1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 31 struct mempolicy; 32 struct anon_vma; 33 struct anon_vma_chain; 34 struct file_ra_state; 35 struct user_struct; 36 struct writeback_control; 37 struct bdi_writeback; 38 39 void init_mm_internals(void); 40 41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42 extern unsigned long max_mapnr; 43 44 static inline void set_max_mapnr(unsigned long limit) 45 { 46 max_mapnr = limit; 47 } 48 #else 49 static inline void set_max_mapnr(unsigned long limit) { } 50 #endif 51 52 extern atomic_long_t _totalram_pages; 53 static inline unsigned long totalram_pages(void) 54 { 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56 } 57 58 static inline void totalram_pages_inc(void) 59 { 60 atomic_long_inc(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_dec(void) 64 { 65 atomic_long_dec(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_add(long count) 69 { 70 atomic_long_add(count, &_totalram_pages); 71 } 72 73 static inline void totalram_pages_set(long val) 74 { 75 atomic_long_set(&_totalram_pages, val); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/pgtable.h> 100 #include <asm/processor.h> 101 102 #ifndef __pa_symbol 103 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 104 #endif 105 106 #ifndef page_to_virt 107 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 108 #endif 109 110 #ifndef lm_alias 111 #define lm_alias(x) __va(__pa_symbol(x)) 112 #endif 113 114 /* 115 * To prevent common memory management code establishing 116 * a zero page mapping on a read fault. 117 * This macro should be defined within <asm/pgtable.h>. 118 * s390 does this to prevent multiplexing of hardware bits 119 * related to the physical page in case of virtualization. 120 */ 121 #ifndef mm_forbids_zeropage 122 #define mm_forbids_zeropage(X) (0) 123 #endif 124 125 /* 126 * On some architectures it is expensive to call memset() for small sizes. 127 * If an architecture decides to implement their own version of 128 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 129 * define their own version of this macro in <asm/pgtable.h> 130 */ 131 #if BITS_PER_LONG == 64 132 /* This function must be updated when the size of struct page grows above 80 133 * or reduces below 56. The idea that compiler optimizes out switch() 134 * statement, and only leaves move/store instructions. Also the compiler can 135 * combine write statments if they are both assignments and can be reordered, 136 * this can result in several of the writes here being dropped. 137 */ 138 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 139 static inline void __mm_zero_struct_page(struct page *page) 140 { 141 unsigned long *_pp = (void *)page; 142 143 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 144 BUILD_BUG_ON(sizeof(struct page) & 7); 145 BUILD_BUG_ON(sizeof(struct page) < 56); 146 BUILD_BUG_ON(sizeof(struct page) > 80); 147 148 switch (sizeof(struct page)) { 149 case 80: 150 _pp[9] = 0; /* fallthrough */ 151 case 72: 152 _pp[8] = 0; /* fallthrough */ 153 case 64: 154 _pp[7] = 0; /* fallthrough */ 155 case 56: 156 _pp[6] = 0; 157 _pp[5] = 0; 158 _pp[4] = 0; 159 _pp[3] = 0; 160 _pp[2] = 0; 161 _pp[1] = 0; 162 _pp[0] = 0; 163 } 164 } 165 #else 166 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 167 #endif 168 169 /* 170 * Default maximum number of active map areas, this limits the number of vmas 171 * per mm struct. Users can overwrite this number by sysctl but there is a 172 * problem. 173 * 174 * When a program's coredump is generated as ELF format, a section is created 175 * per a vma. In ELF, the number of sections is represented in unsigned short. 176 * This means the number of sections should be smaller than 65535 at coredump. 177 * Because the kernel adds some informative sections to a image of program at 178 * generating coredump, we need some margin. The number of extra sections is 179 * 1-3 now and depends on arch. We use "5" as safe margin, here. 180 * 181 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 182 * not a hard limit any more. Although some userspace tools can be surprised by 183 * that. 184 */ 185 #define MAPCOUNT_ELF_CORE_MARGIN (5) 186 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 187 188 extern int sysctl_max_map_count; 189 190 extern unsigned long sysctl_user_reserve_kbytes; 191 extern unsigned long sysctl_admin_reserve_kbytes; 192 193 extern int sysctl_overcommit_memory; 194 extern int sysctl_overcommit_ratio; 195 extern unsigned long sysctl_overcommit_kbytes; 196 197 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 198 size_t *, loff_t *); 199 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 200 size_t *, loff_t *); 201 202 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 203 204 /* to align the pointer to the (next) page boundary */ 205 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 206 207 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 208 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 209 210 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 211 212 /* 213 * Linux kernel virtual memory manager primitives. 214 * The idea being to have a "virtual" mm in the same way 215 * we have a virtual fs - giving a cleaner interface to the 216 * mm details, and allowing different kinds of memory mappings 217 * (from shared memory to executable loading to arbitrary 218 * mmap() functions). 219 */ 220 221 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 222 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 223 void vm_area_free(struct vm_area_struct *); 224 225 #ifndef CONFIG_MMU 226 extern struct rb_root nommu_region_tree; 227 extern struct rw_semaphore nommu_region_sem; 228 229 extern unsigned int kobjsize(const void *objp); 230 #endif 231 232 /* 233 * vm_flags in vm_area_struct, see mm_types.h. 234 * When changing, update also include/trace/events/mmflags.h 235 */ 236 #define VM_NONE 0x00000000 237 238 #define VM_READ 0x00000001 /* currently active flags */ 239 #define VM_WRITE 0x00000002 240 #define VM_EXEC 0x00000004 241 #define VM_SHARED 0x00000008 242 243 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 244 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 245 #define VM_MAYWRITE 0x00000020 246 #define VM_MAYEXEC 0x00000040 247 #define VM_MAYSHARE 0x00000080 248 249 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 250 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 251 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 252 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 253 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 254 255 #define VM_LOCKED 0x00002000 256 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 257 258 /* Used by sys_madvise() */ 259 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 260 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 261 262 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 263 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 264 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 265 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 266 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 267 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 268 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 269 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 270 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 271 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 272 273 #ifdef CONFIG_MEM_SOFT_DIRTY 274 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 275 #else 276 # define VM_SOFTDIRTY 0 277 #endif 278 279 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 280 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 281 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 282 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 283 284 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 285 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 286 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 287 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 288 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 289 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 290 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 291 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 292 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 293 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 294 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 295 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 296 297 #ifdef CONFIG_ARCH_HAS_PKEYS 298 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 299 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 300 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 301 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 302 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 303 #ifdef CONFIG_PPC 304 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 305 #else 306 # define VM_PKEY_BIT4 0 307 #endif 308 #endif /* CONFIG_ARCH_HAS_PKEYS */ 309 310 #if defined(CONFIG_X86) 311 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 312 #elif defined(CONFIG_PPC) 313 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 314 #elif defined(CONFIG_PARISC) 315 # define VM_GROWSUP VM_ARCH_1 316 #elif defined(CONFIG_IA64) 317 # define VM_GROWSUP VM_ARCH_1 318 #elif defined(CONFIG_SPARC64) 319 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 320 # define VM_ARCH_CLEAR VM_SPARC_ADI 321 #elif !defined(CONFIG_MMU) 322 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 323 #endif 324 325 #if defined(CONFIG_X86_INTEL_MPX) 326 /* MPX specific bounds table or bounds directory */ 327 # define VM_MPX VM_HIGH_ARCH_4 328 #else 329 # define VM_MPX VM_NONE 330 #endif 331 332 #ifndef VM_GROWSUP 333 # define VM_GROWSUP VM_NONE 334 #endif 335 336 /* Bits set in the VMA until the stack is in its final location */ 337 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 338 339 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 340 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 341 #endif 342 343 #ifdef CONFIG_STACK_GROWSUP 344 #define VM_STACK VM_GROWSUP 345 #else 346 #define VM_STACK VM_GROWSDOWN 347 #endif 348 349 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 350 351 /* 352 * Special vmas that are non-mergable, non-mlock()able. 353 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 354 */ 355 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 356 357 /* This mask defines which mm->def_flags a process can inherit its parent */ 358 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 359 360 /* This mask is used to clear all the VMA flags used by mlock */ 361 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 362 363 /* Arch-specific flags to clear when updating VM flags on protection change */ 364 #ifndef VM_ARCH_CLEAR 365 # define VM_ARCH_CLEAR VM_NONE 366 #endif 367 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 368 369 /* 370 * mapping from the currently active vm_flags protection bits (the 371 * low four bits) to a page protection mask.. 372 */ 373 extern pgprot_t protection_map[16]; 374 375 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 376 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 377 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 378 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 379 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 380 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 381 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 382 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 383 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 384 385 #define FAULT_FLAG_TRACE \ 386 { FAULT_FLAG_WRITE, "WRITE" }, \ 387 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 388 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 389 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 390 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 391 { FAULT_FLAG_TRIED, "TRIED" }, \ 392 { FAULT_FLAG_USER, "USER" }, \ 393 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 394 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 395 396 /* 397 * vm_fault is filled by the the pagefault handler and passed to the vma's 398 * ->fault function. The vma's ->fault is responsible for returning a bitmask 399 * of VM_FAULT_xxx flags that give details about how the fault was handled. 400 * 401 * MM layer fills up gfp_mask for page allocations but fault handler might 402 * alter it if its implementation requires a different allocation context. 403 * 404 * pgoff should be used in favour of virtual_address, if possible. 405 */ 406 struct vm_fault { 407 struct vm_area_struct *vma; /* Target VMA */ 408 unsigned int flags; /* FAULT_FLAG_xxx flags */ 409 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 410 pgoff_t pgoff; /* Logical page offset based on vma */ 411 unsigned long address; /* Faulting virtual address */ 412 pmd_t *pmd; /* Pointer to pmd entry matching 413 * the 'address' */ 414 pud_t *pud; /* Pointer to pud entry matching 415 * the 'address' 416 */ 417 pte_t orig_pte; /* Value of PTE at the time of fault */ 418 419 struct page *cow_page; /* Page handler may use for COW fault */ 420 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 421 struct page *page; /* ->fault handlers should return a 422 * page here, unless VM_FAULT_NOPAGE 423 * is set (which is also implied by 424 * VM_FAULT_ERROR). 425 */ 426 /* These three entries are valid only while holding ptl lock */ 427 pte_t *pte; /* Pointer to pte entry matching 428 * the 'address'. NULL if the page 429 * table hasn't been allocated. 430 */ 431 spinlock_t *ptl; /* Page table lock. 432 * Protects pte page table if 'pte' 433 * is not NULL, otherwise pmd. 434 */ 435 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 436 * vm_ops->map_pages() calls 437 * alloc_set_pte() from atomic context. 438 * do_fault_around() pre-allocates 439 * page table to avoid allocation from 440 * atomic context. 441 */ 442 }; 443 444 /* page entry size for vm->huge_fault() */ 445 enum page_entry_size { 446 PE_SIZE_PTE = 0, 447 PE_SIZE_PMD, 448 PE_SIZE_PUD, 449 }; 450 451 /* 452 * These are the virtual MM functions - opening of an area, closing and 453 * unmapping it (needed to keep files on disk up-to-date etc), pointer 454 * to the functions called when a no-page or a wp-page exception occurs. 455 */ 456 struct vm_operations_struct { 457 void (*open)(struct vm_area_struct * area); 458 void (*close)(struct vm_area_struct * area); 459 int (*split)(struct vm_area_struct * area, unsigned long addr); 460 int (*mremap)(struct vm_area_struct * area); 461 vm_fault_t (*fault)(struct vm_fault *vmf); 462 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 463 enum page_entry_size pe_size); 464 void (*map_pages)(struct vm_fault *vmf, 465 pgoff_t start_pgoff, pgoff_t end_pgoff); 466 unsigned long (*pagesize)(struct vm_area_struct * area); 467 468 /* notification that a previously read-only page is about to become 469 * writable, if an error is returned it will cause a SIGBUS */ 470 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 471 472 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 473 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 474 475 /* called by access_process_vm when get_user_pages() fails, typically 476 * for use by special VMAs that can switch between memory and hardware 477 */ 478 int (*access)(struct vm_area_struct *vma, unsigned long addr, 479 void *buf, int len, int write); 480 481 /* Called by the /proc/PID/maps code to ask the vma whether it 482 * has a special name. Returning non-NULL will also cause this 483 * vma to be dumped unconditionally. */ 484 const char *(*name)(struct vm_area_struct *vma); 485 486 #ifdef CONFIG_NUMA 487 /* 488 * set_policy() op must add a reference to any non-NULL @new mempolicy 489 * to hold the policy upon return. Caller should pass NULL @new to 490 * remove a policy and fall back to surrounding context--i.e. do not 491 * install a MPOL_DEFAULT policy, nor the task or system default 492 * mempolicy. 493 */ 494 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 495 496 /* 497 * get_policy() op must add reference [mpol_get()] to any policy at 498 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 499 * in mm/mempolicy.c will do this automatically. 500 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 501 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 502 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 503 * must return NULL--i.e., do not "fallback" to task or system default 504 * policy. 505 */ 506 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 507 unsigned long addr); 508 #endif 509 /* 510 * Called by vm_normal_page() for special PTEs to find the 511 * page for @addr. This is useful if the default behavior 512 * (using pte_page()) would not find the correct page. 513 */ 514 struct page *(*find_special_page)(struct vm_area_struct *vma, 515 unsigned long addr); 516 }; 517 518 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 519 { 520 static const struct vm_operations_struct dummy_vm_ops = {}; 521 522 memset(vma, 0, sizeof(*vma)); 523 vma->vm_mm = mm; 524 vma->vm_ops = &dummy_vm_ops; 525 INIT_LIST_HEAD(&vma->anon_vma_chain); 526 } 527 528 static inline void vma_set_anonymous(struct vm_area_struct *vma) 529 { 530 vma->vm_ops = NULL; 531 } 532 533 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 534 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 535 536 struct mmu_gather; 537 struct inode; 538 539 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 540 static inline int pmd_devmap(pmd_t pmd) 541 { 542 return 0; 543 } 544 static inline int pud_devmap(pud_t pud) 545 { 546 return 0; 547 } 548 static inline int pgd_devmap(pgd_t pgd) 549 { 550 return 0; 551 } 552 #endif 553 554 /* 555 * FIXME: take this include out, include page-flags.h in 556 * files which need it (119 of them) 557 */ 558 #include <linux/page-flags.h> 559 #include <linux/huge_mm.h> 560 561 /* 562 * Methods to modify the page usage count. 563 * 564 * What counts for a page usage: 565 * - cache mapping (page->mapping) 566 * - private data (page->private) 567 * - page mapped in a task's page tables, each mapping 568 * is counted separately 569 * 570 * Also, many kernel routines increase the page count before a critical 571 * routine so they can be sure the page doesn't go away from under them. 572 */ 573 574 /* 575 * Drop a ref, return true if the refcount fell to zero (the page has no users) 576 */ 577 static inline int put_page_testzero(struct page *page) 578 { 579 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 580 return page_ref_dec_and_test(page); 581 } 582 583 /* 584 * Try to grab a ref unless the page has a refcount of zero, return false if 585 * that is the case. 586 * This can be called when MMU is off so it must not access 587 * any of the virtual mappings. 588 */ 589 static inline int get_page_unless_zero(struct page *page) 590 { 591 return page_ref_add_unless(page, 1, 0); 592 } 593 594 extern int page_is_ram(unsigned long pfn); 595 596 enum { 597 REGION_INTERSECTS, 598 REGION_DISJOINT, 599 REGION_MIXED, 600 }; 601 602 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 603 unsigned long desc); 604 605 /* Support for virtually mapped pages */ 606 struct page *vmalloc_to_page(const void *addr); 607 unsigned long vmalloc_to_pfn(const void *addr); 608 609 /* 610 * Determine if an address is within the vmalloc range 611 * 612 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 613 * is no special casing required. 614 */ 615 static inline bool is_vmalloc_addr(const void *x) 616 { 617 #ifdef CONFIG_MMU 618 unsigned long addr = (unsigned long)x; 619 620 return addr >= VMALLOC_START && addr < VMALLOC_END; 621 #else 622 return false; 623 #endif 624 } 625 #ifdef CONFIG_MMU 626 extern int is_vmalloc_or_module_addr(const void *x); 627 #else 628 static inline int is_vmalloc_or_module_addr(const void *x) 629 { 630 return 0; 631 } 632 #endif 633 634 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 635 static inline void *kvmalloc(size_t size, gfp_t flags) 636 { 637 return kvmalloc_node(size, flags, NUMA_NO_NODE); 638 } 639 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 640 { 641 return kvmalloc_node(size, flags | __GFP_ZERO, node); 642 } 643 static inline void *kvzalloc(size_t size, gfp_t flags) 644 { 645 return kvmalloc(size, flags | __GFP_ZERO); 646 } 647 648 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 649 { 650 size_t bytes; 651 652 if (unlikely(check_mul_overflow(n, size, &bytes))) 653 return NULL; 654 655 return kvmalloc(bytes, flags); 656 } 657 658 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 659 { 660 return kvmalloc_array(n, size, flags | __GFP_ZERO); 661 } 662 663 extern void kvfree(const void *addr); 664 665 static inline atomic_t *compound_mapcount_ptr(struct page *page) 666 { 667 return &page[1].compound_mapcount; 668 } 669 670 static inline int compound_mapcount(struct page *page) 671 { 672 VM_BUG_ON_PAGE(!PageCompound(page), page); 673 page = compound_head(page); 674 return atomic_read(compound_mapcount_ptr(page)) + 1; 675 } 676 677 /* 678 * The atomic page->_mapcount, starts from -1: so that transitions 679 * both from it and to it can be tracked, using atomic_inc_and_test 680 * and atomic_add_negative(-1). 681 */ 682 static inline void page_mapcount_reset(struct page *page) 683 { 684 atomic_set(&(page)->_mapcount, -1); 685 } 686 687 int __page_mapcount(struct page *page); 688 689 static inline int page_mapcount(struct page *page) 690 { 691 VM_BUG_ON_PAGE(PageSlab(page), page); 692 693 if (unlikely(PageCompound(page))) 694 return __page_mapcount(page); 695 return atomic_read(&page->_mapcount) + 1; 696 } 697 698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 699 int total_mapcount(struct page *page); 700 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 701 #else 702 static inline int total_mapcount(struct page *page) 703 { 704 return page_mapcount(page); 705 } 706 static inline int page_trans_huge_mapcount(struct page *page, 707 int *total_mapcount) 708 { 709 int mapcount = page_mapcount(page); 710 if (total_mapcount) 711 *total_mapcount = mapcount; 712 return mapcount; 713 } 714 #endif 715 716 static inline struct page *virt_to_head_page(const void *x) 717 { 718 struct page *page = virt_to_page(x); 719 720 return compound_head(page); 721 } 722 723 void __put_page(struct page *page); 724 725 void put_pages_list(struct list_head *pages); 726 727 void split_page(struct page *page, unsigned int order); 728 729 /* 730 * Compound pages have a destructor function. Provide a 731 * prototype for that function and accessor functions. 732 * These are _only_ valid on the head of a compound page. 733 */ 734 typedef void compound_page_dtor(struct page *); 735 736 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 737 enum compound_dtor_id { 738 NULL_COMPOUND_DTOR, 739 COMPOUND_PAGE_DTOR, 740 #ifdef CONFIG_HUGETLB_PAGE 741 HUGETLB_PAGE_DTOR, 742 #endif 743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 744 TRANSHUGE_PAGE_DTOR, 745 #endif 746 NR_COMPOUND_DTORS, 747 }; 748 extern compound_page_dtor * const compound_page_dtors[]; 749 750 static inline void set_compound_page_dtor(struct page *page, 751 enum compound_dtor_id compound_dtor) 752 { 753 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 754 page[1].compound_dtor = compound_dtor; 755 } 756 757 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 758 { 759 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 760 return compound_page_dtors[page[1].compound_dtor]; 761 } 762 763 static inline unsigned int compound_order(struct page *page) 764 { 765 if (!PageHead(page)) 766 return 0; 767 return page[1].compound_order; 768 } 769 770 static inline void set_compound_order(struct page *page, unsigned int order) 771 { 772 page[1].compound_order = order; 773 } 774 775 void free_compound_page(struct page *page); 776 777 #ifdef CONFIG_MMU 778 /* 779 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 780 * servicing faults for write access. In the normal case, do always want 781 * pte_mkwrite. But get_user_pages can cause write faults for mappings 782 * that do not have writing enabled, when used by access_process_vm. 783 */ 784 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 785 { 786 if (likely(vma->vm_flags & VM_WRITE)) 787 pte = pte_mkwrite(pte); 788 return pte; 789 } 790 791 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 792 struct page *page); 793 vm_fault_t finish_fault(struct vm_fault *vmf); 794 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 795 #endif 796 797 /* 798 * Multiple processes may "see" the same page. E.g. for untouched 799 * mappings of /dev/null, all processes see the same page full of 800 * zeroes, and text pages of executables and shared libraries have 801 * only one copy in memory, at most, normally. 802 * 803 * For the non-reserved pages, page_count(page) denotes a reference count. 804 * page_count() == 0 means the page is free. page->lru is then used for 805 * freelist management in the buddy allocator. 806 * page_count() > 0 means the page has been allocated. 807 * 808 * Pages are allocated by the slab allocator in order to provide memory 809 * to kmalloc and kmem_cache_alloc. In this case, the management of the 810 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 811 * unless a particular usage is carefully commented. (the responsibility of 812 * freeing the kmalloc memory is the caller's, of course). 813 * 814 * A page may be used by anyone else who does a __get_free_page(). 815 * In this case, page_count still tracks the references, and should only 816 * be used through the normal accessor functions. The top bits of page->flags 817 * and page->virtual store page management information, but all other fields 818 * are unused and could be used privately, carefully. The management of this 819 * page is the responsibility of the one who allocated it, and those who have 820 * subsequently been given references to it. 821 * 822 * The other pages (we may call them "pagecache pages") are completely 823 * managed by the Linux memory manager: I/O, buffers, swapping etc. 824 * The following discussion applies only to them. 825 * 826 * A pagecache page contains an opaque `private' member, which belongs to the 827 * page's address_space. Usually, this is the address of a circular list of 828 * the page's disk buffers. PG_private must be set to tell the VM to call 829 * into the filesystem to release these pages. 830 * 831 * A page may belong to an inode's memory mapping. In this case, page->mapping 832 * is the pointer to the inode, and page->index is the file offset of the page, 833 * in units of PAGE_SIZE. 834 * 835 * If pagecache pages are not associated with an inode, they are said to be 836 * anonymous pages. These may become associated with the swapcache, and in that 837 * case PG_swapcache is set, and page->private is an offset into the swapcache. 838 * 839 * In either case (swapcache or inode backed), the pagecache itself holds one 840 * reference to the page. Setting PG_private should also increment the 841 * refcount. The each user mapping also has a reference to the page. 842 * 843 * The pagecache pages are stored in a per-mapping radix tree, which is 844 * rooted at mapping->i_pages, and indexed by offset. 845 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 846 * lists, we instead now tag pages as dirty/writeback in the radix tree. 847 * 848 * All pagecache pages may be subject to I/O: 849 * - inode pages may need to be read from disk, 850 * - inode pages which have been modified and are MAP_SHARED may need 851 * to be written back to the inode on disk, 852 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 853 * modified may need to be swapped out to swap space and (later) to be read 854 * back into memory. 855 */ 856 857 /* 858 * The zone field is never updated after free_area_init_core() 859 * sets it, so none of the operations on it need to be atomic. 860 */ 861 862 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 863 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 864 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 865 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 866 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 867 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 868 869 /* 870 * Define the bit shifts to access each section. For non-existent 871 * sections we define the shift as 0; that plus a 0 mask ensures 872 * the compiler will optimise away reference to them. 873 */ 874 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 875 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 876 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 877 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 878 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 879 880 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 881 #ifdef NODE_NOT_IN_PAGE_FLAGS 882 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 883 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 884 SECTIONS_PGOFF : ZONES_PGOFF) 885 #else 886 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 887 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 888 NODES_PGOFF : ZONES_PGOFF) 889 #endif 890 891 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 892 893 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 894 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 895 #endif 896 897 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 898 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 899 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 900 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 901 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 902 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 903 904 static inline enum zone_type page_zonenum(const struct page *page) 905 { 906 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 907 } 908 909 #ifdef CONFIG_ZONE_DEVICE 910 static inline bool is_zone_device_page(const struct page *page) 911 { 912 return page_zonenum(page) == ZONE_DEVICE; 913 } 914 extern void memmap_init_zone_device(struct zone *, unsigned long, 915 unsigned long, struct dev_pagemap *); 916 #else 917 static inline bool is_zone_device_page(const struct page *page) 918 { 919 return false; 920 } 921 #endif 922 923 #ifdef CONFIG_DEV_PAGEMAP_OPS 924 void dev_pagemap_get_ops(void); 925 void dev_pagemap_put_ops(void); 926 void __put_devmap_managed_page(struct page *page); 927 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 928 static inline bool put_devmap_managed_page(struct page *page) 929 { 930 if (!static_branch_unlikely(&devmap_managed_key)) 931 return false; 932 if (!is_zone_device_page(page)) 933 return false; 934 switch (page->pgmap->type) { 935 case MEMORY_DEVICE_PRIVATE: 936 case MEMORY_DEVICE_PUBLIC: 937 case MEMORY_DEVICE_FS_DAX: 938 __put_devmap_managed_page(page); 939 return true; 940 default: 941 break; 942 } 943 return false; 944 } 945 946 static inline bool is_device_private_page(const struct page *page) 947 { 948 return is_zone_device_page(page) && 949 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 950 } 951 952 static inline bool is_device_public_page(const struct page *page) 953 { 954 return is_zone_device_page(page) && 955 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 956 } 957 958 #ifdef CONFIG_PCI_P2PDMA 959 static inline bool is_pci_p2pdma_page(const struct page *page) 960 { 961 return is_zone_device_page(page) && 962 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 963 } 964 #else /* CONFIG_PCI_P2PDMA */ 965 static inline bool is_pci_p2pdma_page(const struct page *page) 966 { 967 return false; 968 } 969 #endif /* CONFIG_PCI_P2PDMA */ 970 971 #else /* CONFIG_DEV_PAGEMAP_OPS */ 972 static inline void dev_pagemap_get_ops(void) 973 { 974 } 975 976 static inline void dev_pagemap_put_ops(void) 977 { 978 } 979 980 static inline bool put_devmap_managed_page(struct page *page) 981 { 982 return false; 983 } 984 985 static inline bool is_device_private_page(const struct page *page) 986 { 987 return false; 988 } 989 990 static inline bool is_device_public_page(const struct page *page) 991 { 992 return false; 993 } 994 995 static inline bool is_pci_p2pdma_page(const struct page *page) 996 { 997 return false; 998 } 999 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1000 1001 /* 127: arbitrary random number, small enough to assemble well */ 1002 #define page_ref_zero_or_close_to_overflow(page) \ 1003 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1004 1005 static inline void get_page(struct page *page) 1006 { 1007 page = compound_head(page); 1008 /* 1009 * Getting a normal page or the head of a compound page 1010 * requires to already have an elevated page->_refcount. 1011 */ 1012 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1013 page_ref_inc(page); 1014 } 1015 1016 static inline __must_check bool try_get_page(struct page *page) 1017 { 1018 page = compound_head(page); 1019 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1020 return false; 1021 page_ref_inc(page); 1022 return true; 1023 } 1024 1025 static inline void put_page(struct page *page) 1026 { 1027 page = compound_head(page); 1028 1029 /* 1030 * For devmap managed pages we need to catch refcount transition from 1031 * 2 to 1, when refcount reach one it means the page is free and we 1032 * need to inform the device driver through callback. See 1033 * include/linux/memremap.h and HMM for details. 1034 */ 1035 if (put_devmap_managed_page(page)) 1036 return; 1037 1038 if (put_page_testzero(page)) 1039 __put_page(page); 1040 } 1041 1042 /** 1043 * put_user_page() - release a gup-pinned page 1044 * @page: pointer to page to be released 1045 * 1046 * Pages that were pinned via get_user_pages*() must be released via 1047 * either put_user_page(), or one of the put_user_pages*() routines 1048 * below. This is so that eventually, pages that are pinned via 1049 * get_user_pages*() can be separately tracked and uniquely handled. In 1050 * particular, interactions with RDMA and filesystems need special 1051 * handling. 1052 * 1053 * put_user_page() and put_page() are not interchangeable, despite this early 1054 * implementation that makes them look the same. put_user_page() calls must 1055 * be perfectly matched up with get_user_page() calls. 1056 */ 1057 static inline void put_user_page(struct page *page) 1058 { 1059 put_page(page); 1060 } 1061 1062 void put_user_pages_dirty(struct page **pages, unsigned long npages); 1063 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages); 1064 void put_user_pages(struct page **pages, unsigned long npages); 1065 1066 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1067 #define SECTION_IN_PAGE_FLAGS 1068 #endif 1069 1070 /* 1071 * The identification function is mainly used by the buddy allocator for 1072 * determining if two pages could be buddies. We are not really identifying 1073 * the zone since we could be using the section number id if we do not have 1074 * node id available in page flags. 1075 * We only guarantee that it will return the same value for two combinable 1076 * pages in a zone. 1077 */ 1078 static inline int page_zone_id(struct page *page) 1079 { 1080 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1081 } 1082 1083 #ifdef NODE_NOT_IN_PAGE_FLAGS 1084 extern int page_to_nid(const struct page *page); 1085 #else 1086 static inline int page_to_nid(const struct page *page) 1087 { 1088 struct page *p = (struct page *)page; 1089 1090 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1091 } 1092 #endif 1093 1094 #ifdef CONFIG_NUMA_BALANCING 1095 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1096 { 1097 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1098 } 1099 1100 static inline int cpupid_to_pid(int cpupid) 1101 { 1102 return cpupid & LAST__PID_MASK; 1103 } 1104 1105 static inline int cpupid_to_cpu(int cpupid) 1106 { 1107 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1108 } 1109 1110 static inline int cpupid_to_nid(int cpupid) 1111 { 1112 return cpu_to_node(cpupid_to_cpu(cpupid)); 1113 } 1114 1115 static inline bool cpupid_pid_unset(int cpupid) 1116 { 1117 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1118 } 1119 1120 static inline bool cpupid_cpu_unset(int cpupid) 1121 { 1122 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1123 } 1124 1125 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1126 { 1127 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1128 } 1129 1130 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1131 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1132 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1133 { 1134 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1135 } 1136 1137 static inline int page_cpupid_last(struct page *page) 1138 { 1139 return page->_last_cpupid; 1140 } 1141 static inline void page_cpupid_reset_last(struct page *page) 1142 { 1143 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1144 } 1145 #else 1146 static inline int page_cpupid_last(struct page *page) 1147 { 1148 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1149 } 1150 1151 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1152 1153 static inline void page_cpupid_reset_last(struct page *page) 1154 { 1155 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1156 } 1157 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1158 #else /* !CONFIG_NUMA_BALANCING */ 1159 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1160 { 1161 return page_to_nid(page); /* XXX */ 1162 } 1163 1164 static inline int page_cpupid_last(struct page *page) 1165 { 1166 return page_to_nid(page); /* XXX */ 1167 } 1168 1169 static inline int cpupid_to_nid(int cpupid) 1170 { 1171 return -1; 1172 } 1173 1174 static inline int cpupid_to_pid(int cpupid) 1175 { 1176 return -1; 1177 } 1178 1179 static inline int cpupid_to_cpu(int cpupid) 1180 { 1181 return -1; 1182 } 1183 1184 static inline int cpu_pid_to_cpupid(int nid, int pid) 1185 { 1186 return -1; 1187 } 1188 1189 static inline bool cpupid_pid_unset(int cpupid) 1190 { 1191 return 1; 1192 } 1193 1194 static inline void page_cpupid_reset_last(struct page *page) 1195 { 1196 } 1197 1198 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1199 { 1200 return false; 1201 } 1202 #endif /* CONFIG_NUMA_BALANCING */ 1203 1204 #ifdef CONFIG_KASAN_SW_TAGS 1205 static inline u8 page_kasan_tag(const struct page *page) 1206 { 1207 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1208 } 1209 1210 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1211 { 1212 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1213 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1214 } 1215 1216 static inline void page_kasan_tag_reset(struct page *page) 1217 { 1218 page_kasan_tag_set(page, 0xff); 1219 } 1220 #else 1221 static inline u8 page_kasan_tag(const struct page *page) 1222 { 1223 return 0xff; 1224 } 1225 1226 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1227 static inline void page_kasan_tag_reset(struct page *page) { } 1228 #endif 1229 1230 static inline struct zone *page_zone(const struct page *page) 1231 { 1232 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1233 } 1234 1235 static inline pg_data_t *page_pgdat(const struct page *page) 1236 { 1237 return NODE_DATA(page_to_nid(page)); 1238 } 1239 1240 #ifdef SECTION_IN_PAGE_FLAGS 1241 static inline void set_page_section(struct page *page, unsigned long section) 1242 { 1243 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1244 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1245 } 1246 1247 static inline unsigned long page_to_section(const struct page *page) 1248 { 1249 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1250 } 1251 #endif 1252 1253 static inline void set_page_zone(struct page *page, enum zone_type zone) 1254 { 1255 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1256 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1257 } 1258 1259 static inline void set_page_node(struct page *page, unsigned long node) 1260 { 1261 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1262 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1263 } 1264 1265 static inline void set_page_links(struct page *page, enum zone_type zone, 1266 unsigned long node, unsigned long pfn) 1267 { 1268 set_page_zone(page, zone); 1269 set_page_node(page, node); 1270 #ifdef SECTION_IN_PAGE_FLAGS 1271 set_page_section(page, pfn_to_section_nr(pfn)); 1272 #endif 1273 } 1274 1275 #ifdef CONFIG_MEMCG 1276 static inline struct mem_cgroup *page_memcg(struct page *page) 1277 { 1278 return page->mem_cgroup; 1279 } 1280 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1281 { 1282 WARN_ON_ONCE(!rcu_read_lock_held()); 1283 return READ_ONCE(page->mem_cgroup); 1284 } 1285 #else 1286 static inline struct mem_cgroup *page_memcg(struct page *page) 1287 { 1288 return NULL; 1289 } 1290 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1291 { 1292 WARN_ON_ONCE(!rcu_read_lock_held()); 1293 return NULL; 1294 } 1295 #endif 1296 1297 /* 1298 * Some inline functions in vmstat.h depend on page_zone() 1299 */ 1300 #include <linux/vmstat.h> 1301 1302 static __always_inline void *lowmem_page_address(const struct page *page) 1303 { 1304 return page_to_virt(page); 1305 } 1306 1307 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1308 #define HASHED_PAGE_VIRTUAL 1309 #endif 1310 1311 #if defined(WANT_PAGE_VIRTUAL) 1312 static inline void *page_address(const struct page *page) 1313 { 1314 return page->virtual; 1315 } 1316 static inline void set_page_address(struct page *page, void *address) 1317 { 1318 page->virtual = address; 1319 } 1320 #define page_address_init() do { } while(0) 1321 #endif 1322 1323 #if defined(HASHED_PAGE_VIRTUAL) 1324 void *page_address(const struct page *page); 1325 void set_page_address(struct page *page, void *virtual); 1326 void page_address_init(void); 1327 #endif 1328 1329 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1330 #define page_address(page) lowmem_page_address(page) 1331 #define set_page_address(page, address) do { } while(0) 1332 #define page_address_init() do { } while(0) 1333 #endif 1334 1335 extern void *page_rmapping(struct page *page); 1336 extern struct anon_vma *page_anon_vma(struct page *page); 1337 extern struct address_space *page_mapping(struct page *page); 1338 1339 extern struct address_space *__page_file_mapping(struct page *); 1340 1341 static inline 1342 struct address_space *page_file_mapping(struct page *page) 1343 { 1344 if (unlikely(PageSwapCache(page))) 1345 return __page_file_mapping(page); 1346 1347 return page->mapping; 1348 } 1349 1350 extern pgoff_t __page_file_index(struct page *page); 1351 1352 /* 1353 * Return the pagecache index of the passed page. Regular pagecache pages 1354 * use ->index whereas swapcache pages use swp_offset(->private) 1355 */ 1356 static inline pgoff_t page_index(struct page *page) 1357 { 1358 if (unlikely(PageSwapCache(page))) 1359 return __page_file_index(page); 1360 return page->index; 1361 } 1362 1363 bool page_mapped(struct page *page); 1364 struct address_space *page_mapping(struct page *page); 1365 struct address_space *page_mapping_file(struct page *page); 1366 1367 /* 1368 * Return true only if the page has been allocated with 1369 * ALLOC_NO_WATERMARKS and the low watermark was not 1370 * met implying that the system is under some pressure. 1371 */ 1372 static inline bool page_is_pfmemalloc(struct page *page) 1373 { 1374 /* 1375 * Page index cannot be this large so this must be 1376 * a pfmemalloc page. 1377 */ 1378 return page->index == -1UL; 1379 } 1380 1381 /* 1382 * Only to be called by the page allocator on a freshly allocated 1383 * page. 1384 */ 1385 static inline void set_page_pfmemalloc(struct page *page) 1386 { 1387 page->index = -1UL; 1388 } 1389 1390 static inline void clear_page_pfmemalloc(struct page *page) 1391 { 1392 page->index = 0; 1393 } 1394 1395 /* 1396 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1397 */ 1398 extern void pagefault_out_of_memory(void); 1399 1400 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1401 1402 /* 1403 * Flags passed to show_mem() and show_free_areas() to suppress output in 1404 * various contexts. 1405 */ 1406 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1407 1408 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1409 1410 extern bool can_do_mlock(void); 1411 extern int user_shm_lock(size_t, struct user_struct *); 1412 extern void user_shm_unlock(size_t, struct user_struct *); 1413 1414 /* 1415 * Parameter block passed down to zap_pte_range in exceptional cases. 1416 */ 1417 struct zap_details { 1418 struct address_space *check_mapping; /* Check page->mapping if set */ 1419 pgoff_t first_index; /* Lowest page->index to unmap */ 1420 pgoff_t last_index; /* Highest page->index to unmap */ 1421 }; 1422 1423 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1424 pte_t pte, bool with_public_device); 1425 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1426 1427 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1428 pmd_t pmd); 1429 1430 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1431 unsigned long size); 1432 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1433 unsigned long size); 1434 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1435 unsigned long start, unsigned long end); 1436 1437 /** 1438 * mm_walk - callbacks for walk_page_range 1439 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1440 * this handler should only handle pud_trans_huge() puds. 1441 * the pmd_entry or pte_entry callbacks will be used for 1442 * regular PUDs. 1443 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1444 * this handler is required to be able to handle 1445 * pmd_trans_huge() pmds. They may simply choose to 1446 * split_huge_page() instead of handling it explicitly. 1447 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1448 * @pte_hole: if set, called for each hole at all levels 1449 * @hugetlb_entry: if set, called for each hugetlb entry 1450 * @test_walk: caller specific callback function to determine whether 1451 * we walk over the current vma or not. Returning 0 1452 * value means "do page table walk over the current vma," 1453 * and a negative one means "abort current page table walk 1454 * right now." 1 means "skip the current vma." 1455 * @mm: mm_struct representing the target process of page table walk 1456 * @vma: vma currently walked (NULL if walking outside vmas) 1457 * @private: private data for callbacks' usage 1458 * 1459 * (see the comment on walk_page_range() for more details) 1460 */ 1461 struct mm_walk { 1462 int (*pud_entry)(pud_t *pud, unsigned long addr, 1463 unsigned long next, struct mm_walk *walk); 1464 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1465 unsigned long next, struct mm_walk *walk); 1466 int (*pte_entry)(pte_t *pte, unsigned long addr, 1467 unsigned long next, struct mm_walk *walk); 1468 int (*pte_hole)(unsigned long addr, unsigned long next, 1469 struct mm_walk *walk); 1470 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1471 unsigned long addr, unsigned long next, 1472 struct mm_walk *walk); 1473 int (*test_walk)(unsigned long addr, unsigned long next, 1474 struct mm_walk *walk); 1475 struct mm_struct *mm; 1476 struct vm_area_struct *vma; 1477 void *private; 1478 }; 1479 1480 struct mmu_notifier_range; 1481 1482 int walk_page_range(unsigned long addr, unsigned long end, 1483 struct mm_walk *walk); 1484 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1485 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1486 unsigned long end, unsigned long floor, unsigned long ceiling); 1487 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1488 struct vm_area_struct *vma); 1489 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1490 struct mmu_notifier_range *range, 1491 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1492 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1493 unsigned long *pfn); 1494 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1495 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1496 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1497 void *buf, int len, int write); 1498 1499 extern void truncate_pagecache(struct inode *inode, loff_t new); 1500 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1501 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1502 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1503 int truncate_inode_page(struct address_space *mapping, struct page *page); 1504 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1505 int invalidate_inode_page(struct page *page); 1506 1507 #ifdef CONFIG_MMU 1508 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1509 unsigned long address, unsigned int flags); 1510 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1511 unsigned long address, unsigned int fault_flags, 1512 bool *unlocked); 1513 void unmap_mapping_pages(struct address_space *mapping, 1514 pgoff_t start, pgoff_t nr, bool even_cows); 1515 void unmap_mapping_range(struct address_space *mapping, 1516 loff_t const holebegin, loff_t const holelen, int even_cows); 1517 #else 1518 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1519 unsigned long address, unsigned int flags) 1520 { 1521 /* should never happen if there's no MMU */ 1522 BUG(); 1523 return VM_FAULT_SIGBUS; 1524 } 1525 static inline int fixup_user_fault(struct task_struct *tsk, 1526 struct mm_struct *mm, unsigned long address, 1527 unsigned int fault_flags, bool *unlocked) 1528 { 1529 /* should never happen if there's no MMU */ 1530 BUG(); 1531 return -EFAULT; 1532 } 1533 static inline void unmap_mapping_pages(struct address_space *mapping, 1534 pgoff_t start, pgoff_t nr, bool even_cows) { } 1535 static inline void unmap_mapping_range(struct address_space *mapping, 1536 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1537 #endif 1538 1539 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1540 loff_t const holebegin, loff_t const holelen) 1541 { 1542 unmap_mapping_range(mapping, holebegin, holelen, 0); 1543 } 1544 1545 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1546 void *buf, int len, unsigned int gup_flags); 1547 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1548 void *buf, int len, unsigned int gup_flags); 1549 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1550 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1551 1552 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1553 unsigned long start, unsigned long nr_pages, 1554 unsigned int gup_flags, struct page **pages, 1555 struct vm_area_struct **vmas, int *locked); 1556 long get_user_pages(unsigned long start, unsigned long nr_pages, 1557 unsigned int gup_flags, struct page **pages, 1558 struct vm_area_struct **vmas); 1559 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1560 unsigned int gup_flags, struct page **pages, int *locked); 1561 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1562 struct page **pages, unsigned int gup_flags); 1563 1564 int get_user_pages_fast(unsigned long start, int nr_pages, 1565 unsigned int gup_flags, struct page **pages); 1566 1567 /* Container for pinned pfns / pages */ 1568 struct frame_vector { 1569 unsigned int nr_allocated; /* Number of frames we have space for */ 1570 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1571 bool got_ref; /* Did we pin pages by getting page ref? */ 1572 bool is_pfns; /* Does array contain pages or pfns? */ 1573 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1574 * pfns_vector_pages() or pfns_vector_pfns() 1575 * for access */ 1576 }; 1577 1578 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1579 void frame_vector_destroy(struct frame_vector *vec); 1580 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1581 unsigned int gup_flags, struct frame_vector *vec); 1582 void put_vaddr_frames(struct frame_vector *vec); 1583 int frame_vector_to_pages(struct frame_vector *vec); 1584 void frame_vector_to_pfns(struct frame_vector *vec); 1585 1586 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1587 { 1588 return vec->nr_frames; 1589 } 1590 1591 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1592 { 1593 if (vec->is_pfns) { 1594 int err = frame_vector_to_pages(vec); 1595 1596 if (err) 1597 return ERR_PTR(err); 1598 } 1599 return (struct page **)(vec->ptrs); 1600 } 1601 1602 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1603 { 1604 if (!vec->is_pfns) 1605 frame_vector_to_pfns(vec); 1606 return (unsigned long *)(vec->ptrs); 1607 } 1608 1609 struct kvec; 1610 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1611 struct page **pages); 1612 int get_kernel_page(unsigned long start, int write, struct page **pages); 1613 struct page *get_dump_page(unsigned long addr); 1614 1615 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1616 extern void do_invalidatepage(struct page *page, unsigned int offset, 1617 unsigned int length); 1618 1619 void __set_page_dirty(struct page *, struct address_space *, int warn); 1620 int __set_page_dirty_nobuffers(struct page *page); 1621 int __set_page_dirty_no_writeback(struct page *page); 1622 int redirty_page_for_writepage(struct writeback_control *wbc, 1623 struct page *page); 1624 void account_page_dirtied(struct page *page, struct address_space *mapping); 1625 void account_page_cleaned(struct page *page, struct address_space *mapping, 1626 struct bdi_writeback *wb); 1627 int set_page_dirty(struct page *page); 1628 int set_page_dirty_lock(struct page *page); 1629 void __cancel_dirty_page(struct page *page); 1630 static inline void cancel_dirty_page(struct page *page) 1631 { 1632 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1633 if (PageDirty(page)) 1634 __cancel_dirty_page(page); 1635 } 1636 int clear_page_dirty_for_io(struct page *page); 1637 1638 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1639 1640 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1641 { 1642 return !vma->vm_ops; 1643 } 1644 1645 #ifdef CONFIG_SHMEM 1646 /* 1647 * The vma_is_shmem is not inline because it is used only by slow 1648 * paths in userfault. 1649 */ 1650 bool vma_is_shmem(struct vm_area_struct *vma); 1651 #else 1652 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1653 #endif 1654 1655 int vma_is_stack_for_current(struct vm_area_struct *vma); 1656 1657 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1658 unsigned long old_addr, struct vm_area_struct *new_vma, 1659 unsigned long new_addr, unsigned long len, 1660 bool need_rmap_locks); 1661 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1662 unsigned long end, pgprot_t newprot, 1663 int dirty_accountable, int prot_numa); 1664 extern int mprotect_fixup(struct vm_area_struct *vma, 1665 struct vm_area_struct **pprev, unsigned long start, 1666 unsigned long end, unsigned long newflags); 1667 1668 /* 1669 * doesn't attempt to fault and will return short. 1670 */ 1671 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1672 struct page **pages); 1673 /* 1674 * per-process(per-mm_struct) statistics. 1675 */ 1676 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1677 { 1678 long val = atomic_long_read(&mm->rss_stat.count[member]); 1679 1680 #ifdef SPLIT_RSS_COUNTING 1681 /* 1682 * counter is updated in asynchronous manner and may go to minus. 1683 * But it's never be expected number for users. 1684 */ 1685 if (val < 0) 1686 val = 0; 1687 #endif 1688 return (unsigned long)val; 1689 } 1690 1691 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1692 { 1693 atomic_long_add(value, &mm->rss_stat.count[member]); 1694 } 1695 1696 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1697 { 1698 atomic_long_inc(&mm->rss_stat.count[member]); 1699 } 1700 1701 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1702 { 1703 atomic_long_dec(&mm->rss_stat.count[member]); 1704 } 1705 1706 /* Optimized variant when page is already known not to be PageAnon */ 1707 static inline int mm_counter_file(struct page *page) 1708 { 1709 if (PageSwapBacked(page)) 1710 return MM_SHMEMPAGES; 1711 return MM_FILEPAGES; 1712 } 1713 1714 static inline int mm_counter(struct page *page) 1715 { 1716 if (PageAnon(page)) 1717 return MM_ANONPAGES; 1718 return mm_counter_file(page); 1719 } 1720 1721 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1722 { 1723 return get_mm_counter(mm, MM_FILEPAGES) + 1724 get_mm_counter(mm, MM_ANONPAGES) + 1725 get_mm_counter(mm, MM_SHMEMPAGES); 1726 } 1727 1728 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1729 { 1730 return max(mm->hiwater_rss, get_mm_rss(mm)); 1731 } 1732 1733 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1734 { 1735 return max(mm->hiwater_vm, mm->total_vm); 1736 } 1737 1738 static inline void update_hiwater_rss(struct mm_struct *mm) 1739 { 1740 unsigned long _rss = get_mm_rss(mm); 1741 1742 if ((mm)->hiwater_rss < _rss) 1743 (mm)->hiwater_rss = _rss; 1744 } 1745 1746 static inline void update_hiwater_vm(struct mm_struct *mm) 1747 { 1748 if (mm->hiwater_vm < mm->total_vm) 1749 mm->hiwater_vm = mm->total_vm; 1750 } 1751 1752 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1753 { 1754 mm->hiwater_rss = get_mm_rss(mm); 1755 } 1756 1757 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1758 struct mm_struct *mm) 1759 { 1760 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1761 1762 if (*maxrss < hiwater_rss) 1763 *maxrss = hiwater_rss; 1764 } 1765 1766 #if defined(SPLIT_RSS_COUNTING) 1767 void sync_mm_rss(struct mm_struct *mm); 1768 #else 1769 static inline void sync_mm_rss(struct mm_struct *mm) 1770 { 1771 } 1772 #endif 1773 1774 #ifndef __HAVE_ARCH_PTE_DEVMAP 1775 static inline int pte_devmap(pte_t pte) 1776 { 1777 return 0; 1778 } 1779 #endif 1780 1781 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1782 1783 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1784 spinlock_t **ptl); 1785 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1786 spinlock_t **ptl) 1787 { 1788 pte_t *ptep; 1789 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1790 return ptep; 1791 } 1792 1793 #ifdef __PAGETABLE_P4D_FOLDED 1794 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1795 unsigned long address) 1796 { 1797 return 0; 1798 } 1799 #else 1800 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1801 #endif 1802 1803 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1804 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1805 unsigned long address) 1806 { 1807 return 0; 1808 } 1809 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1810 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1811 1812 #else 1813 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1814 1815 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1816 { 1817 if (mm_pud_folded(mm)) 1818 return; 1819 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1820 } 1821 1822 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1823 { 1824 if (mm_pud_folded(mm)) 1825 return; 1826 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1827 } 1828 #endif 1829 1830 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1831 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1832 unsigned long address) 1833 { 1834 return 0; 1835 } 1836 1837 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1838 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1839 1840 #else 1841 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1842 1843 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1844 { 1845 if (mm_pmd_folded(mm)) 1846 return; 1847 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1848 } 1849 1850 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1851 { 1852 if (mm_pmd_folded(mm)) 1853 return; 1854 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1855 } 1856 #endif 1857 1858 #ifdef CONFIG_MMU 1859 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1860 { 1861 atomic_long_set(&mm->pgtables_bytes, 0); 1862 } 1863 1864 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1865 { 1866 return atomic_long_read(&mm->pgtables_bytes); 1867 } 1868 1869 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1870 { 1871 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1872 } 1873 1874 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1875 { 1876 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1877 } 1878 #else 1879 1880 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1881 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1882 { 1883 return 0; 1884 } 1885 1886 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1887 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1888 #endif 1889 1890 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1891 int __pte_alloc_kernel(pmd_t *pmd); 1892 1893 /* 1894 * The following ifdef needed to get the 4level-fixup.h header to work. 1895 * Remove it when 4level-fixup.h has been removed. 1896 */ 1897 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1898 1899 #ifndef __ARCH_HAS_5LEVEL_HACK 1900 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1901 unsigned long address) 1902 { 1903 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1904 NULL : p4d_offset(pgd, address); 1905 } 1906 1907 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1908 unsigned long address) 1909 { 1910 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1911 NULL : pud_offset(p4d, address); 1912 } 1913 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1914 1915 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1916 { 1917 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1918 NULL: pmd_offset(pud, address); 1919 } 1920 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1921 1922 #if USE_SPLIT_PTE_PTLOCKS 1923 #if ALLOC_SPLIT_PTLOCKS 1924 void __init ptlock_cache_init(void); 1925 extern bool ptlock_alloc(struct page *page); 1926 extern void ptlock_free(struct page *page); 1927 1928 static inline spinlock_t *ptlock_ptr(struct page *page) 1929 { 1930 return page->ptl; 1931 } 1932 #else /* ALLOC_SPLIT_PTLOCKS */ 1933 static inline void ptlock_cache_init(void) 1934 { 1935 } 1936 1937 static inline bool ptlock_alloc(struct page *page) 1938 { 1939 return true; 1940 } 1941 1942 static inline void ptlock_free(struct page *page) 1943 { 1944 } 1945 1946 static inline spinlock_t *ptlock_ptr(struct page *page) 1947 { 1948 return &page->ptl; 1949 } 1950 #endif /* ALLOC_SPLIT_PTLOCKS */ 1951 1952 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1953 { 1954 return ptlock_ptr(pmd_page(*pmd)); 1955 } 1956 1957 static inline bool ptlock_init(struct page *page) 1958 { 1959 /* 1960 * prep_new_page() initialize page->private (and therefore page->ptl) 1961 * with 0. Make sure nobody took it in use in between. 1962 * 1963 * It can happen if arch try to use slab for page table allocation: 1964 * slab code uses page->slab_cache, which share storage with page->ptl. 1965 */ 1966 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1967 if (!ptlock_alloc(page)) 1968 return false; 1969 spin_lock_init(ptlock_ptr(page)); 1970 return true; 1971 } 1972 1973 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1974 /* 1975 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1976 */ 1977 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1978 { 1979 return &mm->page_table_lock; 1980 } 1981 static inline void ptlock_cache_init(void) {} 1982 static inline bool ptlock_init(struct page *page) { return true; } 1983 static inline void ptlock_free(struct page *page) {} 1984 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1985 1986 static inline void pgtable_init(void) 1987 { 1988 ptlock_cache_init(); 1989 pgtable_cache_init(); 1990 } 1991 1992 static inline bool pgtable_page_ctor(struct page *page) 1993 { 1994 if (!ptlock_init(page)) 1995 return false; 1996 __SetPageTable(page); 1997 inc_zone_page_state(page, NR_PAGETABLE); 1998 return true; 1999 } 2000 2001 static inline void pgtable_page_dtor(struct page *page) 2002 { 2003 ptlock_free(page); 2004 __ClearPageTable(page); 2005 dec_zone_page_state(page, NR_PAGETABLE); 2006 } 2007 2008 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2009 ({ \ 2010 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2011 pte_t *__pte = pte_offset_map(pmd, address); \ 2012 *(ptlp) = __ptl; \ 2013 spin_lock(__ptl); \ 2014 __pte; \ 2015 }) 2016 2017 #define pte_unmap_unlock(pte, ptl) do { \ 2018 spin_unlock(ptl); \ 2019 pte_unmap(pte); \ 2020 } while (0) 2021 2022 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2023 2024 #define pte_alloc_map(mm, pmd, address) \ 2025 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2026 2027 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2028 (pte_alloc(mm, pmd) ? \ 2029 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2030 2031 #define pte_alloc_kernel(pmd, address) \ 2032 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2033 NULL: pte_offset_kernel(pmd, address)) 2034 2035 #if USE_SPLIT_PMD_PTLOCKS 2036 2037 static struct page *pmd_to_page(pmd_t *pmd) 2038 { 2039 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2040 return virt_to_page((void *)((unsigned long) pmd & mask)); 2041 } 2042 2043 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2044 { 2045 return ptlock_ptr(pmd_to_page(pmd)); 2046 } 2047 2048 static inline bool pgtable_pmd_page_ctor(struct page *page) 2049 { 2050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2051 page->pmd_huge_pte = NULL; 2052 #endif 2053 return ptlock_init(page); 2054 } 2055 2056 static inline void pgtable_pmd_page_dtor(struct page *page) 2057 { 2058 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2059 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2060 #endif 2061 ptlock_free(page); 2062 } 2063 2064 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2065 2066 #else 2067 2068 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2069 { 2070 return &mm->page_table_lock; 2071 } 2072 2073 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2074 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2075 2076 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2077 2078 #endif 2079 2080 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2081 { 2082 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2083 spin_lock(ptl); 2084 return ptl; 2085 } 2086 2087 /* 2088 * No scalability reason to split PUD locks yet, but follow the same pattern 2089 * as the PMD locks to make it easier if we decide to. The VM should not be 2090 * considered ready to switch to split PUD locks yet; there may be places 2091 * which need to be converted from page_table_lock. 2092 */ 2093 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2094 { 2095 return &mm->page_table_lock; 2096 } 2097 2098 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2099 { 2100 spinlock_t *ptl = pud_lockptr(mm, pud); 2101 2102 spin_lock(ptl); 2103 return ptl; 2104 } 2105 2106 extern void __init pagecache_init(void); 2107 extern void free_area_init(unsigned long * zones_size); 2108 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2109 unsigned long zone_start_pfn, unsigned long *zholes_size); 2110 extern void free_initmem(void); 2111 2112 /* 2113 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2114 * into the buddy system. The freed pages will be poisoned with pattern 2115 * "poison" if it's within range [0, UCHAR_MAX]. 2116 * Return pages freed into the buddy system. 2117 */ 2118 extern unsigned long free_reserved_area(void *start, void *end, 2119 int poison, const char *s); 2120 2121 #ifdef CONFIG_HIGHMEM 2122 /* 2123 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2124 * and totalram_pages. 2125 */ 2126 extern void free_highmem_page(struct page *page); 2127 #endif 2128 2129 extern void adjust_managed_page_count(struct page *page, long count); 2130 extern void mem_init_print_info(const char *str); 2131 2132 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2133 2134 /* Free the reserved page into the buddy system, so it gets managed. */ 2135 static inline void __free_reserved_page(struct page *page) 2136 { 2137 ClearPageReserved(page); 2138 init_page_count(page); 2139 __free_page(page); 2140 } 2141 2142 static inline void free_reserved_page(struct page *page) 2143 { 2144 __free_reserved_page(page); 2145 adjust_managed_page_count(page, 1); 2146 } 2147 2148 static inline void mark_page_reserved(struct page *page) 2149 { 2150 SetPageReserved(page); 2151 adjust_managed_page_count(page, -1); 2152 } 2153 2154 /* 2155 * Default method to free all the __init memory into the buddy system. 2156 * The freed pages will be poisoned with pattern "poison" if it's within 2157 * range [0, UCHAR_MAX]. 2158 * Return pages freed into the buddy system. 2159 */ 2160 static inline unsigned long free_initmem_default(int poison) 2161 { 2162 extern char __init_begin[], __init_end[]; 2163 2164 return free_reserved_area(&__init_begin, &__init_end, 2165 poison, "unused kernel"); 2166 } 2167 2168 static inline unsigned long get_num_physpages(void) 2169 { 2170 int nid; 2171 unsigned long phys_pages = 0; 2172 2173 for_each_online_node(nid) 2174 phys_pages += node_present_pages(nid); 2175 2176 return phys_pages; 2177 } 2178 2179 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2180 /* 2181 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2182 * zones, allocate the backing mem_map and account for memory holes in a more 2183 * architecture independent manner. This is a substitute for creating the 2184 * zone_sizes[] and zholes_size[] arrays and passing them to 2185 * free_area_init_node() 2186 * 2187 * An architecture is expected to register range of page frames backed by 2188 * physical memory with memblock_add[_node]() before calling 2189 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2190 * usage, an architecture is expected to do something like 2191 * 2192 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2193 * max_highmem_pfn}; 2194 * for_each_valid_physical_page_range() 2195 * memblock_add_node(base, size, nid) 2196 * free_area_init_nodes(max_zone_pfns); 2197 * 2198 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2199 * registered physical page range. Similarly 2200 * sparse_memory_present_with_active_regions() calls memory_present() for 2201 * each range when SPARSEMEM is enabled. 2202 * 2203 * See mm/page_alloc.c for more information on each function exposed by 2204 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2205 */ 2206 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2207 unsigned long node_map_pfn_alignment(void); 2208 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2209 unsigned long end_pfn); 2210 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2211 unsigned long end_pfn); 2212 extern void get_pfn_range_for_nid(unsigned int nid, 2213 unsigned long *start_pfn, unsigned long *end_pfn); 2214 extern unsigned long find_min_pfn_with_active_regions(void); 2215 extern void free_bootmem_with_active_regions(int nid, 2216 unsigned long max_low_pfn); 2217 extern void sparse_memory_present_with_active_regions(int nid); 2218 2219 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2220 2221 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2222 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2223 static inline int __early_pfn_to_nid(unsigned long pfn, 2224 struct mminit_pfnnid_cache *state) 2225 { 2226 return 0; 2227 } 2228 #else 2229 /* please see mm/page_alloc.c */ 2230 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2231 /* there is a per-arch backend function. */ 2232 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2233 struct mminit_pfnnid_cache *state); 2234 #endif 2235 2236 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2237 void zero_resv_unavail(void); 2238 #else 2239 static inline void zero_resv_unavail(void) {} 2240 #endif 2241 2242 extern void set_dma_reserve(unsigned long new_dma_reserve); 2243 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2244 enum memmap_context, struct vmem_altmap *); 2245 extern void setup_per_zone_wmarks(void); 2246 extern int __meminit init_per_zone_wmark_min(void); 2247 extern void mem_init(void); 2248 extern void __init mmap_init(void); 2249 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2250 extern long si_mem_available(void); 2251 extern void si_meminfo(struct sysinfo * val); 2252 extern void si_meminfo_node(struct sysinfo *val, int nid); 2253 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2254 extern unsigned long arch_reserved_kernel_pages(void); 2255 #endif 2256 2257 extern __printf(3, 4) 2258 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2259 2260 extern void setup_per_cpu_pageset(void); 2261 2262 extern void zone_pcp_update(struct zone *zone); 2263 extern void zone_pcp_reset(struct zone *zone); 2264 2265 /* page_alloc.c */ 2266 extern int min_free_kbytes; 2267 extern int watermark_boost_factor; 2268 extern int watermark_scale_factor; 2269 2270 /* nommu.c */ 2271 extern atomic_long_t mmap_pages_allocated; 2272 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2273 2274 /* interval_tree.c */ 2275 void vma_interval_tree_insert(struct vm_area_struct *node, 2276 struct rb_root_cached *root); 2277 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2278 struct vm_area_struct *prev, 2279 struct rb_root_cached *root); 2280 void vma_interval_tree_remove(struct vm_area_struct *node, 2281 struct rb_root_cached *root); 2282 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2283 unsigned long start, unsigned long last); 2284 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2285 unsigned long start, unsigned long last); 2286 2287 #define vma_interval_tree_foreach(vma, root, start, last) \ 2288 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2289 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2290 2291 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2292 struct rb_root_cached *root); 2293 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2294 struct rb_root_cached *root); 2295 struct anon_vma_chain * 2296 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2297 unsigned long start, unsigned long last); 2298 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2299 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2300 #ifdef CONFIG_DEBUG_VM_RB 2301 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2302 #endif 2303 2304 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2305 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2306 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2307 2308 /* mmap.c */ 2309 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2310 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2311 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2312 struct vm_area_struct *expand); 2313 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2314 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2315 { 2316 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2317 } 2318 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2319 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2320 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2321 struct mempolicy *, struct vm_userfaultfd_ctx); 2322 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2323 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2324 unsigned long addr, int new_below); 2325 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2326 unsigned long addr, int new_below); 2327 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2328 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2329 struct rb_node **, struct rb_node *); 2330 extern void unlink_file_vma(struct vm_area_struct *); 2331 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2332 unsigned long addr, unsigned long len, pgoff_t pgoff, 2333 bool *need_rmap_locks); 2334 extern void exit_mmap(struct mm_struct *); 2335 2336 static inline int check_data_rlimit(unsigned long rlim, 2337 unsigned long new, 2338 unsigned long start, 2339 unsigned long end_data, 2340 unsigned long start_data) 2341 { 2342 if (rlim < RLIM_INFINITY) { 2343 if (((new - start) + (end_data - start_data)) > rlim) 2344 return -ENOSPC; 2345 } 2346 2347 return 0; 2348 } 2349 2350 extern int mm_take_all_locks(struct mm_struct *mm); 2351 extern void mm_drop_all_locks(struct mm_struct *mm); 2352 2353 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2354 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2355 extern struct file *get_task_exe_file(struct task_struct *task); 2356 2357 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2358 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2359 2360 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2361 const struct vm_special_mapping *sm); 2362 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2363 unsigned long addr, unsigned long len, 2364 unsigned long flags, 2365 const struct vm_special_mapping *spec); 2366 /* This is an obsolete alternative to _install_special_mapping. */ 2367 extern int install_special_mapping(struct mm_struct *mm, 2368 unsigned long addr, unsigned long len, 2369 unsigned long flags, struct page **pages); 2370 2371 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2372 2373 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2374 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2375 struct list_head *uf); 2376 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2377 unsigned long len, unsigned long prot, unsigned long flags, 2378 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2379 struct list_head *uf); 2380 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2381 struct list_head *uf, bool downgrade); 2382 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2383 struct list_head *uf); 2384 2385 static inline unsigned long 2386 do_mmap_pgoff(struct file *file, unsigned long addr, 2387 unsigned long len, unsigned long prot, unsigned long flags, 2388 unsigned long pgoff, unsigned long *populate, 2389 struct list_head *uf) 2390 { 2391 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2392 } 2393 2394 #ifdef CONFIG_MMU 2395 extern int __mm_populate(unsigned long addr, unsigned long len, 2396 int ignore_errors); 2397 static inline void mm_populate(unsigned long addr, unsigned long len) 2398 { 2399 /* Ignore errors */ 2400 (void) __mm_populate(addr, len, 1); 2401 } 2402 #else 2403 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2404 #endif 2405 2406 /* These take the mm semaphore themselves */ 2407 extern int __must_check vm_brk(unsigned long, unsigned long); 2408 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2409 extern int vm_munmap(unsigned long, size_t); 2410 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2411 unsigned long, unsigned long, 2412 unsigned long, unsigned long); 2413 2414 struct vm_unmapped_area_info { 2415 #define VM_UNMAPPED_AREA_TOPDOWN 1 2416 unsigned long flags; 2417 unsigned long length; 2418 unsigned long low_limit; 2419 unsigned long high_limit; 2420 unsigned long align_mask; 2421 unsigned long align_offset; 2422 }; 2423 2424 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2425 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2426 2427 /* 2428 * Search for an unmapped address range. 2429 * 2430 * We are looking for a range that: 2431 * - does not intersect with any VMA; 2432 * - is contained within the [low_limit, high_limit) interval; 2433 * - is at least the desired size. 2434 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2435 */ 2436 static inline unsigned long 2437 vm_unmapped_area(struct vm_unmapped_area_info *info) 2438 { 2439 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2440 return unmapped_area_topdown(info); 2441 else 2442 return unmapped_area(info); 2443 } 2444 2445 /* truncate.c */ 2446 extern void truncate_inode_pages(struct address_space *, loff_t); 2447 extern void truncate_inode_pages_range(struct address_space *, 2448 loff_t lstart, loff_t lend); 2449 extern void truncate_inode_pages_final(struct address_space *); 2450 2451 /* generic vm_area_ops exported for stackable file systems */ 2452 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2453 extern void filemap_map_pages(struct vm_fault *vmf, 2454 pgoff_t start_pgoff, pgoff_t end_pgoff); 2455 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2456 2457 /* mm/page-writeback.c */ 2458 int __must_check write_one_page(struct page *page); 2459 void task_dirty_inc(struct task_struct *tsk); 2460 2461 /* readahead.c */ 2462 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2463 2464 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2465 pgoff_t offset, unsigned long nr_to_read); 2466 2467 void page_cache_sync_readahead(struct address_space *mapping, 2468 struct file_ra_state *ra, 2469 struct file *filp, 2470 pgoff_t offset, 2471 unsigned long size); 2472 2473 void page_cache_async_readahead(struct address_space *mapping, 2474 struct file_ra_state *ra, 2475 struct file *filp, 2476 struct page *pg, 2477 pgoff_t offset, 2478 unsigned long size); 2479 2480 extern unsigned long stack_guard_gap; 2481 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2482 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2483 2484 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2485 extern int expand_downwards(struct vm_area_struct *vma, 2486 unsigned long address); 2487 #if VM_GROWSUP 2488 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2489 #else 2490 #define expand_upwards(vma, address) (0) 2491 #endif 2492 2493 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2494 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2495 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2496 struct vm_area_struct **pprev); 2497 2498 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2499 NULL if none. Assume start_addr < end_addr. */ 2500 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2501 { 2502 struct vm_area_struct * vma = find_vma(mm,start_addr); 2503 2504 if (vma && end_addr <= vma->vm_start) 2505 vma = NULL; 2506 return vma; 2507 } 2508 2509 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2510 { 2511 unsigned long vm_start = vma->vm_start; 2512 2513 if (vma->vm_flags & VM_GROWSDOWN) { 2514 vm_start -= stack_guard_gap; 2515 if (vm_start > vma->vm_start) 2516 vm_start = 0; 2517 } 2518 return vm_start; 2519 } 2520 2521 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2522 { 2523 unsigned long vm_end = vma->vm_end; 2524 2525 if (vma->vm_flags & VM_GROWSUP) { 2526 vm_end += stack_guard_gap; 2527 if (vm_end < vma->vm_end) 2528 vm_end = -PAGE_SIZE; 2529 } 2530 return vm_end; 2531 } 2532 2533 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2534 { 2535 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2536 } 2537 2538 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2539 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2540 unsigned long vm_start, unsigned long vm_end) 2541 { 2542 struct vm_area_struct *vma = find_vma(mm, vm_start); 2543 2544 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2545 vma = NULL; 2546 2547 return vma; 2548 } 2549 2550 static inline bool range_in_vma(struct vm_area_struct *vma, 2551 unsigned long start, unsigned long end) 2552 { 2553 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2554 } 2555 2556 #ifdef CONFIG_MMU 2557 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2558 void vma_set_page_prot(struct vm_area_struct *vma); 2559 #else 2560 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2561 { 2562 return __pgprot(0); 2563 } 2564 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2565 { 2566 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2567 } 2568 #endif 2569 2570 #ifdef CONFIG_NUMA_BALANCING 2571 unsigned long change_prot_numa(struct vm_area_struct *vma, 2572 unsigned long start, unsigned long end); 2573 #endif 2574 2575 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2576 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2577 unsigned long pfn, unsigned long size, pgprot_t); 2578 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2579 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2580 unsigned long num); 2581 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2582 unsigned long num); 2583 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2584 unsigned long pfn); 2585 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2586 unsigned long pfn, pgprot_t pgprot); 2587 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2588 pfn_t pfn); 2589 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2590 unsigned long addr, pfn_t pfn); 2591 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2592 2593 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2594 unsigned long addr, struct page *page) 2595 { 2596 int err = vm_insert_page(vma, addr, page); 2597 2598 if (err == -ENOMEM) 2599 return VM_FAULT_OOM; 2600 if (err < 0 && err != -EBUSY) 2601 return VM_FAULT_SIGBUS; 2602 2603 return VM_FAULT_NOPAGE; 2604 } 2605 2606 static inline vm_fault_t vmf_error(int err) 2607 { 2608 if (err == -ENOMEM) 2609 return VM_FAULT_OOM; 2610 return VM_FAULT_SIGBUS; 2611 } 2612 2613 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2614 unsigned int foll_flags); 2615 2616 #define FOLL_WRITE 0x01 /* check pte is writable */ 2617 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2618 #define FOLL_GET 0x04 /* do get_page on page */ 2619 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2620 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2621 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2622 * and return without waiting upon it */ 2623 #define FOLL_POPULATE 0x40 /* fault in page */ 2624 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2625 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2626 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2627 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2628 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2629 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2630 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2631 #define FOLL_COW 0x4000 /* internal GUP flag */ 2632 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2633 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2634 2635 /* 2636 * NOTE on FOLL_LONGTERM: 2637 * 2638 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2639 * period _often_ under userspace control. This is contrasted with 2640 * iov_iter_get_pages() where usages which are transient. 2641 * 2642 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2643 * lifetime enforced by the filesystem and we need guarantees that longterm 2644 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2645 * the filesystem. Ideas for this coordination include revoking the longterm 2646 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2647 * added after the problem with filesystems was found FS DAX VMAs are 2648 * specifically failed. Filesystem pages are still subject to bugs and use of 2649 * FOLL_LONGTERM should be avoided on those pages. 2650 * 2651 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2652 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2653 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2654 * is due to an incompatibility with the FS DAX check and 2655 * FAULT_FLAG_ALLOW_RETRY 2656 * 2657 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2658 * that region. And so CMA attempts to migrate the page before pinning when 2659 * FOLL_LONGTERM is specified. 2660 */ 2661 2662 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2663 { 2664 if (vm_fault & VM_FAULT_OOM) 2665 return -ENOMEM; 2666 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2667 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2668 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2669 return -EFAULT; 2670 return 0; 2671 } 2672 2673 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2674 void *data); 2675 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2676 unsigned long size, pte_fn_t fn, void *data); 2677 2678 2679 #ifdef CONFIG_PAGE_POISONING 2680 extern bool page_poisoning_enabled(void); 2681 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2682 #else 2683 static inline bool page_poisoning_enabled(void) { return false; } 2684 static inline void kernel_poison_pages(struct page *page, int numpages, 2685 int enable) { } 2686 #endif 2687 2688 extern bool _debug_pagealloc_enabled; 2689 2690 static inline bool debug_pagealloc_enabled(void) 2691 { 2692 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled; 2693 } 2694 2695 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2696 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2697 2698 static inline void 2699 kernel_map_pages(struct page *page, int numpages, int enable) 2700 { 2701 __kernel_map_pages(page, numpages, enable); 2702 } 2703 #ifdef CONFIG_HIBERNATION 2704 extern bool kernel_page_present(struct page *page); 2705 #endif /* CONFIG_HIBERNATION */ 2706 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2707 static inline void 2708 kernel_map_pages(struct page *page, int numpages, int enable) {} 2709 #ifdef CONFIG_HIBERNATION 2710 static inline bool kernel_page_present(struct page *page) { return true; } 2711 #endif /* CONFIG_HIBERNATION */ 2712 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2713 2714 #ifdef __HAVE_ARCH_GATE_AREA 2715 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2716 extern int in_gate_area_no_mm(unsigned long addr); 2717 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2718 #else 2719 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2720 { 2721 return NULL; 2722 } 2723 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2724 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2725 { 2726 return 0; 2727 } 2728 #endif /* __HAVE_ARCH_GATE_AREA */ 2729 2730 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2731 2732 #ifdef CONFIG_SYSCTL 2733 extern int sysctl_drop_caches; 2734 int drop_caches_sysctl_handler(struct ctl_table *, int, 2735 void __user *, size_t *, loff_t *); 2736 #endif 2737 2738 void drop_slab(void); 2739 void drop_slab_node(int nid); 2740 2741 #ifndef CONFIG_MMU 2742 #define randomize_va_space 0 2743 #else 2744 extern int randomize_va_space; 2745 #endif 2746 2747 const char * arch_vma_name(struct vm_area_struct *vma); 2748 void print_vma_addr(char *prefix, unsigned long rip); 2749 2750 void *sparse_buffer_alloc(unsigned long size); 2751 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2752 struct vmem_altmap *altmap); 2753 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2754 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2755 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2756 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2757 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2758 void *vmemmap_alloc_block(unsigned long size, int node); 2759 struct vmem_altmap; 2760 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2761 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2762 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2763 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2764 int node); 2765 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2766 struct vmem_altmap *altmap); 2767 void vmemmap_populate_print_last(void); 2768 #ifdef CONFIG_MEMORY_HOTPLUG 2769 void vmemmap_free(unsigned long start, unsigned long end, 2770 struct vmem_altmap *altmap); 2771 #endif 2772 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2773 unsigned long nr_pages); 2774 2775 enum mf_flags { 2776 MF_COUNT_INCREASED = 1 << 0, 2777 MF_ACTION_REQUIRED = 1 << 1, 2778 MF_MUST_KILL = 1 << 2, 2779 MF_SOFT_OFFLINE = 1 << 3, 2780 }; 2781 extern int memory_failure(unsigned long pfn, int flags); 2782 extern void memory_failure_queue(unsigned long pfn, int flags); 2783 extern int unpoison_memory(unsigned long pfn); 2784 extern int get_hwpoison_page(struct page *page); 2785 #define put_hwpoison_page(page) put_page(page) 2786 extern int sysctl_memory_failure_early_kill; 2787 extern int sysctl_memory_failure_recovery; 2788 extern void shake_page(struct page *p, int access); 2789 extern atomic_long_t num_poisoned_pages __read_mostly; 2790 extern int soft_offline_page(struct page *page, int flags); 2791 2792 2793 /* 2794 * Error handlers for various types of pages. 2795 */ 2796 enum mf_result { 2797 MF_IGNORED, /* Error: cannot be handled */ 2798 MF_FAILED, /* Error: handling failed */ 2799 MF_DELAYED, /* Will be handled later */ 2800 MF_RECOVERED, /* Successfully recovered */ 2801 }; 2802 2803 enum mf_action_page_type { 2804 MF_MSG_KERNEL, 2805 MF_MSG_KERNEL_HIGH_ORDER, 2806 MF_MSG_SLAB, 2807 MF_MSG_DIFFERENT_COMPOUND, 2808 MF_MSG_POISONED_HUGE, 2809 MF_MSG_HUGE, 2810 MF_MSG_FREE_HUGE, 2811 MF_MSG_NON_PMD_HUGE, 2812 MF_MSG_UNMAP_FAILED, 2813 MF_MSG_DIRTY_SWAPCACHE, 2814 MF_MSG_CLEAN_SWAPCACHE, 2815 MF_MSG_DIRTY_MLOCKED_LRU, 2816 MF_MSG_CLEAN_MLOCKED_LRU, 2817 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2818 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2819 MF_MSG_DIRTY_LRU, 2820 MF_MSG_CLEAN_LRU, 2821 MF_MSG_TRUNCATED_LRU, 2822 MF_MSG_BUDDY, 2823 MF_MSG_BUDDY_2ND, 2824 MF_MSG_DAX, 2825 MF_MSG_UNKNOWN, 2826 }; 2827 2828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2829 extern void clear_huge_page(struct page *page, 2830 unsigned long addr_hint, 2831 unsigned int pages_per_huge_page); 2832 extern void copy_user_huge_page(struct page *dst, struct page *src, 2833 unsigned long addr_hint, 2834 struct vm_area_struct *vma, 2835 unsigned int pages_per_huge_page); 2836 extern long copy_huge_page_from_user(struct page *dst_page, 2837 const void __user *usr_src, 2838 unsigned int pages_per_huge_page, 2839 bool allow_pagefault); 2840 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2841 2842 extern struct page_ext_operations debug_guardpage_ops; 2843 2844 #ifdef CONFIG_DEBUG_PAGEALLOC 2845 extern unsigned int _debug_guardpage_minorder; 2846 extern bool _debug_guardpage_enabled; 2847 2848 static inline unsigned int debug_guardpage_minorder(void) 2849 { 2850 return _debug_guardpage_minorder; 2851 } 2852 2853 static inline bool debug_guardpage_enabled(void) 2854 { 2855 return _debug_guardpage_enabled; 2856 } 2857 2858 static inline bool page_is_guard(struct page *page) 2859 { 2860 struct page_ext *page_ext; 2861 2862 if (!debug_guardpage_enabled()) 2863 return false; 2864 2865 page_ext = lookup_page_ext(page); 2866 if (unlikely(!page_ext)) 2867 return false; 2868 2869 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2870 } 2871 #else 2872 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2873 static inline bool debug_guardpage_enabled(void) { return false; } 2874 static inline bool page_is_guard(struct page *page) { return false; } 2875 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2876 2877 #if MAX_NUMNODES > 1 2878 void __init setup_nr_node_ids(void); 2879 #else 2880 static inline void setup_nr_node_ids(void) {} 2881 #endif 2882 2883 #endif /* __KERNEL__ */ 2884 #endif /* _LINUX_MM_H */ 2885