1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 16 struct mempolicy; 17 struct anon_vma; 18 struct file_ra_state; 19 struct user_struct; 20 struct writeback_control; 21 struct rlimit; 22 23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24 extern unsigned long max_mapnr; 25 #endif 26 27 extern unsigned long num_physpages; 28 extern void * high_memory; 29 extern int page_cluster; 30 31 #ifdef CONFIG_SYSCTL 32 extern int sysctl_legacy_va_layout; 33 #else 34 #define sysctl_legacy_va_layout 0 35 #endif 36 37 extern unsigned long mmap_min_addr; 38 39 #include <asm/page.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45 /* to align the pointer to the (next) page boundary */ 46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 48 /* 49 * Linux kernel virtual memory manager primitives. 50 * The idea being to have a "virtual" mm in the same way 51 * we have a virtual fs - giving a cleaner interface to the 52 * mm details, and allowing different kinds of memory mappings 53 * (from shared memory to executable loading to arbitrary 54 * mmap() functions). 55 */ 56 57 extern struct kmem_cache *vm_area_cachep; 58 59 #ifndef CONFIG_MMU 60 extern struct rb_root nommu_region_tree; 61 extern struct rw_semaphore nommu_region_sem; 62 63 extern unsigned int kobjsize(const void *objp); 64 #endif 65 66 /* 67 * vm_flags in vm_area_struct, see mm_types.h. 68 */ 69 #define VM_READ 0x00000001 /* currently active flags */ 70 #define VM_WRITE 0x00000002 71 #define VM_EXEC 0x00000004 72 #define VM_SHARED 0x00000008 73 74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 75 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 76 #define VM_MAYWRITE 0x00000020 77 #define VM_MAYEXEC 0x00000040 78 #define VM_MAYSHARE 0x00000080 79 80 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 81 #define VM_GROWSUP 0x00000200 82 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 83 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 84 85 #define VM_EXECUTABLE 0x00001000 86 #define VM_LOCKED 0x00002000 87 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 88 89 /* Used by sys_madvise() */ 90 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 91 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 92 93 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 94 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 95 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 96 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 97 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 98 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 99 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 100 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 101 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 102 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 103 104 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 105 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 106 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 107 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 108 109 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 111 #endif 112 113 #ifdef CONFIG_STACK_GROWSUP 114 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 115 #else 116 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117 #endif 118 119 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 120 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 121 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 122 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 123 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 124 125 /* 126 * special vmas that are non-mergable, non-mlock()able 127 */ 128 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 129 130 /* 131 * mapping from the currently active vm_flags protection bits (the 132 * low four bits) to a page protection mask.. 133 */ 134 extern pgprot_t protection_map[16]; 135 136 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 137 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 138 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 139 140 /* 141 * This interface is used by x86 PAT code to identify a pfn mapping that is 142 * linear over entire vma. This is to optimize PAT code that deals with 143 * marking the physical region with a particular prot. This is not for generic 144 * mm use. Note also that this check will not work if the pfn mapping is 145 * linear for a vma starting at physical address 0. In which case PAT code 146 * falls back to slow path of reserving physical range page by page. 147 */ 148 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 149 { 150 return (vma->vm_flags & VM_PFN_AT_MMAP); 151 } 152 153 static inline int is_pfn_mapping(struct vm_area_struct *vma) 154 { 155 return (vma->vm_flags & VM_PFNMAP); 156 } 157 158 /* 159 * vm_fault is filled by the the pagefault handler and passed to the vma's 160 * ->fault function. The vma's ->fault is responsible for returning a bitmask 161 * of VM_FAULT_xxx flags that give details about how the fault was handled. 162 * 163 * pgoff should be used in favour of virtual_address, if possible. If pgoff 164 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 165 * mapping support. 166 */ 167 struct vm_fault { 168 unsigned int flags; /* FAULT_FLAG_xxx flags */ 169 pgoff_t pgoff; /* Logical page offset based on vma */ 170 void __user *virtual_address; /* Faulting virtual address */ 171 172 struct page *page; /* ->fault handlers should return a 173 * page here, unless VM_FAULT_NOPAGE 174 * is set (which is also implied by 175 * VM_FAULT_ERROR). 176 */ 177 }; 178 179 /* 180 * These are the virtual MM functions - opening of an area, closing and 181 * unmapping it (needed to keep files on disk up-to-date etc), pointer 182 * to the functions called when a no-page or a wp-page exception occurs. 183 */ 184 struct vm_operations_struct { 185 void (*open)(struct vm_area_struct * area); 186 void (*close)(struct vm_area_struct * area); 187 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 188 189 /* notification that a previously read-only page is about to become 190 * writable, if an error is returned it will cause a SIGBUS */ 191 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 192 193 /* called by access_process_vm when get_user_pages() fails, typically 194 * for use by special VMAs that can switch between memory and hardware 195 */ 196 int (*access)(struct vm_area_struct *vma, unsigned long addr, 197 void *buf, int len, int write); 198 #ifdef CONFIG_NUMA 199 /* 200 * set_policy() op must add a reference to any non-NULL @new mempolicy 201 * to hold the policy upon return. Caller should pass NULL @new to 202 * remove a policy and fall back to surrounding context--i.e. do not 203 * install a MPOL_DEFAULT policy, nor the task or system default 204 * mempolicy. 205 */ 206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 207 208 /* 209 * get_policy() op must add reference [mpol_get()] to any policy at 210 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 211 * in mm/mempolicy.c will do this automatically. 212 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 213 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 214 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 215 * must return NULL--i.e., do not "fallback" to task or system default 216 * policy. 217 */ 218 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 219 unsigned long addr); 220 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 221 const nodemask_t *to, unsigned long flags); 222 #endif 223 }; 224 225 struct mmu_gather; 226 struct inode; 227 228 #define page_private(page) ((page)->private) 229 #define set_page_private(page, v) ((page)->private = (v)) 230 231 /* 232 * FIXME: take this include out, include page-flags.h in 233 * files which need it (119 of them) 234 */ 235 #include <linux/page-flags.h> 236 237 /* 238 * Methods to modify the page usage count. 239 * 240 * What counts for a page usage: 241 * - cache mapping (page->mapping) 242 * - private data (page->private) 243 * - page mapped in a task's page tables, each mapping 244 * is counted separately 245 * 246 * Also, many kernel routines increase the page count before a critical 247 * routine so they can be sure the page doesn't go away from under them. 248 */ 249 250 /* 251 * Drop a ref, return true if the refcount fell to zero (the page has no users) 252 */ 253 static inline int put_page_testzero(struct page *page) 254 { 255 VM_BUG_ON(atomic_read(&page->_count) == 0); 256 return atomic_dec_and_test(&page->_count); 257 } 258 259 /* 260 * Try to grab a ref unless the page has a refcount of zero, return false if 261 * that is the case. 262 */ 263 static inline int get_page_unless_zero(struct page *page) 264 { 265 return atomic_inc_not_zero(&page->_count); 266 } 267 268 /* Support for virtually mapped pages */ 269 struct page *vmalloc_to_page(const void *addr); 270 unsigned long vmalloc_to_pfn(const void *addr); 271 272 /* 273 * Determine if an address is within the vmalloc range 274 * 275 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 276 * is no special casing required. 277 */ 278 static inline int is_vmalloc_addr(const void *x) 279 { 280 #ifdef CONFIG_MMU 281 unsigned long addr = (unsigned long)x; 282 283 return addr >= VMALLOC_START && addr < VMALLOC_END; 284 #else 285 return 0; 286 #endif 287 } 288 289 static inline struct page *compound_head(struct page *page) 290 { 291 if (unlikely(PageTail(page))) 292 return page->first_page; 293 return page; 294 } 295 296 static inline int page_count(struct page *page) 297 { 298 return atomic_read(&compound_head(page)->_count); 299 } 300 301 static inline void get_page(struct page *page) 302 { 303 page = compound_head(page); 304 VM_BUG_ON(atomic_read(&page->_count) == 0); 305 atomic_inc(&page->_count); 306 } 307 308 static inline struct page *virt_to_head_page(const void *x) 309 { 310 struct page *page = virt_to_page(x); 311 return compound_head(page); 312 } 313 314 /* 315 * Setup the page count before being freed into the page allocator for 316 * the first time (boot or memory hotplug) 317 */ 318 static inline void init_page_count(struct page *page) 319 { 320 atomic_set(&page->_count, 1); 321 } 322 323 void put_page(struct page *page); 324 void put_pages_list(struct list_head *pages); 325 326 void split_page(struct page *page, unsigned int order); 327 328 /* 329 * Compound pages have a destructor function. Provide a 330 * prototype for that function and accessor functions. 331 * These are _only_ valid on the head of a PG_compound page. 332 */ 333 typedef void compound_page_dtor(struct page *); 334 335 static inline void set_compound_page_dtor(struct page *page, 336 compound_page_dtor *dtor) 337 { 338 page[1].lru.next = (void *)dtor; 339 } 340 341 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 342 { 343 return (compound_page_dtor *)page[1].lru.next; 344 } 345 346 static inline int compound_order(struct page *page) 347 { 348 if (!PageHead(page)) 349 return 0; 350 return (unsigned long)page[1].lru.prev; 351 } 352 353 static inline void set_compound_order(struct page *page, unsigned long order) 354 { 355 page[1].lru.prev = (void *)order; 356 } 357 358 /* 359 * Multiple processes may "see" the same page. E.g. for untouched 360 * mappings of /dev/null, all processes see the same page full of 361 * zeroes, and text pages of executables and shared libraries have 362 * only one copy in memory, at most, normally. 363 * 364 * For the non-reserved pages, page_count(page) denotes a reference count. 365 * page_count() == 0 means the page is free. page->lru is then used for 366 * freelist management in the buddy allocator. 367 * page_count() > 0 means the page has been allocated. 368 * 369 * Pages are allocated by the slab allocator in order to provide memory 370 * to kmalloc and kmem_cache_alloc. In this case, the management of the 371 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 372 * unless a particular usage is carefully commented. (the responsibility of 373 * freeing the kmalloc memory is the caller's, of course). 374 * 375 * A page may be used by anyone else who does a __get_free_page(). 376 * In this case, page_count still tracks the references, and should only 377 * be used through the normal accessor functions. The top bits of page->flags 378 * and page->virtual store page management information, but all other fields 379 * are unused and could be used privately, carefully. The management of this 380 * page is the responsibility of the one who allocated it, and those who have 381 * subsequently been given references to it. 382 * 383 * The other pages (we may call them "pagecache pages") are completely 384 * managed by the Linux memory manager: I/O, buffers, swapping etc. 385 * The following discussion applies only to them. 386 * 387 * A pagecache page contains an opaque `private' member, which belongs to the 388 * page's address_space. Usually, this is the address of a circular list of 389 * the page's disk buffers. PG_private must be set to tell the VM to call 390 * into the filesystem to release these pages. 391 * 392 * A page may belong to an inode's memory mapping. In this case, page->mapping 393 * is the pointer to the inode, and page->index is the file offset of the page, 394 * in units of PAGE_CACHE_SIZE. 395 * 396 * If pagecache pages are not associated with an inode, they are said to be 397 * anonymous pages. These may become associated with the swapcache, and in that 398 * case PG_swapcache is set, and page->private is an offset into the swapcache. 399 * 400 * In either case (swapcache or inode backed), the pagecache itself holds one 401 * reference to the page. Setting PG_private should also increment the 402 * refcount. The each user mapping also has a reference to the page. 403 * 404 * The pagecache pages are stored in a per-mapping radix tree, which is 405 * rooted at mapping->page_tree, and indexed by offset. 406 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 407 * lists, we instead now tag pages as dirty/writeback in the radix tree. 408 * 409 * All pagecache pages may be subject to I/O: 410 * - inode pages may need to be read from disk, 411 * - inode pages which have been modified and are MAP_SHARED may need 412 * to be written back to the inode on disk, 413 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 414 * modified may need to be swapped out to swap space and (later) to be read 415 * back into memory. 416 */ 417 418 /* 419 * The zone field is never updated after free_area_init_core() 420 * sets it, so none of the operations on it need to be atomic. 421 */ 422 423 424 /* 425 * page->flags layout: 426 * 427 * There are three possibilities for how page->flags get 428 * laid out. The first is for the normal case, without 429 * sparsemem. The second is for sparsemem when there is 430 * plenty of space for node and section. The last is when 431 * we have run out of space and have to fall back to an 432 * alternate (slower) way of determining the node. 433 * 434 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 435 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 436 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 437 */ 438 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 439 #define SECTIONS_WIDTH SECTIONS_SHIFT 440 #else 441 #define SECTIONS_WIDTH 0 442 #endif 443 444 #define ZONES_WIDTH ZONES_SHIFT 445 446 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 447 #define NODES_WIDTH NODES_SHIFT 448 #else 449 #ifdef CONFIG_SPARSEMEM_VMEMMAP 450 #error "Vmemmap: No space for nodes field in page flags" 451 #endif 452 #define NODES_WIDTH 0 453 #endif 454 455 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 456 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 457 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 458 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 459 460 /* 461 * We are going to use the flags for the page to node mapping if its in 462 * there. This includes the case where there is no node, so it is implicit. 463 */ 464 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 465 #define NODE_NOT_IN_PAGE_FLAGS 466 #endif 467 468 #ifndef PFN_SECTION_SHIFT 469 #define PFN_SECTION_SHIFT 0 470 #endif 471 472 /* 473 * Define the bit shifts to access each section. For non-existant 474 * sections we define the shift as 0; that plus a 0 mask ensures 475 * the compiler will optimise away reference to them. 476 */ 477 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 478 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 479 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 480 481 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 482 #ifdef NODE_NOT_IN_PAGEFLAGS 483 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 484 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 485 SECTIONS_PGOFF : ZONES_PGOFF) 486 #else 487 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 488 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 489 NODES_PGOFF : ZONES_PGOFF) 490 #endif 491 492 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 493 494 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 495 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 496 #endif 497 498 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 499 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 500 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 501 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 502 503 static inline enum zone_type page_zonenum(struct page *page) 504 { 505 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 506 } 507 508 /* 509 * The identification function is only used by the buddy allocator for 510 * determining if two pages could be buddies. We are not really 511 * identifying a zone since we could be using a the section number 512 * id if we have not node id available in page flags. 513 * We guarantee only that it will return the same value for two 514 * combinable pages in a zone. 515 */ 516 static inline int page_zone_id(struct page *page) 517 { 518 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 519 } 520 521 static inline int zone_to_nid(struct zone *zone) 522 { 523 #ifdef CONFIG_NUMA 524 return zone->node; 525 #else 526 return 0; 527 #endif 528 } 529 530 #ifdef NODE_NOT_IN_PAGE_FLAGS 531 extern int page_to_nid(struct page *page); 532 #else 533 static inline int page_to_nid(struct page *page) 534 { 535 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 536 } 537 #endif 538 539 static inline struct zone *page_zone(struct page *page) 540 { 541 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 542 } 543 544 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 545 static inline unsigned long page_to_section(struct page *page) 546 { 547 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 548 } 549 #endif 550 551 static inline void set_page_zone(struct page *page, enum zone_type zone) 552 { 553 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 554 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 555 } 556 557 static inline void set_page_node(struct page *page, unsigned long node) 558 { 559 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 560 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 561 } 562 563 static inline void set_page_section(struct page *page, unsigned long section) 564 { 565 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 566 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 567 } 568 569 static inline void set_page_links(struct page *page, enum zone_type zone, 570 unsigned long node, unsigned long pfn) 571 { 572 set_page_zone(page, zone); 573 set_page_node(page, node); 574 set_page_section(page, pfn_to_section_nr(pfn)); 575 } 576 577 /* 578 * If a hint addr is less than mmap_min_addr change hint to be as 579 * low as possible but still greater than mmap_min_addr 580 */ 581 static inline unsigned long round_hint_to_min(unsigned long hint) 582 { 583 hint &= PAGE_MASK; 584 if (((void *)hint != NULL) && 585 (hint < mmap_min_addr)) 586 return PAGE_ALIGN(mmap_min_addr); 587 return hint; 588 } 589 590 /* 591 * Some inline functions in vmstat.h depend on page_zone() 592 */ 593 #include <linux/vmstat.h> 594 595 static __always_inline void *lowmem_page_address(struct page *page) 596 { 597 return __va(page_to_pfn(page) << PAGE_SHIFT); 598 } 599 600 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 601 #define HASHED_PAGE_VIRTUAL 602 #endif 603 604 #if defined(WANT_PAGE_VIRTUAL) 605 #define page_address(page) ((page)->virtual) 606 #define set_page_address(page, address) \ 607 do { \ 608 (page)->virtual = (address); \ 609 } while(0) 610 #define page_address_init() do { } while(0) 611 #endif 612 613 #if defined(HASHED_PAGE_VIRTUAL) 614 void *page_address(struct page *page); 615 void set_page_address(struct page *page, void *virtual); 616 void page_address_init(void); 617 #endif 618 619 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 620 #define page_address(page) lowmem_page_address(page) 621 #define set_page_address(page, address) do { } while(0) 622 #define page_address_init() do { } while(0) 623 #endif 624 625 /* 626 * On an anonymous page mapped into a user virtual memory area, 627 * page->mapping points to its anon_vma, not to a struct address_space; 628 * with the PAGE_MAPPING_ANON bit set to distinguish it. 629 * 630 * Please note that, confusingly, "page_mapping" refers to the inode 631 * address_space which maps the page from disk; whereas "page_mapped" 632 * refers to user virtual address space into which the page is mapped. 633 */ 634 #define PAGE_MAPPING_ANON 1 635 636 extern struct address_space swapper_space; 637 static inline struct address_space *page_mapping(struct page *page) 638 { 639 struct address_space *mapping = page->mapping; 640 641 VM_BUG_ON(PageSlab(page)); 642 #ifdef CONFIG_SWAP 643 if (unlikely(PageSwapCache(page))) 644 mapping = &swapper_space; 645 else 646 #endif 647 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 648 mapping = NULL; 649 return mapping; 650 } 651 652 static inline int PageAnon(struct page *page) 653 { 654 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 655 } 656 657 /* 658 * Return the pagecache index of the passed page. Regular pagecache pages 659 * use ->index whereas swapcache pages use ->private 660 */ 661 static inline pgoff_t page_index(struct page *page) 662 { 663 if (unlikely(PageSwapCache(page))) 664 return page_private(page); 665 return page->index; 666 } 667 668 /* 669 * The atomic page->_mapcount, like _count, starts from -1: 670 * so that transitions both from it and to it can be tracked, 671 * using atomic_inc_and_test and atomic_add_negative(-1). 672 */ 673 static inline void reset_page_mapcount(struct page *page) 674 { 675 atomic_set(&(page)->_mapcount, -1); 676 } 677 678 static inline int page_mapcount(struct page *page) 679 { 680 return atomic_read(&(page)->_mapcount) + 1; 681 } 682 683 /* 684 * Return true if this page is mapped into pagetables. 685 */ 686 static inline int page_mapped(struct page *page) 687 { 688 return atomic_read(&(page)->_mapcount) >= 0; 689 } 690 691 /* 692 * Different kinds of faults, as returned by handle_mm_fault(). 693 * Used to decide whether a process gets delivered SIGBUS or 694 * just gets major/minor fault counters bumped up. 695 */ 696 697 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 698 699 #define VM_FAULT_OOM 0x0001 700 #define VM_FAULT_SIGBUS 0x0002 701 #define VM_FAULT_MAJOR 0x0004 702 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 703 704 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 705 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 706 707 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 708 709 /* 710 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 711 */ 712 extern void pagefault_out_of_memory(void); 713 714 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 715 716 extern void show_free_areas(void); 717 718 #ifdef CONFIG_SHMEM 719 extern int shmem_lock(struct file *file, int lock, struct user_struct *user); 720 #else 721 static inline int shmem_lock(struct file *file, int lock, 722 struct user_struct *user) 723 { 724 return 0; 725 } 726 #endif 727 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 728 729 int shmem_zero_setup(struct vm_area_struct *); 730 731 #ifndef CONFIG_MMU 732 extern unsigned long shmem_get_unmapped_area(struct file *file, 733 unsigned long addr, 734 unsigned long len, 735 unsigned long pgoff, 736 unsigned long flags); 737 #endif 738 739 extern int can_do_mlock(void); 740 extern int user_shm_lock(size_t, struct user_struct *); 741 extern void user_shm_unlock(size_t, struct user_struct *); 742 743 /* 744 * Parameter block passed down to zap_pte_range in exceptional cases. 745 */ 746 struct zap_details { 747 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 748 struct address_space *check_mapping; /* Check page->mapping if set */ 749 pgoff_t first_index; /* Lowest page->index to unmap */ 750 pgoff_t last_index; /* Highest page->index to unmap */ 751 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 752 unsigned long truncate_count; /* Compare vm_truncate_count */ 753 }; 754 755 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 756 pte_t pte); 757 758 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 759 unsigned long size); 760 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 761 unsigned long size, struct zap_details *); 762 unsigned long unmap_vmas(struct mmu_gather **tlb, 763 struct vm_area_struct *start_vma, unsigned long start_addr, 764 unsigned long end_addr, unsigned long *nr_accounted, 765 struct zap_details *); 766 767 /** 768 * mm_walk - callbacks for walk_page_range 769 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 770 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 771 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 772 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 773 * @pte_hole: if set, called for each hole at all levels 774 * 775 * (see walk_page_range for more details) 776 */ 777 struct mm_walk { 778 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 779 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 780 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 781 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 782 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 783 struct mm_struct *mm; 784 void *private; 785 }; 786 787 int walk_page_range(unsigned long addr, unsigned long end, 788 struct mm_walk *walk); 789 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 790 unsigned long end, unsigned long floor, unsigned long ceiling); 791 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 792 struct vm_area_struct *vma); 793 void unmap_mapping_range(struct address_space *mapping, 794 loff_t const holebegin, loff_t const holelen, int even_cows); 795 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 796 unsigned long *pfn); 797 int follow_phys(struct vm_area_struct *vma, unsigned long address, 798 unsigned int flags, unsigned long *prot, resource_size_t *phys); 799 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 800 void *buf, int len, int write); 801 802 static inline void unmap_shared_mapping_range(struct address_space *mapping, 803 loff_t const holebegin, loff_t const holelen) 804 { 805 unmap_mapping_range(mapping, holebegin, holelen, 0); 806 } 807 808 extern int vmtruncate(struct inode * inode, loff_t offset); 809 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 810 811 #ifdef CONFIG_MMU 812 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 813 unsigned long address, unsigned int flags); 814 #else 815 static inline int handle_mm_fault(struct mm_struct *mm, 816 struct vm_area_struct *vma, unsigned long address, 817 unsigned int flags) 818 { 819 /* should never happen if there's no MMU */ 820 BUG(); 821 return VM_FAULT_SIGBUS; 822 } 823 #endif 824 825 extern int make_pages_present(unsigned long addr, unsigned long end); 826 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 827 828 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 829 unsigned long start, int nr_pages, int write, int force, 830 struct page **pages, struct vm_area_struct **vmas); 831 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 832 struct page **pages); 833 834 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 835 extern void do_invalidatepage(struct page *page, unsigned long offset); 836 837 int __set_page_dirty_nobuffers(struct page *page); 838 int __set_page_dirty_no_writeback(struct page *page); 839 int redirty_page_for_writepage(struct writeback_control *wbc, 840 struct page *page); 841 void account_page_dirtied(struct page *page, struct address_space *mapping); 842 int set_page_dirty(struct page *page); 843 int set_page_dirty_lock(struct page *page); 844 int clear_page_dirty_for_io(struct page *page); 845 846 extern unsigned long move_page_tables(struct vm_area_struct *vma, 847 unsigned long old_addr, struct vm_area_struct *new_vma, 848 unsigned long new_addr, unsigned long len); 849 extern unsigned long do_mremap(unsigned long addr, 850 unsigned long old_len, unsigned long new_len, 851 unsigned long flags, unsigned long new_addr); 852 extern int mprotect_fixup(struct vm_area_struct *vma, 853 struct vm_area_struct **pprev, unsigned long start, 854 unsigned long end, unsigned long newflags); 855 856 /* 857 * doesn't attempt to fault and will return short. 858 */ 859 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 860 struct page **pages); 861 862 /* 863 * A callback you can register to apply pressure to ageable caches. 864 * 865 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 866 * look through the least-recently-used 'nr_to_scan' entries and 867 * attempt to free them up. It should return the number of objects 868 * which remain in the cache. If it returns -1, it means it cannot do 869 * any scanning at this time (eg. there is a risk of deadlock). 870 * 871 * The 'gfpmask' refers to the allocation we are currently trying to 872 * fulfil. 873 * 874 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 875 * querying the cache size, so a fastpath for that case is appropriate. 876 */ 877 struct shrinker { 878 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 879 int seeks; /* seeks to recreate an obj */ 880 881 /* These are for internal use */ 882 struct list_head list; 883 long nr; /* objs pending delete */ 884 }; 885 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 886 extern void register_shrinker(struct shrinker *); 887 extern void unregister_shrinker(struct shrinker *); 888 889 int vma_wants_writenotify(struct vm_area_struct *vma); 890 891 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 892 893 #ifdef __PAGETABLE_PUD_FOLDED 894 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 895 unsigned long address) 896 { 897 return 0; 898 } 899 #else 900 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 901 #endif 902 903 #ifdef __PAGETABLE_PMD_FOLDED 904 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 905 unsigned long address) 906 { 907 return 0; 908 } 909 #else 910 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 911 #endif 912 913 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 914 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 915 916 /* 917 * The following ifdef needed to get the 4level-fixup.h header to work. 918 * Remove it when 4level-fixup.h has been removed. 919 */ 920 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 921 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 922 { 923 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 924 NULL: pud_offset(pgd, address); 925 } 926 927 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 928 { 929 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 930 NULL: pmd_offset(pud, address); 931 } 932 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 933 934 #if USE_SPLIT_PTLOCKS 935 /* 936 * We tuck a spinlock to guard each pagetable page into its struct page, 937 * at page->private, with BUILD_BUG_ON to make sure that this will not 938 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 939 * When freeing, reset page->mapping so free_pages_check won't complain. 940 */ 941 #define __pte_lockptr(page) &((page)->ptl) 942 #define pte_lock_init(_page) do { \ 943 spin_lock_init(__pte_lockptr(_page)); \ 944 } while (0) 945 #define pte_lock_deinit(page) ((page)->mapping = NULL) 946 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 947 #else /* !USE_SPLIT_PTLOCKS */ 948 /* 949 * We use mm->page_table_lock to guard all pagetable pages of the mm. 950 */ 951 #define pte_lock_init(page) do {} while (0) 952 #define pte_lock_deinit(page) do {} while (0) 953 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 954 #endif /* USE_SPLIT_PTLOCKS */ 955 956 static inline void pgtable_page_ctor(struct page *page) 957 { 958 pte_lock_init(page); 959 inc_zone_page_state(page, NR_PAGETABLE); 960 } 961 962 static inline void pgtable_page_dtor(struct page *page) 963 { 964 pte_lock_deinit(page); 965 dec_zone_page_state(page, NR_PAGETABLE); 966 } 967 968 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 969 ({ \ 970 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 971 pte_t *__pte = pte_offset_map(pmd, address); \ 972 *(ptlp) = __ptl; \ 973 spin_lock(__ptl); \ 974 __pte; \ 975 }) 976 977 #define pte_unmap_unlock(pte, ptl) do { \ 978 spin_unlock(ptl); \ 979 pte_unmap(pte); \ 980 } while (0) 981 982 #define pte_alloc_map(mm, pmd, address) \ 983 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 984 NULL: pte_offset_map(pmd, address)) 985 986 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 988 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 989 990 #define pte_alloc_kernel(pmd, address) \ 991 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 992 NULL: pte_offset_kernel(pmd, address)) 993 994 extern void free_area_init(unsigned long * zones_size); 995 extern void free_area_init_node(int nid, unsigned long * zones_size, 996 unsigned long zone_start_pfn, unsigned long *zholes_size); 997 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 998 /* 999 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1000 * zones, allocate the backing mem_map and account for memory holes in a more 1001 * architecture independent manner. This is a substitute for creating the 1002 * zone_sizes[] and zholes_size[] arrays and passing them to 1003 * free_area_init_node() 1004 * 1005 * An architecture is expected to register range of page frames backed by 1006 * physical memory with add_active_range() before calling 1007 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1008 * usage, an architecture is expected to do something like 1009 * 1010 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1011 * max_highmem_pfn}; 1012 * for_each_valid_physical_page_range() 1013 * add_active_range(node_id, start_pfn, end_pfn) 1014 * free_area_init_nodes(max_zone_pfns); 1015 * 1016 * If the architecture guarantees that there are no holes in the ranges 1017 * registered with add_active_range(), free_bootmem_active_regions() 1018 * will call free_bootmem_node() for each registered physical page range. 1019 * Similarly sparse_memory_present_with_active_regions() calls 1020 * memory_present() for each range when SPARSEMEM is enabled. 1021 * 1022 * See mm/page_alloc.c for more information on each function exposed by 1023 * CONFIG_ARCH_POPULATES_NODE_MAP 1024 */ 1025 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1026 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1027 unsigned long end_pfn); 1028 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1029 unsigned long end_pfn); 1030 extern void remove_all_active_ranges(void); 1031 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1032 unsigned long end_pfn); 1033 extern void get_pfn_range_for_nid(unsigned int nid, 1034 unsigned long *start_pfn, unsigned long *end_pfn); 1035 extern unsigned long find_min_pfn_with_active_regions(void); 1036 extern void free_bootmem_with_active_regions(int nid, 1037 unsigned long max_low_pfn); 1038 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1039 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1040 extern void sparse_memory_present_with_active_regions(int nid); 1041 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1042 1043 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1044 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1045 static inline int __early_pfn_to_nid(unsigned long pfn) 1046 { 1047 return 0; 1048 } 1049 #else 1050 /* please see mm/page_alloc.c */ 1051 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1052 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1053 /* there is a per-arch backend function. */ 1054 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1055 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1056 #endif 1057 1058 extern void set_dma_reserve(unsigned long new_dma_reserve); 1059 extern void memmap_init_zone(unsigned long, int, unsigned long, 1060 unsigned long, enum memmap_context); 1061 extern void setup_per_zone_wmarks(void); 1062 extern void calculate_zone_inactive_ratio(struct zone *zone); 1063 extern void mem_init(void); 1064 extern void __init mmap_init(void); 1065 extern void show_mem(void); 1066 extern void si_meminfo(struct sysinfo * val); 1067 extern void si_meminfo_node(struct sysinfo *val, int nid); 1068 extern int after_bootmem; 1069 1070 #ifdef CONFIG_NUMA 1071 extern void setup_per_cpu_pageset(void); 1072 #else 1073 static inline void setup_per_cpu_pageset(void) {} 1074 #endif 1075 1076 /* nommu.c */ 1077 extern atomic_long_t mmap_pages_allocated; 1078 1079 /* prio_tree.c */ 1080 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1081 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1082 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1083 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1084 struct prio_tree_iter *iter); 1085 1086 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1087 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1088 (vma = vma_prio_tree_next(vma, iter)); ) 1089 1090 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1091 struct list_head *list) 1092 { 1093 vma->shared.vm_set.parent = NULL; 1094 list_add_tail(&vma->shared.vm_set.list, list); 1095 } 1096 1097 /* mmap.c */ 1098 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1099 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1100 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1101 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1102 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1103 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1104 struct mempolicy *); 1105 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1106 extern int split_vma(struct mm_struct *, 1107 struct vm_area_struct *, unsigned long addr, int new_below); 1108 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1109 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1110 struct rb_node **, struct rb_node *); 1111 extern void unlink_file_vma(struct vm_area_struct *); 1112 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1113 unsigned long addr, unsigned long len, pgoff_t pgoff); 1114 extern void exit_mmap(struct mm_struct *); 1115 1116 extern int mm_take_all_locks(struct mm_struct *mm); 1117 extern void mm_drop_all_locks(struct mm_struct *mm); 1118 1119 #ifdef CONFIG_PROC_FS 1120 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1121 extern void added_exe_file_vma(struct mm_struct *mm); 1122 extern void removed_exe_file_vma(struct mm_struct *mm); 1123 #else 1124 static inline void added_exe_file_vma(struct mm_struct *mm) 1125 {} 1126 1127 static inline void removed_exe_file_vma(struct mm_struct *mm) 1128 {} 1129 #endif /* CONFIG_PROC_FS */ 1130 1131 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1132 extern int install_special_mapping(struct mm_struct *mm, 1133 unsigned long addr, unsigned long len, 1134 unsigned long flags, struct page **pages); 1135 1136 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1137 1138 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1139 unsigned long len, unsigned long prot, 1140 unsigned long flag, unsigned long pgoff); 1141 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1142 unsigned long len, unsigned long flags, 1143 unsigned int vm_flags, unsigned long pgoff); 1144 1145 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1146 unsigned long len, unsigned long prot, 1147 unsigned long flag, unsigned long offset) 1148 { 1149 unsigned long ret = -EINVAL; 1150 if ((offset + PAGE_ALIGN(len)) < offset) 1151 goto out; 1152 if (!(offset & ~PAGE_MASK)) 1153 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1154 out: 1155 return ret; 1156 } 1157 1158 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1159 1160 extern unsigned long do_brk(unsigned long, unsigned long); 1161 1162 /* filemap.c */ 1163 extern unsigned long page_unuse(struct page *); 1164 extern void truncate_inode_pages(struct address_space *, loff_t); 1165 extern void truncate_inode_pages_range(struct address_space *, 1166 loff_t lstart, loff_t lend); 1167 1168 /* generic vm_area_ops exported for stackable file systems */ 1169 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1170 1171 /* mm/page-writeback.c */ 1172 int write_one_page(struct page *page, int wait); 1173 void task_dirty_inc(struct task_struct *tsk); 1174 1175 /* readahead.c */ 1176 #define VM_MAX_READAHEAD 128 /* kbytes */ 1177 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1178 1179 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1180 pgoff_t offset, unsigned long nr_to_read); 1181 1182 void page_cache_sync_readahead(struct address_space *mapping, 1183 struct file_ra_state *ra, 1184 struct file *filp, 1185 pgoff_t offset, 1186 unsigned long size); 1187 1188 void page_cache_async_readahead(struct address_space *mapping, 1189 struct file_ra_state *ra, 1190 struct file *filp, 1191 struct page *pg, 1192 pgoff_t offset, 1193 unsigned long size); 1194 1195 unsigned long max_sane_readahead(unsigned long nr); 1196 unsigned long ra_submit(struct file_ra_state *ra, 1197 struct address_space *mapping, 1198 struct file *filp); 1199 1200 /* Do stack extension */ 1201 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1202 #ifdef CONFIG_IA64 1203 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1204 #endif 1205 extern int expand_stack_downwards(struct vm_area_struct *vma, 1206 unsigned long address); 1207 1208 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1209 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1210 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1211 struct vm_area_struct **pprev); 1212 1213 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1214 NULL if none. Assume start_addr < end_addr. */ 1215 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1216 { 1217 struct vm_area_struct * vma = find_vma(mm,start_addr); 1218 1219 if (vma && end_addr <= vma->vm_start) 1220 vma = NULL; 1221 return vma; 1222 } 1223 1224 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1225 { 1226 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1227 } 1228 1229 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1230 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1231 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1232 unsigned long pfn, unsigned long size, pgprot_t); 1233 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1234 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1235 unsigned long pfn); 1236 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1237 unsigned long pfn); 1238 1239 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1240 unsigned int foll_flags); 1241 #define FOLL_WRITE 0x01 /* check pte is writable */ 1242 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1243 #define FOLL_GET 0x04 /* do get_page on page */ 1244 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1245 1246 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1247 void *data); 1248 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1249 unsigned long size, pte_fn_t fn, void *data); 1250 1251 #ifdef CONFIG_PROC_FS 1252 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1253 #else 1254 static inline void vm_stat_account(struct mm_struct *mm, 1255 unsigned long flags, struct file *file, long pages) 1256 { 1257 } 1258 #endif /* CONFIG_PROC_FS */ 1259 1260 #ifdef CONFIG_DEBUG_PAGEALLOC 1261 extern int debug_pagealloc_enabled; 1262 1263 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1264 1265 static inline void enable_debug_pagealloc(void) 1266 { 1267 debug_pagealloc_enabled = 1; 1268 } 1269 #ifdef CONFIG_HIBERNATION 1270 extern bool kernel_page_present(struct page *page); 1271 #endif /* CONFIG_HIBERNATION */ 1272 #else 1273 static inline void 1274 kernel_map_pages(struct page *page, int numpages, int enable) {} 1275 static inline void enable_debug_pagealloc(void) 1276 { 1277 } 1278 #ifdef CONFIG_HIBERNATION 1279 static inline bool kernel_page_present(struct page *page) { return true; } 1280 #endif /* CONFIG_HIBERNATION */ 1281 #endif 1282 1283 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1284 #ifdef __HAVE_ARCH_GATE_AREA 1285 int in_gate_area_no_task(unsigned long addr); 1286 int in_gate_area(struct task_struct *task, unsigned long addr); 1287 #else 1288 int in_gate_area_no_task(unsigned long addr); 1289 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1290 #endif /* __HAVE_ARCH_GATE_AREA */ 1291 1292 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1293 void __user *, size_t *, loff_t *); 1294 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1295 unsigned long lru_pages); 1296 1297 #ifndef CONFIG_MMU 1298 #define randomize_va_space 0 1299 #else 1300 extern int randomize_va_space; 1301 #endif 1302 1303 const char * arch_vma_name(struct vm_area_struct *vma); 1304 void print_vma_addr(char *prefix, unsigned long rip); 1305 1306 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1307 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1308 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1309 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1310 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1311 void *vmemmap_alloc_block(unsigned long size, int node); 1312 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1313 int vmemmap_populate_basepages(struct page *start_page, 1314 unsigned long pages, int node); 1315 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1316 void vmemmap_populate_print_last(void); 1317 1318 extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim, 1319 size_t size); 1320 extern void refund_locked_memory(struct mm_struct *mm, size_t size); 1321 #endif /* __KERNEL__ */ 1322 #endif /* _LINUX_MM_H */ 1323