xref: /linux-6.15/include/linux/mm.h (revision 1f330c32)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 
26 struct mempolicy;
27 struct anon_vma;
28 struct anon_vma_chain;
29 struct file_ra_state;
30 struct user_struct;
31 struct writeback_control;
32 struct bdi_writeback;
33 
34 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
35 extern unsigned long max_mapnr;
36 
37 static inline void set_max_mapnr(unsigned long limit)
38 {
39 	max_mapnr = limit;
40 }
41 #else
42 static inline void set_max_mapnr(unsigned long limit) { }
43 #endif
44 
45 extern unsigned long totalram_pages;
46 extern void * high_memory;
47 extern int page_cluster;
48 
49 #ifdef CONFIG_SYSCTL
50 extern int sysctl_legacy_va_layout;
51 #else
52 #define sysctl_legacy_va_layout 0
53 #endif
54 
55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56 extern const int mmap_rnd_bits_min;
57 extern const int mmap_rnd_bits_max;
58 extern int mmap_rnd_bits __read_mostly;
59 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61 extern const int mmap_rnd_compat_bits_min;
62 extern const int mmap_rnd_compat_bits_max;
63 extern int mmap_rnd_compat_bits __read_mostly;
64 #endif
65 
66 #include <asm/page.h>
67 #include <asm/pgtable.h>
68 #include <asm/processor.h>
69 
70 #ifndef __pa_symbol
71 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
72 #endif
73 
74 /*
75  * To prevent common memory management code establishing
76  * a zero page mapping on a read fault.
77  * This macro should be defined within <asm/pgtable.h>.
78  * s390 does this to prevent multiplexing of hardware bits
79  * related to the physical page in case of virtualization.
80  */
81 #ifndef mm_forbids_zeropage
82 #define mm_forbids_zeropage(X)	(0)
83 #endif
84 
85 extern unsigned long sysctl_user_reserve_kbytes;
86 extern unsigned long sysctl_admin_reserve_kbytes;
87 
88 extern int sysctl_overcommit_memory;
89 extern int sysctl_overcommit_ratio;
90 extern unsigned long sysctl_overcommit_kbytes;
91 
92 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 				    size_t *, loff_t *);
94 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 				    size_t *, loff_t *);
96 
97 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98 
99 /* to align the pointer to the (next) page boundary */
100 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101 
102 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104 
105 /*
106  * Linux kernel virtual memory manager primitives.
107  * The idea being to have a "virtual" mm in the same way
108  * we have a virtual fs - giving a cleaner interface to the
109  * mm details, and allowing different kinds of memory mappings
110  * (from shared memory to executable loading to arbitrary
111  * mmap() functions).
112  */
113 
114 extern struct kmem_cache *vm_area_cachep;
115 
116 #ifndef CONFIG_MMU
117 extern struct rb_root nommu_region_tree;
118 extern struct rw_semaphore nommu_region_sem;
119 
120 extern unsigned int kobjsize(const void *objp);
121 #endif
122 
123 /*
124  * vm_flags in vm_area_struct, see mm_types.h.
125  */
126 #define VM_NONE		0x00000000
127 
128 #define VM_READ		0x00000001	/* currently active flags */
129 #define VM_WRITE	0x00000002
130 #define VM_EXEC		0x00000004
131 #define VM_SHARED	0x00000008
132 
133 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
134 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
135 #define VM_MAYWRITE	0x00000020
136 #define VM_MAYEXEC	0x00000040
137 #define VM_MAYSHARE	0x00000080
138 
139 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
140 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
141 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
142 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
143 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
144 
145 #define VM_LOCKED	0x00002000
146 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
147 
148 					/* Used by sys_madvise() */
149 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
150 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
151 
152 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
153 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
154 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
155 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
156 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
157 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
158 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
159 #define VM_ARCH_2	0x02000000
160 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
161 
162 #ifdef CONFIG_MEM_SOFT_DIRTY
163 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
164 #else
165 # define VM_SOFTDIRTY	0
166 #endif
167 
168 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
169 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
170 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
171 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
172 
173 #if defined(CONFIG_X86)
174 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
175 #elif defined(CONFIG_PPC)
176 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
177 #elif defined(CONFIG_PARISC)
178 # define VM_GROWSUP	VM_ARCH_1
179 #elif defined(CONFIG_METAG)
180 # define VM_GROWSUP	VM_ARCH_1
181 #elif defined(CONFIG_IA64)
182 # define VM_GROWSUP	VM_ARCH_1
183 #elif !defined(CONFIG_MMU)
184 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
185 #endif
186 
187 #if defined(CONFIG_X86)
188 /* MPX specific bounds table or bounds directory */
189 # define VM_MPX		VM_ARCH_2
190 #endif
191 
192 #ifndef VM_GROWSUP
193 # define VM_GROWSUP	VM_NONE
194 #endif
195 
196 /* Bits set in the VMA until the stack is in its final location */
197 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
198 
199 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
200 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
201 #endif
202 
203 #ifdef CONFIG_STACK_GROWSUP
204 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
205 #else
206 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
207 #endif
208 
209 /*
210  * Special vmas that are non-mergable, non-mlock()able.
211  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
212  */
213 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
214 
215 /* This mask defines which mm->def_flags a process can inherit its parent */
216 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
217 
218 /* This mask is used to clear all the VMA flags used by mlock */
219 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
220 
221 /*
222  * mapping from the currently active vm_flags protection bits (the
223  * low four bits) to a page protection mask..
224  */
225 extern pgprot_t protection_map[16];
226 
227 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
228 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
229 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
230 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
231 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
232 #define FAULT_FLAG_TRIED	0x20	/* Second try */
233 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
234 
235 /*
236  * vm_fault is filled by the the pagefault handler and passed to the vma's
237  * ->fault function. The vma's ->fault is responsible for returning a bitmask
238  * of VM_FAULT_xxx flags that give details about how the fault was handled.
239  *
240  * MM layer fills up gfp_mask for page allocations but fault handler might
241  * alter it if its implementation requires a different allocation context.
242  *
243  * pgoff should be used in favour of virtual_address, if possible.
244  */
245 struct vm_fault {
246 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
247 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
248 	pgoff_t pgoff;			/* Logical page offset based on vma */
249 	void __user *virtual_address;	/* Faulting virtual address */
250 
251 	struct page *cow_page;		/* Handler may choose to COW */
252 	struct page *page;		/* ->fault handlers should return a
253 					 * page here, unless VM_FAULT_NOPAGE
254 					 * is set (which is also implied by
255 					 * VM_FAULT_ERROR).
256 					 */
257 	/* for ->map_pages() only */
258 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
259 					 * max_pgoff inclusive */
260 	pte_t *pte;			/* pte entry associated with ->pgoff */
261 };
262 
263 /*
264  * These are the virtual MM functions - opening of an area, closing and
265  * unmapping it (needed to keep files on disk up-to-date etc), pointer
266  * to the functions called when a no-page or a wp-page exception occurs.
267  */
268 struct vm_operations_struct {
269 	void (*open)(struct vm_area_struct * area);
270 	void (*close)(struct vm_area_struct * area);
271 	int (*mremap)(struct vm_area_struct * area);
272 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
273 	int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
274 						pmd_t *, unsigned int flags);
275 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
276 
277 	/* notification that a previously read-only page is about to become
278 	 * writable, if an error is returned it will cause a SIGBUS */
279 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
280 
281 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
282 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
283 
284 	/* called by access_process_vm when get_user_pages() fails, typically
285 	 * for use by special VMAs that can switch between memory and hardware
286 	 */
287 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
288 		      void *buf, int len, int write);
289 
290 	/* Called by the /proc/PID/maps code to ask the vma whether it
291 	 * has a special name.  Returning non-NULL will also cause this
292 	 * vma to be dumped unconditionally. */
293 	const char *(*name)(struct vm_area_struct *vma);
294 
295 #ifdef CONFIG_NUMA
296 	/*
297 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
298 	 * to hold the policy upon return.  Caller should pass NULL @new to
299 	 * remove a policy and fall back to surrounding context--i.e. do not
300 	 * install a MPOL_DEFAULT policy, nor the task or system default
301 	 * mempolicy.
302 	 */
303 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
304 
305 	/*
306 	 * get_policy() op must add reference [mpol_get()] to any policy at
307 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
308 	 * in mm/mempolicy.c will do this automatically.
309 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
310 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
311 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
312 	 * must return NULL--i.e., do not "fallback" to task or system default
313 	 * policy.
314 	 */
315 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
316 					unsigned long addr);
317 #endif
318 	/*
319 	 * Called by vm_normal_page() for special PTEs to find the
320 	 * page for @addr.  This is useful if the default behavior
321 	 * (using pte_page()) would not find the correct page.
322 	 */
323 	struct page *(*find_special_page)(struct vm_area_struct *vma,
324 					  unsigned long addr);
325 };
326 
327 struct mmu_gather;
328 struct inode;
329 
330 #define page_private(page)		((page)->private)
331 #define set_page_private(page, v)	((page)->private = (v))
332 
333 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
334 static inline int pmd_devmap(pmd_t pmd)
335 {
336 	return 0;
337 }
338 #endif
339 
340 /*
341  * FIXME: take this include out, include page-flags.h in
342  * files which need it (119 of them)
343  */
344 #include <linux/page-flags.h>
345 #include <linux/huge_mm.h>
346 
347 /*
348  * Methods to modify the page usage count.
349  *
350  * What counts for a page usage:
351  * - cache mapping   (page->mapping)
352  * - private data    (page->private)
353  * - page mapped in a task's page tables, each mapping
354  *   is counted separately
355  *
356  * Also, many kernel routines increase the page count before a critical
357  * routine so they can be sure the page doesn't go away from under them.
358  */
359 
360 /*
361  * Drop a ref, return true if the refcount fell to zero (the page has no users)
362  */
363 static inline int put_page_testzero(struct page *page)
364 {
365 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
366 	return atomic_dec_and_test(&page->_count);
367 }
368 
369 /*
370  * Try to grab a ref unless the page has a refcount of zero, return false if
371  * that is the case.
372  * This can be called when MMU is off so it must not access
373  * any of the virtual mappings.
374  */
375 static inline int get_page_unless_zero(struct page *page)
376 {
377 	return atomic_inc_not_zero(&page->_count);
378 }
379 
380 extern int page_is_ram(unsigned long pfn);
381 
382 enum {
383 	REGION_INTERSECTS,
384 	REGION_DISJOINT,
385 	REGION_MIXED,
386 };
387 
388 int region_intersects(resource_size_t offset, size_t size, const char *type);
389 
390 /* Support for virtually mapped pages */
391 struct page *vmalloc_to_page(const void *addr);
392 unsigned long vmalloc_to_pfn(const void *addr);
393 
394 /*
395  * Determine if an address is within the vmalloc range
396  *
397  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
398  * is no special casing required.
399  */
400 static inline int is_vmalloc_addr(const void *x)
401 {
402 #ifdef CONFIG_MMU
403 	unsigned long addr = (unsigned long)x;
404 
405 	return addr >= VMALLOC_START && addr < VMALLOC_END;
406 #else
407 	return 0;
408 #endif
409 }
410 #ifdef CONFIG_MMU
411 extern int is_vmalloc_or_module_addr(const void *x);
412 #else
413 static inline int is_vmalloc_or_module_addr(const void *x)
414 {
415 	return 0;
416 }
417 #endif
418 
419 extern void kvfree(const void *addr);
420 
421 static inline atomic_t *compound_mapcount_ptr(struct page *page)
422 {
423 	return &page[1].compound_mapcount;
424 }
425 
426 static inline int compound_mapcount(struct page *page)
427 {
428 	if (!PageCompound(page))
429 		return 0;
430 	page = compound_head(page);
431 	return atomic_read(compound_mapcount_ptr(page)) + 1;
432 }
433 
434 /*
435  * The atomic page->_mapcount, starts from -1: so that transitions
436  * both from it and to it can be tracked, using atomic_inc_and_test
437  * and atomic_add_negative(-1).
438  */
439 static inline void page_mapcount_reset(struct page *page)
440 {
441 	atomic_set(&(page)->_mapcount, -1);
442 }
443 
444 int __page_mapcount(struct page *page);
445 
446 static inline int page_mapcount(struct page *page)
447 {
448 	VM_BUG_ON_PAGE(PageSlab(page), page);
449 
450 	if (unlikely(PageCompound(page)))
451 		return __page_mapcount(page);
452 	return atomic_read(&page->_mapcount) + 1;
453 }
454 
455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
456 int total_mapcount(struct page *page);
457 #else
458 static inline int total_mapcount(struct page *page)
459 {
460 	return page_mapcount(page);
461 }
462 #endif
463 
464 static inline int page_count(struct page *page)
465 {
466 	return atomic_read(&compound_head(page)->_count);
467 }
468 
469 static inline struct page *virt_to_head_page(const void *x)
470 {
471 	struct page *page = virt_to_page(x);
472 
473 	return compound_head(page);
474 }
475 
476 /*
477  * Setup the page count before being freed into the page allocator for
478  * the first time (boot or memory hotplug)
479  */
480 static inline void init_page_count(struct page *page)
481 {
482 	atomic_set(&page->_count, 1);
483 }
484 
485 void __put_page(struct page *page);
486 
487 void put_pages_list(struct list_head *pages);
488 
489 void split_page(struct page *page, unsigned int order);
490 int split_free_page(struct page *page);
491 
492 /*
493  * Compound pages have a destructor function.  Provide a
494  * prototype for that function and accessor functions.
495  * These are _only_ valid on the head of a compound page.
496  */
497 typedef void compound_page_dtor(struct page *);
498 
499 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
500 enum compound_dtor_id {
501 	NULL_COMPOUND_DTOR,
502 	COMPOUND_PAGE_DTOR,
503 #ifdef CONFIG_HUGETLB_PAGE
504 	HUGETLB_PAGE_DTOR,
505 #endif
506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
507 	TRANSHUGE_PAGE_DTOR,
508 #endif
509 	NR_COMPOUND_DTORS,
510 };
511 extern compound_page_dtor * const compound_page_dtors[];
512 
513 static inline void set_compound_page_dtor(struct page *page,
514 		enum compound_dtor_id compound_dtor)
515 {
516 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
517 	page[1].compound_dtor = compound_dtor;
518 }
519 
520 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
521 {
522 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
523 	return compound_page_dtors[page[1].compound_dtor];
524 }
525 
526 static inline unsigned int compound_order(struct page *page)
527 {
528 	if (!PageHead(page))
529 		return 0;
530 	return page[1].compound_order;
531 }
532 
533 static inline void set_compound_order(struct page *page, unsigned int order)
534 {
535 	page[1].compound_order = order;
536 }
537 
538 void free_compound_page(struct page *page);
539 
540 #ifdef CONFIG_MMU
541 /*
542  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
543  * servicing faults for write access.  In the normal case, do always want
544  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
545  * that do not have writing enabled, when used by access_process_vm.
546  */
547 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
548 {
549 	if (likely(vma->vm_flags & VM_WRITE))
550 		pte = pte_mkwrite(pte);
551 	return pte;
552 }
553 
554 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
555 		struct page *page, pte_t *pte, bool write, bool anon);
556 #endif
557 
558 /*
559  * Multiple processes may "see" the same page. E.g. for untouched
560  * mappings of /dev/null, all processes see the same page full of
561  * zeroes, and text pages of executables and shared libraries have
562  * only one copy in memory, at most, normally.
563  *
564  * For the non-reserved pages, page_count(page) denotes a reference count.
565  *   page_count() == 0 means the page is free. page->lru is then used for
566  *   freelist management in the buddy allocator.
567  *   page_count() > 0  means the page has been allocated.
568  *
569  * Pages are allocated by the slab allocator in order to provide memory
570  * to kmalloc and kmem_cache_alloc. In this case, the management of the
571  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
572  * unless a particular usage is carefully commented. (the responsibility of
573  * freeing the kmalloc memory is the caller's, of course).
574  *
575  * A page may be used by anyone else who does a __get_free_page().
576  * In this case, page_count still tracks the references, and should only
577  * be used through the normal accessor functions. The top bits of page->flags
578  * and page->virtual store page management information, but all other fields
579  * are unused and could be used privately, carefully. The management of this
580  * page is the responsibility of the one who allocated it, and those who have
581  * subsequently been given references to it.
582  *
583  * The other pages (we may call them "pagecache pages") are completely
584  * managed by the Linux memory manager: I/O, buffers, swapping etc.
585  * The following discussion applies only to them.
586  *
587  * A pagecache page contains an opaque `private' member, which belongs to the
588  * page's address_space. Usually, this is the address of a circular list of
589  * the page's disk buffers. PG_private must be set to tell the VM to call
590  * into the filesystem to release these pages.
591  *
592  * A page may belong to an inode's memory mapping. In this case, page->mapping
593  * is the pointer to the inode, and page->index is the file offset of the page,
594  * in units of PAGE_CACHE_SIZE.
595  *
596  * If pagecache pages are not associated with an inode, they are said to be
597  * anonymous pages. These may become associated with the swapcache, and in that
598  * case PG_swapcache is set, and page->private is an offset into the swapcache.
599  *
600  * In either case (swapcache or inode backed), the pagecache itself holds one
601  * reference to the page. Setting PG_private should also increment the
602  * refcount. The each user mapping also has a reference to the page.
603  *
604  * The pagecache pages are stored in a per-mapping radix tree, which is
605  * rooted at mapping->page_tree, and indexed by offset.
606  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
607  * lists, we instead now tag pages as dirty/writeback in the radix tree.
608  *
609  * All pagecache pages may be subject to I/O:
610  * - inode pages may need to be read from disk,
611  * - inode pages which have been modified and are MAP_SHARED may need
612  *   to be written back to the inode on disk,
613  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
614  *   modified may need to be swapped out to swap space and (later) to be read
615  *   back into memory.
616  */
617 
618 /*
619  * The zone field is never updated after free_area_init_core()
620  * sets it, so none of the operations on it need to be atomic.
621  */
622 
623 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
624 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
625 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
626 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
627 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
628 
629 /*
630  * Define the bit shifts to access each section.  For non-existent
631  * sections we define the shift as 0; that plus a 0 mask ensures
632  * the compiler will optimise away reference to them.
633  */
634 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
636 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
637 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
638 
639 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
640 #ifdef NODE_NOT_IN_PAGE_FLAGS
641 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
642 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
643 						SECTIONS_PGOFF : ZONES_PGOFF)
644 #else
645 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
646 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
647 						NODES_PGOFF : ZONES_PGOFF)
648 #endif
649 
650 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
651 
652 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
654 #endif
655 
656 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
657 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
658 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
659 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
660 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
661 
662 static inline enum zone_type page_zonenum(const struct page *page)
663 {
664 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
665 }
666 
667 #ifdef CONFIG_ZONE_DEVICE
668 void get_zone_device_page(struct page *page);
669 void put_zone_device_page(struct page *page);
670 static inline bool is_zone_device_page(const struct page *page)
671 {
672 	return page_zonenum(page) == ZONE_DEVICE;
673 }
674 #else
675 static inline void get_zone_device_page(struct page *page)
676 {
677 }
678 static inline void put_zone_device_page(struct page *page)
679 {
680 }
681 static inline bool is_zone_device_page(const struct page *page)
682 {
683 	return false;
684 }
685 #endif
686 
687 static inline void get_page(struct page *page)
688 {
689 	page = compound_head(page);
690 	/*
691 	 * Getting a normal page or the head of a compound page
692 	 * requires to already have an elevated page->_count.
693 	 */
694 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
695 	atomic_inc(&page->_count);
696 
697 	if (unlikely(is_zone_device_page(page)))
698 		get_zone_device_page(page);
699 }
700 
701 static inline void put_page(struct page *page)
702 {
703 	page = compound_head(page);
704 
705 	if (put_page_testzero(page))
706 		__put_page(page);
707 
708 	if (unlikely(is_zone_device_page(page)))
709 		put_zone_device_page(page);
710 }
711 
712 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
713 #define SECTION_IN_PAGE_FLAGS
714 #endif
715 
716 /*
717  * The identification function is mainly used by the buddy allocator for
718  * determining if two pages could be buddies. We are not really identifying
719  * the zone since we could be using the section number id if we do not have
720  * node id available in page flags.
721  * We only guarantee that it will return the same value for two combinable
722  * pages in a zone.
723  */
724 static inline int page_zone_id(struct page *page)
725 {
726 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
727 }
728 
729 static inline int zone_to_nid(struct zone *zone)
730 {
731 #ifdef CONFIG_NUMA
732 	return zone->node;
733 #else
734 	return 0;
735 #endif
736 }
737 
738 #ifdef NODE_NOT_IN_PAGE_FLAGS
739 extern int page_to_nid(const struct page *page);
740 #else
741 static inline int page_to_nid(const struct page *page)
742 {
743 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
744 }
745 #endif
746 
747 #ifdef CONFIG_NUMA_BALANCING
748 static inline int cpu_pid_to_cpupid(int cpu, int pid)
749 {
750 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
751 }
752 
753 static inline int cpupid_to_pid(int cpupid)
754 {
755 	return cpupid & LAST__PID_MASK;
756 }
757 
758 static inline int cpupid_to_cpu(int cpupid)
759 {
760 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
761 }
762 
763 static inline int cpupid_to_nid(int cpupid)
764 {
765 	return cpu_to_node(cpupid_to_cpu(cpupid));
766 }
767 
768 static inline bool cpupid_pid_unset(int cpupid)
769 {
770 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
771 }
772 
773 static inline bool cpupid_cpu_unset(int cpupid)
774 {
775 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
776 }
777 
778 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
779 {
780 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
781 }
782 
783 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
784 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
785 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
786 {
787 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
788 }
789 
790 static inline int page_cpupid_last(struct page *page)
791 {
792 	return page->_last_cpupid;
793 }
794 static inline void page_cpupid_reset_last(struct page *page)
795 {
796 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
797 }
798 #else
799 static inline int page_cpupid_last(struct page *page)
800 {
801 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
802 }
803 
804 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
805 
806 static inline void page_cpupid_reset_last(struct page *page)
807 {
808 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
809 
810 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
811 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
812 }
813 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
814 #else /* !CONFIG_NUMA_BALANCING */
815 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
816 {
817 	return page_to_nid(page); /* XXX */
818 }
819 
820 static inline int page_cpupid_last(struct page *page)
821 {
822 	return page_to_nid(page); /* XXX */
823 }
824 
825 static inline int cpupid_to_nid(int cpupid)
826 {
827 	return -1;
828 }
829 
830 static inline int cpupid_to_pid(int cpupid)
831 {
832 	return -1;
833 }
834 
835 static inline int cpupid_to_cpu(int cpupid)
836 {
837 	return -1;
838 }
839 
840 static inline int cpu_pid_to_cpupid(int nid, int pid)
841 {
842 	return -1;
843 }
844 
845 static inline bool cpupid_pid_unset(int cpupid)
846 {
847 	return 1;
848 }
849 
850 static inline void page_cpupid_reset_last(struct page *page)
851 {
852 }
853 
854 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
855 {
856 	return false;
857 }
858 #endif /* CONFIG_NUMA_BALANCING */
859 
860 static inline struct zone *page_zone(const struct page *page)
861 {
862 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
863 }
864 
865 #ifdef SECTION_IN_PAGE_FLAGS
866 static inline void set_page_section(struct page *page, unsigned long section)
867 {
868 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
869 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
870 }
871 
872 static inline unsigned long page_to_section(const struct page *page)
873 {
874 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
875 }
876 #endif
877 
878 static inline void set_page_zone(struct page *page, enum zone_type zone)
879 {
880 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
881 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
882 }
883 
884 static inline void set_page_node(struct page *page, unsigned long node)
885 {
886 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
887 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
888 }
889 
890 static inline void set_page_links(struct page *page, enum zone_type zone,
891 	unsigned long node, unsigned long pfn)
892 {
893 	set_page_zone(page, zone);
894 	set_page_node(page, node);
895 #ifdef SECTION_IN_PAGE_FLAGS
896 	set_page_section(page, pfn_to_section_nr(pfn));
897 #endif
898 }
899 
900 #ifdef CONFIG_MEMCG
901 static inline struct mem_cgroup *page_memcg(struct page *page)
902 {
903 	return page->mem_cgroup;
904 }
905 
906 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
907 {
908 	page->mem_cgroup = memcg;
909 }
910 #else
911 static inline struct mem_cgroup *page_memcg(struct page *page)
912 {
913 	return NULL;
914 }
915 
916 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
917 {
918 }
919 #endif
920 
921 /*
922  * Some inline functions in vmstat.h depend on page_zone()
923  */
924 #include <linux/vmstat.h>
925 
926 static __always_inline void *lowmem_page_address(const struct page *page)
927 {
928 	return __va(PFN_PHYS(page_to_pfn(page)));
929 }
930 
931 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
932 #define HASHED_PAGE_VIRTUAL
933 #endif
934 
935 #if defined(WANT_PAGE_VIRTUAL)
936 static inline void *page_address(const struct page *page)
937 {
938 	return page->virtual;
939 }
940 static inline void set_page_address(struct page *page, void *address)
941 {
942 	page->virtual = address;
943 }
944 #define page_address_init()  do { } while(0)
945 #endif
946 
947 #if defined(HASHED_PAGE_VIRTUAL)
948 void *page_address(const struct page *page);
949 void set_page_address(struct page *page, void *virtual);
950 void page_address_init(void);
951 #endif
952 
953 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
954 #define page_address(page) lowmem_page_address(page)
955 #define set_page_address(page, address)  do { } while(0)
956 #define page_address_init()  do { } while(0)
957 #endif
958 
959 extern void *page_rmapping(struct page *page);
960 extern struct anon_vma *page_anon_vma(struct page *page);
961 extern struct address_space *page_mapping(struct page *page);
962 
963 extern struct address_space *__page_file_mapping(struct page *);
964 
965 static inline
966 struct address_space *page_file_mapping(struct page *page)
967 {
968 	if (unlikely(PageSwapCache(page)))
969 		return __page_file_mapping(page);
970 
971 	return page->mapping;
972 }
973 
974 /*
975  * Return the pagecache index of the passed page.  Regular pagecache pages
976  * use ->index whereas swapcache pages use ->private
977  */
978 static inline pgoff_t page_index(struct page *page)
979 {
980 	if (unlikely(PageSwapCache(page)))
981 		return page_private(page);
982 	return page->index;
983 }
984 
985 extern pgoff_t __page_file_index(struct page *page);
986 
987 /*
988  * Return the file index of the page. Regular pagecache pages use ->index
989  * whereas swapcache pages use swp_offset(->private)
990  */
991 static inline pgoff_t page_file_index(struct page *page)
992 {
993 	if (unlikely(PageSwapCache(page)))
994 		return __page_file_index(page);
995 
996 	return page->index;
997 }
998 
999 /*
1000  * Return true if this page is mapped into pagetables.
1001  * For compound page it returns true if any subpage of compound page is mapped.
1002  */
1003 static inline bool page_mapped(struct page *page)
1004 {
1005 	int i;
1006 	if (likely(!PageCompound(page)))
1007 		return atomic_read(&page->_mapcount) >= 0;
1008 	page = compound_head(page);
1009 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1010 		return true;
1011 	for (i = 0; i < hpage_nr_pages(page); i++) {
1012 		if (atomic_read(&page[i]._mapcount) >= 0)
1013 			return true;
1014 	}
1015 	return false;
1016 }
1017 
1018 /*
1019  * Return true only if the page has been allocated with
1020  * ALLOC_NO_WATERMARKS and the low watermark was not
1021  * met implying that the system is under some pressure.
1022  */
1023 static inline bool page_is_pfmemalloc(struct page *page)
1024 {
1025 	/*
1026 	 * Page index cannot be this large so this must be
1027 	 * a pfmemalloc page.
1028 	 */
1029 	return page->index == -1UL;
1030 }
1031 
1032 /*
1033  * Only to be called by the page allocator on a freshly allocated
1034  * page.
1035  */
1036 static inline void set_page_pfmemalloc(struct page *page)
1037 {
1038 	page->index = -1UL;
1039 }
1040 
1041 static inline void clear_page_pfmemalloc(struct page *page)
1042 {
1043 	page->index = 0;
1044 }
1045 
1046 /*
1047  * Different kinds of faults, as returned by handle_mm_fault().
1048  * Used to decide whether a process gets delivered SIGBUS or
1049  * just gets major/minor fault counters bumped up.
1050  */
1051 
1052 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1053 
1054 #define VM_FAULT_OOM	0x0001
1055 #define VM_FAULT_SIGBUS	0x0002
1056 #define VM_FAULT_MAJOR	0x0004
1057 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1058 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1059 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1060 #define VM_FAULT_SIGSEGV 0x0040
1061 
1062 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1063 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1064 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1065 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1066 
1067 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1068 
1069 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1070 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1071 			 VM_FAULT_FALLBACK)
1072 
1073 /* Encode hstate index for a hwpoisoned large page */
1074 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1075 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1076 
1077 /*
1078  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1079  */
1080 extern void pagefault_out_of_memory(void);
1081 
1082 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1083 
1084 /*
1085  * Flags passed to show_mem() and show_free_areas() to suppress output in
1086  * various contexts.
1087  */
1088 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1089 
1090 extern void show_free_areas(unsigned int flags);
1091 extern bool skip_free_areas_node(unsigned int flags, int nid);
1092 
1093 int shmem_zero_setup(struct vm_area_struct *);
1094 #ifdef CONFIG_SHMEM
1095 bool shmem_mapping(struct address_space *mapping);
1096 #else
1097 static inline bool shmem_mapping(struct address_space *mapping)
1098 {
1099 	return false;
1100 }
1101 #endif
1102 
1103 extern bool can_do_mlock(void);
1104 extern int user_shm_lock(size_t, struct user_struct *);
1105 extern void user_shm_unlock(size_t, struct user_struct *);
1106 
1107 /*
1108  * Parameter block passed down to zap_pte_range in exceptional cases.
1109  */
1110 struct zap_details {
1111 	struct address_space *check_mapping;	/* Check page->mapping if set */
1112 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1113 	pgoff_t last_index;			/* Highest page->index to unmap */
1114 };
1115 
1116 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1117 		pte_t pte);
1118 
1119 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1120 		unsigned long size);
1121 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1122 		unsigned long size, struct zap_details *);
1123 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1124 		unsigned long start, unsigned long end);
1125 
1126 /**
1127  * mm_walk - callbacks for walk_page_range
1128  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1129  *	       this handler is required to be able to handle
1130  *	       pmd_trans_huge() pmds.  They may simply choose to
1131  *	       split_huge_page() instead of handling it explicitly.
1132  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1133  * @pte_hole: if set, called for each hole at all levels
1134  * @hugetlb_entry: if set, called for each hugetlb entry
1135  * @test_walk: caller specific callback function to determine whether
1136  *             we walk over the current vma or not. A positive returned
1137  *             value means "do page table walk over the current vma,"
1138  *             and a negative one means "abort current page table walk
1139  *             right now." 0 means "skip the current vma."
1140  * @mm:        mm_struct representing the target process of page table walk
1141  * @vma:       vma currently walked (NULL if walking outside vmas)
1142  * @private:   private data for callbacks' usage
1143  *
1144  * (see the comment on walk_page_range() for more details)
1145  */
1146 struct mm_walk {
1147 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1148 			 unsigned long next, struct mm_walk *walk);
1149 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1150 			 unsigned long next, struct mm_walk *walk);
1151 	int (*pte_hole)(unsigned long addr, unsigned long next,
1152 			struct mm_walk *walk);
1153 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1154 			     unsigned long addr, unsigned long next,
1155 			     struct mm_walk *walk);
1156 	int (*test_walk)(unsigned long addr, unsigned long next,
1157 			struct mm_walk *walk);
1158 	struct mm_struct *mm;
1159 	struct vm_area_struct *vma;
1160 	void *private;
1161 };
1162 
1163 int walk_page_range(unsigned long addr, unsigned long end,
1164 		struct mm_walk *walk);
1165 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1166 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1167 		unsigned long end, unsigned long floor, unsigned long ceiling);
1168 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1169 			struct vm_area_struct *vma);
1170 void unmap_mapping_range(struct address_space *mapping,
1171 		loff_t const holebegin, loff_t const holelen, int even_cows);
1172 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1173 	unsigned long *pfn);
1174 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1175 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1176 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1177 			void *buf, int len, int write);
1178 
1179 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1180 		loff_t const holebegin, loff_t const holelen)
1181 {
1182 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1183 }
1184 
1185 extern void truncate_pagecache(struct inode *inode, loff_t new);
1186 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1187 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1188 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1189 int truncate_inode_page(struct address_space *mapping, struct page *page);
1190 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1191 int invalidate_inode_page(struct page *page);
1192 
1193 #ifdef CONFIG_MMU
1194 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1195 			unsigned long address, unsigned int flags);
1196 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1197 			    unsigned long address, unsigned int fault_flags,
1198 			    bool *unlocked);
1199 #else
1200 static inline int handle_mm_fault(struct mm_struct *mm,
1201 			struct vm_area_struct *vma, unsigned long address,
1202 			unsigned int flags)
1203 {
1204 	/* should never happen if there's no MMU */
1205 	BUG();
1206 	return VM_FAULT_SIGBUS;
1207 }
1208 static inline int fixup_user_fault(struct task_struct *tsk,
1209 		struct mm_struct *mm, unsigned long address,
1210 		unsigned int fault_flags, bool *unlocked)
1211 {
1212 	/* should never happen if there's no MMU */
1213 	BUG();
1214 	return -EFAULT;
1215 }
1216 #endif
1217 
1218 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1219 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1220 		void *buf, int len, int write);
1221 
1222 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1223 		      unsigned long start, unsigned long nr_pages,
1224 		      unsigned int foll_flags, struct page **pages,
1225 		      struct vm_area_struct **vmas, int *nonblocking);
1226 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1227 		    unsigned long start, unsigned long nr_pages,
1228 		    int write, int force, struct page **pages,
1229 		    struct vm_area_struct **vmas);
1230 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1231 		    unsigned long start, unsigned long nr_pages,
1232 		    int write, int force, struct page **pages,
1233 		    int *locked);
1234 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1235 			       unsigned long start, unsigned long nr_pages,
1236 			       int write, int force, struct page **pages,
1237 			       unsigned int gup_flags);
1238 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1239 		    unsigned long start, unsigned long nr_pages,
1240 		    int write, int force, struct page **pages);
1241 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1242 			struct page **pages);
1243 
1244 /* Container for pinned pfns / pages */
1245 struct frame_vector {
1246 	unsigned int nr_allocated;	/* Number of frames we have space for */
1247 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1248 	bool got_ref;		/* Did we pin pages by getting page ref? */
1249 	bool is_pfns;		/* Does array contain pages or pfns? */
1250 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1251 				 * pfns_vector_pages() or pfns_vector_pfns()
1252 				 * for access */
1253 };
1254 
1255 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1256 void frame_vector_destroy(struct frame_vector *vec);
1257 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1258 		     bool write, bool force, struct frame_vector *vec);
1259 void put_vaddr_frames(struct frame_vector *vec);
1260 int frame_vector_to_pages(struct frame_vector *vec);
1261 void frame_vector_to_pfns(struct frame_vector *vec);
1262 
1263 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1264 {
1265 	return vec->nr_frames;
1266 }
1267 
1268 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1269 {
1270 	if (vec->is_pfns) {
1271 		int err = frame_vector_to_pages(vec);
1272 
1273 		if (err)
1274 			return ERR_PTR(err);
1275 	}
1276 	return (struct page **)(vec->ptrs);
1277 }
1278 
1279 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1280 {
1281 	if (!vec->is_pfns)
1282 		frame_vector_to_pfns(vec);
1283 	return (unsigned long *)(vec->ptrs);
1284 }
1285 
1286 struct kvec;
1287 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1288 			struct page **pages);
1289 int get_kernel_page(unsigned long start, int write, struct page **pages);
1290 struct page *get_dump_page(unsigned long addr);
1291 
1292 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1293 extern void do_invalidatepage(struct page *page, unsigned int offset,
1294 			      unsigned int length);
1295 
1296 int __set_page_dirty_nobuffers(struct page *page);
1297 int __set_page_dirty_no_writeback(struct page *page);
1298 int redirty_page_for_writepage(struct writeback_control *wbc,
1299 				struct page *page);
1300 void account_page_dirtied(struct page *page, struct address_space *mapping,
1301 			  struct mem_cgroup *memcg);
1302 void account_page_cleaned(struct page *page, struct address_space *mapping,
1303 			  struct mem_cgroup *memcg, struct bdi_writeback *wb);
1304 int set_page_dirty(struct page *page);
1305 int set_page_dirty_lock(struct page *page);
1306 void cancel_dirty_page(struct page *page);
1307 int clear_page_dirty_for_io(struct page *page);
1308 
1309 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1310 
1311 /* Is the vma a continuation of the stack vma above it? */
1312 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1313 {
1314 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1315 }
1316 
1317 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1318 {
1319 	return !vma->vm_ops;
1320 }
1321 
1322 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1323 					     unsigned long addr)
1324 {
1325 	return (vma->vm_flags & VM_GROWSDOWN) &&
1326 		(vma->vm_start == addr) &&
1327 		!vma_growsdown(vma->vm_prev, addr);
1328 }
1329 
1330 /* Is the vma a continuation of the stack vma below it? */
1331 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1332 {
1333 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1334 }
1335 
1336 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1337 					   unsigned long addr)
1338 {
1339 	return (vma->vm_flags & VM_GROWSUP) &&
1340 		(vma->vm_end == addr) &&
1341 		!vma_growsup(vma->vm_next, addr);
1342 }
1343 
1344 extern struct task_struct *task_of_stack(struct task_struct *task,
1345 				struct vm_area_struct *vma, bool in_group);
1346 
1347 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1348 		unsigned long old_addr, struct vm_area_struct *new_vma,
1349 		unsigned long new_addr, unsigned long len,
1350 		bool need_rmap_locks);
1351 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1352 			      unsigned long end, pgprot_t newprot,
1353 			      int dirty_accountable, int prot_numa);
1354 extern int mprotect_fixup(struct vm_area_struct *vma,
1355 			  struct vm_area_struct **pprev, unsigned long start,
1356 			  unsigned long end, unsigned long newflags);
1357 
1358 /*
1359  * doesn't attempt to fault and will return short.
1360  */
1361 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1362 			  struct page **pages);
1363 /*
1364  * per-process(per-mm_struct) statistics.
1365  */
1366 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1367 {
1368 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1369 
1370 #ifdef SPLIT_RSS_COUNTING
1371 	/*
1372 	 * counter is updated in asynchronous manner and may go to minus.
1373 	 * But it's never be expected number for users.
1374 	 */
1375 	if (val < 0)
1376 		val = 0;
1377 #endif
1378 	return (unsigned long)val;
1379 }
1380 
1381 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1382 {
1383 	atomic_long_add(value, &mm->rss_stat.count[member]);
1384 }
1385 
1386 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1387 {
1388 	atomic_long_inc(&mm->rss_stat.count[member]);
1389 }
1390 
1391 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1392 {
1393 	atomic_long_dec(&mm->rss_stat.count[member]);
1394 }
1395 
1396 /* Optimized variant when page is already known not to be PageAnon */
1397 static inline int mm_counter_file(struct page *page)
1398 {
1399 	if (PageSwapBacked(page))
1400 		return MM_SHMEMPAGES;
1401 	return MM_FILEPAGES;
1402 }
1403 
1404 static inline int mm_counter(struct page *page)
1405 {
1406 	if (PageAnon(page))
1407 		return MM_ANONPAGES;
1408 	return mm_counter_file(page);
1409 }
1410 
1411 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1412 {
1413 	return get_mm_counter(mm, MM_FILEPAGES) +
1414 		get_mm_counter(mm, MM_ANONPAGES) +
1415 		get_mm_counter(mm, MM_SHMEMPAGES);
1416 }
1417 
1418 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1419 {
1420 	return max(mm->hiwater_rss, get_mm_rss(mm));
1421 }
1422 
1423 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1424 {
1425 	return max(mm->hiwater_vm, mm->total_vm);
1426 }
1427 
1428 static inline void update_hiwater_rss(struct mm_struct *mm)
1429 {
1430 	unsigned long _rss = get_mm_rss(mm);
1431 
1432 	if ((mm)->hiwater_rss < _rss)
1433 		(mm)->hiwater_rss = _rss;
1434 }
1435 
1436 static inline void update_hiwater_vm(struct mm_struct *mm)
1437 {
1438 	if (mm->hiwater_vm < mm->total_vm)
1439 		mm->hiwater_vm = mm->total_vm;
1440 }
1441 
1442 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1443 {
1444 	mm->hiwater_rss = get_mm_rss(mm);
1445 }
1446 
1447 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1448 					 struct mm_struct *mm)
1449 {
1450 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1451 
1452 	if (*maxrss < hiwater_rss)
1453 		*maxrss = hiwater_rss;
1454 }
1455 
1456 #if defined(SPLIT_RSS_COUNTING)
1457 void sync_mm_rss(struct mm_struct *mm);
1458 #else
1459 static inline void sync_mm_rss(struct mm_struct *mm)
1460 {
1461 }
1462 #endif
1463 
1464 #ifndef __HAVE_ARCH_PTE_DEVMAP
1465 static inline int pte_devmap(pte_t pte)
1466 {
1467 	return 0;
1468 }
1469 #endif
1470 
1471 int vma_wants_writenotify(struct vm_area_struct *vma);
1472 
1473 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1474 			       spinlock_t **ptl);
1475 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1476 				    spinlock_t **ptl)
1477 {
1478 	pte_t *ptep;
1479 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1480 	return ptep;
1481 }
1482 
1483 #ifdef __PAGETABLE_PUD_FOLDED
1484 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1485 						unsigned long address)
1486 {
1487 	return 0;
1488 }
1489 #else
1490 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1491 #endif
1492 
1493 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1494 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1495 						unsigned long address)
1496 {
1497 	return 0;
1498 }
1499 
1500 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1501 
1502 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1503 {
1504 	return 0;
1505 }
1506 
1507 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1508 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1509 
1510 #else
1511 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1512 
1513 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1514 {
1515 	atomic_long_set(&mm->nr_pmds, 0);
1516 }
1517 
1518 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1519 {
1520 	return atomic_long_read(&mm->nr_pmds);
1521 }
1522 
1523 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1524 {
1525 	atomic_long_inc(&mm->nr_pmds);
1526 }
1527 
1528 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1529 {
1530 	atomic_long_dec(&mm->nr_pmds);
1531 }
1532 #endif
1533 
1534 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1535 		pmd_t *pmd, unsigned long address);
1536 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1537 
1538 /*
1539  * The following ifdef needed to get the 4level-fixup.h header to work.
1540  * Remove it when 4level-fixup.h has been removed.
1541  */
1542 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1543 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1544 {
1545 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1546 		NULL: pud_offset(pgd, address);
1547 }
1548 
1549 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1550 {
1551 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1552 		NULL: pmd_offset(pud, address);
1553 }
1554 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1555 
1556 #if USE_SPLIT_PTE_PTLOCKS
1557 #if ALLOC_SPLIT_PTLOCKS
1558 void __init ptlock_cache_init(void);
1559 extern bool ptlock_alloc(struct page *page);
1560 extern void ptlock_free(struct page *page);
1561 
1562 static inline spinlock_t *ptlock_ptr(struct page *page)
1563 {
1564 	return page->ptl;
1565 }
1566 #else /* ALLOC_SPLIT_PTLOCKS */
1567 static inline void ptlock_cache_init(void)
1568 {
1569 }
1570 
1571 static inline bool ptlock_alloc(struct page *page)
1572 {
1573 	return true;
1574 }
1575 
1576 static inline void ptlock_free(struct page *page)
1577 {
1578 }
1579 
1580 static inline spinlock_t *ptlock_ptr(struct page *page)
1581 {
1582 	return &page->ptl;
1583 }
1584 #endif /* ALLOC_SPLIT_PTLOCKS */
1585 
1586 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1587 {
1588 	return ptlock_ptr(pmd_page(*pmd));
1589 }
1590 
1591 static inline bool ptlock_init(struct page *page)
1592 {
1593 	/*
1594 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1595 	 * with 0. Make sure nobody took it in use in between.
1596 	 *
1597 	 * It can happen if arch try to use slab for page table allocation:
1598 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1599 	 */
1600 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1601 	if (!ptlock_alloc(page))
1602 		return false;
1603 	spin_lock_init(ptlock_ptr(page));
1604 	return true;
1605 }
1606 
1607 /* Reset page->mapping so free_pages_check won't complain. */
1608 static inline void pte_lock_deinit(struct page *page)
1609 {
1610 	page->mapping = NULL;
1611 	ptlock_free(page);
1612 }
1613 
1614 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1615 /*
1616  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1617  */
1618 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1619 {
1620 	return &mm->page_table_lock;
1621 }
1622 static inline void ptlock_cache_init(void) {}
1623 static inline bool ptlock_init(struct page *page) { return true; }
1624 static inline void pte_lock_deinit(struct page *page) {}
1625 #endif /* USE_SPLIT_PTE_PTLOCKS */
1626 
1627 static inline void pgtable_init(void)
1628 {
1629 	ptlock_cache_init();
1630 	pgtable_cache_init();
1631 }
1632 
1633 static inline bool pgtable_page_ctor(struct page *page)
1634 {
1635 	if (!ptlock_init(page))
1636 		return false;
1637 	inc_zone_page_state(page, NR_PAGETABLE);
1638 	return true;
1639 }
1640 
1641 static inline void pgtable_page_dtor(struct page *page)
1642 {
1643 	pte_lock_deinit(page);
1644 	dec_zone_page_state(page, NR_PAGETABLE);
1645 }
1646 
1647 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1648 ({							\
1649 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1650 	pte_t *__pte = pte_offset_map(pmd, address);	\
1651 	*(ptlp) = __ptl;				\
1652 	spin_lock(__ptl);				\
1653 	__pte;						\
1654 })
1655 
1656 #define pte_unmap_unlock(pte, ptl)	do {		\
1657 	spin_unlock(ptl);				\
1658 	pte_unmap(pte);					\
1659 } while (0)
1660 
1661 #define pte_alloc_map(mm, vma, pmd, address)				\
1662 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1663 							pmd, address))?	\
1664 	 NULL: pte_offset_map(pmd, address))
1665 
1666 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1667 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1668 							pmd, address))?	\
1669 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1670 
1671 #define pte_alloc_kernel(pmd, address)			\
1672 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1673 		NULL: pte_offset_kernel(pmd, address))
1674 
1675 #if USE_SPLIT_PMD_PTLOCKS
1676 
1677 static struct page *pmd_to_page(pmd_t *pmd)
1678 {
1679 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1680 	return virt_to_page((void *)((unsigned long) pmd & mask));
1681 }
1682 
1683 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1684 {
1685 	return ptlock_ptr(pmd_to_page(pmd));
1686 }
1687 
1688 static inline bool pgtable_pmd_page_ctor(struct page *page)
1689 {
1690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1691 	page->pmd_huge_pte = NULL;
1692 #endif
1693 	return ptlock_init(page);
1694 }
1695 
1696 static inline void pgtable_pmd_page_dtor(struct page *page)
1697 {
1698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1699 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1700 #endif
1701 	ptlock_free(page);
1702 }
1703 
1704 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1705 
1706 #else
1707 
1708 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1709 {
1710 	return &mm->page_table_lock;
1711 }
1712 
1713 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1714 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1715 
1716 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1717 
1718 #endif
1719 
1720 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1721 {
1722 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1723 	spin_lock(ptl);
1724 	return ptl;
1725 }
1726 
1727 extern void free_area_init(unsigned long * zones_size);
1728 extern void free_area_init_node(int nid, unsigned long * zones_size,
1729 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1730 extern void free_initmem(void);
1731 
1732 /*
1733  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1734  * into the buddy system. The freed pages will be poisoned with pattern
1735  * "poison" if it's within range [0, UCHAR_MAX].
1736  * Return pages freed into the buddy system.
1737  */
1738 extern unsigned long free_reserved_area(void *start, void *end,
1739 					int poison, char *s);
1740 
1741 #ifdef	CONFIG_HIGHMEM
1742 /*
1743  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1744  * and totalram_pages.
1745  */
1746 extern void free_highmem_page(struct page *page);
1747 #endif
1748 
1749 extern void adjust_managed_page_count(struct page *page, long count);
1750 extern void mem_init_print_info(const char *str);
1751 
1752 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1753 
1754 /* Free the reserved page into the buddy system, so it gets managed. */
1755 static inline void __free_reserved_page(struct page *page)
1756 {
1757 	ClearPageReserved(page);
1758 	init_page_count(page);
1759 	__free_page(page);
1760 }
1761 
1762 static inline void free_reserved_page(struct page *page)
1763 {
1764 	__free_reserved_page(page);
1765 	adjust_managed_page_count(page, 1);
1766 }
1767 
1768 static inline void mark_page_reserved(struct page *page)
1769 {
1770 	SetPageReserved(page);
1771 	adjust_managed_page_count(page, -1);
1772 }
1773 
1774 /*
1775  * Default method to free all the __init memory into the buddy system.
1776  * The freed pages will be poisoned with pattern "poison" if it's within
1777  * range [0, UCHAR_MAX].
1778  * Return pages freed into the buddy system.
1779  */
1780 static inline unsigned long free_initmem_default(int poison)
1781 {
1782 	extern char __init_begin[], __init_end[];
1783 
1784 	return free_reserved_area(&__init_begin, &__init_end,
1785 				  poison, "unused kernel");
1786 }
1787 
1788 static inline unsigned long get_num_physpages(void)
1789 {
1790 	int nid;
1791 	unsigned long phys_pages = 0;
1792 
1793 	for_each_online_node(nid)
1794 		phys_pages += node_present_pages(nid);
1795 
1796 	return phys_pages;
1797 }
1798 
1799 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1800 /*
1801  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1802  * zones, allocate the backing mem_map and account for memory holes in a more
1803  * architecture independent manner. This is a substitute for creating the
1804  * zone_sizes[] and zholes_size[] arrays and passing them to
1805  * free_area_init_node()
1806  *
1807  * An architecture is expected to register range of page frames backed by
1808  * physical memory with memblock_add[_node]() before calling
1809  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1810  * usage, an architecture is expected to do something like
1811  *
1812  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1813  * 							 max_highmem_pfn};
1814  * for_each_valid_physical_page_range()
1815  * 	memblock_add_node(base, size, nid)
1816  * free_area_init_nodes(max_zone_pfns);
1817  *
1818  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1819  * registered physical page range.  Similarly
1820  * sparse_memory_present_with_active_regions() calls memory_present() for
1821  * each range when SPARSEMEM is enabled.
1822  *
1823  * See mm/page_alloc.c for more information on each function exposed by
1824  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1825  */
1826 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1827 unsigned long node_map_pfn_alignment(void);
1828 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1829 						unsigned long end_pfn);
1830 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1831 						unsigned long end_pfn);
1832 extern void get_pfn_range_for_nid(unsigned int nid,
1833 			unsigned long *start_pfn, unsigned long *end_pfn);
1834 extern unsigned long find_min_pfn_with_active_regions(void);
1835 extern void free_bootmem_with_active_regions(int nid,
1836 						unsigned long max_low_pfn);
1837 extern void sparse_memory_present_with_active_regions(int nid);
1838 
1839 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1840 
1841 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1842     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1843 static inline int __early_pfn_to_nid(unsigned long pfn,
1844 					struct mminit_pfnnid_cache *state)
1845 {
1846 	return 0;
1847 }
1848 #else
1849 /* please see mm/page_alloc.c */
1850 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1851 /* there is a per-arch backend function. */
1852 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1853 					struct mminit_pfnnid_cache *state);
1854 #endif
1855 
1856 extern void set_dma_reserve(unsigned long new_dma_reserve);
1857 extern void memmap_init_zone(unsigned long, int, unsigned long,
1858 				unsigned long, enum memmap_context);
1859 extern void setup_per_zone_wmarks(void);
1860 extern int __meminit init_per_zone_wmark_min(void);
1861 extern void mem_init(void);
1862 extern void __init mmap_init(void);
1863 extern void show_mem(unsigned int flags);
1864 extern void si_meminfo(struct sysinfo * val);
1865 extern void si_meminfo_node(struct sysinfo *val, int nid);
1866 
1867 extern __printf(3, 4)
1868 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1869 		const char *fmt, ...);
1870 
1871 extern void setup_per_cpu_pageset(void);
1872 
1873 extern void zone_pcp_update(struct zone *zone);
1874 extern void zone_pcp_reset(struct zone *zone);
1875 
1876 /* page_alloc.c */
1877 extern int min_free_kbytes;
1878 
1879 /* nommu.c */
1880 extern atomic_long_t mmap_pages_allocated;
1881 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1882 
1883 /* interval_tree.c */
1884 void vma_interval_tree_insert(struct vm_area_struct *node,
1885 			      struct rb_root *root);
1886 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1887 				    struct vm_area_struct *prev,
1888 				    struct rb_root *root);
1889 void vma_interval_tree_remove(struct vm_area_struct *node,
1890 			      struct rb_root *root);
1891 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1892 				unsigned long start, unsigned long last);
1893 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1894 				unsigned long start, unsigned long last);
1895 
1896 #define vma_interval_tree_foreach(vma, root, start, last)		\
1897 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1898 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1899 
1900 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1901 				   struct rb_root *root);
1902 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1903 				   struct rb_root *root);
1904 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1905 	struct rb_root *root, unsigned long start, unsigned long last);
1906 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1907 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1908 #ifdef CONFIG_DEBUG_VM_RB
1909 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1910 #endif
1911 
1912 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1913 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1914 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1915 
1916 /* mmap.c */
1917 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1918 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1919 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1920 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1921 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1922 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1923 	struct mempolicy *, struct vm_userfaultfd_ctx);
1924 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1925 extern int split_vma(struct mm_struct *,
1926 	struct vm_area_struct *, unsigned long addr, int new_below);
1927 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1928 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1929 	struct rb_node **, struct rb_node *);
1930 extern void unlink_file_vma(struct vm_area_struct *);
1931 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1932 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1933 	bool *need_rmap_locks);
1934 extern void exit_mmap(struct mm_struct *);
1935 
1936 static inline int check_data_rlimit(unsigned long rlim,
1937 				    unsigned long new,
1938 				    unsigned long start,
1939 				    unsigned long end_data,
1940 				    unsigned long start_data)
1941 {
1942 	if (rlim < RLIM_INFINITY) {
1943 		if (((new - start) + (end_data - start_data)) > rlim)
1944 			return -ENOSPC;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 extern int mm_take_all_locks(struct mm_struct *mm);
1951 extern void mm_drop_all_locks(struct mm_struct *mm);
1952 
1953 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1954 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1955 
1956 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1957 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1958 
1959 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1960 				   unsigned long addr, unsigned long len,
1961 				   unsigned long flags,
1962 				   const struct vm_special_mapping *spec);
1963 /* This is an obsolete alternative to _install_special_mapping. */
1964 extern int install_special_mapping(struct mm_struct *mm,
1965 				   unsigned long addr, unsigned long len,
1966 				   unsigned long flags, struct page **pages);
1967 
1968 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1969 
1970 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1971 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1972 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1973 	unsigned long len, unsigned long prot, unsigned long flags,
1974 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1975 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1976 
1977 static inline unsigned long
1978 do_mmap_pgoff(struct file *file, unsigned long addr,
1979 	unsigned long len, unsigned long prot, unsigned long flags,
1980 	unsigned long pgoff, unsigned long *populate)
1981 {
1982 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1983 }
1984 
1985 #ifdef CONFIG_MMU
1986 extern int __mm_populate(unsigned long addr, unsigned long len,
1987 			 int ignore_errors);
1988 static inline void mm_populate(unsigned long addr, unsigned long len)
1989 {
1990 	/* Ignore errors */
1991 	(void) __mm_populate(addr, len, 1);
1992 }
1993 #else
1994 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1995 #endif
1996 
1997 /* These take the mm semaphore themselves */
1998 extern unsigned long vm_brk(unsigned long, unsigned long);
1999 extern int vm_munmap(unsigned long, size_t);
2000 extern unsigned long vm_mmap(struct file *, unsigned long,
2001         unsigned long, unsigned long,
2002         unsigned long, unsigned long);
2003 
2004 struct vm_unmapped_area_info {
2005 #define VM_UNMAPPED_AREA_TOPDOWN 1
2006 	unsigned long flags;
2007 	unsigned long length;
2008 	unsigned long low_limit;
2009 	unsigned long high_limit;
2010 	unsigned long align_mask;
2011 	unsigned long align_offset;
2012 };
2013 
2014 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2015 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2016 
2017 /*
2018  * Search for an unmapped address range.
2019  *
2020  * We are looking for a range that:
2021  * - does not intersect with any VMA;
2022  * - is contained within the [low_limit, high_limit) interval;
2023  * - is at least the desired size.
2024  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2025  */
2026 static inline unsigned long
2027 vm_unmapped_area(struct vm_unmapped_area_info *info)
2028 {
2029 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2030 		return unmapped_area_topdown(info);
2031 	else
2032 		return unmapped_area(info);
2033 }
2034 
2035 /* truncate.c */
2036 extern void truncate_inode_pages(struct address_space *, loff_t);
2037 extern void truncate_inode_pages_range(struct address_space *,
2038 				       loff_t lstart, loff_t lend);
2039 extern void truncate_inode_pages_final(struct address_space *);
2040 
2041 /* generic vm_area_ops exported for stackable file systems */
2042 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2043 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2044 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2045 
2046 /* mm/page-writeback.c */
2047 int write_one_page(struct page *page, int wait);
2048 void task_dirty_inc(struct task_struct *tsk);
2049 
2050 /* readahead.c */
2051 #define VM_MAX_READAHEAD	128	/* kbytes */
2052 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2053 
2054 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2055 			pgoff_t offset, unsigned long nr_to_read);
2056 
2057 void page_cache_sync_readahead(struct address_space *mapping,
2058 			       struct file_ra_state *ra,
2059 			       struct file *filp,
2060 			       pgoff_t offset,
2061 			       unsigned long size);
2062 
2063 void page_cache_async_readahead(struct address_space *mapping,
2064 				struct file_ra_state *ra,
2065 				struct file *filp,
2066 				struct page *pg,
2067 				pgoff_t offset,
2068 				unsigned long size);
2069 
2070 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2071 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2072 
2073 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2074 extern int expand_downwards(struct vm_area_struct *vma,
2075 		unsigned long address);
2076 #if VM_GROWSUP
2077 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2078 #else
2079   #define expand_upwards(vma, address) (0)
2080 #endif
2081 
2082 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2083 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2084 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2085 					     struct vm_area_struct **pprev);
2086 
2087 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2088    NULL if none.  Assume start_addr < end_addr. */
2089 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2090 {
2091 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2092 
2093 	if (vma && end_addr <= vma->vm_start)
2094 		vma = NULL;
2095 	return vma;
2096 }
2097 
2098 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2099 {
2100 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2101 }
2102 
2103 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2104 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2105 				unsigned long vm_start, unsigned long vm_end)
2106 {
2107 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2108 
2109 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2110 		vma = NULL;
2111 
2112 	return vma;
2113 }
2114 
2115 #ifdef CONFIG_MMU
2116 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2117 void vma_set_page_prot(struct vm_area_struct *vma);
2118 #else
2119 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2120 {
2121 	return __pgprot(0);
2122 }
2123 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2124 {
2125 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2126 }
2127 #endif
2128 
2129 #ifdef CONFIG_NUMA_BALANCING
2130 unsigned long change_prot_numa(struct vm_area_struct *vma,
2131 			unsigned long start, unsigned long end);
2132 #endif
2133 
2134 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2135 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2136 			unsigned long pfn, unsigned long size, pgprot_t);
2137 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2138 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 			unsigned long pfn);
2140 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141 			pfn_t pfn);
2142 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2143 
2144 
2145 struct page *follow_page_mask(struct vm_area_struct *vma,
2146 			      unsigned long address, unsigned int foll_flags,
2147 			      unsigned int *page_mask);
2148 
2149 static inline struct page *follow_page(struct vm_area_struct *vma,
2150 		unsigned long address, unsigned int foll_flags)
2151 {
2152 	unsigned int unused_page_mask;
2153 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2154 }
2155 
2156 #define FOLL_WRITE	0x01	/* check pte is writable */
2157 #define FOLL_TOUCH	0x02	/* mark page accessed */
2158 #define FOLL_GET	0x04	/* do get_page on page */
2159 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2160 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2161 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2162 				 * and return without waiting upon it */
2163 #define FOLL_POPULATE	0x40	/* fault in page */
2164 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2165 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2166 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2167 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2168 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2169 #define FOLL_MLOCK	0x1000	/* lock present pages */
2170 
2171 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2172 			void *data);
2173 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2174 			       unsigned long size, pte_fn_t fn, void *data);
2175 
2176 
2177 #ifdef CONFIG_DEBUG_PAGEALLOC
2178 extern bool _debug_pagealloc_enabled;
2179 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2180 
2181 static inline bool debug_pagealloc_enabled(void)
2182 {
2183 	return _debug_pagealloc_enabled;
2184 }
2185 
2186 static inline void
2187 kernel_map_pages(struct page *page, int numpages, int enable)
2188 {
2189 	if (!debug_pagealloc_enabled())
2190 		return;
2191 
2192 	__kernel_map_pages(page, numpages, enable);
2193 }
2194 #ifdef CONFIG_HIBERNATION
2195 extern bool kernel_page_present(struct page *page);
2196 #endif /* CONFIG_HIBERNATION */
2197 #else
2198 static inline void
2199 kernel_map_pages(struct page *page, int numpages, int enable) {}
2200 #ifdef CONFIG_HIBERNATION
2201 static inline bool kernel_page_present(struct page *page) { return true; }
2202 #endif /* CONFIG_HIBERNATION */
2203 #endif
2204 
2205 #ifdef __HAVE_ARCH_GATE_AREA
2206 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2207 extern int in_gate_area_no_mm(unsigned long addr);
2208 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2209 #else
2210 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2211 {
2212 	return NULL;
2213 }
2214 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2215 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2216 {
2217 	return 0;
2218 }
2219 #endif	/* __HAVE_ARCH_GATE_AREA */
2220 
2221 #ifdef CONFIG_SYSCTL
2222 extern int sysctl_drop_caches;
2223 int drop_caches_sysctl_handler(struct ctl_table *, int,
2224 					void __user *, size_t *, loff_t *);
2225 #endif
2226 
2227 void drop_slab(void);
2228 void drop_slab_node(int nid);
2229 
2230 #ifndef CONFIG_MMU
2231 #define randomize_va_space 0
2232 #else
2233 extern int randomize_va_space;
2234 #endif
2235 
2236 const char * arch_vma_name(struct vm_area_struct *vma);
2237 void print_vma_addr(char *prefix, unsigned long rip);
2238 
2239 void sparse_mem_maps_populate_node(struct page **map_map,
2240 				   unsigned long pnum_begin,
2241 				   unsigned long pnum_end,
2242 				   unsigned long map_count,
2243 				   int nodeid);
2244 
2245 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2246 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2247 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2248 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2249 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2250 void *vmemmap_alloc_block(unsigned long size, int node);
2251 struct vmem_altmap;
2252 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2253 		struct vmem_altmap *altmap);
2254 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2255 {
2256 	return __vmemmap_alloc_block_buf(size, node, NULL);
2257 }
2258 
2259 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2260 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2261 			       int node);
2262 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2263 void vmemmap_populate_print_last(void);
2264 #ifdef CONFIG_MEMORY_HOTPLUG
2265 void vmemmap_free(unsigned long start, unsigned long end);
2266 #endif
2267 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2268 				  unsigned long size);
2269 
2270 enum mf_flags {
2271 	MF_COUNT_INCREASED = 1 << 0,
2272 	MF_ACTION_REQUIRED = 1 << 1,
2273 	MF_MUST_KILL = 1 << 2,
2274 	MF_SOFT_OFFLINE = 1 << 3,
2275 };
2276 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2277 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2278 extern int unpoison_memory(unsigned long pfn);
2279 extern int get_hwpoison_page(struct page *page);
2280 #define put_hwpoison_page(page)	put_page(page)
2281 extern int sysctl_memory_failure_early_kill;
2282 extern int sysctl_memory_failure_recovery;
2283 extern void shake_page(struct page *p, int access);
2284 extern atomic_long_t num_poisoned_pages;
2285 extern int soft_offline_page(struct page *page, int flags);
2286 
2287 
2288 /*
2289  * Error handlers for various types of pages.
2290  */
2291 enum mf_result {
2292 	MF_IGNORED,	/* Error: cannot be handled */
2293 	MF_FAILED,	/* Error: handling failed */
2294 	MF_DELAYED,	/* Will be handled later */
2295 	MF_RECOVERED,	/* Successfully recovered */
2296 };
2297 
2298 enum mf_action_page_type {
2299 	MF_MSG_KERNEL,
2300 	MF_MSG_KERNEL_HIGH_ORDER,
2301 	MF_MSG_SLAB,
2302 	MF_MSG_DIFFERENT_COMPOUND,
2303 	MF_MSG_POISONED_HUGE,
2304 	MF_MSG_HUGE,
2305 	MF_MSG_FREE_HUGE,
2306 	MF_MSG_UNMAP_FAILED,
2307 	MF_MSG_DIRTY_SWAPCACHE,
2308 	MF_MSG_CLEAN_SWAPCACHE,
2309 	MF_MSG_DIRTY_MLOCKED_LRU,
2310 	MF_MSG_CLEAN_MLOCKED_LRU,
2311 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2312 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2313 	MF_MSG_DIRTY_LRU,
2314 	MF_MSG_CLEAN_LRU,
2315 	MF_MSG_TRUNCATED_LRU,
2316 	MF_MSG_BUDDY,
2317 	MF_MSG_BUDDY_2ND,
2318 	MF_MSG_UNKNOWN,
2319 };
2320 
2321 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2322 extern void clear_huge_page(struct page *page,
2323 			    unsigned long addr,
2324 			    unsigned int pages_per_huge_page);
2325 extern void copy_user_huge_page(struct page *dst, struct page *src,
2326 				unsigned long addr, struct vm_area_struct *vma,
2327 				unsigned int pages_per_huge_page);
2328 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2329 
2330 extern struct page_ext_operations debug_guardpage_ops;
2331 extern struct page_ext_operations page_poisoning_ops;
2332 
2333 #ifdef CONFIG_DEBUG_PAGEALLOC
2334 extern unsigned int _debug_guardpage_minorder;
2335 extern bool _debug_guardpage_enabled;
2336 
2337 static inline unsigned int debug_guardpage_minorder(void)
2338 {
2339 	return _debug_guardpage_minorder;
2340 }
2341 
2342 static inline bool debug_guardpage_enabled(void)
2343 {
2344 	return _debug_guardpage_enabled;
2345 }
2346 
2347 static inline bool page_is_guard(struct page *page)
2348 {
2349 	struct page_ext *page_ext;
2350 
2351 	if (!debug_guardpage_enabled())
2352 		return false;
2353 
2354 	page_ext = lookup_page_ext(page);
2355 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2356 }
2357 #else
2358 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2359 static inline bool debug_guardpage_enabled(void) { return false; }
2360 static inline bool page_is_guard(struct page *page) { return false; }
2361 #endif /* CONFIG_DEBUG_PAGEALLOC */
2362 
2363 #if MAX_NUMNODES > 1
2364 void __init setup_nr_node_ids(void);
2365 #else
2366 static inline void setup_nr_node_ids(void) {}
2367 #endif
2368 
2369 #endif /* __KERNEL__ */
2370 #endif /* _LINUX_MM_H */
2371