1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 26 struct mempolicy; 27 struct anon_vma; 28 struct anon_vma_chain; 29 struct file_ra_state; 30 struct user_struct; 31 struct writeback_control; 32 struct bdi_writeback; 33 34 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 35 extern unsigned long max_mapnr; 36 37 static inline void set_max_mapnr(unsigned long limit) 38 { 39 max_mapnr = limit; 40 } 41 #else 42 static inline void set_max_mapnr(unsigned long limit) { } 43 #endif 44 45 extern unsigned long totalram_pages; 46 extern void * high_memory; 47 extern int page_cluster; 48 49 #ifdef CONFIG_SYSCTL 50 extern int sysctl_legacy_va_layout; 51 #else 52 #define sysctl_legacy_va_layout 0 53 #endif 54 55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 56 extern const int mmap_rnd_bits_min; 57 extern const int mmap_rnd_bits_max; 58 extern int mmap_rnd_bits __read_mostly; 59 #endif 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 61 extern const int mmap_rnd_compat_bits_min; 62 extern const int mmap_rnd_compat_bits_max; 63 extern int mmap_rnd_compat_bits __read_mostly; 64 #endif 65 66 #include <asm/page.h> 67 #include <asm/pgtable.h> 68 #include <asm/processor.h> 69 70 #ifndef __pa_symbol 71 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 72 #endif 73 74 /* 75 * To prevent common memory management code establishing 76 * a zero page mapping on a read fault. 77 * This macro should be defined within <asm/pgtable.h>. 78 * s390 does this to prevent multiplexing of hardware bits 79 * related to the physical page in case of virtualization. 80 */ 81 #ifndef mm_forbids_zeropage 82 #define mm_forbids_zeropage(X) (0) 83 #endif 84 85 extern unsigned long sysctl_user_reserve_kbytes; 86 extern unsigned long sysctl_admin_reserve_kbytes; 87 88 extern int sysctl_overcommit_memory; 89 extern int sysctl_overcommit_ratio; 90 extern unsigned long sysctl_overcommit_kbytes; 91 92 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 93 size_t *, loff_t *); 94 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 95 size_t *, loff_t *); 96 97 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 98 99 /* to align the pointer to the (next) page boundary */ 100 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 101 102 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 103 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 104 105 /* 106 * Linux kernel virtual memory manager primitives. 107 * The idea being to have a "virtual" mm in the same way 108 * we have a virtual fs - giving a cleaner interface to the 109 * mm details, and allowing different kinds of memory mappings 110 * (from shared memory to executable loading to arbitrary 111 * mmap() functions). 112 */ 113 114 extern struct kmem_cache *vm_area_cachep; 115 116 #ifndef CONFIG_MMU 117 extern struct rb_root nommu_region_tree; 118 extern struct rw_semaphore nommu_region_sem; 119 120 extern unsigned int kobjsize(const void *objp); 121 #endif 122 123 /* 124 * vm_flags in vm_area_struct, see mm_types.h. 125 */ 126 #define VM_NONE 0x00000000 127 128 #define VM_READ 0x00000001 /* currently active flags */ 129 #define VM_WRITE 0x00000002 130 #define VM_EXEC 0x00000004 131 #define VM_SHARED 0x00000008 132 133 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 134 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 135 #define VM_MAYWRITE 0x00000020 136 #define VM_MAYEXEC 0x00000040 137 #define VM_MAYSHARE 0x00000080 138 139 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 140 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 141 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 142 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 143 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 144 145 #define VM_LOCKED 0x00002000 146 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 147 148 /* Used by sys_madvise() */ 149 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 150 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 151 152 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 153 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 154 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 155 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 156 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 157 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 158 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 159 #define VM_ARCH_2 0x02000000 160 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 161 162 #ifdef CONFIG_MEM_SOFT_DIRTY 163 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 164 #else 165 # define VM_SOFTDIRTY 0 166 #endif 167 168 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 169 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 170 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 171 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 172 173 #if defined(CONFIG_X86) 174 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 175 #elif defined(CONFIG_PPC) 176 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 177 #elif defined(CONFIG_PARISC) 178 # define VM_GROWSUP VM_ARCH_1 179 #elif defined(CONFIG_METAG) 180 # define VM_GROWSUP VM_ARCH_1 181 #elif defined(CONFIG_IA64) 182 # define VM_GROWSUP VM_ARCH_1 183 #elif !defined(CONFIG_MMU) 184 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 185 #endif 186 187 #if defined(CONFIG_X86) 188 /* MPX specific bounds table or bounds directory */ 189 # define VM_MPX VM_ARCH_2 190 #endif 191 192 #ifndef VM_GROWSUP 193 # define VM_GROWSUP VM_NONE 194 #endif 195 196 /* Bits set in the VMA until the stack is in its final location */ 197 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 198 199 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 200 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 201 #endif 202 203 #ifdef CONFIG_STACK_GROWSUP 204 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 205 #else 206 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 207 #endif 208 209 /* 210 * Special vmas that are non-mergable, non-mlock()able. 211 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 212 */ 213 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 214 215 /* This mask defines which mm->def_flags a process can inherit its parent */ 216 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 217 218 /* This mask is used to clear all the VMA flags used by mlock */ 219 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 220 221 /* 222 * mapping from the currently active vm_flags protection bits (the 223 * low four bits) to a page protection mask.. 224 */ 225 extern pgprot_t protection_map[16]; 226 227 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 228 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 229 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 230 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 231 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 232 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 233 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 234 235 /* 236 * vm_fault is filled by the the pagefault handler and passed to the vma's 237 * ->fault function. The vma's ->fault is responsible for returning a bitmask 238 * of VM_FAULT_xxx flags that give details about how the fault was handled. 239 * 240 * MM layer fills up gfp_mask for page allocations but fault handler might 241 * alter it if its implementation requires a different allocation context. 242 * 243 * pgoff should be used in favour of virtual_address, if possible. 244 */ 245 struct vm_fault { 246 unsigned int flags; /* FAULT_FLAG_xxx flags */ 247 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 248 pgoff_t pgoff; /* Logical page offset based on vma */ 249 void __user *virtual_address; /* Faulting virtual address */ 250 251 struct page *cow_page; /* Handler may choose to COW */ 252 struct page *page; /* ->fault handlers should return a 253 * page here, unless VM_FAULT_NOPAGE 254 * is set (which is also implied by 255 * VM_FAULT_ERROR). 256 */ 257 /* for ->map_pages() only */ 258 pgoff_t max_pgoff; /* map pages for offset from pgoff till 259 * max_pgoff inclusive */ 260 pte_t *pte; /* pte entry associated with ->pgoff */ 261 }; 262 263 /* 264 * These are the virtual MM functions - opening of an area, closing and 265 * unmapping it (needed to keep files on disk up-to-date etc), pointer 266 * to the functions called when a no-page or a wp-page exception occurs. 267 */ 268 struct vm_operations_struct { 269 void (*open)(struct vm_area_struct * area); 270 void (*close)(struct vm_area_struct * area); 271 int (*mremap)(struct vm_area_struct * area); 272 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 273 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 274 pmd_t *, unsigned int flags); 275 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 276 277 /* notification that a previously read-only page is about to become 278 * writable, if an error is returned it will cause a SIGBUS */ 279 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 280 281 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 282 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 283 284 /* called by access_process_vm when get_user_pages() fails, typically 285 * for use by special VMAs that can switch between memory and hardware 286 */ 287 int (*access)(struct vm_area_struct *vma, unsigned long addr, 288 void *buf, int len, int write); 289 290 /* Called by the /proc/PID/maps code to ask the vma whether it 291 * has a special name. Returning non-NULL will also cause this 292 * vma to be dumped unconditionally. */ 293 const char *(*name)(struct vm_area_struct *vma); 294 295 #ifdef CONFIG_NUMA 296 /* 297 * set_policy() op must add a reference to any non-NULL @new mempolicy 298 * to hold the policy upon return. Caller should pass NULL @new to 299 * remove a policy and fall back to surrounding context--i.e. do not 300 * install a MPOL_DEFAULT policy, nor the task or system default 301 * mempolicy. 302 */ 303 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 304 305 /* 306 * get_policy() op must add reference [mpol_get()] to any policy at 307 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 308 * in mm/mempolicy.c will do this automatically. 309 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 310 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 311 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 312 * must return NULL--i.e., do not "fallback" to task or system default 313 * policy. 314 */ 315 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 316 unsigned long addr); 317 #endif 318 /* 319 * Called by vm_normal_page() for special PTEs to find the 320 * page for @addr. This is useful if the default behavior 321 * (using pte_page()) would not find the correct page. 322 */ 323 struct page *(*find_special_page)(struct vm_area_struct *vma, 324 unsigned long addr); 325 }; 326 327 struct mmu_gather; 328 struct inode; 329 330 #define page_private(page) ((page)->private) 331 #define set_page_private(page, v) ((page)->private = (v)) 332 333 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 334 static inline int pmd_devmap(pmd_t pmd) 335 { 336 return 0; 337 } 338 #endif 339 340 /* 341 * FIXME: take this include out, include page-flags.h in 342 * files which need it (119 of them) 343 */ 344 #include <linux/page-flags.h> 345 #include <linux/huge_mm.h> 346 347 /* 348 * Methods to modify the page usage count. 349 * 350 * What counts for a page usage: 351 * - cache mapping (page->mapping) 352 * - private data (page->private) 353 * - page mapped in a task's page tables, each mapping 354 * is counted separately 355 * 356 * Also, many kernel routines increase the page count before a critical 357 * routine so they can be sure the page doesn't go away from under them. 358 */ 359 360 /* 361 * Drop a ref, return true if the refcount fell to zero (the page has no users) 362 */ 363 static inline int put_page_testzero(struct page *page) 364 { 365 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 366 return atomic_dec_and_test(&page->_count); 367 } 368 369 /* 370 * Try to grab a ref unless the page has a refcount of zero, return false if 371 * that is the case. 372 * This can be called when MMU is off so it must not access 373 * any of the virtual mappings. 374 */ 375 static inline int get_page_unless_zero(struct page *page) 376 { 377 return atomic_inc_not_zero(&page->_count); 378 } 379 380 extern int page_is_ram(unsigned long pfn); 381 382 enum { 383 REGION_INTERSECTS, 384 REGION_DISJOINT, 385 REGION_MIXED, 386 }; 387 388 int region_intersects(resource_size_t offset, size_t size, const char *type); 389 390 /* Support for virtually mapped pages */ 391 struct page *vmalloc_to_page(const void *addr); 392 unsigned long vmalloc_to_pfn(const void *addr); 393 394 /* 395 * Determine if an address is within the vmalloc range 396 * 397 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 398 * is no special casing required. 399 */ 400 static inline int is_vmalloc_addr(const void *x) 401 { 402 #ifdef CONFIG_MMU 403 unsigned long addr = (unsigned long)x; 404 405 return addr >= VMALLOC_START && addr < VMALLOC_END; 406 #else 407 return 0; 408 #endif 409 } 410 #ifdef CONFIG_MMU 411 extern int is_vmalloc_or_module_addr(const void *x); 412 #else 413 static inline int is_vmalloc_or_module_addr(const void *x) 414 { 415 return 0; 416 } 417 #endif 418 419 extern void kvfree(const void *addr); 420 421 static inline atomic_t *compound_mapcount_ptr(struct page *page) 422 { 423 return &page[1].compound_mapcount; 424 } 425 426 static inline int compound_mapcount(struct page *page) 427 { 428 if (!PageCompound(page)) 429 return 0; 430 page = compound_head(page); 431 return atomic_read(compound_mapcount_ptr(page)) + 1; 432 } 433 434 /* 435 * The atomic page->_mapcount, starts from -1: so that transitions 436 * both from it and to it can be tracked, using atomic_inc_and_test 437 * and atomic_add_negative(-1). 438 */ 439 static inline void page_mapcount_reset(struct page *page) 440 { 441 atomic_set(&(page)->_mapcount, -1); 442 } 443 444 int __page_mapcount(struct page *page); 445 446 static inline int page_mapcount(struct page *page) 447 { 448 VM_BUG_ON_PAGE(PageSlab(page), page); 449 450 if (unlikely(PageCompound(page))) 451 return __page_mapcount(page); 452 return atomic_read(&page->_mapcount) + 1; 453 } 454 455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 456 int total_mapcount(struct page *page); 457 #else 458 static inline int total_mapcount(struct page *page) 459 { 460 return page_mapcount(page); 461 } 462 #endif 463 464 static inline int page_count(struct page *page) 465 { 466 return atomic_read(&compound_head(page)->_count); 467 } 468 469 static inline struct page *virt_to_head_page(const void *x) 470 { 471 struct page *page = virt_to_page(x); 472 473 return compound_head(page); 474 } 475 476 /* 477 * Setup the page count before being freed into the page allocator for 478 * the first time (boot or memory hotplug) 479 */ 480 static inline void init_page_count(struct page *page) 481 { 482 atomic_set(&page->_count, 1); 483 } 484 485 void __put_page(struct page *page); 486 487 void put_pages_list(struct list_head *pages); 488 489 void split_page(struct page *page, unsigned int order); 490 int split_free_page(struct page *page); 491 492 /* 493 * Compound pages have a destructor function. Provide a 494 * prototype for that function and accessor functions. 495 * These are _only_ valid on the head of a compound page. 496 */ 497 typedef void compound_page_dtor(struct page *); 498 499 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 500 enum compound_dtor_id { 501 NULL_COMPOUND_DTOR, 502 COMPOUND_PAGE_DTOR, 503 #ifdef CONFIG_HUGETLB_PAGE 504 HUGETLB_PAGE_DTOR, 505 #endif 506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 507 TRANSHUGE_PAGE_DTOR, 508 #endif 509 NR_COMPOUND_DTORS, 510 }; 511 extern compound_page_dtor * const compound_page_dtors[]; 512 513 static inline void set_compound_page_dtor(struct page *page, 514 enum compound_dtor_id compound_dtor) 515 { 516 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 517 page[1].compound_dtor = compound_dtor; 518 } 519 520 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 521 { 522 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 523 return compound_page_dtors[page[1].compound_dtor]; 524 } 525 526 static inline unsigned int compound_order(struct page *page) 527 { 528 if (!PageHead(page)) 529 return 0; 530 return page[1].compound_order; 531 } 532 533 static inline void set_compound_order(struct page *page, unsigned int order) 534 { 535 page[1].compound_order = order; 536 } 537 538 void free_compound_page(struct page *page); 539 540 #ifdef CONFIG_MMU 541 /* 542 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 543 * servicing faults for write access. In the normal case, do always want 544 * pte_mkwrite. But get_user_pages can cause write faults for mappings 545 * that do not have writing enabled, when used by access_process_vm. 546 */ 547 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 548 { 549 if (likely(vma->vm_flags & VM_WRITE)) 550 pte = pte_mkwrite(pte); 551 return pte; 552 } 553 554 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 555 struct page *page, pte_t *pte, bool write, bool anon); 556 #endif 557 558 /* 559 * Multiple processes may "see" the same page. E.g. for untouched 560 * mappings of /dev/null, all processes see the same page full of 561 * zeroes, and text pages of executables and shared libraries have 562 * only one copy in memory, at most, normally. 563 * 564 * For the non-reserved pages, page_count(page) denotes a reference count. 565 * page_count() == 0 means the page is free. page->lru is then used for 566 * freelist management in the buddy allocator. 567 * page_count() > 0 means the page has been allocated. 568 * 569 * Pages are allocated by the slab allocator in order to provide memory 570 * to kmalloc and kmem_cache_alloc. In this case, the management of the 571 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 572 * unless a particular usage is carefully commented. (the responsibility of 573 * freeing the kmalloc memory is the caller's, of course). 574 * 575 * A page may be used by anyone else who does a __get_free_page(). 576 * In this case, page_count still tracks the references, and should only 577 * be used through the normal accessor functions. The top bits of page->flags 578 * and page->virtual store page management information, but all other fields 579 * are unused and could be used privately, carefully. The management of this 580 * page is the responsibility of the one who allocated it, and those who have 581 * subsequently been given references to it. 582 * 583 * The other pages (we may call them "pagecache pages") are completely 584 * managed by the Linux memory manager: I/O, buffers, swapping etc. 585 * The following discussion applies only to them. 586 * 587 * A pagecache page contains an opaque `private' member, which belongs to the 588 * page's address_space. Usually, this is the address of a circular list of 589 * the page's disk buffers. PG_private must be set to tell the VM to call 590 * into the filesystem to release these pages. 591 * 592 * A page may belong to an inode's memory mapping. In this case, page->mapping 593 * is the pointer to the inode, and page->index is the file offset of the page, 594 * in units of PAGE_CACHE_SIZE. 595 * 596 * If pagecache pages are not associated with an inode, they are said to be 597 * anonymous pages. These may become associated with the swapcache, and in that 598 * case PG_swapcache is set, and page->private is an offset into the swapcache. 599 * 600 * In either case (swapcache or inode backed), the pagecache itself holds one 601 * reference to the page. Setting PG_private should also increment the 602 * refcount. The each user mapping also has a reference to the page. 603 * 604 * The pagecache pages are stored in a per-mapping radix tree, which is 605 * rooted at mapping->page_tree, and indexed by offset. 606 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 607 * lists, we instead now tag pages as dirty/writeback in the radix tree. 608 * 609 * All pagecache pages may be subject to I/O: 610 * - inode pages may need to be read from disk, 611 * - inode pages which have been modified and are MAP_SHARED may need 612 * to be written back to the inode on disk, 613 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 614 * modified may need to be swapped out to swap space and (later) to be read 615 * back into memory. 616 */ 617 618 /* 619 * The zone field is never updated after free_area_init_core() 620 * sets it, so none of the operations on it need to be atomic. 621 */ 622 623 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 624 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 625 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 626 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 627 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 628 629 /* 630 * Define the bit shifts to access each section. For non-existent 631 * sections we define the shift as 0; that plus a 0 mask ensures 632 * the compiler will optimise away reference to them. 633 */ 634 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 635 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 636 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 637 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 638 639 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 640 #ifdef NODE_NOT_IN_PAGE_FLAGS 641 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 642 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 643 SECTIONS_PGOFF : ZONES_PGOFF) 644 #else 645 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 646 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 647 NODES_PGOFF : ZONES_PGOFF) 648 #endif 649 650 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 651 652 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 653 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 654 #endif 655 656 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 657 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 658 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 659 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 660 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 661 662 static inline enum zone_type page_zonenum(const struct page *page) 663 { 664 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 665 } 666 667 #ifdef CONFIG_ZONE_DEVICE 668 void get_zone_device_page(struct page *page); 669 void put_zone_device_page(struct page *page); 670 static inline bool is_zone_device_page(const struct page *page) 671 { 672 return page_zonenum(page) == ZONE_DEVICE; 673 } 674 #else 675 static inline void get_zone_device_page(struct page *page) 676 { 677 } 678 static inline void put_zone_device_page(struct page *page) 679 { 680 } 681 static inline bool is_zone_device_page(const struct page *page) 682 { 683 return false; 684 } 685 #endif 686 687 static inline void get_page(struct page *page) 688 { 689 page = compound_head(page); 690 /* 691 * Getting a normal page or the head of a compound page 692 * requires to already have an elevated page->_count. 693 */ 694 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 695 atomic_inc(&page->_count); 696 697 if (unlikely(is_zone_device_page(page))) 698 get_zone_device_page(page); 699 } 700 701 static inline void put_page(struct page *page) 702 { 703 page = compound_head(page); 704 705 if (put_page_testzero(page)) 706 __put_page(page); 707 708 if (unlikely(is_zone_device_page(page))) 709 put_zone_device_page(page); 710 } 711 712 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 713 #define SECTION_IN_PAGE_FLAGS 714 #endif 715 716 /* 717 * The identification function is mainly used by the buddy allocator for 718 * determining if two pages could be buddies. We are not really identifying 719 * the zone since we could be using the section number id if we do not have 720 * node id available in page flags. 721 * We only guarantee that it will return the same value for two combinable 722 * pages in a zone. 723 */ 724 static inline int page_zone_id(struct page *page) 725 { 726 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 727 } 728 729 static inline int zone_to_nid(struct zone *zone) 730 { 731 #ifdef CONFIG_NUMA 732 return zone->node; 733 #else 734 return 0; 735 #endif 736 } 737 738 #ifdef NODE_NOT_IN_PAGE_FLAGS 739 extern int page_to_nid(const struct page *page); 740 #else 741 static inline int page_to_nid(const struct page *page) 742 { 743 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 744 } 745 #endif 746 747 #ifdef CONFIG_NUMA_BALANCING 748 static inline int cpu_pid_to_cpupid(int cpu, int pid) 749 { 750 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 751 } 752 753 static inline int cpupid_to_pid(int cpupid) 754 { 755 return cpupid & LAST__PID_MASK; 756 } 757 758 static inline int cpupid_to_cpu(int cpupid) 759 { 760 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 761 } 762 763 static inline int cpupid_to_nid(int cpupid) 764 { 765 return cpu_to_node(cpupid_to_cpu(cpupid)); 766 } 767 768 static inline bool cpupid_pid_unset(int cpupid) 769 { 770 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 771 } 772 773 static inline bool cpupid_cpu_unset(int cpupid) 774 { 775 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 776 } 777 778 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 779 { 780 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 781 } 782 783 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 784 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 785 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 786 { 787 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 788 } 789 790 static inline int page_cpupid_last(struct page *page) 791 { 792 return page->_last_cpupid; 793 } 794 static inline void page_cpupid_reset_last(struct page *page) 795 { 796 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 797 } 798 #else 799 static inline int page_cpupid_last(struct page *page) 800 { 801 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 802 } 803 804 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 805 806 static inline void page_cpupid_reset_last(struct page *page) 807 { 808 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 809 810 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 811 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 812 } 813 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 814 #else /* !CONFIG_NUMA_BALANCING */ 815 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 816 { 817 return page_to_nid(page); /* XXX */ 818 } 819 820 static inline int page_cpupid_last(struct page *page) 821 { 822 return page_to_nid(page); /* XXX */ 823 } 824 825 static inline int cpupid_to_nid(int cpupid) 826 { 827 return -1; 828 } 829 830 static inline int cpupid_to_pid(int cpupid) 831 { 832 return -1; 833 } 834 835 static inline int cpupid_to_cpu(int cpupid) 836 { 837 return -1; 838 } 839 840 static inline int cpu_pid_to_cpupid(int nid, int pid) 841 { 842 return -1; 843 } 844 845 static inline bool cpupid_pid_unset(int cpupid) 846 { 847 return 1; 848 } 849 850 static inline void page_cpupid_reset_last(struct page *page) 851 { 852 } 853 854 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 855 { 856 return false; 857 } 858 #endif /* CONFIG_NUMA_BALANCING */ 859 860 static inline struct zone *page_zone(const struct page *page) 861 { 862 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 863 } 864 865 #ifdef SECTION_IN_PAGE_FLAGS 866 static inline void set_page_section(struct page *page, unsigned long section) 867 { 868 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 869 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 870 } 871 872 static inline unsigned long page_to_section(const struct page *page) 873 { 874 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 875 } 876 #endif 877 878 static inline void set_page_zone(struct page *page, enum zone_type zone) 879 { 880 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 881 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 882 } 883 884 static inline void set_page_node(struct page *page, unsigned long node) 885 { 886 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 887 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 888 } 889 890 static inline void set_page_links(struct page *page, enum zone_type zone, 891 unsigned long node, unsigned long pfn) 892 { 893 set_page_zone(page, zone); 894 set_page_node(page, node); 895 #ifdef SECTION_IN_PAGE_FLAGS 896 set_page_section(page, pfn_to_section_nr(pfn)); 897 #endif 898 } 899 900 #ifdef CONFIG_MEMCG 901 static inline struct mem_cgroup *page_memcg(struct page *page) 902 { 903 return page->mem_cgroup; 904 } 905 906 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 907 { 908 page->mem_cgroup = memcg; 909 } 910 #else 911 static inline struct mem_cgroup *page_memcg(struct page *page) 912 { 913 return NULL; 914 } 915 916 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 917 { 918 } 919 #endif 920 921 /* 922 * Some inline functions in vmstat.h depend on page_zone() 923 */ 924 #include <linux/vmstat.h> 925 926 static __always_inline void *lowmem_page_address(const struct page *page) 927 { 928 return __va(PFN_PHYS(page_to_pfn(page))); 929 } 930 931 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 932 #define HASHED_PAGE_VIRTUAL 933 #endif 934 935 #if defined(WANT_PAGE_VIRTUAL) 936 static inline void *page_address(const struct page *page) 937 { 938 return page->virtual; 939 } 940 static inline void set_page_address(struct page *page, void *address) 941 { 942 page->virtual = address; 943 } 944 #define page_address_init() do { } while(0) 945 #endif 946 947 #if defined(HASHED_PAGE_VIRTUAL) 948 void *page_address(const struct page *page); 949 void set_page_address(struct page *page, void *virtual); 950 void page_address_init(void); 951 #endif 952 953 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 954 #define page_address(page) lowmem_page_address(page) 955 #define set_page_address(page, address) do { } while(0) 956 #define page_address_init() do { } while(0) 957 #endif 958 959 extern void *page_rmapping(struct page *page); 960 extern struct anon_vma *page_anon_vma(struct page *page); 961 extern struct address_space *page_mapping(struct page *page); 962 963 extern struct address_space *__page_file_mapping(struct page *); 964 965 static inline 966 struct address_space *page_file_mapping(struct page *page) 967 { 968 if (unlikely(PageSwapCache(page))) 969 return __page_file_mapping(page); 970 971 return page->mapping; 972 } 973 974 /* 975 * Return the pagecache index of the passed page. Regular pagecache pages 976 * use ->index whereas swapcache pages use ->private 977 */ 978 static inline pgoff_t page_index(struct page *page) 979 { 980 if (unlikely(PageSwapCache(page))) 981 return page_private(page); 982 return page->index; 983 } 984 985 extern pgoff_t __page_file_index(struct page *page); 986 987 /* 988 * Return the file index of the page. Regular pagecache pages use ->index 989 * whereas swapcache pages use swp_offset(->private) 990 */ 991 static inline pgoff_t page_file_index(struct page *page) 992 { 993 if (unlikely(PageSwapCache(page))) 994 return __page_file_index(page); 995 996 return page->index; 997 } 998 999 /* 1000 * Return true if this page is mapped into pagetables. 1001 * For compound page it returns true if any subpage of compound page is mapped. 1002 */ 1003 static inline bool page_mapped(struct page *page) 1004 { 1005 int i; 1006 if (likely(!PageCompound(page))) 1007 return atomic_read(&page->_mapcount) >= 0; 1008 page = compound_head(page); 1009 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 1010 return true; 1011 for (i = 0; i < hpage_nr_pages(page); i++) { 1012 if (atomic_read(&page[i]._mapcount) >= 0) 1013 return true; 1014 } 1015 return false; 1016 } 1017 1018 /* 1019 * Return true only if the page has been allocated with 1020 * ALLOC_NO_WATERMARKS and the low watermark was not 1021 * met implying that the system is under some pressure. 1022 */ 1023 static inline bool page_is_pfmemalloc(struct page *page) 1024 { 1025 /* 1026 * Page index cannot be this large so this must be 1027 * a pfmemalloc page. 1028 */ 1029 return page->index == -1UL; 1030 } 1031 1032 /* 1033 * Only to be called by the page allocator on a freshly allocated 1034 * page. 1035 */ 1036 static inline void set_page_pfmemalloc(struct page *page) 1037 { 1038 page->index = -1UL; 1039 } 1040 1041 static inline void clear_page_pfmemalloc(struct page *page) 1042 { 1043 page->index = 0; 1044 } 1045 1046 /* 1047 * Different kinds of faults, as returned by handle_mm_fault(). 1048 * Used to decide whether a process gets delivered SIGBUS or 1049 * just gets major/minor fault counters bumped up. 1050 */ 1051 1052 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1053 1054 #define VM_FAULT_OOM 0x0001 1055 #define VM_FAULT_SIGBUS 0x0002 1056 #define VM_FAULT_MAJOR 0x0004 1057 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1058 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1059 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1060 #define VM_FAULT_SIGSEGV 0x0040 1061 1062 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1063 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1064 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1065 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1066 1067 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1068 1069 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1070 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1071 VM_FAULT_FALLBACK) 1072 1073 /* Encode hstate index for a hwpoisoned large page */ 1074 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1075 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1076 1077 /* 1078 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1079 */ 1080 extern void pagefault_out_of_memory(void); 1081 1082 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1083 1084 /* 1085 * Flags passed to show_mem() and show_free_areas() to suppress output in 1086 * various contexts. 1087 */ 1088 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1089 1090 extern void show_free_areas(unsigned int flags); 1091 extern bool skip_free_areas_node(unsigned int flags, int nid); 1092 1093 int shmem_zero_setup(struct vm_area_struct *); 1094 #ifdef CONFIG_SHMEM 1095 bool shmem_mapping(struct address_space *mapping); 1096 #else 1097 static inline bool shmem_mapping(struct address_space *mapping) 1098 { 1099 return false; 1100 } 1101 #endif 1102 1103 extern bool can_do_mlock(void); 1104 extern int user_shm_lock(size_t, struct user_struct *); 1105 extern void user_shm_unlock(size_t, struct user_struct *); 1106 1107 /* 1108 * Parameter block passed down to zap_pte_range in exceptional cases. 1109 */ 1110 struct zap_details { 1111 struct address_space *check_mapping; /* Check page->mapping if set */ 1112 pgoff_t first_index; /* Lowest page->index to unmap */ 1113 pgoff_t last_index; /* Highest page->index to unmap */ 1114 }; 1115 1116 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1117 pte_t pte); 1118 1119 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1120 unsigned long size); 1121 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1122 unsigned long size, struct zap_details *); 1123 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1124 unsigned long start, unsigned long end); 1125 1126 /** 1127 * mm_walk - callbacks for walk_page_range 1128 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1129 * this handler is required to be able to handle 1130 * pmd_trans_huge() pmds. They may simply choose to 1131 * split_huge_page() instead of handling it explicitly. 1132 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1133 * @pte_hole: if set, called for each hole at all levels 1134 * @hugetlb_entry: if set, called for each hugetlb entry 1135 * @test_walk: caller specific callback function to determine whether 1136 * we walk over the current vma or not. A positive returned 1137 * value means "do page table walk over the current vma," 1138 * and a negative one means "abort current page table walk 1139 * right now." 0 means "skip the current vma." 1140 * @mm: mm_struct representing the target process of page table walk 1141 * @vma: vma currently walked (NULL if walking outside vmas) 1142 * @private: private data for callbacks' usage 1143 * 1144 * (see the comment on walk_page_range() for more details) 1145 */ 1146 struct mm_walk { 1147 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1148 unsigned long next, struct mm_walk *walk); 1149 int (*pte_entry)(pte_t *pte, unsigned long addr, 1150 unsigned long next, struct mm_walk *walk); 1151 int (*pte_hole)(unsigned long addr, unsigned long next, 1152 struct mm_walk *walk); 1153 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1154 unsigned long addr, unsigned long next, 1155 struct mm_walk *walk); 1156 int (*test_walk)(unsigned long addr, unsigned long next, 1157 struct mm_walk *walk); 1158 struct mm_struct *mm; 1159 struct vm_area_struct *vma; 1160 void *private; 1161 }; 1162 1163 int walk_page_range(unsigned long addr, unsigned long end, 1164 struct mm_walk *walk); 1165 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1166 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1167 unsigned long end, unsigned long floor, unsigned long ceiling); 1168 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1169 struct vm_area_struct *vma); 1170 void unmap_mapping_range(struct address_space *mapping, 1171 loff_t const holebegin, loff_t const holelen, int even_cows); 1172 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1173 unsigned long *pfn); 1174 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1175 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1176 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1177 void *buf, int len, int write); 1178 1179 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1180 loff_t const holebegin, loff_t const holelen) 1181 { 1182 unmap_mapping_range(mapping, holebegin, holelen, 0); 1183 } 1184 1185 extern void truncate_pagecache(struct inode *inode, loff_t new); 1186 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1187 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1188 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1189 int truncate_inode_page(struct address_space *mapping, struct page *page); 1190 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1191 int invalidate_inode_page(struct page *page); 1192 1193 #ifdef CONFIG_MMU 1194 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1195 unsigned long address, unsigned int flags); 1196 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1197 unsigned long address, unsigned int fault_flags, 1198 bool *unlocked); 1199 #else 1200 static inline int handle_mm_fault(struct mm_struct *mm, 1201 struct vm_area_struct *vma, unsigned long address, 1202 unsigned int flags) 1203 { 1204 /* should never happen if there's no MMU */ 1205 BUG(); 1206 return VM_FAULT_SIGBUS; 1207 } 1208 static inline int fixup_user_fault(struct task_struct *tsk, 1209 struct mm_struct *mm, unsigned long address, 1210 unsigned int fault_flags, bool *unlocked) 1211 { 1212 /* should never happen if there's no MMU */ 1213 BUG(); 1214 return -EFAULT; 1215 } 1216 #endif 1217 1218 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1219 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1220 void *buf, int len, int write); 1221 1222 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1223 unsigned long start, unsigned long nr_pages, 1224 unsigned int foll_flags, struct page **pages, 1225 struct vm_area_struct **vmas, int *nonblocking); 1226 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1227 unsigned long start, unsigned long nr_pages, 1228 int write, int force, struct page **pages, 1229 struct vm_area_struct **vmas); 1230 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1231 unsigned long start, unsigned long nr_pages, 1232 int write, int force, struct page **pages, 1233 int *locked); 1234 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1235 unsigned long start, unsigned long nr_pages, 1236 int write, int force, struct page **pages, 1237 unsigned int gup_flags); 1238 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1239 unsigned long start, unsigned long nr_pages, 1240 int write, int force, struct page **pages); 1241 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1242 struct page **pages); 1243 1244 /* Container for pinned pfns / pages */ 1245 struct frame_vector { 1246 unsigned int nr_allocated; /* Number of frames we have space for */ 1247 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1248 bool got_ref; /* Did we pin pages by getting page ref? */ 1249 bool is_pfns; /* Does array contain pages or pfns? */ 1250 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1251 * pfns_vector_pages() or pfns_vector_pfns() 1252 * for access */ 1253 }; 1254 1255 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1256 void frame_vector_destroy(struct frame_vector *vec); 1257 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1258 bool write, bool force, struct frame_vector *vec); 1259 void put_vaddr_frames(struct frame_vector *vec); 1260 int frame_vector_to_pages(struct frame_vector *vec); 1261 void frame_vector_to_pfns(struct frame_vector *vec); 1262 1263 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1264 { 1265 return vec->nr_frames; 1266 } 1267 1268 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1269 { 1270 if (vec->is_pfns) { 1271 int err = frame_vector_to_pages(vec); 1272 1273 if (err) 1274 return ERR_PTR(err); 1275 } 1276 return (struct page **)(vec->ptrs); 1277 } 1278 1279 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1280 { 1281 if (!vec->is_pfns) 1282 frame_vector_to_pfns(vec); 1283 return (unsigned long *)(vec->ptrs); 1284 } 1285 1286 struct kvec; 1287 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1288 struct page **pages); 1289 int get_kernel_page(unsigned long start, int write, struct page **pages); 1290 struct page *get_dump_page(unsigned long addr); 1291 1292 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1293 extern void do_invalidatepage(struct page *page, unsigned int offset, 1294 unsigned int length); 1295 1296 int __set_page_dirty_nobuffers(struct page *page); 1297 int __set_page_dirty_no_writeback(struct page *page); 1298 int redirty_page_for_writepage(struct writeback_control *wbc, 1299 struct page *page); 1300 void account_page_dirtied(struct page *page, struct address_space *mapping, 1301 struct mem_cgroup *memcg); 1302 void account_page_cleaned(struct page *page, struct address_space *mapping, 1303 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1304 int set_page_dirty(struct page *page); 1305 int set_page_dirty_lock(struct page *page); 1306 void cancel_dirty_page(struct page *page); 1307 int clear_page_dirty_for_io(struct page *page); 1308 1309 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1310 1311 /* Is the vma a continuation of the stack vma above it? */ 1312 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1313 { 1314 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1315 } 1316 1317 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1318 { 1319 return !vma->vm_ops; 1320 } 1321 1322 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1323 unsigned long addr) 1324 { 1325 return (vma->vm_flags & VM_GROWSDOWN) && 1326 (vma->vm_start == addr) && 1327 !vma_growsdown(vma->vm_prev, addr); 1328 } 1329 1330 /* Is the vma a continuation of the stack vma below it? */ 1331 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1332 { 1333 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1334 } 1335 1336 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1337 unsigned long addr) 1338 { 1339 return (vma->vm_flags & VM_GROWSUP) && 1340 (vma->vm_end == addr) && 1341 !vma_growsup(vma->vm_next, addr); 1342 } 1343 1344 extern struct task_struct *task_of_stack(struct task_struct *task, 1345 struct vm_area_struct *vma, bool in_group); 1346 1347 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1348 unsigned long old_addr, struct vm_area_struct *new_vma, 1349 unsigned long new_addr, unsigned long len, 1350 bool need_rmap_locks); 1351 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1352 unsigned long end, pgprot_t newprot, 1353 int dirty_accountable, int prot_numa); 1354 extern int mprotect_fixup(struct vm_area_struct *vma, 1355 struct vm_area_struct **pprev, unsigned long start, 1356 unsigned long end, unsigned long newflags); 1357 1358 /* 1359 * doesn't attempt to fault and will return short. 1360 */ 1361 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1362 struct page **pages); 1363 /* 1364 * per-process(per-mm_struct) statistics. 1365 */ 1366 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1367 { 1368 long val = atomic_long_read(&mm->rss_stat.count[member]); 1369 1370 #ifdef SPLIT_RSS_COUNTING 1371 /* 1372 * counter is updated in asynchronous manner and may go to minus. 1373 * But it's never be expected number for users. 1374 */ 1375 if (val < 0) 1376 val = 0; 1377 #endif 1378 return (unsigned long)val; 1379 } 1380 1381 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1382 { 1383 atomic_long_add(value, &mm->rss_stat.count[member]); 1384 } 1385 1386 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1387 { 1388 atomic_long_inc(&mm->rss_stat.count[member]); 1389 } 1390 1391 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1392 { 1393 atomic_long_dec(&mm->rss_stat.count[member]); 1394 } 1395 1396 /* Optimized variant when page is already known not to be PageAnon */ 1397 static inline int mm_counter_file(struct page *page) 1398 { 1399 if (PageSwapBacked(page)) 1400 return MM_SHMEMPAGES; 1401 return MM_FILEPAGES; 1402 } 1403 1404 static inline int mm_counter(struct page *page) 1405 { 1406 if (PageAnon(page)) 1407 return MM_ANONPAGES; 1408 return mm_counter_file(page); 1409 } 1410 1411 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1412 { 1413 return get_mm_counter(mm, MM_FILEPAGES) + 1414 get_mm_counter(mm, MM_ANONPAGES) + 1415 get_mm_counter(mm, MM_SHMEMPAGES); 1416 } 1417 1418 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1419 { 1420 return max(mm->hiwater_rss, get_mm_rss(mm)); 1421 } 1422 1423 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1424 { 1425 return max(mm->hiwater_vm, mm->total_vm); 1426 } 1427 1428 static inline void update_hiwater_rss(struct mm_struct *mm) 1429 { 1430 unsigned long _rss = get_mm_rss(mm); 1431 1432 if ((mm)->hiwater_rss < _rss) 1433 (mm)->hiwater_rss = _rss; 1434 } 1435 1436 static inline void update_hiwater_vm(struct mm_struct *mm) 1437 { 1438 if (mm->hiwater_vm < mm->total_vm) 1439 mm->hiwater_vm = mm->total_vm; 1440 } 1441 1442 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1443 { 1444 mm->hiwater_rss = get_mm_rss(mm); 1445 } 1446 1447 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1448 struct mm_struct *mm) 1449 { 1450 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1451 1452 if (*maxrss < hiwater_rss) 1453 *maxrss = hiwater_rss; 1454 } 1455 1456 #if defined(SPLIT_RSS_COUNTING) 1457 void sync_mm_rss(struct mm_struct *mm); 1458 #else 1459 static inline void sync_mm_rss(struct mm_struct *mm) 1460 { 1461 } 1462 #endif 1463 1464 #ifndef __HAVE_ARCH_PTE_DEVMAP 1465 static inline int pte_devmap(pte_t pte) 1466 { 1467 return 0; 1468 } 1469 #endif 1470 1471 int vma_wants_writenotify(struct vm_area_struct *vma); 1472 1473 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1474 spinlock_t **ptl); 1475 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1476 spinlock_t **ptl) 1477 { 1478 pte_t *ptep; 1479 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1480 return ptep; 1481 } 1482 1483 #ifdef __PAGETABLE_PUD_FOLDED 1484 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1485 unsigned long address) 1486 { 1487 return 0; 1488 } 1489 #else 1490 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1491 #endif 1492 1493 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1494 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1495 unsigned long address) 1496 { 1497 return 0; 1498 } 1499 1500 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1501 1502 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1503 { 1504 return 0; 1505 } 1506 1507 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1508 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1509 1510 #else 1511 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1512 1513 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1514 { 1515 atomic_long_set(&mm->nr_pmds, 0); 1516 } 1517 1518 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1519 { 1520 return atomic_long_read(&mm->nr_pmds); 1521 } 1522 1523 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1524 { 1525 atomic_long_inc(&mm->nr_pmds); 1526 } 1527 1528 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1529 { 1530 atomic_long_dec(&mm->nr_pmds); 1531 } 1532 #endif 1533 1534 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1535 pmd_t *pmd, unsigned long address); 1536 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1537 1538 /* 1539 * The following ifdef needed to get the 4level-fixup.h header to work. 1540 * Remove it when 4level-fixup.h has been removed. 1541 */ 1542 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1543 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1544 { 1545 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1546 NULL: pud_offset(pgd, address); 1547 } 1548 1549 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1550 { 1551 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1552 NULL: pmd_offset(pud, address); 1553 } 1554 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1555 1556 #if USE_SPLIT_PTE_PTLOCKS 1557 #if ALLOC_SPLIT_PTLOCKS 1558 void __init ptlock_cache_init(void); 1559 extern bool ptlock_alloc(struct page *page); 1560 extern void ptlock_free(struct page *page); 1561 1562 static inline spinlock_t *ptlock_ptr(struct page *page) 1563 { 1564 return page->ptl; 1565 } 1566 #else /* ALLOC_SPLIT_PTLOCKS */ 1567 static inline void ptlock_cache_init(void) 1568 { 1569 } 1570 1571 static inline bool ptlock_alloc(struct page *page) 1572 { 1573 return true; 1574 } 1575 1576 static inline void ptlock_free(struct page *page) 1577 { 1578 } 1579 1580 static inline spinlock_t *ptlock_ptr(struct page *page) 1581 { 1582 return &page->ptl; 1583 } 1584 #endif /* ALLOC_SPLIT_PTLOCKS */ 1585 1586 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1587 { 1588 return ptlock_ptr(pmd_page(*pmd)); 1589 } 1590 1591 static inline bool ptlock_init(struct page *page) 1592 { 1593 /* 1594 * prep_new_page() initialize page->private (and therefore page->ptl) 1595 * with 0. Make sure nobody took it in use in between. 1596 * 1597 * It can happen if arch try to use slab for page table allocation: 1598 * slab code uses page->slab_cache, which share storage with page->ptl. 1599 */ 1600 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1601 if (!ptlock_alloc(page)) 1602 return false; 1603 spin_lock_init(ptlock_ptr(page)); 1604 return true; 1605 } 1606 1607 /* Reset page->mapping so free_pages_check won't complain. */ 1608 static inline void pte_lock_deinit(struct page *page) 1609 { 1610 page->mapping = NULL; 1611 ptlock_free(page); 1612 } 1613 1614 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1615 /* 1616 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1617 */ 1618 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1619 { 1620 return &mm->page_table_lock; 1621 } 1622 static inline void ptlock_cache_init(void) {} 1623 static inline bool ptlock_init(struct page *page) { return true; } 1624 static inline void pte_lock_deinit(struct page *page) {} 1625 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1626 1627 static inline void pgtable_init(void) 1628 { 1629 ptlock_cache_init(); 1630 pgtable_cache_init(); 1631 } 1632 1633 static inline bool pgtable_page_ctor(struct page *page) 1634 { 1635 if (!ptlock_init(page)) 1636 return false; 1637 inc_zone_page_state(page, NR_PAGETABLE); 1638 return true; 1639 } 1640 1641 static inline void pgtable_page_dtor(struct page *page) 1642 { 1643 pte_lock_deinit(page); 1644 dec_zone_page_state(page, NR_PAGETABLE); 1645 } 1646 1647 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1648 ({ \ 1649 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1650 pte_t *__pte = pte_offset_map(pmd, address); \ 1651 *(ptlp) = __ptl; \ 1652 spin_lock(__ptl); \ 1653 __pte; \ 1654 }) 1655 1656 #define pte_unmap_unlock(pte, ptl) do { \ 1657 spin_unlock(ptl); \ 1658 pte_unmap(pte); \ 1659 } while (0) 1660 1661 #define pte_alloc_map(mm, vma, pmd, address) \ 1662 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1663 pmd, address))? \ 1664 NULL: pte_offset_map(pmd, address)) 1665 1666 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1667 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1668 pmd, address))? \ 1669 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1670 1671 #define pte_alloc_kernel(pmd, address) \ 1672 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1673 NULL: pte_offset_kernel(pmd, address)) 1674 1675 #if USE_SPLIT_PMD_PTLOCKS 1676 1677 static struct page *pmd_to_page(pmd_t *pmd) 1678 { 1679 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1680 return virt_to_page((void *)((unsigned long) pmd & mask)); 1681 } 1682 1683 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1684 { 1685 return ptlock_ptr(pmd_to_page(pmd)); 1686 } 1687 1688 static inline bool pgtable_pmd_page_ctor(struct page *page) 1689 { 1690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1691 page->pmd_huge_pte = NULL; 1692 #endif 1693 return ptlock_init(page); 1694 } 1695 1696 static inline void pgtable_pmd_page_dtor(struct page *page) 1697 { 1698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1699 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1700 #endif 1701 ptlock_free(page); 1702 } 1703 1704 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1705 1706 #else 1707 1708 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1709 { 1710 return &mm->page_table_lock; 1711 } 1712 1713 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1714 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1715 1716 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1717 1718 #endif 1719 1720 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1721 { 1722 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1723 spin_lock(ptl); 1724 return ptl; 1725 } 1726 1727 extern void free_area_init(unsigned long * zones_size); 1728 extern void free_area_init_node(int nid, unsigned long * zones_size, 1729 unsigned long zone_start_pfn, unsigned long *zholes_size); 1730 extern void free_initmem(void); 1731 1732 /* 1733 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1734 * into the buddy system. The freed pages will be poisoned with pattern 1735 * "poison" if it's within range [0, UCHAR_MAX]. 1736 * Return pages freed into the buddy system. 1737 */ 1738 extern unsigned long free_reserved_area(void *start, void *end, 1739 int poison, char *s); 1740 1741 #ifdef CONFIG_HIGHMEM 1742 /* 1743 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1744 * and totalram_pages. 1745 */ 1746 extern void free_highmem_page(struct page *page); 1747 #endif 1748 1749 extern void adjust_managed_page_count(struct page *page, long count); 1750 extern void mem_init_print_info(const char *str); 1751 1752 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1753 1754 /* Free the reserved page into the buddy system, so it gets managed. */ 1755 static inline void __free_reserved_page(struct page *page) 1756 { 1757 ClearPageReserved(page); 1758 init_page_count(page); 1759 __free_page(page); 1760 } 1761 1762 static inline void free_reserved_page(struct page *page) 1763 { 1764 __free_reserved_page(page); 1765 adjust_managed_page_count(page, 1); 1766 } 1767 1768 static inline void mark_page_reserved(struct page *page) 1769 { 1770 SetPageReserved(page); 1771 adjust_managed_page_count(page, -1); 1772 } 1773 1774 /* 1775 * Default method to free all the __init memory into the buddy system. 1776 * The freed pages will be poisoned with pattern "poison" if it's within 1777 * range [0, UCHAR_MAX]. 1778 * Return pages freed into the buddy system. 1779 */ 1780 static inline unsigned long free_initmem_default(int poison) 1781 { 1782 extern char __init_begin[], __init_end[]; 1783 1784 return free_reserved_area(&__init_begin, &__init_end, 1785 poison, "unused kernel"); 1786 } 1787 1788 static inline unsigned long get_num_physpages(void) 1789 { 1790 int nid; 1791 unsigned long phys_pages = 0; 1792 1793 for_each_online_node(nid) 1794 phys_pages += node_present_pages(nid); 1795 1796 return phys_pages; 1797 } 1798 1799 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1800 /* 1801 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1802 * zones, allocate the backing mem_map and account for memory holes in a more 1803 * architecture independent manner. This is a substitute for creating the 1804 * zone_sizes[] and zholes_size[] arrays and passing them to 1805 * free_area_init_node() 1806 * 1807 * An architecture is expected to register range of page frames backed by 1808 * physical memory with memblock_add[_node]() before calling 1809 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1810 * usage, an architecture is expected to do something like 1811 * 1812 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1813 * max_highmem_pfn}; 1814 * for_each_valid_physical_page_range() 1815 * memblock_add_node(base, size, nid) 1816 * free_area_init_nodes(max_zone_pfns); 1817 * 1818 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1819 * registered physical page range. Similarly 1820 * sparse_memory_present_with_active_regions() calls memory_present() for 1821 * each range when SPARSEMEM is enabled. 1822 * 1823 * See mm/page_alloc.c for more information on each function exposed by 1824 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1825 */ 1826 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1827 unsigned long node_map_pfn_alignment(void); 1828 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1829 unsigned long end_pfn); 1830 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1831 unsigned long end_pfn); 1832 extern void get_pfn_range_for_nid(unsigned int nid, 1833 unsigned long *start_pfn, unsigned long *end_pfn); 1834 extern unsigned long find_min_pfn_with_active_regions(void); 1835 extern void free_bootmem_with_active_regions(int nid, 1836 unsigned long max_low_pfn); 1837 extern void sparse_memory_present_with_active_regions(int nid); 1838 1839 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1840 1841 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1842 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1843 static inline int __early_pfn_to_nid(unsigned long pfn, 1844 struct mminit_pfnnid_cache *state) 1845 { 1846 return 0; 1847 } 1848 #else 1849 /* please see mm/page_alloc.c */ 1850 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1851 /* there is a per-arch backend function. */ 1852 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1853 struct mminit_pfnnid_cache *state); 1854 #endif 1855 1856 extern void set_dma_reserve(unsigned long new_dma_reserve); 1857 extern void memmap_init_zone(unsigned long, int, unsigned long, 1858 unsigned long, enum memmap_context); 1859 extern void setup_per_zone_wmarks(void); 1860 extern int __meminit init_per_zone_wmark_min(void); 1861 extern void mem_init(void); 1862 extern void __init mmap_init(void); 1863 extern void show_mem(unsigned int flags); 1864 extern void si_meminfo(struct sysinfo * val); 1865 extern void si_meminfo_node(struct sysinfo *val, int nid); 1866 1867 extern __printf(3, 4) 1868 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1869 const char *fmt, ...); 1870 1871 extern void setup_per_cpu_pageset(void); 1872 1873 extern void zone_pcp_update(struct zone *zone); 1874 extern void zone_pcp_reset(struct zone *zone); 1875 1876 /* page_alloc.c */ 1877 extern int min_free_kbytes; 1878 1879 /* nommu.c */ 1880 extern atomic_long_t mmap_pages_allocated; 1881 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1882 1883 /* interval_tree.c */ 1884 void vma_interval_tree_insert(struct vm_area_struct *node, 1885 struct rb_root *root); 1886 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1887 struct vm_area_struct *prev, 1888 struct rb_root *root); 1889 void vma_interval_tree_remove(struct vm_area_struct *node, 1890 struct rb_root *root); 1891 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1892 unsigned long start, unsigned long last); 1893 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1894 unsigned long start, unsigned long last); 1895 1896 #define vma_interval_tree_foreach(vma, root, start, last) \ 1897 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1898 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1899 1900 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1901 struct rb_root *root); 1902 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1903 struct rb_root *root); 1904 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1905 struct rb_root *root, unsigned long start, unsigned long last); 1906 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1907 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1908 #ifdef CONFIG_DEBUG_VM_RB 1909 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1910 #endif 1911 1912 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1913 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1914 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1915 1916 /* mmap.c */ 1917 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1918 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1919 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1920 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1921 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1922 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1923 struct mempolicy *, struct vm_userfaultfd_ctx); 1924 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1925 extern int split_vma(struct mm_struct *, 1926 struct vm_area_struct *, unsigned long addr, int new_below); 1927 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1928 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1929 struct rb_node **, struct rb_node *); 1930 extern void unlink_file_vma(struct vm_area_struct *); 1931 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1932 unsigned long addr, unsigned long len, pgoff_t pgoff, 1933 bool *need_rmap_locks); 1934 extern void exit_mmap(struct mm_struct *); 1935 1936 static inline int check_data_rlimit(unsigned long rlim, 1937 unsigned long new, 1938 unsigned long start, 1939 unsigned long end_data, 1940 unsigned long start_data) 1941 { 1942 if (rlim < RLIM_INFINITY) { 1943 if (((new - start) + (end_data - start_data)) > rlim) 1944 return -ENOSPC; 1945 } 1946 1947 return 0; 1948 } 1949 1950 extern int mm_take_all_locks(struct mm_struct *mm); 1951 extern void mm_drop_all_locks(struct mm_struct *mm); 1952 1953 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1954 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1955 1956 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 1957 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 1958 1959 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1960 unsigned long addr, unsigned long len, 1961 unsigned long flags, 1962 const struct vm_special_mapping *spec); 1963 /* This is an obsolete alternative to _install_special_mapping. */ 1964 extern int install_special_mapping(struct mm_struct *mm, 1965 unsigned long addr, unsigned long len, 1966 unsigned long flags, struct page **pages); 1967 1968 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1969 1970 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1971 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1972 extern unsigned long do_mmap(struct file *file, unsigned long addr, 1973 unsigned long len, unsigned long prot, unsigned long flags, 1974 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1975 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1976 1977 static inline unsigned long 1978 do_mmap_pgoff(struct file *file, unsigned long addr, 1979 unsigned long len, unsigned long prot, unsigned long flags, 1980 unsigned long pgoff, unsigned long *populate) 1981 { 1982 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1983 } 1984 1985 #ifdef CONFIG_MMU 1986 extern int __mm_populate(unsigned long addr, unsigned long len, 1987 int ignore_errors); 1988 static inline void mm_populate(unsigned long addr, unsigned long len) 1989 { 1990 /* Ignore errors */ 1991 (void) __mm_populate(addr, len, 1); 1992 } 1993 #else 1994 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1995 #endif 1996 1997 /* These take the mm semaphore themselves */ 1998 extern unsigned long vm_brk(unsigned long, unsigned long); 1999 extern int vm_munmap(unsigned long, size_t); 2000 extern unsigned long vm_mmap(struct file *, unsigned long, 2001 unsigned long, unsigned long, 2002 unsigned long, unsigned long); 2003 2004 struct vm_unmapped_area_info { 2005 #define VM_UNMAPPED_AREA_TOPDOWN 1 2006 unsigned long flags; 2007 unsigned long length; 2008 unsigned long low_limit; 2009 unsigned long high_limit; 2010 unsigned long align_mask; 2011 unsigned long align_offset; 2012 }; 2013 2014 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2015 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2016 2017 /* 2018 * Search for an unmapped address range. 2019 * 2020 * We are looking for a range that: 2021 * - does not intersect with any VMA; 2022 * - is contained within the [low_limit, high_limit) interval; 2023 * - is at least the desired size. 2024 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2025 */ 2026 static inline unsigned long 2027 vm_unmapped_area(struct vm_unmapped_area_info *info) 2028 { 2029 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2030 return unmapped_area_topdown(info); 2031 else 2032 return unmapped_area(info); 2033 } 2034 2035 /* truncate.c */ 2036 extern void truncate_inode_pages(struct address_space *, loff_t); 2037 extern void truncate_inode_pages_range(struct address_space *, 2038 loff_t lstart, loff_t lend); 2039 extern void truncate_inode_pages_final(struct address_space *); 2040 2041 /* generic vm_area_ops exported for stackable file systems */ 2042 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2043 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2044 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2045 2046 /* mm/page-writeback.c */ 2047 int write_one_page(struct page *page, int wait); 2048 void task_dirty_inc(struct task_struct *tsk); 2049 2050 /* readahead.c */ 2051 #define VM_MAX_READAHEAD 128 /* kbytes */ 2052 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2053 2054 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2055 pgoff_t offset, unsigned long nr_to_read); 2056 2057 void page_cache_sync_readahead(struct address_space *mapping, 2058 struct file_ra_state *ra, 2059 struct file *filp, 2060 pgoff_t offset, 2061 unsigned long size); 2062 2063 void page_cache_async_readahead(struct address_space *mapping, 2064 struct file_ra_state *ra, 2065 struct file *filp, 2066 struct page *pg, 2067 pgoff_t offset, 2068 unsigned long size); 2069 2070 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2071 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2072 2073 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2074 extern int expand_downwards(struct vm_area_struct *vma, 2075 unsigned long address); 2076 #if VM_GROWSUP 2077 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2078 #else 2079 #define expand_upwards(vma, address) (0) 2080 #endif 2081 2082 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2083 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2084 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2085 struct vm_area_struct **pprev); 2086 2087 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2088 NULL if none. Assume start_addr < end_addr. */ 2089 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2090 { 2091 struct vm_area_struct * vma = find_vma(mm,start_addr); 2092 2093 if (vma && end_addr <= vma->vm_start) 2094 vma = NULL; 2095 return vma; 2096 } 2097 2098 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2099 { 2100 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2101 } 2102 2103 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2104 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2105 unsigned long vm_start, unsigned long vm_end) 2106 { 2107 struct vm_area_struct *vma = find_vma(mm, vm_start); 2108 2109 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2110 vma = NULL; 2111 2112 return vma; 2113 } 2114 2115 #ifdef CONFIG_MMU 2116 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2117 void vma_set_page_prot(struct vm_area_struct *vma); 2118 #else 2119 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2120 { 2121 return __pgprot(0); 2122 } 2123 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2124 { 2125 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2126 } 2127 #endif 2128 2129 #ifdef CONFIG_NUMA_BALANCING 2130 unsigned long change_prot_numa(struct vm_area_struct *vma, 2131 unsigned long start, unsigned long end); 2132 #endif 2133 2134 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2135 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2136 unsigned long pfn, unsigned long size, pgprot_t); 2137 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2138 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2139 unsigned long pfn); 2140 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2141 pfn_t pfn); 2142 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2143 2144 2145 struct page *follow_page_mask(struct vm_area_struct *vma, 2146 unsigned long address, unsigned int foll_flags, 2147 unsigned int *page_mask); 2148 2149 static inline struct page *follow_page(struct vm_area_struct *vma, 2150 unsigned long address, unsigned int foll_flags) 2151 { 2152 unsigned int unused_page_mask; 2153 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2154 } 2155 2156 #define FOLL_WRITE 0x01 /* check pte is writable */ 2157 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2158 #define FOLL_GET 0x04 /* do get_page on page */ 2159 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2160 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2161 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2162 * and return without waiting upon it */ 2163 #define FOLL_POPULATE 0x40 /* fault in page */ 2164 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2165 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2166 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2167 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2168 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2169 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2170 2171 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2172 void *data); 2173 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2174 unsigned long size, pte_fn_t fn, void *data); 2175 2176 2177 #ifdef CONFIG_DEBUG_PAGEALLOC 2178 extern bool _debug_pagealloc_enabled; 2179 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2180 2181 static inline bool debug_pagealloc_enabled(void) 2182 { 2183 return _debug_pagealloc_enabled; 2184 } 2185 2186 static inline void 2187 kernel_map_pages(struct page *page, int numpages, int enable) 2188 { 2189 if (!debug_pagealloc_enabled()) 2190 return; 2191 2192 __kernel_map_pages(page, numpages, enable); 2193 } 2194 #ifdef CONFIG_HIBERNATION 2195 extern bool kernel_page_present(struct page *page); 2196 #endif /* CONFIG_HIBERNATION */ 2197 #else 2198 static inline void 2199 kernel_map_pages(struct page *page, int numpages, int enable) {} 2200 #ifdef CONFIG_HIBERNATION 2201 static inline bool kernel_page_present(struct page *page) { return true; } 2202 #endif /* CONFIG_HIBERNATION */ 2203 #endif 2204 2205 #ifdef __HAVE_ARCH_GATE_AREA 2206 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2207 extern int in_gate_area_no_mm(unsigned long addr); 2208 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2209 #else 2210 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2211 { 2212 return NULL; 2213 } 2214 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2215 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2216 { 2217 return 0; 2218 } 2219 #endif /* __HAVE_ARCH_GATE_AREA */ 2220 2221 #ifdef CONFIG_SYSCTL 2222 extern int sysctl_drop_caches; 2223 int drop_caches_sysctl_handler(struct ctl_table *, int, 2224 void __user *, size_t *, loff_t *); 2225 #endif 2226 2227 void drop_slab(void); 2228 void drop_slab_node(int nid); 2229 2230 #ifndef CONFIG_MMU 2231 #define randomize_va_space 0 2232 #else 2233 extern int randomize_va_space; 2234 #endif 2235 2236 const char * arch_vma_name(struct vm_area_struct *vma); 2237 void print_vma_addr(char *prefix, unsigned long rip); 2238 2239 void sparse_mem_maps_populate_node(struct page **map_map, 2240 unsigned long pnum_begin, 2241 unsigned long pnum_end, 2242 unsigned long map_count, 2243 int nodeid); 2244 2245 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2246 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2247 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2248 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2249 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2250 void *vmemmap_alloc_block(unsigned long size, int node); 2251 struct vmem_altmap; 2252 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2253 struct vmem_altmap *altmap); 2254 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2255 { 2256 return __vmemmap_alloc_block_buf(size, node, NULL); 2257 } 2258 2259 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2260 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2261 int node); 2262 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2263 void vmemmap_populate_print_last(void); 2264 #ifdef CONFIG_MEMORY_HOTPLUG 2265 void vmemmap_free(unsigned long start, unsigned long end); 2266 #endif 2267 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2268 unsigned long size); 2269 2270 enum mf_flags { 2271 MF_COUNT_INCREASED = 1 << 0, 2272 MF_ACTION_REQUIRED = 1 << 1, 2273 MF_MUST_KILL = 1 << 2, 2274 MF_SOFT_OFFLINE = 1 << 3, 2275 }; 2276 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2277 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2278 extern int unpoison_memory(unsigned long pfn); 2279 extern int get_hwpoison_page(struct page *page); 2280 #define put_hwpoison_page(page) put_page(page) 2281 extern int sysctl_memory_failure_early_kill; 2282 extern int sysctl_memory_failure_recovery; 2283 extern void shake_page(struct page *p, int access); 2284 extern atomic_long_t num_poisoned_pages; 2285 extern int soft_offline_page(struct page *page, int flags); 2286 2287 2288 /* 2289 * Error handlers for various types of pages. 2290 */ 2291 enum mf_result { 2292 MF_IGNORED, /* Error: cannot be handled */ 2293 MF_FAILED, /* Error: handling failed */ 2294 MF_DELAYED, /* Will be handled later */ 2295 MF_RECOVERED, /* Successfully recovered */ 2296 }; 2297 2298 enum mf_action_page_type { 2299 MF_MSG_KERNEL, 2300 MF_MSG_KERNEL_HIGH_ORDER, 2301 MF_MSG_SLAB, 2302 MF_MSG_DIFFERENT_COMPOUND, 2303 MF_MSG_POISONED_HUGE, 2304 MF_MSG_HUGE, 2305 MF_MSG_FREE_HUGE, 2306 MF_MSG_UNMAP_FAILED, 2307 MF_MSG_DIRTY_SWAPCACHE, 2308 MF_MSG_CLEAN_SWAPCACHE, 2309 MF_MSG_DIRTY_MLOCKED_LRU, 2310 MF_MSG_CLEAN_MLOCKED_LRU, 2311 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2312 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2313 MF_MSG_DIRTY_LRU, 2314 MF_MSG_CLEAN_LRU, 2315 MF_MSG_TRUNCATED_LRU, 2316 MF_MSG_BUDDY, 2317 MF_MSG_BUDDY_2ND, 2318 MF_MSG_UNKNOWN, 2319 }; 2320 2321 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2322 extern void clear_huge_page(struct page *page, 2323 unsigned long addr, 2324 unsigned int pages_per_huge_page); 2325 extern void copy_user_huge_page(struct page *dst, struct page *src, 2326 unsigned long addr, struct vm_area_struct *vma, 2327 unsigned int pages_per_huge_page); 2328 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2329 2330 extern struct page_ext_operations debug_guardpage_ops; 2331 extern struct page_ext_operations page_poisoning_ops; 2332 2333 #ifdef CONFIG_DEBUG_PAGEALLOC 2334 extern unsigned int _debug_guardpage_minorder; 2335 extern bool _debug_guardpage_enabled; 2336 2337 static inline unsigned int debug_guardpage_minorder(void) 2338 { 2339 return _debug_guardpage_minorder; 2340 } 2341 2342 static inline bool debug_guardpage_enabled(void) 2343 { 2344 return _debug_guardpage_enabled; 2345 } 2346 2347 static inline bool page_is_guard(struct page *page) 2348 { 2349 struct page_ext *page_ext; 2350 2351 if (!debug_guardpage_enabled()) 2352 return false; 2353 2354 page_ext = lookup_page_ext(page); 2355 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2356 } 2357 #else 2358 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2359 static inline bool debug_guardpage_enabled(void) { return false; } 2360 static inline bool page_is_guard(struct page *page) { return false; } 2361 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2362 2363 #if MAX_NUMNODES > 1 2364 void __init setup_nr_node_ids(void); 2365 #else 2366 static inline void setup_nr_node_ids(void) {} 2367 #endif 2368 2369 #endif /* __KERNEL__ */ 2370 #endif /* _LINUX_MM_H */ 2371