifdef CONFIG_NUMA_BALANCING 789 static inline int cpu_pid_to_cpupid(int cpu, int pid) 790 { 791 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 792 } 793 794 static inline int cpupid_to_pid(int cpupid) 795 { 796 return cpupid & LAST__PID_MASK; 797 } 798 799 static inline int cpupid_to_cpu(int cpupid) 800 { 801 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 802 } 803 804 static inline int cpupid_to_nid(int cpupid) 805 { 806 return cpu_to_node(cpupid_to_cpu(cpupid)); 807 } 808 809 static inline bool cpupid_pid_unset(int cpupid) 810 { 811 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 812 } 813 814 static inline bool cpupid_cpu_unset(int cpupid) 815 { 816 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 817 } 818 819 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 820 { 821 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 822 } 823 824 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 825 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 826 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 827 { 828 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 829 } 830 831 static inline int page_cpupid_last(struct page *page) 832 { 833 return page->_last_cpupid; 834 } 835 static inline void page_cpupid_reset_last(struct page *page) 836 { 837 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 838 } 839 #else 840 static inline int page_cpupid_last(struct page *page) 841 { 842 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 843 } 844 845 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 846 847 static inline void page_cpupid_reset_last(struct page *page) 848 { 849 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 850 851 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 852 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 853 } 854 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 855 #else /* !CONFIG_NUMA_BALANCING */ 856 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 857 { 858 return page_to_nid(page); /* XXX */ 859 } 860 861 static inline int page_cpupid_last(struct page *page) 862 { 863 return page_to_nid(page); /* XXX */ 864 } 865 866 static inline int cpupid_to_nid(int cpupid) 867 { 868 return -1; 869 } 870 871 static inline int cpupid_to_pid(int cpupid) 872 { 873 return -1; 874 } 875 876 static inline int cpupid_to_cpu(int cpupid) 877 { 878 return -1; 879 } 880 881 static inline int cpu_pid_to_cpupid(int nid, int pid) 882 { 883 return -1; 884 } 885 886 static inline bool cpupid_pid_unset(int cpupid) 887 { 888 return 1; 889 } 890 891 static inline void page_cpupid_reset_last(struct page *page) 892 { 893 } 894 895 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 896 { 897 return false; 898 } 899 #endif /* CONFIG_NUMA_BALANCING */ 900 901 static inline struct zone *page_zone(const struct page *page) 902 { 903 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 904 } 905 906 #ifdef SECTION_IN_PAGE_FLAGS 907 static inline void set_page_section(struct page *page, unsigned long section) 908 { 909 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 910 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 911 } 912 913 static inline unsigned long page_to_section(const struct page *page) 914 { 915 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 916 } 917 #endif 918 919 static inline void set_page_zone(struct page *page, enum zone_type zone) 920 { 921 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 922 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 923 } 924 925 static inline void set_page_node(struct page *page, unsigned long node) 926 { 927 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 928 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 929 } 930 931 static inline void set_page_links(struct page *page, enum zone_type zone, 932 unsigned long node, unsigned long pfn) 933 { 934 set_page_zone(page, zone); 935 set_page_node(page, node); 936 #ifdef SECTION_IN_PAGE_FLAGS 937 set_page_section(page, pfn_to_section_nr(pfn)); 938 #endif 939 } 940 941 #ifdef CONFIG_MEMCG 942 static inline struct mem_cgroup *page_memcg(struct page *page) 943 { 944 return page->mem_cgroup; 945 } 946 #else 947 static inline struct mem_cgroup *page_memcg(struct page *page) 948 { 949 return NULL; 950 } 951 #endif 952 953 /* 954 * Some inline functions in vmstat.h depend on page_zone() 955 */ 956 #include <linux/vmstat.h> 957 958 static __always_inline void *lowmem_page_address(const struct page *page) 959 { 960 return __va(PFN_PHYS(page_to_pfn(page))); 961 } 962 963 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 964 #define HASHED_PAGE_VIRTUAL 965 #endif 966 967 #if defined(WANT_PAGE_VIRTUAL) 968 static inline void *page_address(const struct page *page) 969 { 970 return page->virtual; 971 } 972 static inline void set_page_address(struct page *page, void *address) 973 { 974 page->virtual = address; 975 } 976 #define page_address_init() do { } while(0) 977 #endif 978 979 #if defined(HASHED_PAGE_VIRTUAL) 980 void *page_address(const struct page *page); 981 void set_page_address(struct page *page, void *virtual); 982 void page_address_init(void); 983 #endif 984 985 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 986 #define page_address(page) lowmem_page_address(page) 987 #define set_page_address(page, address) do { } while(0) 988 #define page_address_init() do { } while(0) 989 #endif 990 991 extern void *page_rmapping(struct page *page); 992 extern struct anon_vma *page_anon_vma(struct page *page); 993 extern struct address_space *page_mapping(struct page *page); 994 995 extern struct address_space *__page_file_mapping(struct page *); 996 997 static inline 998 struct address_space *page_file_mapping(struct page *page) 999 { 1000 if (unlikely(PageSwapCache(page))) 1001 return __page_file_mapping(page); 1002 1003 return page->mapping; 1004 } 1005 1006 /* 1007 * Return the pagecache index of the passed page. Regular pagecache pages 1008 * use ->index whereas swapcache pages use ->private 1009 */ 1010 static inline pgoff_t page_index(struct page *page) 1011 { 1012 if (unlikely(PageSwapCache(page))) 1013 return page_private(page); 1014 return page->index; 1015 } 1016 1017 extern pgoff_t __page_file_index(struct page *page); 1018 1019 /* 1020 * Return the file index of the page. Regular pagecache pages use ->index 1021 * whereas swapcache pages use swp_offset(->private) 1022 */ 1023 static inline pgoff_t page_file_index(struct page *page) 1024 { 1025 if (unlikely(PageSwapCache(page))) 1026 return __page_file_index(page); 1027 1028 return page->index; 1029 } 1030 1031 /* 1032 * Return true if this page is mapped into pagetables. 1033 * For compound page it returns true if any subpage of compound page is mapped. 1034 */ 1035 static inline bool page_mapped(struct page *page) 1036 { 1037 int i; 1038 if (likely(!PageCompound(page))) 1039 return atomic_read(&page->_mapcount) >= 0; 1040 page = compound_head(page); 1041 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 1042 return true; 1043 if (PageHuge(page)) 1044 return false; 1045 for (i = 0; i < hpage_nr_pages(page); i++) { 1046 if (atomic_read(&page[i]._mapcount) >= 0) 1047 return true; 1048 } 1049 return false; 1050 } 1051 1052 /* 1053 * Return true only if the page has been allocated with 1054 * ALLOC_NO_WATERMARKS and the low watermark was not 1055 * met implying that the system is under some pressure. 1056 */ 1057 static inline bool page_is_pfmemalloc(struct page *page) 1058 { 1059 /* 1060 * Page index cannot be this large so this must be 1061 * a pfmemalloc page. 1062 */ 1063 return page->index == -1UL; 1064 } 1065 1066 /* 1067 * Only to be called by the page allocator on a freshly allocated 1068 * page. 1069 */ 1070 static inline void set_page_pfmemalloc(struct page *page) 1071 { 1072 page->index = -1UL; 1073 } 1074 1075 static inline void clear_page_pfmemalloc(struct page *page) 1076 { 1077 page->index = 0; 1078 } 1079 1080 /* 1081 * Different kinds of faults, as returned by handle_mm_fault(). 1082 * Used to decide whether a process gets delivered SIGBUS or 1083 * just gets major/minor fault counters bumped up. 1084 */ 1085 1086 #define VM_FAULT_OOM 0x0001 1087 #define VM_FAULT_SIGBUS 0x0002 1088 #define VM_FAULT_MAJOR 0x0004 1089 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1090 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1091 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1092 #define VM_FAULT_SIGSEGV 0x0040 1093 1094 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1095 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1096 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1097 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1098 1099 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1100 1101 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1102 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1103 VM_FAULT_FALLBACK) 1104 1105 /* Encode hstate index for a hwpoisoned large page */ 1106 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1107 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1108 1109 /* 1110 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1111 */ 1112 extern void pagefault_out_of_memory(void); 1113 1114 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1115 1116 /* 1117 * Flags passed to show_mem() and show_free_areas() to suppress output in 1118 * various contexts. 1119 */ 1120 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1121 1122 extern void show_free_areas(unsigned int flags); 1123 extern bool skip_free_areas_node(unsigned int flags, int nid); 1124 1125 int shmem_zero_setup(struct vm_area_struct *); 1126 #ifdef CONFIG_SHMEM 1127 bool shmem_mapping(struct address_space *mapping); 1128 #else 1129 static inline bool shmem_mapping(struct address_space *mapping) 1130 { 1131 return false; 1132 } 1133 #endif 1134 1135 extern bool can_do_mlock(void); 1136 extern int user_shm_lock(size_t, struct user_struct *); 1137 extern void user_shm_unlock(size_t, struct user_struct *); 1138 1139 /* 1140 * Parameter block passed down to zap_pte_range in exceptional cases. 1141 */ 1142 struct zap_details { 1143 struct address_space *check_mapping; /* Check page->mapping if set */ 1144 pgoff_t first_index; /* Lowest page->index to unmap */ 1145 pgoff_t last_index; /* Highest page->index to unmap */ 1146 bool ignore_dirty; /* Ignore dirty pages */ 1147 bool check_swap_entries; /* Check also swap entries */ 1148 }; 1149 1150 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1151 pte_t pte); 1152 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1153 pmd_t pmd); 1154 1155 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1156 unsigned long size); 1157 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1158 unsigned long size, struct zap_details *); 1159 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1160 unsigned long start, unsigned long end); 1161 1162 /** 1163 * mm_walk - callbacks for walk_page_range 1164 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1165 * this handler is required to be able to handle 1166 * pmd_trans_huge() pmds. They may simply choose to 1167 * split_huge_page() instead of handling it explicitly. 1168 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1169 * @pte_hole: if set, called for each hole at all levels 1170 * @hugetlb_entry: if set, called for each hugetlb entry 1171 * @test_walk: caller specific callback function to determine whether 1172 * we walk over the current vma or not. A positive returned 1173 * value means "do page table walk over the current vma," 1174 * and a negative one means "abort current page table walk 1175 * right now." 0 means "skip the current vma." 1176 * @mm: mm_struct representing the target process of page table walk 1177 * @vma: vma currently walked (NULL if walking outside vmas) 1178 * @private: private data for callbacks' usage 1179 * 1180 * (see the comment on walk_page_range() for more details) 1181 */ 1182 struct mm_walk { 1183 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1184 unsigned long next, struct mm_walk *walk); 1185 int (*pte_entry)(pte_t *pte, unsigned long addr, 1186 unsigned long next, struct mm_walk *walk); 1187 int (*pte_hole)(unsigned long addr, unsigned long next, 1188 struct mm_walk *walk); 1189 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1190 unsigned long addr, unsigned long next, 1191 struct mm_walk *walk); 1192 int (*test_walk)(unsigned long addr, unsigned long next, 1193 struct mm_walk *walk); 1194 struct mm_struct *mm; 1195 struct vm_area_struct *vma; 1196 void *private; 1197 }; 1198 1199 int walk_page_range(unsigned long addr, unsigned long end, 1200 struct mm_walk *walk); 1201 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1202 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1203 unsigned long end, unsigned long floor, unsigned long ceiling); 1204 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1205 struct vm_area_struct *vma); 1206 void unmap_mapping_range(struct address_space *mapping, 1207 loff_t const holebegin, loff_t const holelen, int even_cows); 1208 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1209 unsigned long *pfn); 1210 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1211 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1212 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1213 void *buf, int len, int write); 1214 1215 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1216 loff_t const holebegin, loff_t const holelen) 1217 { 1218 unmap_mapping_range(mapping, holebegin, holelen, 0); 1219 } 1220 1221 extern void truncate_pagecache(struct inode *inode, loff_t new); 1222 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1223 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1224 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1225 int truncate_inode_page(struct address_space *mapping, struct page *page); 1226 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1227 int invalidate_inode_page(struct page *page); 1228 1229 #ifdef CONFIG_MMU 1230 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1231 unsigned long address, unsigned int flags); 1232 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1233 unsigned long address, unsigned int fault_flags, 1234 bool *unlocked); 1235 #else 1236 static inline int handle_mm_fault(struct mm_struct *mm, 1237 struct vm_area_struct *vma, unsigned long address, 1238 unsigned int flags) 1239 { 1240 /* should never happen if there's no MMU */ 1241 BUG(); 1242 return VM_FAULT_SIGBUS; 1243 } 1244 static inline int fixup_user_fault(struct task_struct *tsk, 1245 struct mm_struct *mm, unsigned long address, 1246 unsigned int fault_flags, bool *unlocked) 1247 { 1248 /* should never happen if there's no MMU */ 1249 BUG(); 1250 return -EFAULT; 1251 } 1252 #endif 1253 1254 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1255 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1256 void *buf, int len, int write); 1257 1258 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1259 unsigned long start, unsigned long nr_pages, 1260 unsigned int foll_flags, struct page **pages, 1261 struct vm_area_struct **vmas, int *nonblocking); 1262 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1263 unsigned long start, unsigned long nr_pages, 1264 int write, int force, struct page **pages, 1265 struct vm_area_struct **vmas); 1266 long get_user_pages(unsigned long start, unsigned long nr_pages, 1267 int write, int force, struct page **pages, 1268 struct vm_area_struct **vmas); 1269 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1270 int write, int force, struct page **pages, int *locked); 1271 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1272 unsigned long start, unsigned long nr_pages, 1273 int write, int force, struct page **pages, 1274 unsigned int gup_flags); 1275 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1276 int write, int force, struct page **pages); 1277 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1278 struct page **pages); 1279 1280 /* Container for pinned pfns / pages */ 1281 struct frame_vector { 1282 unsigned int nr_allocated; /* Number of frames we have space for */ 1283 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1284 bool got_ref; /* Did we pin pages by getting page ref? */ 1285 bool is_pfns; /* Does array contain pages or pfns? */ 1286 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1287 * pfns_vector_pages() or pfns_vector_pfns() 1288 * for access */ 1289 }; 1290 1291 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1292 void frame_vector_destroy(struct frame_vector *vec); 1293 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1294 bool write, bool force, struct frame_vector *vec); 1295 void put_vaddr_frames(struct frame_vector *vec); 1296 int frame_vector_to_pages(struct frame_vector *vec); 1297 void frame_vector_to_pfns(struct frame_vector *vec); 1298 1299 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1300 { 1301 return vec->nr_frames; 1302 } 1303 1304 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1305 { 1306 if (vec->is_pfns) { 1307 int err = frame_vector_to_pages(vec); 1308 1309 if (err) 1310 return ERR_PTR(err); 1311 } 1312 return (struct page **)(vec->ptrs); 1313 } 1314 1315 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1316 { 1317 if (!vec->is_pfns) 1318 frame_vector_to_pfns(vec); 1319 return (unsigned long *)(vec->ptrs); 1320 } 1321 1322 struct kvec; 1323 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1324 struct page **pages); 1325 int get_kernel_page(unsigned long start, int write, struct page **pages); 1326 struct page *get_dump_page(unsigned long addr); 1327 1328 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1329 extern void do_invalidatepage(struct page *page, unsigned int offset, 1330 unsigned int length); 1331 1332 int __set_page_dirty_nobuffers(struct page *page); 1333 int __set_page_dirty_no_writeback(struct page *page); 1334 int redirty_page_for_writepage(struct writeback_control *wbc, 1335 struct page *page); 1336 void account_page_dirtied(struct page *page, struct address_space *mapping); 1337 void account_page_cleaned(struct page *page, struct address_space *mapping, 1338 struct bdi_writeback *wb); 1339 int set_page_dirty(struct page *page); 1340 int set_page_dirty_lock(struct page *page); 1341 void cancel_dirty_page(struct page *page); 1342 int clear_page_dirty_for_io(struct page *page); 1343 1344 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1345 1346 /* Is the vma a continuation of the stack vma above it? */ 1347 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1348 { 1349 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1350 } 1351 1352 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1353 { 1354 return !vma->vm_ops; 1355 } 1356 1357 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1358 unsigned long addr) 1359 { 1360 return (vma->vm_flags & VM_GROWSDOWN) && 1361 (vma->vm_start == addr) && 1362 !vma_growsdown(vma->vm_prev, addr); 1363 } 1364 1365 /* Is the vma a continuation of the stack vma below it? */ 1366 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1367 { 1368 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1369 } 1370 1371 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1372 unsigned long addr) 1373 { 1374 return (vma->vm_flags & VM_GROWSUP) && 1375 (vma->vm_end == addr) && 1376 !vma_growsup(vma->vm_next, addr); 1377 } 1378 1379 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1380 1381 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1382 unsigned long old_addr, struct vm_area_struct *new_vma, 1383 unsigned long new_addr, unsigned long len, 1384 bool need_rmap_locks); 1385 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1386 unsigned long end, pgprot_t newprot, 1387 int dirty_accountable, int prot_numa); 1388 extern int mprotect_fixup(struct vm_area_struct *vma, 1389 struct vm_area_struct **pprev, unsigned long start, 1390 unsigned long end, unsigned long newflags); 1391 1392 /* 1393 * doesn't attempt to fault and will return short. 1394 */ 1395 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1396 struct page **pages); 1397 /* 1398 * per-process(per-mm_struct) statistics. 1399 */ 1400 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1401 { 1402 long val = atomic_long_read(&mm->rss_stat.count[member]); 1403 1404 #ifdef SPLIT_RSS_COUNTING 1405 /* 1406 * counter is updated in asynchronous manner and may go to minus. 1407 * But it's never be expected number for users. 1408 */ 1409 if (val < 0) 1410 val = 0; 1411 #endif 1412 return (unsigned long)val; 1413 } 1414 1415 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1416 { 1417 atomic_long_add(value, &mm->rss_stat.count[member]); 1418 } 1419 1420 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1421 { 1422 atomic_long_inc(&mm->rss_stat.count[member]); 1423 } 1424 1425 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1426 { 1427 atomic_long_dec(&mm->rss_stat.count[member]); 1428 } 1429 1430 /* Optimized variant when page is already known not to be PageAnon */ 1431 static inline int mm_counter_file(struct page *page) 1432 { 1433 if (PageSwapBacked(page)) 1434 return MM_SHMEMPAGES; 1435 return MM_FILEPAGES; 1436 } 1437 1438 static inline int mm_counter(struct page *page) 1439 { 1440 if (PageAnon(page)) 1441 return MM_ANONPAGES; 1442 return mm_counter_file(page); 1443 } 1444 1445 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1446 { 1447 return get_mm_counter(mm, MM_FILEPAGES) + 1448 get_mm_counter(mm, MM_ANONPAGES) + 1449 get_mm_counter(mm, MM_SHMEMPAGES); 1450 } 1451 1452 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1453 { 1454 return max(mm->hiwater_rss, get_mm_rss(mm)); 1455 } 1456 1457 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1458 { 1459 return max(mm->hiwater_vm, mm->total_vm); 1460 } 1461 1462 static inline void update_hiwater_rss(struct mm_struct *mm) 1463 { 1464 unsigned long _rss = get_mm_rss(mm); 1465 1466 if ((mm)->hiwater_rss < _rss) 1467 (mm)->hiwater_rss = _rss; 1468 } 1469 1470 static inline void update_hiwater_vm(struct mm_struct *mm) 1471 { 1472 if (mm->hiwater_vm < mm->total_vm) 1473 mm->hiwater_vm = mm->total_vm; 1474 } 1475 1476 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1477 { 1478 mm->hiwater_rss = get_mm_rss(mm); 1479 } 1480 1481 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1482 struct mm_struct *mm) 1483 { 1484 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1485 1486 if (*maxrss < hiwater_rss) 1487 *maxrss = hiwater_rss; 1488 } 1489 1490 #if defined(SPLIT_RSS_COUNTING) 1491 void sync_mm_rss(struct mm_struct *mm); 1492 #else 1493 static inline void sync_mm_rss(struct mm_struct *mm) 1494 { 1495 } 1496 #endif 1497 1498 #ifndef __HAVE_ARCH_PTE_DEVMAP 1499 static inline int pte_devmap(pte_t pte) 1500 { 1501 return 0; 1502 } 1503 #endif 1504 1505 int vma_wants_writenotify(struct vm_area_struct *vma); 1506 1507 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1508 spinlock_t **ptl); 1509 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1510 spinlock_t **ptl) 1511 { 1512 pte_t *ptep; 1513 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1514 return ptep; 1515 } 1516 1517 #ifdef __PAGETABLE_PUD_FOLDED 1518 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1519 unsigned long address) 1520 { 1521 return 0; 1522 } 1523 #else 1524 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1525 #endif 1526 1527 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1528 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1529 unsigned long address) 1530 { 1531 return 0; 1532 } 1533 1534 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1535 1536 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1537 { 1538 return 0; 1539 } 1540 1541 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1542 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1543 1544 #else 1545 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1546 1547 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1548 { 1549 atomic_long_set(&mm->nr_pmds, 0); 1550 } 1551 1552 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1553 { 1554 return atomic_long_read(&mm->nr_pmds); 1555 } 1556 1557 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1558 { 1559 atomic_long_inc(&mm->nr_pmds); 1560 } 1561 1562 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1563 { 1564 atomic_long_dec(&mm->nr_pmds); 1565 } 1566 #endif 1567 1568 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1569 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1570 1571 /* 1572 * The following ifdef needed to get the 4level-fixup.h header to work. 1573 * Remove it when 4level-fixup.h has been removed. 1574 */ 1575 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1576 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1577 { 1578 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1579 NULL: pud_offset(pgd, address); 1580 } 1581 1582 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1583 { 1584 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1585 NULL: pmd_offset(pud, address); 1586 } 1587 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1588 1589 #if USE_SPLIT_PTE_PTLOCKS 1590 #if ALLOC_SPLIT_PTLOCKS 1591 void __init ptlock_cache_init(void); 1592 extern bool ptlock_alloc(struct page *page); 1593 extern void ptlock_free(struct page *page); 1594 1595 static inline spinlock_t *ptlock_ptr(struct page *page) 1596 { 1597 return page->ptl; 1598 } 1599 #else /* ALLOC_SPLIT_PTLOCKS */ 1600 static inline void ptlock_cache_init(void) 1601 { 1602 } 1603 1604 static inline bool ptlock_alloc(struct page *page) 1605 { 1606 return true; 1607 } 1608 1609 static inline void ptlock_free(struct page *page) 1610 { 1611 } 1612 1613 static inline spinlock_t *ptlock_ptr(struct page *page) 1614 { 1615 return &page->ptl; 1616 } 1617 #endif /* ALLOC_SPLIT_PTLOCKS */ 1618 1619 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1620 { 1621 return ptlock_ptr(pmd_page(*pmd)); 1622 } 1623 1624 static inline bool ptlock_init(struct page *page) 1625 { 1626 /* 1627 * prep_new_page() initialize page->private (and therefore page->ptl) 1628 * with 0. Make sure nobody took it in use in between. 1629 * 1630 * It can happen if arch try to use slab for page table allocation: 1631 * slab code uses page->slab_cache, which share storage with page->ptl. 1632 */ 1633 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1634 if (!ptlock_alloc(page)) 1635 return false; 1636 spin_lock_init(ptlock_ptr(page)); 1637 return true; 1638 } 1639 1640 /* Reset page->mapping so free_pages_check won't complain. */ 1641 static inline void pte_lock_deinit(struct page *page) 1642 { 1643 page->mapping = NULL; 1644 ptlock_free(page); 1645 } 1646 1647 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1648 /* 1649 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1650 */ 1651 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1652 { 1653 return &mm->page_table_lock; 1654 } 1655 static inline void ptlock_cache_init(void) {} 1656 static inline bool ptlock_init(struct page *page) { return true; } 1657 static inline void pte_lock_deinit(struct page *page) {} 1658 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1659 1660 static inline void pgtable_init(void) 1661 { 1662 ptlock_cache_init(); 1663 pgtable_cache_init(); 1664 } 1665 1666 static inline bool pgtable_page_ctor(struct page *page) 1667 { 1668 if (!ptlock_init(page)) 1669 return false; 1670 inc_zone_page_state(page, NR_PAGETABLE); 1671 return true; 1672 } 1673 1674 static inline void pgtable_page_dtor(struct page *page) 1675 { 1676 pte_lock_deinit(page); 1677 dec_zone_page_state(page, NR_PAGETABLE); 1678 } 1679 1680 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1681 ({ \ 1682 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1683 pte_t *__pte = pte_offset_map(pmd, address); \ 1684 *(ptlp) = __ptl; \ 1685 spin_lock(__ptl); \ 1686 __pte; \ 1687 }) 1688 1689 #define pte_unmap_unlock(pte, ptl) do { \ 1690 spin_unlock(ptl); \ 1691 pte_unmap(pte); \ 1692 } while (0) 1693 1694 #define pte_alloc(mm, pmd, address) \ 1695 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1696 1697 #define pte_alloc_map(mm, pmd, address) \ 1698 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1699 1700 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1701 (pte_alloc(mm, pmd, address) ? \ 1702 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1703 1704 #define pte_alloc_kernel(pmd, address) \ 1705 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1706 NULL: pte_offset_kernel(pmd, address)) 1707 1708 #if USE_SPLIT_PMD_PTLOCKS 1709 1710 static struct page *pmd_to_page(pmd_t *pmd) 1711 { 1712 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1713 return virt_to_page((void *)((unsigned long) pmd & mask)); 1714 } 1715 1716 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1717 { 1718 return ptlock_ptr(pmd_to_page(pmd)); 1719 } 1720 1721 static inline bool pgtable_pmd_page_ctor(struct page *page) 1722 { 1723 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1724 page->pmd_huge_pte = NULL; 1725 #endif 1726 return ptlock_init(page); 1727 } 1728 1729 static inline void pgtable_pmd_page_dtor(struct page *page) 1730 { 1731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1732 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1733 #endif 1734 ptlock_free(page); 1735 } 1736 1737 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1738 1739 #else 1740 1741 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1742 { 1743 return &mm->page_table_lock; 1744 } 1745 1746 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1747 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1748 1749 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1750 1751 #endif 1752 1753 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1754 { 1755 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1756 spin_lock(ptl); 1757 return ptl; 1758 } 1759 1760 extern void free_area_init(unsigned long * zones_size); 1761 extern void free_area_init_node(int nid, unsigned long * zones_size, 1762 unsigned long zone_start_pfn, unsigned long *zholes_size); 1763 extern void free_initmem(void); 1764 1765 /* 1766 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1767 * into the buddy system. The freed pages will be poisoned with pattern 1768 * "poison" if it's within range [0, UCHAR_MAX]. 1769 * Return pages freed into the buddy system. 1770 */ 1771 extern unsigned long free_reserved_area(void *start, void *end, 1772 int poison, char *s); 1773 1774 #ifdef CONFIG_HIGHMEM 1775 /* 1776 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1777 * and totalram_pages. 1778 */ 1779 extern void free_highmem_page(struct page *page); 1780 #endif 1781 1782 extern void adjust_managed_page_count(struct page *page, long count); 1783 extern void mem_init_print_info(const char *str); 1784 1785 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1786 1787 /* Free the reserved page into the buddy system, so it gets managed. */ 1788 static inline void __free_reserved_page(struct page *page) 1789 { 1790 ClearPageReserved(page); 1791 init_page_count(page); 1792 __free_page(page); 1793 } 1794 1795 static inline void free_reserved_page(struct page *page) 1796 { 1797 __free_reserved_page(page); 1798 adjust_managed_page_count(page, 1); 1799 } 1800 1801 static inline void mark_page_reserved(struct page *page) 1802 { 1803 SetPageReserved(page); 1804 adjust_managed_page_count(page, -1); 1805 } 1806 1807 /* 1808 * Default method to free all the __init memory into the buddy system. 1809 * The freed pages will be poisoned with pattern "poison" if it's within 1810 * range [0, UCHAR_MAX]. 1811 * Return pages freed into the buddy system. 1812 */ 1813 static inline unsigned long free_initmem_default(int poison) 1814 { 1815 extern char __init_begin[], __init_end[]; 1816 1817 return free_reserved_area(&__init_begin, &__init_end, 1818 poison, "unused kernel"); 1819 } 1820 1821 static inline unsigned long get_num_physpages(void) 1822 { 1823 int nid; 1824 unsigned long phys_pages = 0; 1825 1826 for_each_online_node(nid) 1827 phys_pages += node_present_pages(nid); 1828 1829 return phys_pages; 1830 } 1831 1832 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1833 /* 1834 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1835 * zones, allocate the backing mem_map and account for memory holes in a more 1836 * architecture independent manner. This is a substitute for creating the 1837 * zone_sizes[] and zholes_size[] arrays and passing them to 1838 * free_area_init_node() 1839 * 1840 * An architecture is expected to register range of page frames backed by 1841 * physical memory with memblock_add[_node]() before calling 1842 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1843 * usage, an architecture is expected to do something like 1844 * 1845 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1846 * max_highmem_pfn}; 1847 * for_each_valid_physical_page_range() 1848 * memblock_add_node(base, size, nid) 1849 * free_area_init_nodes(max_zone_pfns); 1850 * 1851 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1852 * registered physical page range. Similarly 1853 * sparse_memory_present_with_active_regions() calls memory_present() for 1854 * each range when SPARSEMEM is enabled. 1855 * 1856 * See mm/page_alloc.c for more information on each function exposed by 1857 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1858 */ 1859 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1860 unsigned long node_map_pfn_alignment(void); 1861 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1862 unsigned long end_pfn); 1863 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1864 unsigned long end_pfn); 1865 extern void get_pfn_range_for_nid(unsigned int nid, 1866 unsigned long *start_pfn, unsigned long *end_pfn); 1867 extern unsigned long find_min_pfn_with_active_regions(void); 1868 extern void free_bootmem_with_active_regions(int nid, 1869 unsigned long max_low_pfn); 1870 extern void sparse_memory_present_with_active_regions(int nid); 1871 1872 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1873 1874 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1875 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1876 static inline int __early_pfn_to_nid(unsigned long pfn, 1877 struct mminit_pfnnid_cache *state) 1878 { 1879 return 0; 1880 } 1881 #else 1882 /* please see mm/page_alloc.c */ 1883 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1884 /* there is a per-arch backend function. */ 1885 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1886 struct mminit_pfnnid_cache *state); 1887 #endif 1888 1889 extern void set_dma_reserve(unsigned long new_dma_reserve); 1890 extern void memmap_init_zone(unsigned long, int, unsigned long, 1891 unsigned long, enum memmap_context); 1892 extern void setup_per_zone_wmarks(void); 1893 extern int __meminit init_per_zone_wmark_min(void); 1894 extern void mem_init(void); 1895 extern void __init mmap_init(void); 1896 extern void show_mem(unsigned int flags); 1897 extern long si_mem_available(void); 1898 extern void si_meminfo(struct sysinfo * val); 1899 extern void si_meminfo_node(struct sysinfo *val, int nid); 1900 1901 extern __printf(3, 4) 1902 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1903 const char *fmt, ...); 1904 1905 extern void setup_per_cpu_pageset(void); 1906 1907 extern void zone_pcp_update(struct zone *zone); 1908 extern void zone_pcp_reset(struct zone *zone); 1909 1910 /* page_alloc.c */ 1911 extern int min_free_kbytes; 1912 extern int watermark_scale_factor; 1913 1914 /* nommu.c */ 1915 extern atomic_long_t mmap_pages_allocated; 1916 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1917 1918 /* interval_tree.c */ 1919 void vma_interval_tree_insert(struct vm_area_struct *node, 1920 struct rb_root *root); 1921 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1922 struct vm_area_struct *prev, 1923 struct rb_root *root); 1924 void vma_interval_tree_remove(struct vm_area_struct *node, 1925 struct rb_root *root); 1926 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1927 unsigned long start, unsigned long last); 1928 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1929 unsigned long start, unsigned long last); 1930 1931 #define vma_interval_tree_foreach(vma, root, start, last) \ 1932 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1933 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1934 1935 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1936 struct rb_root *root); 1937 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1938 struct rb_root *root); 1939 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1940 struct rb_root *root, unsigned long start, unsigned long last); 1941 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1942 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1943 #ifdef CONFIG_DEBUG_VM_RB 1944 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1945 #endif 1946 1947 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1948 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1949 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1950 1951 /* mmap.c */ 1952 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1953 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1954 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1955 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1956 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1957 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1958 struct mempolicy *, struct vm_userfaultfd_ctx); 1959 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1960 extern int split_vma(struct mm_struct *, 1961 struct vm_area_struct *, unsigned long addr, int new_below); 1962 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1963 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1964 struct rb_node **, struct rb_node *); 1965 extern void unlink_file_vma(struct vm_area_struct *); 1966 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1967 unsigned long addr, unsigned long len, pgoff_t pgoff, 1968 bool *need_rmap_locks); 1969 extern void exit_mmap(struct mm_struct *); 1970 1971 static inline int check_data_rlimit(unsigned long rlim, 1972 unsigned long new, 1973 unsigned long start, 1974 unsigned long end_data, 1975 unsigned long start_data) 1976 { 1977 if (rlim < RLIM_INFINITY) { 1978 if (((new - start) + (end_data - start_data)) > rlim) 1979 return -ENOSPC; 1980 } 1981 1982 return 0; 1983 } 1984 1985 extern int mm_take_all_locks(struct mm_struct *mm); 1986 extern void mm_drop_all_locks(struct mm_struct *mm); 1987 1988 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1989 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1990 1991 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 1992 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 1993 1994 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1995 unsigned long addr, unsigned long len, 1996 unsigned long flags, 1997 const struct vm_special_mapping *spec); 1998 /* This is an obsolete alternative to _install_special_mapping. */ 1999 extern int install_special_mapping(struct mm_struct *mm, 2000 unsigned long addr, unsigned long len, 2001 unsigned long flags, struct page **pages); 2002 2003 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2004 2005 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2006 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 2007 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2008 unsigned long len, unsigned long prot, unsigned long flags, 2009 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2010 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2011 2012 static inline unsigned long 2013 do_mmap_pgoff(struct file *file, unsigned long addr, 2014 unsigned long len, unsigned long prot, unsigned long flags, 2015 unsigned long pgoff, unsigned long *populate) 2016 { 2017 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2018 } 2019 2020 #ifdef CONFIG_MMU 2021 extern int __mm_populate(unsigned long addr, unsigned long len, 2022 int ignore_errors); 2023 static inline void mm_populate(unsigned long addr, unsigned long len) 2024 { 2025 /* Ignore errors */ 2026 (void) __mm_populate(addr, len, 1); 2027 } 2028 #else 2029 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2030 #endif 2031 2032 /* These take the mm semaphore themselves */ 2033 extern unsigned long vm_brk(unsigned long, unsigned long); 2034 extern int vm_munmap(unsigned long, size_t); 2035 extern unsigned long vm_mmap(struct file *, unsigned long, 2036 unsigned long, unsigned long, 2037 unsigned long, unsigned long); 2038 2039 struct vm_unmapped_area_info { 2040 #define VM_UNMAPPED_AREA_TOPDOWN 1 2041 unsigned long flags; 2042 unsigned long length; 2043 unsigned long low_limit; 2044 unsigned long high_limit; 2045 unsigned long align_mask; 2046 unsigned long align_offset; 2047 }; 2048 2049 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2050 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2051 2052 /* 2053 * Search for an unmapped address range. 2054 * 2055 * We are looking for a range that: 2056 * - does not intersect with any VMA; 2057 * - is contained within the [low_limit, high_limit) interval; 2058 * - is at least the desired size. 2059 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2060 */ 2061 static inline unsigned long 2062 vm_unmapped_area(struct vm_unmapped_area_info *info) 2063 { 2064 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2065 return unmapped_area_topdown(info); 2066 else 2067 return unmapped_area(info); 2068 } 2069 2070 /* truncate.c */ 2071 extern void truncate_inode_pages(struct address_space *, loff_t); 2072 extern void truncate_inode_pages_range(struct address_space *, 2073 loff_t lstart, loff_t lend); 2074 extern void truncate_inode_pages_final(struct address_space *); 2075 2076 /* generic vm_area_ops exported for stackable file systems */ 2077 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2078 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2079 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2080 2081 /* mm/page-writeback.c */ 2082 int write_one_page(struct page *page, int wait); 2083 void task_dirty_inc(struct task_struct *tsk); 2084 2085 /* readahead.c */ 2086 #define VM_MAX_READAHEAD 128 /* kbytes */ 2087 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2088 2089 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2090 pgoff_t offset, unsigned long nr_to_read); 2091 2092 void page_cache_sync_readahead(struct address_space *mapping, 2093 struct file_ra_state *ra, 2094 struct file *filp, 2095 pgoff_t offset, 2096 unsigned long size); 2097 2098 void page_cache_async_readahead(struct address_space *mapping, 2099 struct file_ra_state *ra, 2100 struct file *filp, 2101 struct page *pg, 2102 pgoff_t offset, 2103 unsigned long size); 2104 2105 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2106 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2107 2108 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2109 extern int expand_downwards(struct vm_area_struct *vma, 2110 unsigned long address); 2111 #if VM_GROWSUP 2112 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2113 #else 2114 #define expand_upwards(vma, address) (0) 2115 #endif 2116 2117 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2118 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2119 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2120 struct vm_area_struct **pprev); 2121 2122 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2123 NULL if none. Assume start_addr < end_addr. */ 2124 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2125 { 2126 struct vm_area_struct * vma = find_vma(mm,start_addr); 2127 2128 if (vma && end_addr <= vma->vm_start) 2129 vma = NULL; 2130 return vma; 2131 } 2132 2133 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2134 { 2135 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2136 } 2137 2138 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2139 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2140 unsigned long vm_start, unsigned long vm_end) 2141 { 2142 struct vm_area_struct *vma = find_vma(mm, vm_start); 2143 2144 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2145 vma = NULL; 2146 2147 return vma; 2148 } 2149 2150 #ifdef CONFIG_MMU 2151 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2152 void vma_set_page_prot(struct vm_area_struct *vma); 2153 #else 2154 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2155 { 2156 return __pgprot(0); 2157 } 2158 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2159 { 2160 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2161 } 2162 #endif 2163 2164 #ifdef CONFIG_NUMA_BALANCING 2165 unsigned long change_prot_numa(struct vm_area_struct *vma, 2166 unsigned long start, unsigned long end); 2167 #endif 2168 2169 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2170 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2171 unsigned long pfn, unsigned long size, pgprot_t); 2172 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2173 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2174 unsigned long pfn); 2175 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2176 unsigned long pfn, pgprot_t pgprot); 2177 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2178 pfn_t pfn); 2179 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2180 2181 2182 struct page *follow_page_mask(struct vm_area_struct *vma, 2183 unsigned long address, unsigned int foll_flags, 2184 unsigned int *page_mask); 2185 2186 static inline struct page *follow_page(struct vm_area_struct *vma, 2187 unsigned long address, unsigned int foll_flags) 2188 { 2189 unsigned int unused_page_mask; 2190 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2191 } 2192 2193 #define FOLL_WRITE 0x01 /* check pte is writable */ 2194 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2195 #define FOLL_GET 0x04 /* do get_page on page */ 2196 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2197 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2198 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2199 * and return without waiting upon it */ 2200 #define FOLL_POPULATE 0x40 /* fault in page */ 2201 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2202 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2203 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2204 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2205 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2206 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2207 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2208 2209 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2210 void *data); 2211 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2212 unsigned long size, pte_fn_t fn, void *data); 2213 2214 2215 #ifdef CONFIG_PAGE_POISONING 2216 extern bool page_poisoning_enabled(void); 2217 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2218 extern bool page_is_poisoned(struct page *page); 2219 #else 2220 static inline bool page_poisoning_enabled(void) { return false; } 2221 static inline void kernel_poison_pages(struct page *page, int numpages, 2222 int enable) { } 2223 static inline bool page_is_poisoned(struct page *page) { return false; } 2224 #endif 2225 2226 #ifdef CONFIG_DEBUG_PAGEALLOC 2227 extern bool _debug_pagealloc_enabled; 2228 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2229 2230 static inline bool debug_pagealloc_enabled(void) 2231 { 2232 return _debug_pagealloc_enabled; 2233 } 2234 2235 static inline void 2236 kernel_map_pages(struct page *page, int numpages, int enable) 2237 { 2238 if (!debug_pagealloc_enabled()) 2239 return; 2240 2241 __kernel_map_pages(page, numpages, enable); 2242 } 2243 #ifdef CONFIG_HIBERNATION 2244 extern bool kernel_page_present(struct page *page); 2245 #endif /* CONFIG_HIBERNATION */ 2246 #else /* CONFIG_DEBUG_PAGEALLOC */ 2247 static inline void 2248 kernel_map_pages(struct page *page, int numpages, int enable) {} 2249 #ifdef CONFIG_HIBERNATION 2250 static inline bool kernel_page_present(struct page *page) { return true; } 2251 #endif /* CONFIG_HIBERNATION */ 2252 static inline bool debug_pagealloc_enabled(void) 2253 { 2254 return false; 2255 } 2256 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2257 2258 #ifdef __HAVE_ARCH_GATE_AREA 2259 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2260 extern int in_gate_area_no_mm(unsigned long addr); 2261 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2262 #else 2263 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2264 { 2265 return NULL; 2266 } 2267 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2268 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2269 { 2270 return 0; 2271 } 2272 #endif /* __HAVE_ARCH_GATE_AREA */ 2273 2274 #ifdef CONFIG_SYSCTL 2275 extern int sysctl_drop_caches; 2276 int drop_caches_sysctl_handler(struct ctl_table *, int, 2277 void __user *, size_t *, loff_t *); 2278 #endif 2279 2280 void drop_slab(void); 2281 void drop_slab_node(int nid); 2282 2283 #ifndef CONFIG_MMU 2284 #define randomize_va_space 0 2285 #else 2286 extern int randomize_va_space; 2287 #endif 2288 2289 const char * arch_vma_name(struct vm_area_struct *vma); 2290 void print_vma_addr(char *prefix, unsigned long rip); 2291 2292 void sparse_mem_maps_populate_node(struct page **map_map, 2293 unsigned long pnum_begin, 2294 unsigned long pnum_end, 2295 unsigned long map_count, 2296 int nodeid); 2297 2298 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2299 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2300 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2301 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2302 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2303 void *vmemmap_alloc_block(unsigned long size, int node); 2304 struct vmem_altmap; 2305 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2306 struct vmem_altmap *altmap); 2307 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2308 { 2309 return __vmemmap_alloc_block_buf(size, node, NULL); 2310 } 2311 2312 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2313 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2314 int node); 2315 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2316 void vmemmap_populate_print_last(void); 2317 #ifdef CONFIG_MEMORY_HOTPLUG 2318 void vmemmap_free(unsigned long start, unsigned long end); 2319 #endif 2320 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2321 unsigned long size); 2322 2323 enum mf_flags { 2324 MF_COUNT_INCREASED = 1 << 0, 2325 MF_ACTION_REQUIRED = 1 << 1, 2326 MF_MUST_KILL = 1 << 2, 2327 MF_SOFT_OFFLINE = 1 << 3, 2328 }; 2329 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2330 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2331 extern int unpoison_memory(unsigned long pfn); 2332 extern int get_hwpoison_page(struct page *page); 2333 #define put_hwpoison_page(page) put_page(page) 2334 extern int sysctl_memory_failure_early_kill; 2335 extern int sysctl_memory_failure_recovery; 2336 extern void shake_page(struct page *p, int access); 2337 extern atomic_long_t num_poisoned_pages; 2338 extern int soft_offline_page(struct page *page, int flags); 2339 2340 2341 /* 2342 * Error handlers for various types of pages. 2343 */ 2344 enum mf_result { 2345 MF_IGNORED, /* Error: cannot be handled */ 2346 MF_FAILED, /* Error: handling failed */ 2347 MF_DELAYED, /* Will be handled later */ 2348 MF_RECOVERED, /* Successfully recovered */ 2349 }; 2350 2351 enum mf_action_page_type { 2352 MF_MSG_KERNEL, 2353 MF_MSG_KERNEL_HIGH_ORDER, 2354 MF_MSG_SLAB, 2355 MF_MSG_DIFFERENT_COMPOUND, 2356 MF_MSG_POISONED_HUGE, 2357 MF_MSG_HUGE, 2358 MF_MSG_FREE_HUGE, 2359 MF_MSG_UNMAP_FAILED, 2360 MF_MSG_DIRTY_SWAPCACHE, 2361 MF_MSG_CLEAN_SWAPCACHE, 2362 MF_MSG_DIRTY_MLOCKED_LRU, 2363 MF_MSG_CLEAN_MLOCKED_LRU, 2364 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2365 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2366 MF_MSG_DIRTY_LRU, 2367 MF_MSG_CLEAN_LRU, 2368 MF_MSG_TRUNCATED_LRU, 2369 MF_MSG_BUDDY, 2370 MF_MSG_BUDDY_2ND, 2371 MF_MSG_UNKNOWN, 2372 }; 2373 2374 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2375 extern void clear_huge_page(struct page *page, 2376 unsigned long addr, 2377 unsigned int pages_per_huge_page); 2378 extern void copy_user_huge_page(struct page *dst, struct page *src, 2379 unsigned long addr, struct vm_area_struct *vma, 2380 unsigned int pages_per_huge_page); 2381 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2382 2383 extern struct page_ext_operations debug_guardpage_ops; 2384 extern struct page_ext_operations page_poisoning_ops; 2385 2386 #ifdef CONFIG_DEBUG_PAGEALLOC 2387 extern unsigned int _debug_guardpage_minorder; 2388 extern bool _debug_guardpage_enabled; 2389 2390 static inline unsigned int debug_guardpage_minorder(void) 2391 { 2392 return _debug_guardpage_minorder; 2393 } 2394 2395 static inline bool debug_guardpage_enabled(void) 2396 { 2397 return _debug_guardpage_enabled; 2398 } 2399 2400 static inline bool page_is_guard(struct page *page) 2401 { 2402 struct page_ext *page_ext; 2403 2404 if (!debug_guardpage_enabled()) 2405 return false; 2406 2407 page_ext = lookup_page_ext(page); 2408 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2409 } 2410 #else 2411 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2412 static inline bool debug_guardpage_enabled(void) { return false; } 2413 static inline bool page_is_guard(struct page *page) { return false; } 2414 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2415 2416 #if MAX_NUMNODES > 1 2417 void __init setup_nr_node_ids(void); 2418 #else 2419 static inline void setup_nr_node_ids(void) {} 2420 #endif 2421 2422 #endif /* __KERNEL__ */ 2423 #endif /* _LINUX_MM_H */ 2424