xref: /linux-6.15/include/linux/mm.h (revision 151f4e2b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 #ifndef __pa_symbol
103 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
104 #endif
105 
106 #ifndef page_to_virt
107 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
108 #endif
109 
110 #ifndef lm_alias
111 #define lm_alias(x)	__va(__pa_symbol(x))
112 #endif
113 
114 /*
115  * To prevent common memory management code establishing
116  * a zero page mapping on a read fault.
117  * This macro should be defined within <asm/pgtable.h>.
118  * s390 does this to prevent multiplexing of hardware bits
119  * related to the physical page in case of virtualization.
120  */
121 #ifndef mm_forbids_zeropage
122 #define mm_forbids_zeropage(X)	(0)
123 #endif
124 
125 /*
126  * On some architectures it is expensive to call memset() for small sizes.
127  * If an architecture decides to implement their own version of
128  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
129  * define their own version of this macro in <asm/pgtable.h>
130  */
131 #if BITS_PER_LONG == 64
132 /* This function must be updated when the size of struct page grows above 80
133  * or reduces below 56. The idea that compiler optimizes out switch()
134  * statement, and only leaves move/store instructions. Also the compiler can
135  * combine write statments if they are both assignments and can be reordered,
136  * this can result in several of the writes here being dropped.
137  */
138 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
139 static inline void __mm_zero_struct_page(struct page *page)
140 {
141 	unsigned long *_pp = (void *)page;
142 
143 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
144 	BUILD_BUG_ON(sizeof(struct page) & 7);
145 	BUILD_BUG_ON(sizeof(struct page) < 56);
146 	BUILD_BUG_ON(sizeof(struct page) > 80);
147 
148 	switch (sizeof(struct page)) {
149 	case 80:
150 		_pp[9] = 0;	/* fallthrough */
151 	case 72:
152 		_pp[8] = 0;	/* fallthrough */
153 	case 64:
154 		_pp[7] = 0;	/* fallthrough */
155 	case 56:
156 		_pp[6] = 0;
157 		_pp[5] = 0;
158 		_pp[4] = 0;
159 		_pp[3] = 0;
160 		_pp[2] = 0;
161 		_pp[1] = 0;
162 		_pp[0] = 0;
163 	}
164 }
165 #else
166 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
167 #endif
168 
169 /*
170  * Default maximum number of active map areas, this limits the number of vmas
171  * per mm struct. Users can overwrite this number by sysctl but there is a
172  * problem.
173  *
174  * When a program's coredump is generated as ELF format, a section is created
175  * per a vma. In ELF, the number of sections is represented in unsigned short.
176  * This means the number of sections should be smaller than 65535 at coredump.
177  * Because the kernel adds some informative sections to a image of program at
178  * generating coredump, we need some margin. The number of extra sections is
179  * 1-3 now and depends on arch. We use "5" as safe margin, here.
180  *
181  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
182  * not a hard limit any more. Although some userspace tools can be surprised by
183  * that.
184  */
185 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
186 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
187 
188 extern int sysctl_max_map_count;
189 
190 extern unsigned long sysctl_user_reserve_kbytes;
191 extern unsigned long sysctl_admin_reserve_kbytes;
192 
193 extern int sysctl_overcommit_memory;
194 extern int sysctl_overcommit_ratio;
195 extern unsigned long sysctl_overcommit_kbytes;
196 
197 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
198 				    size_t *, loff_t *);
199 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
200 				    size_t *, loff_t *);
201 
202 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
203 
204 /* to align the pointer to the (next) page boundary */
205 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
206 
207 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
208 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
209 
210 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
211 
212 /*
213  * Linux kernel virtual memory manager primitives.
214  * The idea being to have a "virtual" mm in the same way
215  * we have a virtual fs - giving a cleaner interface to the
216  * mm details, and allowing different kinds of memory mappings
217  * (from shared memory to executable loading to arbitrary
218  * mmap() functions).
219  */
220 
221 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
222 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
223 void vm_area_free(struct vm_area_struct *);
224 
225 #ifndef CONFIG_MMU
226 extern struct rb_root nommu_region_tree;
227 extern struct rw_semaphore nommu_region_sem;
228 
229 extern unsigned int kobjsize(const void *objp);
230 #endif
231 
232 /*
233  * vm_flags in vm_area_struct, see mm_types.h.
234  * When changing, update also include/trace/events/mmflags.h
235  */
236 #define VM_NONE		0x00000000
237 
238 #define VM_READ		0x00000001	/* currently active flags */
239 #define VM_WRITE	0x00000002
240 #define VM_EXEC		0x00000004
241 #define VM_SHARED	0x00000008
242 
243 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
244 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
245 #define VM_MAYWRITE	0x00000020
246 #define VM_MAYEXEC	0x00000040
247 #define VM_MAYSHARE	0x00000080
248 
249 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
250 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
251 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
252 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
253 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
254 
255 #define VM_LOCKED	0x00002000
256 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
257 
258 					/* Used by sys_madvise() */
259 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
260 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
261 
262 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
263 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
264 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
265 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
266 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
267 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
268 #define VM_SYNC		0x00800000	/* Synchronous page faults */
269 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
270 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
271 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
272 
273 #ifdef CONFIG_MEM_SOFT_DIRTY
274 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
275 #else
276 # define VM_SOFTDIRTY	0
277 #endif
278 
279 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
280 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
281 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
282 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
283 
284 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
285 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
286 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
287 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
288 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
289 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
290 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
291 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
292 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
293 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
294 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
295 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
296 
297 #ifdef CONFIG_ARCH_HAS_PKEYS
298 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
299 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
300 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
301 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
302 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
303 #ifdef CONFIG_PPC
304 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
305 #else
306 # define VM_PKEY_BIT4  0
307 #endif
308 #endif /* CONFIG_ARCH_HAS_PKEYS */
309 
310 #if defined(CONFIG_X86)
311 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
312 #elif defined(CONFIG_PPC)
313 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
314 #elif defined(CONFIG_PARISC)
315 # define VM_GROWSUP	VM_ARCH_1
316 #elif defined(CONFIG_IA64)
317 # define VM_GROWSUP	VM_ARCH_1
318 #elif defined(CONFIG_SPARC64)
319 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
320 # define VM_ARCH_CLEAR	VM_SPARC_ADI
321 #elif !defined(CONFIG_MMU)
322 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
323 #endif
324 
325 #if defined(CONFIG_X86_INTEL_MPX)
326 /* MPX specific bounds table or bounds directory */
327 # define VM_MPX		VM_HIGH_ARCH_4
328 #else
329 # define VM_MPX		VM_NONE
330 #endif
331 
332 #ifndef VM_GROWSUP
333 # define VM_GROWSUP	VM_NONE
334 #endif
335 
336 /* Bits set in the VMA until the stack is in its final location */
337 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
338 
339 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
340 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
341 #endif
342 
343 #ifdef CONFIG_STACK_GROWSUP
344 #define VM_STACK	VM_GROWSUP
345 #else
346 #define VM_STACK	VM_GROWSDOWN
347 #endif
348 
349 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
350 
351 /*
352  * Special vmas that are non-mergable, non-mlock()able.
353  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
354  */
355 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
356 
357 /* This mask defines which mm->def_flags a process can inherit its parent */
358 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
359 
360 /* This mask is used to clear all the VMA flags used by mlock */
361 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
362 
363 /* Arch-specific flags to clear when updating VM flags on protection change */
364 #ifndef VM_ARCH_CLEAR
365 # define VM_ARCH_CLEAR	VM_NONE
366 #endif
367 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
368 
369 /*
370  * mapping from the currently active vm_flags protection bits (the
371  * low four bits) to a page protection mask..
372  */
373 extern pgprot_t protection_map[16];
374 
375 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
376 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
377 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
378 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
379 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
380 #define FAULT_FLAG_TRIED	0x20	/* Second try */
381 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
382 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
383 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
384 
385 #define FAULT_FLAG_TRACE \
386 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
387 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
388 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
389 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
390 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
391 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
392 	{ FAULT_FLAG_USER,		"USER" }, \
393 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
394 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
395 
396 /*
397  * vm_fault is filled by the the pagefault handler and passed to the vma's
398  * ->fault function. The vma's ->fault is responsible for returning a bitmask
399  * of VM_FAULT_xxx flags that give details about how the fault was handled.
400  *
401  * MM layer fills up gfp_mask for page allocations but fault handler might
402  * alter it if its implementation requires a different allocation context.
403  *
404  * pgoff should be used in favour of virtual_address, if possible.
405  */
406 struct vm_fault {
407 	struct vm_area_struct *vma;	/* Target VMA */
408 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
409 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
410 	pgoff_t pgoff;			/* Logical page offset based on vma */
411 	unsigned long address;		/* Faulting virtual address */
412 	pmd_t *pmd;			/* Pointer to pmd entry matching
413 					 * the 'address' */
414 	pud_t *pud;			/* Pointer to pud entry matching
415 					 * the 'address'
416 					 */
417 	pte_t orig_pte;			/* Value of PTE at the time of fault */
418 
419 	struct page *cow_page;		/* Page handler may use for COW fault */
420 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
421 	struct page *page;		/* ->fault handlers should return a
422 					 * page here, unless VM_FAULT_NOPAGE
423 					 * is set (which is also implied by
424 					 * VM_FAULT_ERROR).
425 					 */
426 	/* These three entries are valid only while holding ptl lock */
427 	pte_t *pte;			/* Pointer to pte entry matching
428 					 * the 'address'. NULL if the page
429 					 * table hasn't been allocated.
430 					 */
431 	spinlock_t *ptl;		/* Page table lock.
432 					 * Protects pte page table if 'pte'
433 					 * is not NULL, otherwise pmd.
434 					 */
435 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
436 					 * vm_ops->map_pages() calls
437 					 * alloc_set_pte() from atomic context.
438 					 * do_fault_around() pre-allocates
439 					 * page table to avoid allocation from
440 					 * atomic context.
441 					 */
442 };
443 
444 /* page entry size for vm->huge_fault() */
445 enum page_entry_size {
446 	PE_SIZE_PTE = 0,
447 	PE_SIZE_PMD,
448 	PE_SIZE_PUD,
449 };
450 
451 /*
452  * These are the virtual MM functions - opening of an area, closing and
453  * unmapping it (needed to keep files on disk up-to-date etc), pointer
454  * to the functions called when a no-page or a wp-page exception occurs.
455  */
456 struct vm_operations_struct {
457 	void (*open)(struct vm_area_struct * area);
458 	void (*close)(struct vm_area_struct * area);
459 	int (*split)(struct vm_area_struct * area, unsigned long addr);
460 	int (*mremap)(struct vm_area_struct * area);
461 	vm_fault_t (*fault)(struct vm_fault *vmf);
462 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
463 			enum page_entry_size pe_size);
464 	void (*map_pages)(struct vm_fault *vmf,
465 			pgoff_t start_pgoff, pgoff_t end_pgoff);
466 	unsigned long (*pagesize)(struct vm_area_struct * area);
467 
468 	/* notification that a previously read-only page is about to become
469 	 * writable, if an error is returned it will cause a SIGBUS */
470 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
471 
472 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
473 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
474 
475 	/* called by access_process_vm when get_user_pages() fails, typically
476 	 * for use by special VMAs that can switch between memory and hardware
477 	 */
478 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
479 		      void *buf, int len, int write);
480 
481 	/* Called by the /proc/PID/maps code to ask the vma whether it
482 	 * has a special name.  Returning non-NULL will also cause this
483 	 * vma to be dumped unconditionally. */
484 	const char *(*name)(struct vm_area_struct *vma);
485 
486 #ifdef CONFIG_NUMA
487 	/*
488 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
489 	 * to hold the policy upon return.  Caller should pass NULL @new to
490 	 * remove a policy and fall back to surrounding context--i.e. do not
491 	 * install a MPOL_DEFAULT policy, nor the task or system default
492 	 * mempolicy.
493 	 */
494 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
495 
496 	/*
497 	 * get_policy() op must add reference [mpol_get()] to any policy at
498 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
499 	 * in mm/mempolicy.c will do this automatically.
500 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
501 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
502 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
503 	 * must return NULL--i.e., do not "fallback" to task or system default
504 	 * policy.
505 	 */
506 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
507 					unsigned long addr);
508 #endif
509 	/*
510 	 * Called by vm_normal_page() for special PTEs to find the
511 	 * page for @addr.  This is useful if the default behavior
512 	 * (using pte_page()) would not find the correct page.
513 	 */
514 	struct page *(*find_special_page)(struct vm_area_struct *vma,
515 					  unsigned long addr);
516 };
517 
518 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
519 {
520 	static const struct vm_operations_struct dummy_vm_ops = {};
521 
522 	memset(vma, 0, sizeof(*vma));
523 	vma->vm_mm = mm;
524 	vma->vm_ops = &dummy_vm_ops;
525 	INIT_LIST_HEAD(&vma->anon_vma_chain);
526 }
527 
528 static inline void vma_set_anonymous(struct vm_area_struct *vma)
529 {
530 	vma->vm_ops = NULL;
531 }
532 
533 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
534 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
535 
536 struct mmu_gather;
537 struct inode;
538 
539 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
540 static inline int pmd_devmap(pmd_t pmd)
541 {
542 	return 0;
543 }
544 static inline int pud_devmap(pud_t pud)
545 {
546 	return 0;
547 }
548 static inline int pgd_devmap(pgd_t pgd)
549 {
550 	return 0;
551 }
552 #endif
553 
554 /*
555  * FIXME: take this include out, include page-flags.h in
556  * files which need it (119 of them)
557  */
558 #include <linux/page-flags.h>
559 #include <linux/huge_mm.h>
560 
561 /*
562  * Methods to modify the page usage count.
563  *
564  * What counts for a page usage:
565  * - cache mapping   (page->mapping)
566  * - private data    (page->private)
567  * - page mapped in a task's page tables, each mapping
568  *   is counted separately
569  *
570  * Also, many kernel routines increase the page count before a critical
571  * routine so they can be sure the page doesn't go away from under them.
572  */
573 
574 /*
575  * Drop a ref, return true if the refcount fell to zero (the page has no users)
576  */
577 static inline int put_page_testzero(struct page *page)
578 {
579 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
580 	return page_ref_dec_and_test(page);
581 }
582 
583 /*
584  * Try to grab a ref unless the page has a refcount of zero, return false if
585  * that is the case.
586  * This can be called when MMU is off so it must not access
587  * any of the virtual mappings.
588  */
589 static inline int get_page_unless_zero(struct page *page)
590 {
591 	return page_ref_add_unless(page, 1, 0);
592 }
593 
594 extern int page_is_ram(unsigned long pfn);
595 
596 enum {
597 	REGION_INTERSECTS,
598 	REGION_DISJOINT,
599 	REGION_MIXED,
600 };
601 
602 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
603 		      unsigned long desc);
604 
605 /* Support for virtually mapped pages */
606 struct page *vmalloc_to_page(const void *addr);
607 unsigned long vmalloc_to_pfn(const void *addr);
608 
609 /*
610  * Determine if an address is within the vmalloc range
611  *
612  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
613  * is no special casing required.
614  */
615 static inline bool is_vmalloc_addr(const void *x)
616 {
617 #ifdef CONFIG_MMU
618 	unsigned long addr = (unsigned long)x;
619 
620 	return addr >= VMALLOC_START && addr < VMALLOC_END;
621 #else
622 	return false;
623 #endif
624 }
625 #ifdef CONFIG_MMU
626 extern int is_vmalloc_or_module_addr(const void *x);
627 #else
628 static inline int is_vmalloc_or_module_addr(const void *x)
629 {
630 	return 0;
631 }
632 #endif
633 
634 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
635 static inline void *kvmalloc(size_t size, gfp_t flags)
636 {
637 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
638 }
639 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
640 {
641 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
642 }
643 static inline void *kvzalloc(size_t size, gfp_t flags)
644 {
645 	return kvmalloc(size, flags | __GFP_ZERO);
646 }
647 
648 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
649 {
650 	size_t bytes;
651 
652 	if (unlikely(check_mul_overflow(n, size, &bytes)))
653 		return NULL;
654 
655 	return kvmalloc(bytes, flags);
656 }
657 
658 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
659 {
660 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
661 }
662 
663 extern void kvfree(const void *addr);
664 
665 static inline atomic_t *compound_mapcount_ptr(struct page *page)
666 {
667 	return &page[1].compound_mapcount;
668 }
669 
670 static inline int compound_mapcount(struct page *page)
671 {
672 	VM_BUG_ON_PAGE(!PageCompound(page), page);
673 	page = compound_head(page);
674 	return atomic_read(compound_mapcount_ptr(page)) + 1;
675 }
676 
677 /*
678  * The atomic page->_mapcount, starts from -1: so that transitions
679  * both from it and to it can be tracked, using atomic_inc_and_test
680  * and atomic_add_negative(-1).
681  */
682 static inline void page_mapcount_reset(struct page *page)
683 {
684 	atomic_set(&(page)->_mapcount, -1);
685 }
686 
687 int __page_mapcount(struct page *page);
688 
689 static inline int page_mapcount(struct page *page)
690 {
691 	VM_BUG_ON_PAGE(PageSlab(page), page);
692 
693 	if (unlikely(PageCompound(page)))
694 		return __page_mapcount(page);
695 	return atomic_read(&page->_mapcount) + 1;
696 }
697 
698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
699 int total_mapcount(struct page *page);
700 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
701 #else
702 static inline int total_mapcount(struct page *page)
703 {
704 	return page_mapcount(page);
705 }
706 static inline int page_trans_huge_mapcount(struct page *page,
707 					   int *total_mapcount)
708 {
709 	int mapcount = page_mapcount(page);
710 	if (total_mapcount)
711 		*total_mapcount = mapcount;
712 	return mapcount;
713 }
714 #endif
715 
716 static inline struct page *virt_to_head_page(const void *x)
717 {
718 	struct page *page = virt_to_page(x);
719 
720 	return compound_head(page);
721 }
722 
723 void __put_page(struct page *page);
724 
725 void put_pages_list(struct list_head *pages);
726 
727 void split_page(struct page *page, unsigned int order);
728 
729 /*
730  * Compound pages have a destructor function.  Provide a
731  * prototype for that function and accessor functions.
732  * These are _only_ valid on the head of a compound page.
733  */
734 typedef void compound_page_dtor(struct page *);
735 
736 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
737 enum compound_dtor_id {
738 	NULL_COMPOUND_DTOR,
739 	COMPOUND_PAGE_DTOR,
740 #ifdef CONFIG_HUGETLB_PAGE
741 	HUGETLB_PAGE_DTOR,
742 #endif
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 	TRANSHUGE_PAGE_DTOR,
745 #endif
746 	NR_COMPOUND_DTORS,
747 };
748 extern compound_page_dtor * const compound_page_dtors[];
749 
750 static inline void set_compound_page_dtor(struct page *page,
751 		enum compound_dtor_id compound_dtor)
752 {
753 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
754 	page[1].compound_dtor = compound_dtor;
755 }
756 
757 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
758 {
759 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
760 	return compound_page_dtors[page[1].compound_dtor];
761 }
762 
763 static inline unsigned int compound_order(struct page *page)
764 {
765 	if (!PageHead(page))
766 		return 0;
767 	return page[1].compound_order;
768 }
769 
770 static inline void set_compound_order(struct page *page, unsigned int order)
771 {
772 	page[1].compound_order = order;
773 }
774 
775 void free_compound_page(struct page *page);
776 
777 #ifdef CONFIG_MMU
778 /*
779  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
780  * servicing faults for write access.  In the normal case, do always want
781  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
782  * that do not have writing enabled, when used by access_process_vm.
783  */
784 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
785 {
786 	if (likely(vma->vm_flags & VM_WRITE))
787 		pte = pte_mkwrite(pte);
788 	return pte;
789 }
790 
791 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
792 		struct page *page);
793 vm_fault_t finish_fault(struct vm_fault *vmf);
794 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
795 #endif
796 
797 /*
798  * Multiple processes may "see" the same page. E.g. for untouched
799  * mappings of /dev/null, all processes see the same page full of
800  * zeroes, and text pages of executables and shared libraries have
801  * only one copy in memory, at most, normally.
802  *
803  * For the non-reserved pages, page_count(page) denotes a reference count.
804  *   page_count() == 0 means the page is free. page->lru is then used for
805  *   freelist management in the buddy allocator.
806  *   page_count() > 0  means the page has been allocated.
807  *
808  * Pages are allocated by the slab allocator in order to provide memory
809  * to kmalloc and kmem_cache_alloc. In this case, the management of the
810  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
811  * unless a particular usage is carefully commented. (the responsibility of
812  * freeing the kmalloc memory is the caller's, of course).
813  *
814  * A page may be used by anyone else who does a __get_free_page().
815  * In this case, page_count still tracks the references, and should only
816  * be used through the normal accessor functions. The top bits of page->flags
817  * and page->virtual store page management information, but all other fields
818  * are unused and could be used privately, carefully. The management of this
819  * page is the responsibility of the one who allocated it, and those who have
820  * subsequently been given references to it.
821  *
822  * The other pages (we may call them "pagecache pages") are completely
823  * managed by the Linux memory manager: I/O, buffers, swapping etc.
824  * The following discussion applies only to them.
825  *
826  * A pagecache page contains an opaque `private' member, which belongs to the
827  * page's address_space. Usually, this is the address of a circular list of
828  * the page's disk buffers. PG_private must be set to tell the VM to call
829  * into the filesystem to release these pages.
830  *
831  * A page may belong to an inode's memory mapping. In this case, page->mapping
832  * is the pointer to the inode, and page->index is the file offset of the page,
833  * in units of PAGE_SIZE.
834  *
835  * If pagecache pages are not associated with an inode, they are said to be
836  * anonymous pages. These may become associated with the swapcache, and in that
837  * case PG_swapcache is set, and page->private is an offset into the swapcache.
838  *
839  * In either case (swapcache or inode backed), the pagecache itself holds one
840  * reference to the page. Setting PG_private should also increment the
841  * refcount. The each user mapping also has a reference to the page.
842  *
843  * The pagecache pages are stored in a per-mapping radix tree, which is
844  * rooted at mapping->i_pages, and indexed by offset.
845  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
846  * lists, we instead now tag pages as dirty/writeback in the radix tree.
847  *
848  * All pagecache pages may be subject to I/O:
849  * - inode pages may need to be read from disk,
850  * - inode pages which have been modified and are MAP_SHARED may need
851  *   to be written back to the inode on disk,
852  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
853  *   modified may need to be swapped out to swap space and (later) to be read
854  *   back into memory.
855  */
856 
857 /*
858  * The zone field is never updated after free_area_init_core()
859  * sets it, so none of the operations on it need to be atomic.
860  */
861 
862 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
863 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
864 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
865 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
866 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
867 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
868 
869 /*
870  * Define the bit shifts to access each section.  For non-existent
871  * sections we define the shift as 0; that plus a 0 mask ensures
872  * the compiler will optimise away reference to them.
873  */
874 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
875 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
876 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
877 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
878 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
879 
880 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
881 #ifdef NODE_NOT_IN_PAGE_FLAGS
882 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
883 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
884 						SECTIONS_PGOFF : ZONES_PGOFF)
885 #else
886 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
887 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
888 						NODES_PGOFF : ZONES_PGOFF)
889 #endif
890 
891 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
892 
893 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
894 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
895 #endif
896 
897 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
898 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
899 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
900 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
901 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
902 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
903 
904 static inline enum zone_type page_zonenum(const struct page *page)
905 {
906 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
907 }
908 
909 #ifdef CONFIG_ZONE_DEVICE
910 static inline bool is_zone_device_page(const struct page *page)
911 {
912 	return page_zonenum(page) == ZONE_DEVICE;
913 }
914 extern void memmap_init_zone_device(struct zone *, unsigned long,
915 				    unsigned long, struct dev_pagemap *);
916 #else
917 static inline bool is_zone_device_page(const struct page *page)
918 {
919 	return false;
920 }
921 #endif
922 
923 #ifdef CONFIG_DEV_PAGEMAP_OPS
924 void dev_pagemap_get_ops(void);
925 void dev_pagemap_put_ops(void);
926 void __put_devmap_managed_page(struct page *page);
927 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
928 static inline bool put_devmap_managed_page(struct page *page)
929 {
930 	if (!static_branch_unlikely(&devmap_managed_key))
931 		return false;
932 	if (!is_zone_device_page(page))
933 		return false;
934 	switch (page->pgmap->type) {
935 	case MEMORY_DEVICE_PRIVATE:
936 	case MEMORY_DEVICE_PUBLIC:
937 	case MEMORY_DEVICE_FS_DAX:
938 		__put_devmap_managed_page(page);
939 		return true;
940 	default:
941 		break;
942 	}
943 	return false;
944 }
945 
946 static inline bool is_device_private_page(const struct page *page)
947 {
948 	return is_zone_device_page(page) &&
949 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
950 }
951 
952 static inline bool is_device_public_page(const struct page *page)
953 {
954 	return is_zone_device_page(page) &&
955 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
956 }
957 
958 #ifdef CONFIG_PCI_P2PDMA
959 static inline bool is_pci_p2pdma_page(const struct page *page)
960 {
961 	return is_zone_device_page(page) &&
962 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
963 }
964 #else /* CONFIG_PCI_P2PDMA */
965 static inline bool is_pci_p2pdma_page(const struct page *page)
966 {
967 	return false;
968 }
969 #endif /* CONFIG_PCI_P2PDMA */
970 
971 #else /* CONFIG_DEV_PAGEMAP_OPS */
972 static inline void dev_pagemap_get_ops(void)
973 {
974 }
975 
976 static inline void dev_pagemap_put_ops(void)
977 {
978 }
979 
980 static inline bool put_devmap_managed_page(struct page *page)
981 {
982 	return false;
983 }
984 
985 static inline bool is_device_private_page(const struct page *page)
986 {
987 	return false;
988 }
989 
990 static inline bool is_device_public_page(const struct page *page)
991 {
992 	return false;
993 }
994 
995 static inline bool is_pci_p2pdma_page(const struct page *page)
996 {
997 	return false;
998 }
999 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1000 
1001 /* 127: arbitrary random number, small enough to assemble well */
1002 #define page_ref_zero_or_close_to_overflow(page) \
1003 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1004 
1005 static inline void get_page(struct page *page)
1006 {
1007 	page = compound_head(page);
1008 	/*
1009 	 * Getting a normal page or the head of a compound page
1010 	 * requires to already have an elevated page->_refcount.
1011 	 */
1012 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1013 	page_ref_inc(page);
1014 }
1015 
1016 static inline __must_check bool try_get_page(struct page *page)
1017 {
1018 	page = compound_head(page);
1019 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1020 		return false;
1021 	page_ref_inc(page);
1022 	return true;
1023 }
1024 
1025 static inline void put_page(struct page *page)
1026 {
1027 	page = compound_head(page);
1028 
1029 	/*
1030 	 * For devmap managed pages we need to catch refcount transition from
1031 	 * 2 to 1, when refcount reach one it means the page is free and we
1032 	 * need to inform the device driver through callback. See
1033 	 * include/linux/memremap.h and HMM for details.
1034 	 */
1035 	if (put_devmap_managed_page(page))
1036 		return;
1037 
1038 	if (put_page_testzero(page))
1039 		__put_page(page);
1040 }
1041 
1042 /**
1043  * put_user_page() - release a gup-pinned page
1044  * @page:            pointer to page to be released
1045  *
1046  * Pages that were pinned via get_user_pages*() must be released via
1047  * either put_user_page(), or one of the put_user_pages*() routines
1048  * below. This is so that eventually, pages that are pinned via
1049  * get_user_pages*() can be separately tracked and uniquely handled. In
1050  * particular, interactions with RDMA and filesystems need special
1051  * handling.
1052  *
1053  * put_user_page() and put_page() are not interchangeable, despite this early
1054  * implementation that makes them look the same. put_user_page() calls must
1055  * be perfectly matched up with get_user_page() calls.
1056  */
1057 static inline void put_user_page(struct page *page)
1058 {
1059 	put_page(page);
1060 }
1061 
1062 void put_user_pages_dirty(struct page **pages, unsigned long npages);
1063 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1064 void put_user_pages(struct page **pages, unsigned long npages);
1065 
1066 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1067 #define SECTION_IN_PAGE_FLAGS
1068 #endif
1069 
1070 /*
1071  * The identification function is mainly used by the buddy allocator for
1072  * determining if two pages could be buddies. We are not really identifying
1073  * the zone since we could be using the section number id if we do not have
1074  * node id available in page flags.
1075  * We only guarantee that it will return the same value for two combinable
1076  * pages in a zone.
1077  */
1078 static inline int page_zone_id(struct page *page)
1079 {
1080 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1081 }
1082 
1083 #ifdef NODE_NOT_IN_PAGE_FLAGS
1084 extern int page_to_nid(const struct page *page);
1085 #else
1086 static inline int page_to_nid(const struct page *page)
1087 {
1088 	struct page *p = (struct page *)page;
1089 
1090 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1091 }
1092 #endif
1093 
1094 #ifdef CONFIG_NUMA_BALANCING
1095 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1096 {
1097 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1098 }
1099 
1100 static inline int cpupid_to_pid(int cpupid)
1101 {
1102 	return cpupid & LAST__PID_MASK;
1103 }
1104 
1105 static inline int cpupid_to_cpu(int cpupid)
1106 {
1107 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1108 }
1109 
1110 static inline int cpupid_to_nid(int cpupid)
1111 {
1112 	return cpu_to_node(cpupid_to_cpu(cpupid));
1113 }
1114 
1115 static inline bool cpupid_pid_unset(int cpupid)
1116 {
1117 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1118 }
1119 
1120 static inline bool cpupid_cpu_unset(int cpupid)
1121 {
1122 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1123 }
1124 
1125 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1126 {
1127 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1128 }
1129 
1130 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1131 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1132 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1133 {
1134 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1135 }
1136 
1137 static inline int page_cpupid_last(struct page *page)
1138 {
1139 	return page->_last_cpupid;
1140 }
1141 static inline void page_cpupid_reset_last(struct page *page)
1142 {
1143 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1144 }
1145 #else
1146 static inline int page_cpupid_last(struct page *page)
1147 {
1148 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1149 }
1150 
1151 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1152 
1153 static inline void page_cpupid_reset_last(struct page *page)
1154 {
1155 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1156 }
1157 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1158 #else /* !CONFIG_NUMA_BALANCING */
1159 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1160 {
1161 	return page_to_nid(page); /* XXX */
1162 }
1163 
1164 static inline int page_cpupid_last(struct page *page)
1165 {
1166 	return page_to_nid(page); /* XXX */
1167 }
1168 
1169 static inline int cpupid_to_nid(int cpupid)
1170 {
1171 	return -1;
1172 }
1173 
1174 static inline int cpupid_to_pid(int cpupid)
1175 {
1176 	return -1;
1177 }
1178 
1179 static inline int cpupid_to_cpu(int cpupid)
1180 {
1181 	return -1;
1182 }
1183 
1184 static inline int cpu_pid_to_cpupid(int nid, int pid)
1185 {
1186 	return -1;
1187 }
1188 
1189 static inline bool cpupid_pid_unset(int cpupid)
1190 {
1191 	return 1;
1192 }
1193 
1194 static inline void page_cpupid_reset_last(struct page *page)
1195 {
1196 }
1197 
1198 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1199 {
1200 	return false;
1201 }
1202 #endif /* CONFIG_NUMA_BALANCING */
1203 
1204 #ifdef CONFIG_KASAN_SW_TAGS
1205 static inline u8 page_kasan_tag(const struct page *page)
1206 {
1207 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1208 }
1209 
1210 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1211 {
1212 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1213 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1214 }
1215 
1216 static inline void page_kasan_tag_reset(struct page *page)
1217 {
1218 	page_kasan_tag_set(page, 0xff);
1219 }
1220 #else
1221 static inline u8 page_kasan_tag(const struct page *page)
1222 {
1223 	return 0xff;
1224 }
1225 
1226 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1227 static inline void page_kasan_tag_reset(struct page *page) { }
1228 #endif
1229 
1230 static inline struct zone *page_zone(const struct page *page)
1231 {
1232 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1233 }
1234 
1235 static inline pg_data_t *page_pgdat(const struct page *page)
1236 {
1237 	return NODE_DATA(page_to_nid(page));
1238 }
1239 
1240 #ifdef SECTION_IN_PAGE_FLAGS
1241 static inline void set_page_section(struct page *page, unsigned long section)
1242 {
1243 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1244 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1245 }
1246 
1247 static inline unsigned long page_to_section(const struct page *page)
1248 {
1249 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1250 }
1251 #endif
1252 
1253 static inline void set_page_zone(struct page *page, enum zone_type zone)
1254 {
1255 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1256 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1257 }
1258 
1259 static inline void set_page_node(struct page *page, unsigned long node)
1260 {
1261 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1262 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1263 }
1264 
1265 static inline void set_page_links(struct page *page, enum zone_type zone,
1266 	unsigned long node, unsigned long pfn)
1267 {
1268 	set_page_zone(page, zone);
1269 	set_page_node(page, node);
1270 #ifdef SECTION_IN_PAGE_FLAGS
1271 	set_page_section(page, pfn_to_section_nr(pfn));
1272 #endif
1273 }
1274 
1275 #ifdef CONFIG_MEMCG
1276 static inline struct mem_cgroup *page_memcg(struct page *page)
1277 {
1278 	return page->mem_cgroup;
1279 }
1280 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1281 {
1282 	WARN_ON_ONCE(!rcu_read_lock_held());
1283 	return READ_ONCE(page->mem_cgroup);
1284 }
1285 #else
1286 static inline struct mem_cgroup *page_memcg(struct page *page)
1287 {
1288 	return NULL;
1289 }
1290 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1291 {
1292 	WARN_ON_ONCE(!rcu_read_lock_held());
1293 	return NULL;
1294 }
1295 #endif
1296 
1297 /*
1298  * Some inline functions in vmstat.h depend on page_zone()
1299  */
1300 #include <linux/vmstat.h>
1301 
1302 static __always_inline void *lowmem_page_address(const struct page *page)
1303 {
1304 	return page_to_virt(page);
1305 }
1306 
1307 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1308 #define HASHED_PAGE_VIRTUAL
1309 #endif
1310 
1311 #if defined(WANT_PAGE_VIRTUAL)
1312 static inline void *page_address(const struct page *page)
1313 {
1314 	return page->virtual;
1315 }
1316 static inline void set_page_address(struct page *page, void *address)
1317 {
1318 	page->virtual = address;
1319 }
1320 #define page_address_init()  do { } while(0)
1321 #endif
1322 
1323 #if defined(HASHED_PAGE_VIRTUAL)
1324 void *page_address(const struct page *page);
1325 void set_page_address(struct page *page, void *virtual);
1326 void page_address_init(void);
1327 #endif
1328 
1329 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1330 #define page_address(page) lowmem_page_address(page)
1331 #define set_page_address(page, address)  do { } while(0)
1332 #define page_address_init()  do { } while(0)
1333 #endif
1334 
1335 extern void *page_rmapping(struct page *page);
1336 extern struct anon_vma *page_anon_vma(struct page *page);
1337 extern struct address_space *page_mapping(struct page *page);
1338 
1339 extern struct address_space *__page_file_mapping(struct page *);
1340 
1341 static inline
1342 struct address_space *page_file_mapping(struct page *page)
1343 {
1344 	if (unlikely(PageSwapCache(page)))
1345 		return __page_file_mapping(page);
1346 
1347 	return page->mapping;
1348 }
1349 
1350 extern pgoff_t __page_file_index(struct page *page);
1351 
1352 /*
1353  * Return the pagecache index of the passed page.  Regular pagecache pages
1354  * use ->index whereas swapcache pages use swp_offset(->private)
1355  */
1356 static inline pgoff_t page_index(struct page *page)
1357 {
1358 	if (unlikely(PageSwapCache(page)))
1359 		return __page_file_index(page);
1360 	return page->index;
1361 }
1362 
1363 bool page_mapped(struct page *page);
1364 struct address_space *page_mapping(struct page *page);
1365 struct address_space *page_mapping_file(struct page *page);
1366 
1367 /*
1368  * Return true only if the page has been allocated with
1369  * ALLOC_NO_WATERMARKS and the low watermark was not
1370  * met implying that the system is under some pressure.
1371  */
1372 static inline bool page_is_pfmemalloc(struct page *page)
1373 {
1374 	/*
1375 	 * Page index cannot be this large so this must be
1376 	 * a pfmemalloc page.
1377 	 */
1378 	return page->index == -1UL;
1379 }
1380 
1381 /*
1382  * Only to be called by the page allocator on a freshly allocated
1383  * page.
1384  */
1385 static inline void set_page_pfmemalloc(struct page *page)
1386 {
1387 	page->index = -1UL;
1388 }
1389 
1390 static inline void clear_page_pfmemalloc(struct page *page)
1391 {
1392 	page->index = 0;
1393 }
1394 
1395 /*
1396  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1397  */
1398 extern void pagefault_out_of_memory(void);
1399 
1400 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1401 
1402 /*
1403  * Flags passed to show_mem() and show_free_areas() to suppress output in
1404  * various contexts.
1405  */
1406 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1407 
1408 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1409 
1410 extern bool can_do_mlock(void);
1411 extern int user_shm_lock(size_t, struct user_struct *);
1412 extern void user_shm_unlock(size_t, struct user_struct *);
1413 
1414 /*
1415  * Parameter block passed down to zap_pte_range in exceptional cases.
1416  */
1417 struct zap_details {
1418 	struct address_space *check_mapping;	/* Check page->mapping if set */
1419 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1420 	pgoff_t last_index;			/* Highest page->index to unmap */
1421 };
1422 
1423 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1424 			     pte_t pte, bool with_public_device);
1425 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1426 
1427 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1428 				pmd_t pmd);
1429 
1430 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1431 		  unsigned long size);
1432 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1433 		    unsigned long size);
1434 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1435 		unsigned long start, unsigned long end);
1436 
1437 /**
1438  * mm_walk - callbacks for walk_page_range
1439  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1440  *	       this handler should only handle pud_trans_huge() puds.
1441  *	       the pmd_entry or pte_entry callbacks will be used for
1442  *	       regular PUDs.
1443  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1444  *	       this handler is required to be able to handle
1445  *	       pmd_trans_huge() pmds.  They may simply choose to
1446  *	       split_huge_page() instead of handling it explicitly.
1447  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1448  * @pte_hole: if set, called for each hole at all levels
1449  * @hugetlb_entry: if set, called for each hugetlb entry
1450  * @test_walk: caller specific callback function to determine whether
1451  *             we walk over the current vma or not. Returning 0
1452  *             value means "do page table walk over the current vma,"
1453  *             and a negative one means "abort current page table walk
1454  *             right now." 1 means "skip the current vma."
1455  * @mm:        mm_struct representing the target process of page table walk
1456  * @vma:       vma currently walked (NULL if walking outside vmas)
1457  * @private:   private data for callbacks' usage
1458  *
1459  * (see the comment on walk_page_range() for more details)
1460  */
1461 struct mm_walk {
1462 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1463 			 unsigned long next, struct mm_walk *walk);
1464 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1465 			 unsigned long next, struct mm_walk *walk);
1466 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1467 			 unsigned long next, struct mm_walk *walk);
1468 	int (*pte_hole)(unsigned long addr, unsigned long next,
1469 			struct mm_walk *walk);
1470 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1471 			     unsigned long addr, unsigned long next,
1472 			     struct mm_walk *walk);
1473 	int (*test_walk)(unsigned long addr, unsigned long next,
1474 			struct mm_walk *walk);
1475 	struct mm_struct *mm;
1476 	struct vm_area_struct *vma;
1477 	void *private;
1478 };
1479 
1480 struct mmu_notifier_range;
1481 
1482 int walk_page_range(unsigned long addr, unsigned long end,
1483 		struct mm_walk *walk);
1484 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1485 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1486 		unsigned long end, unsigned long floor, unsigned long ceiling);
1487 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1488 			struct vm_area_struct *vma);
1489 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1490 		   struct mmu_notifier_range *range,
1491 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1492 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1493 	unsigned long *pfn);
1494 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1495 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1496 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1497 			void *buf, int len, int write);
1498 
1499 extern void truncate_pagecache(struct inode *inode, loff_t new);
1500 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1501 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1502 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1503 int truncate_inode_page(struct address_space *mapping, struct page *page);
1504 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1505 int invalidate_inode_page(struct page *page);
1506 
1507 #ifdef CONFIG_MMU
1508 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1509 			unsigned long address, unsigned int flags);
1510 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1511 			    unsigned long address, unsigned int fault_flags,
1512 			    bool *unlocked);
1513 void unmap_mapping_pages(struct address_space *mapping,
1514 		pgoff_t start, pgoff_t nr, bool even_cows);
1515 void unmap_mapping_range(struct address_space *mapping,
1516 		loff_t const holebegin, loff_t const holelen, int even_cows);
1517 #else
1518 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1519 		unsigned long address, unsigned int flags)
1520 {
1521 	/* should never happen if there's no MMU */
1522 	BUG();
1523 	return VM_FAULT_SIGBUS;
1524 }
1525 static inline int fixup_user_fault(struct task_struct *tsk,
1526 		struct mm_struct *mm, unsigned long address,
1527 		unsigned int fault_flags, bool *unlocked)
1528 {
1529 	/* should never happen if there's no MMU */
1530 	BUG();
1531 	return -EFAULT;
1532 }
1533 static inline void unmap_mapping_pages(struct address_space *mapping,
1534 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1535 static inline void unmap_mapping_range(struct address_space *mapping,
1536 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1537 #endif
1538 
1539 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1540 		loff_t const holebegin, loff_t const holelen)
1541 {
1542 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1543 }
1544 
1545 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1546 		void *buf, int len, unsigned int gup_flags);
1547 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1548 		void *buf, int len, unsigned int gup_flags);
1549 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1550 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1551 
1552 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1553 			    unsigned long start, unsigned long nr_pages,
1554 			    unsigned int gup_flags, struct page **pages,
1555 			    struct vm_area_struct **vmas, int *locked);
1556 long get_user_pages(unsigned long start, unsigned long nr_pages,
1557 			    unsigned int gup_flags, struct page **pages,
1558 			    struct vm_area_struct **vmas);
1559 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1560 		    unsigned int gup_flags, struct page **pages, int *locked);
1561 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1562 		    struct page **pages, unsigned int gup_flags);
1563 
1564 int get_user_pages_fast(unsigned long start, int nr_pages,
1565 			unsigned int gup_flags, struct page **pages);
1566 
1567 /* Container for pinned pfns / pages */
1568 struct frame_vector {
1569 	unsigned int nr_allocated;	/* Number of frames we have space for */
1570 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1571 	bool got_ref;		/* Did we pin pages by getting page ref? */
1572 	bool is_pfns;		/* Does array contain pages or pfns? */
1573 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1574 				 * pfns_vector_pages() or pfns_vector_pfns()
1575 				 * for access */
1576 };
1577 
1578 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1579 void frame_vector_destroy(struct frame_vector *vec);
1580 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1581 		     unsigned int gup_flags, struct frame_vector *vec);
1582 void put_vaddr_frames(struct frame_vector *vec);
1583 int frame_vector_to_pages(struct frame_vector *vec);
1584 void frame_vector_to_pfns(struct frame_vector *vec);
1585 
1586 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1587 {
1588 	return vec->nr_frames;
1589 }
1590 
1591 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1592 {
1593 	if (vec->is_pfns) {
1594 		int err = frame_vector_to_pages(vec);
1595 
1596 		if (err)
1597 			return ERR_PTR(err);
1598 	}
1599 	return (struct page **)(vec->ptrs);
1600 }
1601 
1602 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1603 {
1604 	if (!vec->is_pfns)
1605 		frame_vector_to_pfns(vec);
1606 	return (unsigned long *)(vec->ptrs);
1607 }
1608 
1609 struct kvec;
1610 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1611 			struct page **pages);
1612 int get_kernel_page(unsigned long start, int write, struct page **pages);
1613 struct page *get_dump_page(unsigned long addr);
1614 
1615 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1616 extern void do_invalidatepage(struct page *page, unsigned int offset,
1617 			      unsigned int length);
1618 
1619 void __set_page_dirty(struct page *, struct address_space *, int warn);
1620 int __set_page_dirty_nobuffers(struct page *page);
1621 int __set_page_dirty_no_writeback(struct page *page);
1622 int redirty_page_for_writepage(struct writeback_control *wbc,
1623 				struct page *page);
1624 void account_page_dirtied(struct page *page, struct address_space *mapping);
1625 void account_page_cleaned(struct page *page, struct address_space *mapping,
1626 			  struct bdi_writeback *wb);
1627 int set_page_dirty(struct page *page);
1628 int set_page_dirty_lock(struct page *page);
1629 void __cancel_dirty_page(struct page *page);
1630 static inline void cancel_dirty_page(struct page *page)
1631 {
1632 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1633 	if (PageDirty(page))
1634 		__cancel_dirty_page(page);
1635 }
1636 int clear_page_dirty_for_io(struct page *page);
1637 
1638 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1639 
1640 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1641 {
1642 	return !vma->vm_ops;
1643 }
1644 
1645 #ifdef CONFIG_SHMEM
1646 /*
1647  * The vma_is_shmem is not inline because it is used only by slow
1648  * paths in userfault.
1649  */
1650 bool vma_is_shmem(struct vm_area_struct *vma);
1651 #else
1652 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1653 #endif
1654 
1655 int vma_is_stack_for_current(struct vm_area_struct *vma);
1656 
1657 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1658 		unsigned long old_addr, struct vm_area_struct *new_vma,
1659 		unsigned long new_addr, unsigned long len,
1660 		bool need_rmap_locks);
1661 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1662 			      unsigned long end, pgprot_t newprot,
1663 			      int dirty_accountable, int prot_numa);
1664 extern int mprotect_fixup(struct vm_area_struct *vma,
1665 			  struct vm_area_struct **pprev, unsigned long start,
1666 			  unsigned long end, unsigned long newflags);
1667 
1668 /*
1669  * doesn't attempt to fault and will return short.
1670  */
1671 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1672 			  struct page **pages);
1673 /*
1674  * per-process(per-mm_struct) statistics.
1675  */
1676 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1677 {
1678 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1679 
1680 #ifdef SPLIT_RSS_COUNTING
1681 	/*
1682 	 * counter is updated in asynchronous manner and may go to minus.
1683 	 * But it's never be expected number for users.
1684 	 */
1685 	if (val < 0)
1686 		val = 0;
1687 #endif
1688 	return (unsigned long)val;
1689 }
1690 
1691 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1692 {
1693 	atomic_long_add(value, &mm->rss_stat.count[member]);
1694 }
1695 
1696 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1697 {
1698 	atomic_long_inc(&mm->rss_stat.count[member]);
1699 }
1700 
1701 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1702 {
1703 	atomic_long_dec(&mm->rss_stat.count[member]);
1704 }
1705 
1706 /* Optimized variant when page is already known not to be PageAnon */
1707 static inline int mm_counter_file(struct page *page)
1708 {
1709 	if (PageSwapBacked(page))
1710 		return MM_SHMEMPAGES;
1711 	return MM_FILEPAGES;
1712 }
1713 
1714 static inline int mm_counter(struct page *page)
1715 {
1716 	if (PageAnon(page))
1717 		return MM_ANONPAGES;
1718 	return mm_counter_file(page);
1719 }
1720 
1721 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1722 {
1723 	return get_mm_counter(mm, MM_FILEPAGES) +
1724 		get_mm_counter(mm, MM_ANONPAGES) +
1725 		get_mm_counter(mm, MM_SHMEMPAGES);
1726 }
1727 
1728 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1729 {
1730 	return max(mm->hiwater_rss, get_mm_rss(mm));
1731 }
1732 
1733 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1734 {
1735 	return max(mm->hiwater_vm, mm->total_vm);
1736 }
1737 
1738 static inline void update_hiwater_rss(struct mm_struct *mm)
1739 {
1740 	unsigned long _rss = get_mm_rss(mm);
1741 
1742 	if ((mm)->hiwater_rss < _rss)
1743 		(mm)->hiwater_rss = _rss;
1744 }
1745 
1746 static inline void update_hiwater_vm(struct mm_struct *mm)
1747 {
1748 	if (mm->hiwater_vm < mm->total_vm)
1749 		mm->hiwater_vm = mm->total_vm;
1750 }
1751 
1752 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1753 {
1754 	mm->hiwater_rss = get_mm_rss(mm);
1755 }
1756 
1757 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1758 					 struct mm_struct *mm)
1759 {
1760 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1761 
1762 	if (*maxrss < hiwater_rss)
1763 		*maxrss = hiwater_rss;
1764 }
1765 
1766 #if defined(SPLIT_RSS_COUNTING)
1767 void sync_mm_rss(struct mm_struct *mm);
1768 #else
1769 static inline void sync_mm_rss(struct mm_struct *mm)
1770 {
1771 }
1772 #endif
1773 
1774 #ifndef __HAVE_ARCH_PTE_DEVMAP
1775 static inline int pte_devmap(pte_t pte)
1776 {
1777 	return 0;
1778 }
1779 #endif
1780 
1781 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1782 
1783 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1784 			       spinlock_t **ptl);
1785 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1786 				    spinlock_t **ptl)
1787 {
1788 	pte_t *ptep;
1789 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1790 	return ptep;
1791 }
1792 
1793 #ifdef __PAGETABLE_P4D_FOLDED
1794 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1795 						unsigned long address)
1796 {
1797 	return 0;
1798 }
1799 #else
1800 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1801 #endif
1802 
1803 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1804 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1805 						unsigned long address)
1806 {
1807 	return 0;
1808 }
1809 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1810 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1811 
1812 #else
1813 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1814 
1815 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1816 {
1817 	if (mm_pud_folded(mm))
1818 		return;
1819 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1820 }
1821 
1822 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1823 {
1824 	if (mm_pud_folded(mm))
1825 		return;
1826 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1827 }
1828 #endif
1829 
1830 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1831 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1832 						unsigned long address)
1833 {
1834 	return 0;
1835 }
1836 
1837 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1838 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1839 
1840 #else
1841 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1842 
1843 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1844 {
1845 	if (mm_pmd_folded(mm))
1846 		return;
1847 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1848 }
1849 
1850 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1851 {
1852 	if (mm_pmd_folded(mm))
1853 		return;
1854 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1855 }
1856 #endif
1857 
1858 #ifdef CONFIG_MMU
1859 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1860 {
1861 	atomic_long_set(&mm->pgtables_bytes, 0);
1862 }
1863 
1864 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1865 {
1866 	return atomic_long_read(&mm->pgtables_bytes);
1867 }
1868 
1869 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1870 {
1871 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1872 }
1873 
1874 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1875 {
1876 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1877 }
1878 #else
1879 
1880 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1881 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1882 {
1883 	return 0;
1884 }
1885 
1886 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1887 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1888 #endif
1889 
1890 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1891 int __pte_alloc_kernel(pmd_t *pmd);
1892 
1893 /*
1894  * The following ifdef needed to get the 4level-fixup.h header to work.
1895  * Remove it when 4level-fixup.h has been removed.
1896  */
1897 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1898 
1899 #ifndef __ARCH_HAS_5LEVEL_HACK
1900 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1901 		unsigned long address)
1902 {
1903 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1904 		NULL : p4d_offset(pgd, address);
1905 }
1906 
1907 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1908 		unsigned long address)
1909 {
1910 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1911 		NULL : pud_offset(p4d, address);
1912 }
1913 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1914 
1915 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1916 {
1917 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1918 		NULL: pmd_offset(pud, address);
1919 }
1920 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1921 
1922 #if USE_SPLIT_PTE_PTLOCKS
1923 #if ALLOC_SPLIT_PTLOCKS
1924 void __init ptlock_cache_init(void);
1925 extern bool ptlock_alloc(struct page *page);
1926 extern void ptlock_free(struct page *page);
1927 
1928 static inline spinlock_t *ptlock_ptr(struct page *page)
1929 {
1930 	return page->ptl;
1931 }
1932 #else /* ALLOC_SPLIT_PTLOCKS */
1933 static inline void ptlock_cache_init(void)
1934 {
1935 }
1936 
1937 static inline bool ptlock_alloc(struct page *page)
1938 {
1939 	return true;
1940 }
1941 
1942 static inline void ptlock_free(struct page *page)
1943 {
1944 }
1945 
1946 static inline spinlock_t *ptlock_ptr(struct page *page)
1947 {
1948 	return &page->ptl;
1949 }
1950 #endif /* ALLOC_SPLIT_PTLOCKS */
1951 
1952 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1953 {
1954 	return ptlock_ptr(pmd_page(*pmd));
1955 }
1956 
1957 static inline bool ptlock_init(struct page *page)
1958 {
1959 	/*
1960 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1961 	 * with 0. Make sure nobody took it in use in between.
1962 	 *
1963 	 * It can happen if arch try to use slab for page table allocation:
1964 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1965 	 */
1966 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1967 	if (!ptlock_alloc(page))
1968 		return false;
1969 	spin_lock_init(ptlock_ptr(page));
1970 	return true;
1971 }
1972 
1973 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1974 /*
1975  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1976  */
1977 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1978 {
1979 	return &mm->page_table_lock;
1980 }
1981 static inline void ptlock_cache_init(void) {}
1982 static inline bool ptlock_init(struct page *page) { return true; }
1983 static inline void ptlock_free(struct page *page) {}
1984 #endif /* USE_SPLIT_PTE_PTLOCKS */
1985 
1986 static inline void pgtable_init(void)
1987 {
1988 	ptlock_cache_init();
1989 	pgtable_cache_init();
1990 }
1991 
1992 static inline bool pgtable_page_ctor(struct page *page)
1993 {
1994 	if (!ptlock_init(page))
1995 		return false;
1996 	__SetPageTable(page);
1997 	inc_zone_page_state(page, NR_PAGETABLE);
1998 	return true;
1999 }
2000 
2001 static inline void pgtable_page_dtor(struct page *page)
2002 {
2003 	ptlock_free(page);
2004 	__ClearPageTable(page);
2005 	dec_zone_page_state(page, NR_PAGETABLE);
2006 }
2007 
2008 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2009 ({							\
2010 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2011 	pte_t *__pte = pte_offset_map(pmd, address);	\
2012 	*(ptlp) = __ptl;				\
2013 	spin_lock(__ptl);				\
2014 	__pte;						\
2015 })
2016 
2017 #define pte_unmap_unlock(pte, ptl)	do {		\
2018 	spin_unlock(ptl);				\
2019 	pte_unmap(pte);					\
2020 } while (0)
2021 
2022 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2023 
2024 #define pte_alloc_map(mm, pmd, address)			\
2025 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2026 
2027 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2028 	(pte_alloc(mm, pmd) ?			\
2029 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2030 
2031 #define pte_alloc_kernel(pmd, address)			\
2032 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2033 		NULL: pte_offset_kernel(pmd, address))
2034 
2035 #if USE_SPLIT_PMD_PTLOCKS
2036 
2037 static struct page *pmd_to_page(pmd_t *pmd)
2038 {
2039 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2040 	return virt_to_page((void *)((unsigned long) pmd & mask));
2041 }
2042 
2043 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2044 {
2045 	return ptlock_ptr(pmd_to_page(pmd));
2046 }
2047 
2048 static inline bool pgtable_pmd_page_ctor(struct page *page)
2049 {
2050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2051 	page->pmd_huge_pte = NULL;
2052 #endif
2053 	return ptlock_init(page);
2054 }
2055 
2056 static inline void pgtable_pmd_page_dtor(struct page *page)
2057 {
2058 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2059 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2060 #endif
2061 	ptlock_free(page);
2062 }
2063 
2064 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2065 
2066 #else
2067 
2068 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2069 {
2070 	return &mm->page_table_lock;
2071 }
2072 
2073 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2074 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2075 
2076 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2077 
2078 #endif
2079 
2080 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2081 {
2082 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2083 	spin_lock(ptl);
2084 	return ptl;
2085 }
2086 
2087 /*
2088  * No scalability reason to split PUD locks yet, but follow the same pattern
2089  * as the PMD locks to make it easier if we decide to.  The VM should not be
2090  * considered ready to switch to split PUD locks yet; there may be places
2091  * which need to be converted from page_table_lock.
2092  */
2093 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2094 {
2095 	return &mm->page_table_lock;
2096 }
2097 
2098 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2099 {
2100 	spinlock_t *ptl = pud_lockptr(mm, pud);
2101 
2102 	spin_lock(ptl);
2103 	return ptl;
2104 }
2105 
2106 extern void __init pagecache_init(void);
2107 extern void free_area_init(unsigned long * zones_size);
2108 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2109 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2110 extern void free_initmem(void);
2111 
2112 /*
2113  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2114  * into the buddy system. The freed pages will be poisoned with pattern
2115  * "poison" if it's within range [0, UCHAR_MAX].
2116  * Return pages freed into the buddy system.
2117  */
2118 extern unsigned long free_reserved_area(void *start, void *end,
2119 					int poison, const char *s);
2120 
2121 #ifdef	CONFIG_HIGHMEM
2122 /*
2123  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2124  * and totalram_pages.
2125  */
2126 extern void free_highmem_page(struct page *page);
2127 #endif
2128 
2129 extern void adjust_managed_page_count(struct page *page, long count);
2130 extern void mem_init_print_info(const char *str);
2131 
2132 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2133 
2134 /* Free the reserved page into the buddy system, so it gets managed. */
2135 static inline void __free_reserved_page(struct page *page)
2136 {
2137 	ClearPageReserved(page);
2138 	init_page_count(page);
2139 	__free_page(page);
2140 }
2141 
2142 static inline void free_reserved_page(struct page *page)
2143 {
2144 	__free_reserved_page(page);
2145 	adjust_managed_page_count(page, 1);
2146 }
2147 
2148 static inline void mark_page_reserved(struct page *page)
2149 {
2150 	SetPageReserved(page);
2151 	adjust_managed_page_count(page, -1);
2152 }
2153 
2154 /*
2155  * Default method to free all the __init memory into the buddy system.
2156  * The freed pages will be poisoned with pattern "poison" if it's within
2157  * range [0, UCHAR_MAX].
2158  * Return pages freed into the buddy system.
2159  */
2160 static inline unsigned long free_initmem_default(int poison)
2161 {
2162 	extern char __init_begin[], __init_end[];
2163 
2164 	return free_reserved_area(&__init_begin, &__init_end,
2165 				  poison, "unused kernel");
2166 }
2167 
2168 static inline unsigned long get_num_physpages(void)
2169 {
2170 	int nid;
2171 	unsigned long phys_pages = 0;
2172 
2173 	for_each_online_node(nid)
2174 		phys_pages += node_present_pages(nid);
2175 
2176 	return phys_pages;
2177 }
2178 
2179 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2180 /*
2181  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2182  * zones, allocate the backing mem_map and account for memory holes in a more
2183  * architecture independent manner. This is a substitute for creating the
2184  * zone_sizes[] and zholes_size[] arrays and passing them to
2185  * free_area_init_node()
2186  *
2187  * An architecture is expected to register range of page frames backed by
2188  * physical memory with memblock_add[_node]() before calling
2189  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2190  * usage, an architecture is expected to do something like
2191  *
2192  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2193  * 							 max_highmem_pfn};
2194  * for_each_valid_physical_page_range()
2195  * 	memblock_add_node(base, size, nid)
2196  * free_area_init_nodes(max_zone_pfns);
2197  *
2198  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2199  * registered physical page range.  Similarly
2200  * sparse_memory_present_with_active_regions() calls memory_present() for
2201  * each range when SPARSEMEM is enabled.
2202  *
2203  * See mm/page_alloc.c for more information on each function exposed by
2204  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2205  */
2206 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2207 unsigned long node_map_pfn_alignment(void);
2208 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2209 						unsigned long end_pfn);
2210 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2211 						unsigned long end_pfn);
2212 extern void get_pfn_range_for_nid(unsigned int nid,
2213 			unsigned long *start_pfn, unsigned long *end_pfn);
2214 extern unsigned long find_min_pfn_with_active_regions(void);
2215 extern void free_bootmem_with_active_regions(int nid,
2216 						unsigned long max_low_pfn);
2217 extern void sparse_memory_present_with_active_regions(int nid);
2218 
2219 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2220 
2221 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2222     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2223 static inline int __early_pfn_to_nid(unsigned long pfn,
2224 					struct mminit_pfnnid_cache *state)
2225 {
2226 	return 0;
2227 }
2228 #else
2229 /* please see mm/page_alloc.c */
2230 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2231 /* there is a per-arch backend function. */
2232 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2233 					struct mminit_pfnnid_cache *state);
2234 #endif
2235 
2236 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2237 void zero_resv_unavail(void);
2238 #else
2239 static inline void zero_resv_unavail(void) {}
2240 #endif
2241 
2242 extern void set_dma_reserve(unsigned long new_dma_reserve);
2243 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2244 		enum memmap_context, struct vmem_altmap *);
2245 extern void setup_per_zone_wmarks(void);
2246 extern int __meminit init_per_zone_wmark_min(void);
2247 extern void mem_init(void);
2248 extern void __init mmap_init(void);
2249 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2250 extern long si_mem_available(void);
2251 extern void si_meminfo(struct sysinfo * val);
2252 extern void si_meminfo_node(struct sysinfo *val, int nid);
2253 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2254 extern unsigned long arch_reserved_kernel_pages(void);
2255 #endif
2256 
2257 extern __printf(3, 4)
2258 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2259 
2260 extern void setup_per_cpu_pageset(void);
2261 
2262 extern void zone_pcp_update(struct zone *zone);
2263 extern void zone_pcp_reset(struct zone *zone);
2264 
2265 /* page_alloc.c */
2266 extern int min_free_kbytes;
2267 extern int watermark_boost_factor;
2268 extern int watermark_scale_factor;
2269 
2270 /* nommu.c */
2271 extern atomic_long_t mmap_pages_allocated;
2272 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2273 
2274 /* interval_tree.c */
2275 void vma_interval_tree_insert(struct vm_area_struct *node,
2276 			      struct rb_root_cached *root);
2277 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2278 				    struct vm_area_struct *prev,
2279 				    struct rb_root_cached *root);
2280 void vma_interval_tree_remove(struct vm_area_struct *node,
2281 			      struct rb_root_cached *root);
2282 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2283 				unsigned long start, unsigned long last);
2284 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2285 				unsigned long start, unsigned long last);
2286 
2287 #define vma_interval_tree_foreach(vma, root, start, last)		\
2288 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2289 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2290 
2291 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2292 				   struct rb_root_cached *root);
2293 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2294 				   struct rb_root_cached *root);
2295 struct anon_vma_chain *
2296 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2297 				  unsigned long start, unsigned long last);
2298 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2299 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2300 #ifdef CONFIG_DEBUG_VM_RB
2301 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2302 #endif
2303 
2304 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2305 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2306 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2307 
2308 /* mmap.c */
2309 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2310 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2311 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2312 	struct vm_area_struct *expand);
2313 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2314 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2315 {
2316 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2317 }
2318 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2319 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2320 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2321 	struct mempolicy *, struct vm_userfaultfd_ctx);
2322 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2323 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2324 	unsigned long addr, int new_below);
2325 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2326 	unsigned long addr, int new_below);
2327 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2328 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2329 	struct rb_node **, struct rb_node *);
2330 extern void unlink_file_vma(struct vm_area_struct *);
2331 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2332 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2333 	bool *need_rmap_locks);
2334 extern void exit_mmap(struct mm_struct *);
2335 
2336 static inline int check_data_rlimit(unsigned long rlim,
2337 				    unsigned long new,
2338 				    unsigned long start,
2339 				    unsigned long end_data,
2340 				    unsigned long start_data)
2341 {
2342 	if (rlim < RLIM_INFINITY) {
2343 		if (((new - start) + (end_data - start_data)) > rlim)
2344 			return -ENOSPC;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 extern int mm_take_all_locks(struct mm_struct *mm);
2351 extern void mm_drop_all_locks(struct mm_struct *mm);
2352 
2353 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2354 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2355 extern struct file *get_task_exe_file(struct task_struct *task);
2356 
2357 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2358 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2359 
2360 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2361 				   const struct vm_special_mapping *sm);
2362 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2363 				   unsigned long addr, unsigned long len,
2364 				   unsigned long flags,
2365 				   const struct vm_special_mapping *spec);
2366 /* This is an obsolete alternative to _install_special_mapping. */
2367 extern int install_special_mapping(struct mm_struct *mm,
2368 				   unsigned long addr, unsigned long len,
2369 				   unsigned long flags, struct page **pages);
2370 
2371 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2372 
2373 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2374 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2375 	struct list_head *uf);
2376 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2377 	unsigned long len, unsigned long prot, unsigned long flags,
2378 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2379 	struct list_head *uf);
2380 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2381 		       struct list_head *uf, bool downgrade);
2382 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2383 		     struct list_head *uf);
2384 
2385 static inline unsigned long
2386 do_mmap_pgoff(struct file *file, unsigned long addr,
2387 	unsigned long len, unsigned long prot, unsigned long flags,
2388 	unsigned long pgoff, unsigned long *populate,
2389 	struct list_head *uf)
2390 {
2391 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2392 }
2393 
2394 #ifdef CONFIG_MMU
2395 extern int __mm_populate(unsigned long addr, unsigned long len,
2396 			 int ignore_errors);
2397 static inline void mm_populate(unsigned long addr, unsigned long len)
2398 {
2399 	/* Ignore errors */
2400 	(void) __mm_populate(addr, len, 1);
2401 }
2402 #else
2403 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2404 #endif
2405 
2406 /* These take the mm semaphore themselves */
2407 extern int __must_check vm_brk(unsigned long, unsigned long);
2408 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2409 extern int vm_munmap(unsigned long, size_t);
2410 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2411         unsigned long, unsigned long,
2412         unsigned long, unsigned long);
2413 
2414 struct vm_unmapped_area_info {
2415 #define VM_UNMAPPED_AREA_TOPDOWN 1
2416 	unsigned long flags;
2417 	unsigned long length;
2418 	unsigned long low_limit;
2419 	unsigned long high_limit;
2420 	unsigned long align_mask;
2421 	unsigned long align_offset;
2422 };
2423 
2424 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2425 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2426 
2427 /*
2428  * Search for an unmapped address range.
2429  *
2430  * We are looking for a range that:
2431  * - does not intersect with any VMA;
2432  * - is contained within the [low_limit, high_limit) interval;
2433  * - is at least the desired size.
2434  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2435  */
2436 static inline unsigned long
2437 vm_unmapped_area(struct vm_unmapped_area_info *info)
2438 {
2439 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2440 		return unmapped_area_topdown(info);
2441 	else
2442 		return unmapped_area(info);
2443 }
2444 
2445 /* truncate.c */
2446 extern void truncate_inode_pages(struct address_space *, loff_t);
2447 extern void truncate_inode_pages_range(struct address_space *,
2448 				       loff_t lstart, loff_t lend);
2449 extern void truncate_inode_pages_final(struct address_space *);
2450 
2451 /* generic vm_area_ops exported for stackable file systems */
2452 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2453 extern void filemap_map_pages(struct vm_fault *vmf,
2454 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2455 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2456 
2457 /* mm/page-writeback.c */
2458 int __must_check write_one_page(struct page *page);
2459 void task_dirty_inc(struct task_struct *tsk);
2460 
2461 /* readahead.c */
2462 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2463 
2464 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2465 			pgoff_t offset, unsigned long nr_to_read);
2466 
2467 void page_cache_sync_readahead(struct address_space *mapping,
2468 			       struct file_ra_state *ra,
2469 			       struct file *filp,
2470 			       pgoff_t offset,
2471 			       unsigned long size);
2472 
2473 void page_cache_async_readahead(struct address_space *mapping,
2474 				struct file_ra_state *ra,
2475 				struct file *filp,
2476 				struct page *pg,
2477 				pgoff_t offset,
2478 				unsigned long size);
2479 
2480 extern unsigned long stack_guard_gap;
2481 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2482 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2483 
2484 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2485 extern int expand_downwards(struct vm_area_struct *vma,
2486 		unsigned long address);
2487 #if VM_GROWSUP
2488 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2489 #else
2490   #define expand_upwards(vma, address) (0)
2491 #endif
2492 
2493 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2494 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2495 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2496 					     struct vm_area_struct **pprev);
2497 
2498 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2499    NULL if none.  Assume start_addr < end_addr. */
2500 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2501 {
2502 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2503 
2504 	if (vma && end_addr <= vma->vm_start)
2505 		vma = NULL;
2506 	return vma;
2507 }
2508 
2509 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2510 {
2511 	unsigned long vm_start = vma->vm_start;
2512 
2513 	if (vma->vm_flags & VM_GROWSDOWN) {
2514 		vm_start -= stack_guard_gap;
2515 		if (vm_start > vma->vm_start)
2516 			vm_start = 0;
2517 	}
2518 	return vm_start;
2519 }
2520 
2521 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2522 {
2523 	unsigned long vm_end = vma->vm_end;
2524 
2525 	if (vma->vm_flags & VM_GROWSUP) {
2526 		vm_end += stack_guard_gap;
2527 		if (vm_end < vma->vm_end)
2528 			vm_end = -PAGE_SIZE;
2529 	}
2530 	return vm_end;
2531 }
2532 
2533 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2534 {
2535 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2536 }
2537 
2538 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2539 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2540 				unsigned long vm_start, unsigned long vm_end)
2541 {
2542 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2543 
2544 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2545 		vma = NULL;
2546 
2547 	return vma;
2548 }
2549 
2550 static inline bool range_in_vma(struct vm_area_struct *vma,
2551 				unsigned long start, unsigned long end)
2552 {
2553 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2554 }
2555 
2556 #ifdef CONFIG_MMU
2557 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2558 void vma_set_page_prot(struct vm_area_struct *vma);
2559 #else
2560 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2561 {
2562 	return __pgprot(0);
2563 }
2564 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2565 {
2566 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2567 }
2568 #endif
2569 
2570 #ifdef CONFIG_NUMA_BALANCING
2571 unsigned long change_prot_numa(struct vm_area_struct *vma,
2572 			unsigned long start, unsigned long end);
2573 #endif
2574 
2575 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2576 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2577 			unsigned long pfn, unsigned long size, pgprot_t);
2578 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2579 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2580 				unsigned long num);
2581 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2582 				unsigned long num);
2583 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2584 			unsigned long pfn);
2585 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2586 			unsigned long pfn, pgprot_t pgprot);
2587 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2588 			pfn_t pfn);
2589 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2590 		unsigned long addr, pfn_t pfn);
2591 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2592 
2593 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2594 				unsigned long addr, struct page *page)
2595 {
2596 	int err = vm_insert_page(vma, addr, page);
2597 
2598 	if (err == -ENOMEM)
2599 		return VM_FAULT_OOM;
2600 	if (err < 0 && err != -EBUSY)
2601 		return VM_FAULT_SIGBUS;
2602 
2603 	return VM_FAULT_NOPAGE;
2604 }
2605 
2606 static inline vm_fault_t vmf_error(int err)
2607 {
2608 	if (err == -ENOMEM)
2609 		return VM_FAULT_OOM;
2610 	return VM_FAULT_SIGBUS;
2611 }
2612 
2613 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2614 			 unsigned int foll_flags);
2615 
2616 #define FOLL_WRITE	0x01	/* check pte is writable */
2617 #define FOLL_TOUCH	0x02	/* mark page accessed */
2618 #define FOLL_GET	0x04	/* do get_page on page */
2619 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2620 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2621 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2622 				 * and return without waiting upon it */
2623 #define FOLL_POPULATE	0x40	/* fault in page */
2624 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2625 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2626 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2627 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2628 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2629 #define FOLL_MLOCK	0x1000	/* lock present pages */
2630 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2631 #define FOLL_COW	0x4000	/* internal GUP flag */
2632 #define FOLL_ANON	0x8000	/* don't do file mappings */
2633 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2634 
2635 /*
2636  * NOTE on FOLL_LONGTERM:
2637  *
2638  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2639  * period _often_ under userspace control.  This is contrasted with
2640  * iov_iter_get_pages() where usages which are transient.
2641  *
2642  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2643  * lifetime enforced by the filesystem and we need guarantees that longterm
2644  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2645  * the filesystem.  Ideas for this coordination include revoking the longterm
2646  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2647  * added after the problem with filesystems was found FS DAX VMAs are
2648  * specifically failed.  Filesystem pages are still subject to bugs and use of
2649  * FOLL_LONGTERM should be avoided on those pages.
2650  *
2651  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2652  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2653  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2654  * is due to an incompatibility with the FS DAX check and
2655  * FAULT_FLAG_ALLOW_RETRY
2656  *
2657  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2658  * that region.  And so CMA attempts to migrate the page before pinning when
2659  * FOLL_LONGTERM is specified.
2660  */
2661 
2662 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2663 {
2664 	if (vm_fault & VM_FAULT_OOM)
2665 		return -ENOMEM;
2666 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2667 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2668 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2669 		return -EFAULT;
2670 	return 0;
2671 }
2672 
2673 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2674 			void *data);
2675 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2676 			       unsigned long size, pte_fn_t fn, void *data);
2677 
2678 
2679 #ifdef CONFIG_PAGE_POISONING
2680 extern bool page_poisoning_enabled(void);
2681 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2682 #else
2683 static inline bool page_poisoning_enabled(void) { return false; }
2684 static inline void kernel_poison_pages(struct page *page, int numpages,
2685 					int enable) { }
2686 #endif
2687 
2688 extern bool _debug_pagealloc_enabled;
2689 
2690 static inline bool debug_pagealloc_enabled(void)
2691 {
2692 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled;
2693 }
2694 
2695 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2696 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2697 
2698 static inline void
2699 kernel_map_pages(struct page *page, int numpages, int enable)
2700 {
2701 	__kernel_map_pages(page, numpages, enable);
2702 }
2703 #ifdef CONFIG_HIBERNATION
2704 extern bool kernel_page_present(struct page *page);
2705 #endif	/* CONFIG_HIBERNATION */
2706 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2707 static inline void
2708 kernel_map_pages(struct page *page, int numpages, int enable) {}
2709 #ifdef CONFIG_HIBERNATION
2710 static inline bool kernel_page_present(struct page *page) { return true; }
2711 #endif	/* CONFIG_HIBERNATION */
2712 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2713 
2714 #ifdef __HAVE_ARCH_GATE_AREA
2715 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2716 extern int in_gate_area_no_mm(unsigned long addr);
2717 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2718 #else
2719 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2720 {
2721 	return NULL;
2722 }
2723 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2724 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2725 {
2726 	return 0;
2727 }
2728 #endif	/* __HAVE_ARCH_GATE_AREA */
2729 
2730 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2731 
2732 #ifdef CONFIG_SYSCTL
2733 extern int sysctl_drop_caches;
2734 int drop_caches_sysctl_handler(struct ctl_table *, int,
2735 					void __user *, size_t *, loff_t *);
2736 #endif
2737 
2738 void drop_slab(void);
2739 void drop_slab_node(int nid);
2740 
2741 #ifndef CONFIG_MMU
2742 #define randomize_va_space 0
2743 #else
2744 extern int randomize_va_space;
2745 #endif
2746 
2747 const char * arch_vma_name(struct vm_area_struct *vma);
2748 void print_vma_addr(char *prefix, unsigned long rip);
2749 
2750 void *sparse_buffer_alloc(unsigned long size);
2751 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2752 		struct vmem_altmap *altmap);
2753 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2754 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2755 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2756 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2757 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2758 void *vmemmap_alloc_block(unsigned long size, int node);
2759 struct vmem_altmap;
2760 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2761 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2762 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2763 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2764 			       int node);
2765 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2766 		struct vmem_altmap *altmap);
2767 void vmemmap_populate_print_last(void);
2768 #ifdef CONFIG_MEMORY_HOTPLUG
2769 void vmemmap_free(unsigned long start, unsigned long end,
2770 		struct vmem_altmap *altmap);
2771 #endif
2772 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2773 				  unsigned long nr_pages);
2774 
2775 enum mf_flags {
2776 	MF_COUNT_INCREASED = 1 << 0,
2777 	MF_ACTION_REQUIRED = 1 << 1,
2778 	MF_MUST_KILL = 1 << 2,
2779 	MF_SOFT_OFFLINE = 1 << 3,
2780 };
2781 extern int memory_failure(unsigned long pfn, int flags);
2782 extern void memory_failure_queue(unsigned long pfn, int flags);
2783 extern int unpoison_memory(unsigned long pfn);
2784 extern int get_hwpoison_page(struct page *page);
2785 #define put_hwpoison_page(page)	put_page(page)
2786 extern int sysctl_memory_failure_early_kill;
2787 extern int sysctl_memory_failure_recovery;
2788 extern void shake_page(struct page *p, int access);
2789 extern atomic_long_t num_poisoned_pages __read_mostly;
2790 extern int soft_offline_page(struct page *page, int flags);
2791 
2792 
2793 /*
2794  * Error handlers for various types of pages.
2795  */
2796 enum mf_result {
2797 	MF_IGNORED,	/* Error: cannot be handled */
2798 	MF_FAILED,	/* Error: handling failed */
2799 	MF_DELAYED,	/* Will be handled later */
2800 	MF_RECOVERED,	/* Successfully recovered */
2801 };
2802 
2803 enum mf_action_page_type {
2804 	MF_MSG_KERNEL,
2805 	MF_MSG_KERNEL_HIGH_ORDER,
2806 	MF_MSG_SLAB,
2807 	MF_MSG_DIFFERENT_COMPOUND,
2808 	MF_MSG_POISONED_HUGE,
2809 	MF_MSG_HUGE,
2810 	MF_MSG_FREE_HUGE,
2811 	MF_MSG_NON_PMD_HUGE,
2812 	MF_MSG_UNMAP_FAILED,
2813 	MF_MSG_DIRTY_SWAPCACHE,
2814 	MF_MSG_CLEAN_SWAPCACHE,
2815 	MF_MSG_DIRTY_MLOCKED_LRU,
2816 	MF_MSG_CLEAN_MLOCKED_LRU,
2817 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2818 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2819 	MF_MSG_DIRTY_LRU,
2820 	MF_MSG_CLEAN_LRU,
2821 	MF_MSG_TRUNCATED_LRU,
2822 	MF_MSG_BUDDY,
2823 	MF_MSG_BUDDY_2ND,
2824 	MF_MSG_DAX,
2825 	MF_MSG_UNKNOWN,
2826 };
2827 
2828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2829 extern void clear_huge_page(struct page *page,
2830 			    unsigned long addr_hint,
2831 			    unsigned int pages_per_huge_page);
2832 extern void copy_user_huge_page(struct page *dst, struct page *src,
2833 				unsigned long addr_hint,
2834 				struct vm_area_struct *vma,
2835 				unsigned int pages_per_huge_page);
2836 extern long copy_huge_page_from_user(struct page *dst_page,
2837 				const void __user *usr_src,
2838 				unsigned int pages_per_huge_page,
2839 				bool allow_pagefault);
2840 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2841 
2842 extern struct page_ext_operations debug_guardpage_ops;
2843 
2844 #ifdef CONFIG_DEBUG_PAGEALLOC
2845 extern unsigned int _debug_guardpage_minorder;
2846 extern bool _debug_guardpage_enabled;
2847 
2848 static inline unsigned int debug_guardpage_minorder(void)
2849 {
2850 	return _debug_guardpage_minorder;
2851 }
2852 
2853 static inline bool debug_guardpage_enabled(void)
2854 {
2855 	return _debug_guardpage_enabled;
2856 }
2857 
2858 static inline bool page_is_guard(struct page *page)
2859 {
2860 	struct page_ext *page_ext;
2861 
2862 	if (!debug_guardpage_enabled())
2863 		return false;
2864 
2865 	page_ext = lookup_page_ext(page);
2866 	if (unlikely(!page_ext))
2867 		return false;
2868 
2869 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2870 }
2871 #else
2872 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2873 static inline bool debug_guardpage_enabled(void) { return false; }
2874 static inline bool page_is_guard(struct page *page) { return false; }
2875 #endif /* CONFIG_DEBUG_PAGEALLOC */
2876 
2877 #if MAX_NUMNODES > 1
2878 void __init setup_nr_node_ids(void);
2879 #else
2880 static inline void setup_nr_node_ids(void) {}
2881 #endif
2882 
2883 #endif /* __KERNEL__ */
2884 #endif /* _LINUX_MM_H */
2885