1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 29 struct mempolicy; 30 struct anon_vma; 31 struct anon_vma_chain; 32 struct file_ra_state; 33 struct user_struct; 34 struct writeback_control; 35 struct bdi_writeback; 36 37 void init_mm_internals(void); 38 39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 40 extern unsigned long max_mapnr; 41 42 static inline void set_max_mapnr(unsigned long limit) 43 { 44 max_mapnr = limit; 45 } 46 #else 47 static inline void set_max_mapnr(unsigned long limit) { } 48 #endif 49 50 extern unsigned long totalram_pages; 51 extern void * high_memory; 52 extern int page_cluster; 53 54 #ifdef CONFIG_SYSCTL 55 extern int sysctl_legacy_va_layout; 56 #else 57 #define sysctl_legacy_va_layout 0 58 #endif 59 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 61 extern const int mmap_rnd_bits_min; 62 extern const int mmap_rnd_bits_max; 63 extern int mmap_rnd_bits __read_mostly; 64 #endif 65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 66 extern const int mmap_rnd_compat_bits_min; 67 extern const int mmap_rnd_compat_bits_max; 68 extern int mmap_rnd_compat_bits __read_mostly; 69 #endif 70 71 #include <asm/page.h> 72 #include <asm/pgtable.h> 73 #include <asm/processor.h> 74 75 #ifndef __pa_symbol 76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 77 #endif 78 79 #ifndef page_to_virt 80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 81 #endif 82 83 #ifndef lm_alias 84 #define lm_alias(x) __va(__pa_symbol(x)) 85 #endif 86 87 /* 88 * To prevent common memory management code establishing 89 * a zero page mapping on a read fault. 90 * This macro should be defined within <asm/pgtable.h>. 91 * s390 does this to prevent multiplexing of hardware bits 92 * related to the physical page in case of virtualization. 93 */ 94 #ifndef mm_forbids_zeropage 95 #define mm_forbids_zeropage(X) (0) 96 #endif 97 98 /* 99 * On some architectures it is expensive to call memset() for small sizes. 100 * Those architectures should provide their own implementation of "struct page" 101 * zeroing by defining this macro in <asm/pgtable.h>. 102 */ 103 #ifndef mm_zero_struct_page 104 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 105 #endif 106 107 /* 108 * Default maximum number of active map areas, this limits the number of vmas 109 * per mm struct. Users can overwrite this number by sysctl but there is a 110 * problem. 111 * 112 * When a program's coredump is generated as ELF format, a section is created 113 * per a vma. In ELF, the number of sections is represented in unsigned short. 114 * This means the number of sections should be smaller than 65535 at coredump. 115 * Because the kernel adds some informative sections to a image of program at 116 * generating coredump, we need some margin. The number of extra sections is 117 * 1-3 now and depends on arch. We use "5" as safe margin, here. 118 * 119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 120 * not a hard limit any more. Although some userspace tools can be surprised by 121 * that. 122 */ 123 #define MAPCOUNT_ELF_CORE_MARGIN (5) 124 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 125 126 extern int sysctl_max_map_count; 127 128 extern unsigned long sysctl_user_reserve_kbytes; 129 extern unsigned long sysctl_admin_reserve_kbytes; 130 131 extern int sysctl_overcommit_memory; 132 extern int sysctl_overcommit_ratio; 133 extern unsigned long sysctl_overcommit_kbytes; 134 135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 136 size_t *, loff_t *); 137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 138 size_t *, loff_t *); 139 140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 141 142 /* to align the pointer to the (next) page boundary */ 143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 144 145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 146 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 147 148 /* 149 * Linux kernel virtual memory manager primitives. 150 * The idea being to have a "virtual" mm in the same way 151 * we have a virtual fs - giving a cleaner interface to the 152 * mm details, and allowing different kinds of memory mappings 153 * (from shared memory to executable loading to arbitrary 154 * mmap() functions). 155 */ 156 157 extern struct kmem_cache *vm_area_cachep; 158 159 #ifndef CONFIG_MMU 160 extern struct rb_root nommu_region_tree; 161 extern struct rw_semaphore nommu_region_sem; 162 163 extern unsigned int kobjsize(const void *objp); 164 #endif 165 166 /* 167 * vm_flags in vm_area_struct, see mm_types.h. 168 * When changing, update also include/trace/events/mmflags.h 169 */ 170 #define VM_NONE 0x00000000 171 172 #define VM_READ 0x00000001 /* currently active flags */ 173 #define VM_WRITE 0x00000002 174 #define VM_EXEC 0x00000004 175 #define VM_SHARED 0x00000008 176 177 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 178 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 179 #define VM_MAYWRITE 0x00000020 180 #define VM_MAYEXEC 0x00000040 181 #define VM_MAYSHARE 0x00000080 182 183 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 184 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 185 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 186 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 187 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 188 189 #define VM_LOCKED 0x00002000 190 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 191 192 /* Used by sys_madvise() */ 193 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 194 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 195 196 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 197 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 198 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 199 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 200 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 201 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 202 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 203 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 204 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 205 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 206 207 #ifdef CONFIG_MEM_SOFT_DIRTY 208 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 209 #else 210 # define VM_SOFTDIRTY 0 211 #endif 212 213 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 214 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 215 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 216 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 217 218 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 219 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 220 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 221 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 222 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 223 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 224 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 225 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 226 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 227 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 228 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 229 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 230 231 #if defined(CONFIG_X86) 232 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 233 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 234 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 235 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 236 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 237 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 238 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 239 #endif 240 #elif defined(CONFIG_PPC) 241 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 242 #elif defined(CONFIG_PARISC) 243 # define VM_GROWSUP VM_ARCH_1 244 #elif defined(CONFIG_METAG) 245 # define VM_GROWSUP VM_ARCH_1 246 #elif defined(CONFIG_IA64) 247 # define VM_GROWSUP VM_ARCH_1 248 #elif !defined(CONFIG_MMU) 249 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 250 #endif 251 252 #if defined(CONFIG_X86_INTEL_MPX) 253 /* MPX specific bounds table or bounds directory */ 254 # define VM_MPX VM_HIGH_ARCH_4 255 #else 256 # define VM_MPX VM_NONE 257 #endif 258 259 #ifndef VM_GROWSUP 260 # define VM_GROWSUP VM_NONE 261 #endif 262 263 /* Bits set in the VMA until the stack is in its final location */ 264 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 265 266 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 267 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 268 #endif 269 270 #ifdef CONFIG_STACK_GROWSUP 271 #define VM_STACK VM_GROWSUP 272 #else 273 #define VM_STACK VM_GROWSDOWN 274 #endif 275 276 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 277 278 /* 279 * Special vmas that are non-mergable, non-mlock()able. 280 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 281 */ 282 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 283 284 /* This mask defines which mm->def_flags a process can inherit its parent */ 285 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 286 287 /* This mask is used to clear all the VMA flags used by mlock */ 288 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 289 290 /* 291 * mapping from the currently active vm_flags protection bits (the 292 * low four bits) to a page protection mask.. 293 */ 294 extern pgprot_t protection_map[16]; 295 296 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 297 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 298 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 299 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 300 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 301 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 302 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 303 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 304 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 305 306 #define FAULT_FLAG_TRACE \ 307 { FAULT_FLAG_WRITE, "WRITE" }, \ 308 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 309 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 310 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 311 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 312 { FAULT_FLAG_TRIED, "TRIED" }, \ 313 { FAULT_FLAG_USER, "USER" }, \ 314 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 315 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 316 317 /* 318 * vm_fault is filled by the the pagefault handler and passed to the vma's 319 * ->fault function. The vma's ->fault is responsible for returning a bitmask 320 * of VM_FAULT_xxx flags that give details about how the fault was handled. 321 * 322 * MM layer fills up gfp_mask for page allocations but fault handler might 323 * alter it if its implementation requires a different allocation context. 324 * 325 * pgoff should be used in favour of virtual_address, if possible. 326 */ 327 struct vm_fault { 328 struct vm_area_struct *vma; /* Target VMA */ 329 unsigned int flags; /* FAULT_FLAG_xxx flags */ 330 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 331 pgoff_t pgoff; /* Logical page offset based on vma */ 332 unsigned long address; /* Faulting virtual address */ 333 pmd_t *pmd; /* Pointer to pmd entry matching 334 * the 'address' */ 335 pud_t *pud; /* Pointer to pud entry matching 336 * the 'address' 337 */ 338 pte_t orig_pte; /* Value of PTE at the time of fault */ 339 340 struct page *cow_page; /* Page handler may use for COW fault */ 341 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 342 struct page *page; /* ->fault handlers should return a 343 * page here, unless VM_FAULT_NOPAGE 344 * is set (which is also implied by 345 * VM_FAULT_ERROR). 346 */ 347 /* These three entries are valid only while holding ptl lock */ 348 pte_t *pte; /* Pointer to pte entry matching 349 * the 'address'. NULL if the page 350 * table hasn't been allocated. 351 */ 352 spinlock_t *ptl; /* Page table lock. 353 * Protects pte page table if 'pte' 354 * is not NULL, otherwise pmd. 355 */ 356 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 357 * vm_ops->map_pages() calls 358 * alloc_set_pte() from atomic context. 359 * do_fault_around() pre-allocates 360 * page table to avoid allocation from 361 * atomic context. 362 */ 363 }; 364 365 /* page entry size for vm->huge_fault() */ 366 enum page_entry_size { 367 PE_SIZE_PTE = 0, 368 PE_SIZE_PMD, 369 PE_SIZE_PUD, 370 }; 371 372 /* 373 * These are the virtual MM functions - opening of an area, closing and 374 * unmapping it (needed to keep files on disk up-to-date etc), pointer 375 * to the functions called when a no-page or a wp-page exception occurs. 376 */ 377 struct vm_operations_struct { 378 void (*open)(struct vm_area_struct * area); 379 void (*close)(struct vm_area_struct * area); 380 int (*mremap)(struct vm_area_struct * area); 381 int (*fault)(struct vm_fault *vmf); 382 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 383 void (*map_pages)(struct vm_fault *vmf, 384 pgoff_t start_pgoff, pgoff_t end_pgoff); 385 386 /* notification that a previously read-only page is about to become 387 * writable, if an error is returned it will cause a SIGBUS */ 388 int (*page_mkwrite)(struct vm_fault *vmf); 389 390 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 391 int (*pfn_mkwrite)(struct vm_fault *vmf); 392 393 /* called by access_process_vm when get_user_pages() fails, typically 394 * for use by special VMAs that can switch between memory and hardware 395 */ 396 int (*access)(struct vm_area_struct *vma, unsigned long addr, 397 void *buf, int len, int write); 398 399 /* Called by the /proc/PID/maps code to ask the vma whether it 400 * has a special name. Returning non-NULL will also cause this 401 * vma to be dumped unconditionally. */ 402 const char *(*name)(struct vm_area_struct *vma); 403 404 #ifdef CONFIG_NUMA 405 /* 406 * set_policy() op must add a reference to any non-NULL @new mempolicy 407 * to hold the policy upon return. Caller should pass NULL @new to 408 * remove a policy and fall back to surrounding context--i.e. do not 409 * install a MPOL_DEFAULT policy, nor the task or system default 410 * mempolicy. 411 */ 412 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 413 414 /* 415 * get_policy() op must add reference [mpol_get()] to any policy at 416 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 417 * in mm/mempolicy.c will do this automatically. 418 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 419 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 420 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 421 * must return NULL--i.e., do not "fallback" to task or system default 422 * policy. 423 */ 424 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 425 unsigned long addr); 426 #endif 427 /* 428 * Called by vm_normal_page() for special PTEs to find the 429 * page for @addr. This is useful if the default behavior 430 * (using pte_page()) would not find the correct page. 431 */ 432 struct page *(*find_special_page)(struct vm_area_struct *vma, 433 unsigned long addr); 434 }; 435 436 struct mmu_gather; 437 struct inode; 438 439 #define page_private(page) ((page)->private) 440 #define set_page_private(page, v) ((page)->private = (v)) 441 442 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 443 static inline int pmd_devmap(pmd_t pmd) 444 { 445 return 0; 446 } 447 static inline int pud_devmap(pud_t pud) 448 { 449 return 0; 450 } 451 static inline int pgd_devmap(pgd_t pgd) 452 { 453 return 0; 454 } 455 #endif 456 457 /* 458 * FIXME: take this include out, include page-flags.h in 459 * files which need it (119 of them) 460 */ 461 #include <linux/page-flags.h> 462 #include <linux/huge_mm.h> 463 464 /* 465 * Methods to modify the page usage count. 466 * 467 * What counts for a page usage: 468 * - cache mapping (page->mapping) 469 * - private data (page->private) 470 * - page mapped in a task's page tables, each mapping 471 * is counted separately 472 * 473 * Also, many kernel routines increase the page count before a critical 474 * routine so they can be sure the page doesn't go away from under them. 475 */ 476 477 /* 478 * Drop a ref, return true if the refcount fell to zero (the page has no users) 479 */ 480 static inline int put_page_testzero(struct page *page) 481 { 482 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 483 return page_ref_dec_and_test(page); 484 } 485 486 /* 487 * Try to grab a ref unless the page has a refcount of zero, return false if 488 * that is the case. 489 * This can be called when MMU is off so it must not access 490 * any of the virtual mappings. 491 */ 492 static inline int get_page_unless_zero(struct page *page) 493 { 494 return page_ref_add_unless(page, 1, 0); 495 } 496 497 extern int page_is_ram(unsigned long pfn); 498 499 enum { 500 REGION_INTERSECTS, 501 REGION_DISJOINT, 502 REGION_MIXED, 503 }; 504 505 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 506 unsigned long desc); 507 508 /* Support for virtually mapped pages */ 509 struct page *vmalloc_to_page(const void *addr); 510 unsigned long vmalloc_to_pfn(const void *addr); 511 512 /* 513 * Determine if an address is within the vmalloc range 514 * 515 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 516 * is no special casing required. 517 */ 518 static inline bool is_vmalloc_addr(const void *x) 519 { 520 #ifdef CONFIG_MMU 521 unsigned long addr = (unsigned long)x; 522 523 return addr >= VMALLOC_START && addr < VMALLOC_END; 524 #else 525 return false; 526 #endif 527 } 528 #ifdef CONFIG_MMU 529 extern int is_vmalloc_or_module_addr(const void *x); 530 #else 531 static inline int is_vmalloc_or_module_addr(const void *x) 532 { 533 return 0; 534 } 535 #endif 536 537 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 538 static inline void *kvmalloc(size_t size, gfp_t flags) 539 { 540 return kvmalloc_node(size, flags, NUMA_NO_NODE); 541 } 542 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 543 { 544 return kvmalloc_node(size, flags | __GFP_ZERO, node); 545 } 546 static inline void *kvzalloc(size_t size, gfp_t flags) 547 { 548 return kvmalloc(size, flags | __GFP_ZERO); 549 } 550 551 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 552 { 553 if (size != 0 && n > SIZE_MAX / size) 554 return NULL; 555 556 return kvmalloc(n * size, flags); 557 } 558 559 extern void kvfree(const void *addr); 560 561 static inline atomic_t *compound_mapcount_ptr(struct page *page) 562 { 563 return &page[1].compound_mapcount; 564 } 565 566 static inline int compound_mapcount(struct page *page) 567 { 568 VM_BUG_ON_PAGE(!PageCompound(page), page); 569 page = compound_head(page); 570 return atomic_read(compound_mapcount_ptr(page)) + 1; 571 } 572 573 /* 574 * The atomic page->_mapcount, starts from -1: so that transitions 575 * both from it and to it can be tracked, using atomic_inc_and_test 576 * and atomic_add_negative(-1). 577 */ 578 static inline void page_mapcount_reset(struct page *page) 579 { 580 atomic_set(&(page)->_mapcount, -1); 581 } 582 583 int __page_mapcount(struct page *page); 584 585 static inline int page_mapcount(struct page *page) 586 { 587 VM_BUG_ON_PAGE(PageSlab(page), page); 588 589 if (unlikely(PageCompound(page))) 590 return __page_mapcount(page); 591 return atomic_read(&page->_mapcount) + 1; 592 } 593 594 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 595 int total_mapcount(struct page *page); 596 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 597 #else 598 static inline int total_mapcount(struct page *page) 599 { 600 return page_mapcount(page); 601 } 602 static inline int page_trans_huge_mapcount(struct page *page, 603 int *total_mapcount) 604 { 605 int mapcount = page_mapcount(page); 606 if (total_mapcount) 607 *total_mapcount = mapcount; 608 return mapcount; 609 } 610 #endif 611 612 static inline struct page *virt_to_head_page(const void *x) 613 { 614 struct page *page = virt_to_page(x); 615 616 return compound_head(page); 617 } 618 619 void __put_page(struct page *page); 620 621 void put_pages_list(struct list_head *pages); 622 623 void split_page(struct page *page, unsigned int order); 624 625 /* 626 * Compound pages have a destructor function. Provide a 627 * prototype for that function and accessor functions. 628 * These are _only_ valid on the head of a compound page. 629 */ 630 typedef void compound_page_dtor(struct page *); 631 632 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 633 enum compound_dtor_id { 634 NULL_COMPOUND_DTOR, 635 COMPOUND_PAGE_DTOR, 636 #ifdef CONFIG_HUGETLB_PAGE 637 HUGETLB_PAGE_DTOR, 638 #endif 639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 640 TRANSHUGE_PAGE_DTOR, 641 #endif 642 NR_COMPOUND_DTORS, 643 }; 644 extern compound_page_dtor * const compound_page_dtors[]; 645 646 static inline void set_compound_page_dtor(struct page *page, 647 enum compound_dtor_id compound_dtor) 648 { 649 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 650 page[1].compound_dtor = compound_dtor; 651 } 652 653 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 654 { 655 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 656 return compound_page_dtors[page[1].compound_dtor]; 657 } 658 659 static inline unsigned int compound_order(struct page *page) 660 { 661 if (!PageHead(page)) 662 return 0; 663 return page[1].compound_order; 664 } 665 666 static inline void set_compound_order(struct page *page, unsigned int order) 667 { 668 page[1].compound_order = order; 669 } 670 671 void free_compound_page(struct page *page); 672 673 #ifdef CONFIG_MMU 674 /* 675 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 676 * servicing faults for write access. In the normal case, do always want 677 * pte_mkwrite. But get_user_pages can cause write faults for mappings 678 * that do not have writing enabled, when used by access_process_vm. 679 */ 680 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 681 { 682 if (likely(vma->vm_flags & VM_WRITE)) 683 pte = pte_mkwrite(pte); 684 return pte; 685 } 686 687 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 688 struct page *page); 689 int finish_fault(struct vm_fault *vmf); 690 int finish_mkwrite_fault(struct vm_fault *vmf); 691 #endif 692 693 /* 694 * Multiple processes may "see" the same page. E.g. for untouched 695 * mappings of /dev/null, all processes see the same page full of 696 * zeroes, and text pages of executables and shared libraries have 697 * only one copy in memory, at most, normally. 698 * 699 * For the non-reserved pages, page_count(page) denotes a reference count. 700 * page_count() == 0 means the page is free. page->lru is then used for 701 * freelist management in the buddy allocator. 702 * page_count() > 0 means the page has been allocated. 703 * 704 * Pages are allocated by the slab allocator in order to provide memory 705 * to kmalloc and kmem_cache_alloc. In this case, the management of the 706 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 707 * unless a particular usage is carefully commented. (the responsibility of 708 * freeing the kmalloc memory is the caller's, of course). 709 * 710 * A page may be used by anyone else who does a __get_free_page(). 711 * In this case, page_count still tracks the references, and should only 712 * be used through the normal accessor functions. The top bits of page->flags 713 * and page->virtual store page management information, but all other fields 714 * are unused and could be used privately, carefully. The management of this 715 * page is the responsibility of the one who allocated it, and those who have 716 * subsequently been given references to it. 717 * 718 * The other pages (we may call them "pagecache pages") are completely 719 * managed by the Linux memory manager: I/O, buffers, swapping etc. 720 * The following discussion applies only to them. 721 * 722 * A pagecache page contains an opaque `private' member, which belongs to the 723 * page's address_space. Usually, this is the address of a circular list of 724 * the page's disk buffers. PG_private must be set to tell the VM to call 725 * into the filesystem to release these pages. 726 * 727 * A page may belong to an inode's memory mapping. In this case, page->mapping 728 * is the pointer to the inode, and page->index is the file offset of the page, 729 * in units of PAGE_SIZE. 730 * 731 * If pagecache pages are not associated with an inode, they are said to be 732 * anonymous pages. These may become associated with the swapcache, and in that 733 * case PG_swapcache is set, and page->private is an offset into the swapcache. 734 * 735 * In either case (swapcache or inode backed), the pagecache itself holds one 736 * reference to the page. Setting PG_private should also increment the 737 * refcount. The each user mapping also has a reference to the page. 738 * 739 * The pagecache pages are stored in a per-mapping radix tree, which is 740 * rooted at mapping->page_tree, and indexed by offset. 741 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 742 * lists, we instead now tag pages as dirty/writeback in the radix tree. 743 * 744 * All pagecache pages may be subject to I/O: 745 * - inode pages may need to be read from disk, 746 * - inode pages which have been modified and are MAP_SHARED may need 747 * to be written back to the inode on disk, 748 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 749 * modified may need to be swapped out to swap space and (later) to be read 750 * back into memory. 751 */ 752 753 /* 754 * The zone field is never updated after free_area_init_core() 755 * sets it, so none of the operations on it need to be atomic. 756 */ 757 758 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 759 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 760 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 761 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 762 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 763 764 /* 765 * Define the bit shifts to access each section. For non-existent 766 * sections we define the shift as 0; that plus a 0 mask ensures 767 * the compiler will optimise away reference to them. 768 */ 769 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 770 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 771 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 772 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 773 774 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 775 #ifdef NODE_NOT_IN_PAGE_FLAGS 776 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 777 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 778 SECTIONS_PGOFF : ZONES_PGOFF) 779 #else 780 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 781 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 782 NODES_PGOFF : ZONES_PGOFF) 783 #endif 784 785 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 786 787 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 788 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 789 #endif 790 791 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 792 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 793 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 794 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 795 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 796 797 static inline enum zone_type page_zonenum(const struct page *page) 798 { 799 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 800 } 801 802 #ifdef CONFIG_ZONE_DEVICE 803 static inline bool is_zone_device_page(const struct page *page) 804 { 805 return page_zonenum(page) == ZONE_DEVICE; 806 } 807 #else 808 static inline bool is_zone_device_page(const struct page *page) 809 { 810 return false; 811 } 812 #endif 813 814 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC) 815 void put_zone_device_private_or_public_page(struct page *page); 816 DECLARE_STATIC_KEY_FALSE(device_private_key); 817 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key) 818 static inline bool is_device_private_page(const struct page *page); 819 static inline bool is_device_public_page(const struct page *page); 820 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 821 static inline void put_zone_device_private_or_public_page(struct page *page) 822 { 823 } 824 #define IS_HMM_ENABLED 0 825 static inline bool is_device_private_page(const struct page *page) 826 { 827 return false; 828 } 829 static inline bool is_device_public_page(const struct page *page) 830 { 831 return false; 832 } 833 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 834 835 836 static inline void get_page(struct page *page) 837 { 838 page = compound_head(page); 839 /* 840 * Getting a normal page or the head of a compound page 841 * requires to already have an elevated page->_refcount. 842 */ 843 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 844 page_ref_inc(page); 845 } 846 847 static inline void put_page(struct page *page) 848 { 849 page = compound_head(page); 850 851 /* 852 * For private device pages we need to catch refcount transition from 853 * 2 to 1, when refcount reach one it means the private device page is 854 * free and we need to inform the device driver through callback. See 855 * include/linux/memremap.h and HMM for details. 856 */ 857 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) || 858 unlikely(is_device_public_page(page)))) { 859 put_zone_device_private_or_public_page(page); 860 return; 861 } 862 863 if (put_page_testzero(page)) 864 __put_page(page); 865 } 866 867 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 868 #define SECTION_IN_PAGE_FLAGS 869 #endif 870 871 /* 872 * The identification function is mainly used by the buddy allocator for 873 * determining if two pages could be buddies. We are not really identifying 874 * the zone since we could be using the section number id if we do not have 875 * node id available in page flags. 876 * We only guarantee that it will return the same value for two combinable 877 * pages in a zone. 878 */ 879 static inline int page_zone_id(struct page *page) 880 { 881 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 882 } 883 884 static inline int zone_to_nid(struct zone *zone) 885 { 886 #ifdef CONFIG_NUMA 887 return zone->node; 888 #else 889 return 0; 890 #endif 891 } 892 893 #ifdef NODE_NOT_IN_PAGE_FLAGS 894 extern int page_to_nid(const struct page *page); 895 #else 896 static inline int page_to_nid(const struct page *page) 897 { 898 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 899 } 900 #endif 901 902 #ifdef CONFIG_NUMA_BALANCING 903 static inline int cpu_pid_to_cpupid(int cpu, int pid) 904 { 905 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 906 } 907 908 static inline int cpupid_to_pid(int cpupid) 909 { 910 return cpupid & LAST__PID_MASK; 911 } 912 913 static inline int cpupid_to_cpu(int cpupid) 914 { 915 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 916 } 917 918 static inline int cpupid_to_nid(int cpupid) 919 { 920 return cpu_to_node(cpupid_to_cpu(cpupid)); 921 } 922 923 static inline bool cpupid_pid_unset(int cpupid) 924 { 925 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 926 } 927 928 static inline bool cpupid_cpu_unset(int cpupid) 929 { 930 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 931 } 932 933 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 934 { 935 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 936 } 937 938 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 939 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 940 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 941 { 942 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 943 } 944 945 static inline int page_cpupid_last(struct page *page) 946 { 947 return page->_last_cpupid; 948 } 949 static inline void page_cpupid_reset_last(struct page *page) 950 { 951 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 952 } 953 #else 954 static inline int page_cpupid_last(struct page *page) 955 { 956 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 957 } 958 959 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 960 961 static inline void page_cpupid_reset_last(struct page *page) 962 { 963 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 964 } 965 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 966 #else /* !CONFIG_NUMA_BALANCING */ 967 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 968 { 969 return page_to_nid(page); /* XXX */ 970 } 971 972 static inline int page_cpupid_last(struct page *page) 973 { 974 return page_to_nid(page); /* XXX */ 975 } 976 977 static inline int cpupid_to_nid(int cpupid) 978 { 979 return -1; 980 } 981 982 static inline int cpupid_to_pid(int cpupid) 983 { 984 return -1; 985 } 986 987 static inline int cpupid_to_cpu(int cpupid) 988 { 989 return -1; 990 } 991 992 static inline int cpu_pid_to_cpupid(int nid, int pid) 993 { 994 return -1; 995 } 996 997 static inline bool cpupid_pid_unset(int cpupid) 998 { 999 return 1; 1000 } 1001 1002 static inline void page_cpupid_reset_last(struct page *page) 1003 { 1004 } 1005 1006 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1007 { 1008 return false; 1009 } 1010 #endif /* CONFIG_NUMA_BALANCING */ 1011 1012 static inline struct zone *page_zone(const struct page *page) 1013 { 1014 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1015 } 1016 1017 static inline pg_data_t *page_pgdat(const struct page *page) 1018 { 1019 return NODE_DATA(page_to_nid(page)); 1020 } 1021 1022 #ifdef SECTION_IN_PAGE_FLAGS 1023 static inline void set_page_section(struct page *page, unsigned long section) 1024 { 1025 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1026 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1027 } 1028 1029 static inline unsigned long page_to_section(const struct page *page) 1030 { 1031 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1032 } 1033 #endif 1034 1035 static inline void set_page_zone(struct page *page, enum zone_type zone) 1036 { 1037 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1038 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1039 } 1040 1041 static inline void set_page_node(struct page *page, unsigned long node) 1042 { 1043 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1044 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1045 } 1046 1047 static inline void set_page_links(struct page *page, enum zone_type zone, 1048 unsigned long node, unsigned long pfn) 1049 { 1050 set_page_zone(page, zone); 1051 set_page_node(page, node); 1052 #ifdef SECTION_IN_PAGE_FLAGS 1053 set_page_section(page, pfn_to_section_nr(pfn)); 1054 #endif 1055 } 1056 1057 #ifdef CONFIG_MEMCG 1058 static inline struct mem_cgroup *page_memcg(struct page *page) 1059 { 1060 return page->mem_cgroup; 1061 } 1062 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1063 { 1064 WARN_ON_ONCE(!rcu_read_lock_held()); 1065 return READ_ONCE(page->mem_cgroup); 1066 } 1067 #else 1068 static inline struct mem_cgroup *page_memcg(struct page *page) 1069 { 1070 return NULL; 1071 } 1072 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1073 { 1074 WARN_ON_ONCE(!rcu_read_lock_held()); 1075 return NULL; 1076 } 1077 #endif 1078 1079 /* 1080 * Some inline functions in vmstat.h depend on page_zone() 1081 */ 1082 #include <linux/vmstat.h> 1083 1084 static __always_inline void *lowmem_page_address(const struct page *page) 1085 { 1086 return page_to_virt(page); 1087 } 1088 1089 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1090 #define HASHED_PAGE_VIRTUAL 1091 #endif 1092 1093 #if defined(WANT_PAGE_VIRTUAL) 1094 static inline void *page_address(const struct page *page) 1095 { 1096 return page->virtual; 1097 } 1098 static inline void set_page_address(struct page *page, void *address) 1099 { 1100 page->virtual = address; 1101 } 1102 #define page_address_init() do { } while(0) 1103 #endif 1104 1105 #if defined(HASHED_PAGE_VIRTUAL) 1106 void *page_address(const struct page *page); 1107 void set_page_address(struct page *page, void *virtual); 1108 void page_address_init(void); 1109 #endif 1110 1111 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1112 #define page_address(page) lowmem_page_address(page) 1113 #define set_page_address(page, address) do { } while(0) 1114 #define page_address_init() do { } while(0) 1115 #endif 1116 1117 extern void *page_rmapping(struct page *page); 1118 extern struct anon_vma *page_anon_vma(struct page *page); 1119 extern struct address_space *page_mapping(struct page *page); 1120 1121 extern struct address_space *__page_file_mapping(struct page *); 1122 1123 static inline 1124 struct address_space *page_file_mapping(struct page *page) 1125 { 1126 if (unlikely(PageSwapCache(page))) 1127 return __page_file_mapping(page); 1128 1129 return page->mapping; 1130 } 1131 1132 extern pgoff_t __page_file_index(struct page *page); 1133 1134 /* 1135 * Return the pagecache index of the passed page. Regular pagecache pages 1136 * use ->index whereas swapcache pages use swp_offset(->private) 1137 */ 1138 static inline pgoff_t page_index(struct page *page) 1139 { 1140 if (unlikely(PageSwapCache(page))) 1141 return __page_file_index(page); 1142 return page->index; 1143 } 1144 1145 bool page_mapped(struct page *page); 1146 struct address_space *page_mapping(struct page *page); 1147 1148 /* 1149 * Return true only if the page has been allocated with 1150 * ALLOC_NO_WATERMARKS and the low watermark was not 1151 * met implying that the system is under some pressure. 1152 */ 1153 static inline bool page_is_pfmemalloc(struct page *page) 1154 { 1155 /* 1156 * Page index cannot be this large so this must be 1157 * a pfmemalloc page. 1158 */ 1159 return page->index == -1UL; 1160 } 1161 1162 /* 1163 * Only to be called by the page allocator on a freshly allocated 1164 * page. 1165 */ 1166 static inline void set_page_pfmemalloc(struct page *page) 1167 { 1168 page->index = -1UL; 1169 } 1170 1171 static inline void clear_page_pfmemalloc(struct page *page) 1172 { 1173 page->index = 0; 1174 } 1175 1176 /* 1177 * Different kinds of faults, as returned by handle_mm_fault(). 1178 * Used to decide whether a process gets delivered SIGBUS or 1179 * just gets major/minor fault counters bumped up. 1180 */ 1181 1182 #define VM_FAULT_OOM 0x0001 1183 #define VM_FAULT_SIGBUS 0x0002 1184 #define VM_FAULT_MAJOR 0x0004 1185 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1186 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1187 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1188 #define VM_FAULT_SIGSEGV 0x0040 1189 1190 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1191 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1192 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1193 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1194 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1195 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1196 * and needs fsync() to complete (for 1197 * synchronous page faults in DAX) */ 1198 1199 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1200 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1201 VM_FAULT_FALLBACK) 1202 1203 #define VM_FAULT_RESULT_TRACE \ 1204 { VM_FAULT_OOM, "OOM" }, \ 1205 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1206 { VM_FAULT_MAJOR, "MAJOR" }, \ 1207 { VM_FAULT_WRITE, "WRITE" }, \ 1208 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1209 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1210 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1211 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1212 { VM_FAULT_LOCKED, "LOCKED" }, \ 1213 { VM_FAULT_RETRY, "RETRY" }, \ 1214 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1215 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1216 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1217 1218 /* Encode hstate index for a hwpoisoned large page */ 1219 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1220 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1221 1222 /* 1223 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1224 */ 1225 extern void pagefault_out_of_memory(void); 1226 1227 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1228 1229 /* 1230 * Flags passed to show_mem() and show_free_areas() to suppress output in 1231 * various contexts. 1232 */ 1233 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1234 1235 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1236 1237 extern bool can_do_mlock(void); 1238 extern int user_shm_lock(size_t, struct user_struct *); 1239 extern void user_shm_unlock(size_t, struct user_struct *); 1240 1241 /* 1242 * Parameter block passed down to zap_pte_range in exceptional cases. 1243 */ 1244 struct zap_details { 1245 struct address_space *check_mapping; /* Check page->mapping if set */ 1246 pgoff_t first_index; /* Lowest page->index to unmap */ 1247 pgoff_t last_index; /* Highest page->index to unmap */ 1248 }; 1249 1250 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1251 pte_t pte, bool with_public_device); 1252 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1253 1254 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1255 pmd_t pmd); 1256 1257 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1258 unsigned long size); 1259 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1260 unsigned long size); 1261 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1262 unsigned long start, unsigned long end); 1263 1264 /** 1265 * mm_walk - callbacks for walk_page_range 1266 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1267 * this handler should only handle pud_trans_huge() puds. 1268 * the pmd_entry or pte_entry callbacks will be used for 1269 * regular PUDs. 1270 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1271 * this handler is required to be able to handle 1272 * pmd_trans_huge() pmds. They may simply choose to 1273 * split_huge_page() instead of handling it explicitly. 1274 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1275 * @pte_hole: if set, called for each hole at all levels 1276 * @hugetlb_entry: if set, called for each hugetlb entry 1277 * @test_walk: caller specific callback function to determine whether 1278 * we walk over the current vma or not. Returning 0 1279 * value means "do page table walk over the current vma," 1280 * and a negative one means "abort current page table walk 1281 * right now." 1 means "skip the current vma." 1282 * @mm: mm_struct representing the target process of page table walk 1283 * @vma: vma currently walked (NULL if walking outside vmas) 1284 * @private: private data for callbacks' usage 1285 * 1286 * (see the comment on walk_page_range() for more details) 1287 */ 1288 struct mm_walk { 1289 int (*pud_entry)(pud_t *pud, unsigned long addr, 1290 unsigned long next, struct mm_walk *walk); 1291 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1292 unsigned long next, struct mm_walk *walk); 1293 int (*pte_entry)(pte_t *pte, unsigned long addr, 1294 unsigned long next, struct mm_walk *walk); 1295 int (*pte_hole)(unsigned long addr, unsigned long next, 1296 struct mm_walk *walk); 1297 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1298 unsigned long addr, unsigned long next, 1299 struct mm_walk *walk); 1300 int (*test_walk)(unsigned long addr, unsigned long next, 1301 struct mm_walk *walk); 1302 struct mm_struct *mm; 1303 struct vm_area_struct *vma; 1304 void *private; 1305 }; 1306 1307 int walk_page_range(unsigned long addr, unsigned long end, 1308 struct mm_walk *walk); 1309 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1310 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1311 unsigned long end, unsigned long floor, unsigned long ceiling); 1312 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1313 struct vm_area_struct *vma); 1314 void unmap_mapping_range(struct address_space *mapping, 1315 loff_t const holebegin, loff_t const holelen, int even_cows); 1316 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1317 unsigned long *start, unsigned long *end, 1318 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1319 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1320 unsigned long *pfn); 1321 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1322 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1323 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1324 void *buf, int len, int write); 1325 1326 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1327 loff_t const holebegin, loff_t const holelen) 1328 { 1329 unmap_mapping_range(mapping, holebegin, holelen, 0); 1330 } 1331 1332 extern void truncate_pagecache(struct inode *inode, loff_t new); 1333 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1334 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1335 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1336 int truncate_inode_page(struct address_space *mapping, struct page *page); 1337 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1338 int invalidate_inode_page(struct page *page); 1339 1340 #ifdef CONFIG_MMU 1341 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1342 unsigned int flags); 1343 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1344 unsigned long address, unsigned int fault_flags, 1345 bool *unlocked); 1346 #else 1347 static inline int handle_mm_fault(struct vm_area_struct *vma, 1348 unsigned long address, unsigned int flags) 1349 { 1350 /* should never happen if there's no MMU */ 1351 BUG(); 1352 return VM_FAULT_SIGBUS; 1353 } 1354 static inline int fixup_user_fault(struct task_struct *tsk, 1355 struct mm_struct *mm, unsigned long address, 1356 unsigned int fault_flags, bool *unlocked) 1357 { 1358 /* should never happen if there's no MMU */ 1359 BUG(); 1360 return -EFAULT; 1361 } 1362 #endif 1363 1364 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1365 unsigned int gup_flags); 1366 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1367 void *buf, int len, unsigned int gup_flags); 1368 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1369 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1370 1371 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1372 unsigned long start, unsigned long nr_pages, 1373 unsigned int gup_flags, struct page **pages, 1374 struct vm_area_struct **vmas, int *locked); 1375 long get_user_pages(unsigned long start, unsigned long nr_pages, 1376 unsigned int gup_flags, struct page **pages, 1377 struct vm_area_struct **vmas); 1378 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1379 unsigned int gup_flags, struct page **pages, int *locked); 1380 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1381 struct page **pages, unsigned int gup_flags); 1382 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1383 struct page **pages); 1384 1385 /* Container for pinned pfns / pages */ 1386 struct frame_vector { 1387 unsigned int nr_allocated; /* Number of frames we have space for */ 1388 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1389 bool got_ref; /* Did we pin pages by getting page ref? */ 1390 bool is_pfns; /* Does array contain pages or pfns? */ 1391 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1392 * pfns_vector_pages() or pfns_vector_pfns() 1393 * for access */ 1394 }; 1395 1396 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1397 void frame_vector_destroy(struct frame_vector *vec); 1398 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1399 unsigned int gup_flags, struct frame_vector *vec); 1400 void put_vaddr_frames(struct frame_vector *vec); 1401 int frame_vector_to_pages(struct frame_vector *vec); 1402 void frame_vector_to_pfns(struct frame_vector *vec); 1403 1404 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1405 { 1406 return vec->nr_frames; 1407 } 1408 1409 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1410 { 1411 if (vec->is_pfns) { 1412 int err = frame_vector_to_pages(vec); 1413 1414 if (err) 1415 return ERR_PTR(err); 1416 } 1417 return (struct page **)(vec->ptrs); 1418 } 1419 1420 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1421 { 1422 if (!vec->is_pfns) 1423 frame_vector_to_pfns(vec); 1424 return (unsigned long *)(vec->ptrs); 1425 } 1426 1427 struct kvec; 1428 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1429 struct page **pages); 1430 int get_kernel_page(unsigned long start, int write, struct page **pages); 1431 struct page *get_dump_page(unsigned long addr); 1432 1433 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1434 extern void do_invalidatepage(struct page *page, unsigned int offset, 1435 unsigned int length); 1436 1437 int __set_page_dirty_nobuffers(struct page *page); 1438 int __set_page_dirty_no_writeback(struct page *page); 1439 int redirty_page_for_writepage(struct writeback_control *wbc, 1440 struct page *page); 1441 void account_page_dirtied(struct page *page, struct address_space *mapping); 1442 void account_page_cleaned(struct page *page, struct address_space *mapping, 1443 struct bdi_writeback *wb); 1444 int set_page_dirty(struct page *page); 1445 int set_page_dirty_lock(struct page *page); 1446 void __cancel_dirty_page(struct page *page); 1447 static inline void cancel_dirty_page(struct page *page) 1448 { 1449 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1450 if (PageDirty(page)) 1451 __cancel_dirty_page(page); 1452 } 1453 int clear_page_dirty_for_io(struct page *page); 1454 1455 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1456 1457 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1458 { 1459 return !vma->vm_ops; 1460 } 1461 1462 #ifdef CONFIG_SHMEM 1463 /* 1464 * The vma_is_shmem is not inline because it is used only by slow 1465 * paths in userfault. 1466 */ 1467 bool vma_is_shmem(struct vm_area_struct *vma); 1468 #else 1469 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1470 #endif 1471 1472 int vma_is_stack_for_current(struct vm_area_struct *vma); 1473 1474 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1475 unsigned long old_addr, struct vm_area_struct *new_vma, 1476 unsigned long new_addr, unsigned long len, 1477 bool need_rmap_locks); 1478 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1479 unsigned long end, pgprot_t newprot, 1480 int dirty_accountable, int prot_numa); 1481 extern int mprotect_fixup(struct vm_area_struct *vma, 1482 struct vm_area_struct **pprev, unsigned long start, 1483 unsigned long end, unsigned long newflags); 1484 1485 /* 1486 * doesn't attempt to fault and will return short. 1487 */ 1488 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1489 struct page **pages); 1490 /* 1491 * per-process(per-mm_struct) statistics. 1492 */ 1493 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1494 { 1495 long val = atomic_long_read(&mm->rss_stat.count[member]); 1496 1497 #ifdef SPLIT_RSS_COUNTING 1498 /* 1499 * counter is updated in asynchronous manner and may go to minus. 1500 * But it's never be expected number for users. 1501 */ 1502 if (val < 0) 1503 val = 0; 1504 #endif 1505 return (unsigned long)val; 1506 } 1507 1508 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1509 { 1510 atomic_long_add(value, &mm->rss_stat.count[member]); 1511 } 1512 1513 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1514 { 1515 atomic_long_inc(&mm->rss_stat.count[member]); 1516 } 1517 1518 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1519 { 1520 atomic_long_dec(&mm->rss_stat.count[member]); 1521 } 1522 1523 /* Optimized variant when page is already known not to be PageAnon */ 1524 static inline int mm_counter_file(struct page *page) 1525 { 1526 if (PageSwapBacked(page)) 1527 return MM_SHMEMPAGES; 1528 return MM_FILEPAGES; 1529 } 1530 1531 static inline int mm_counter(struct page *page) 1532 { 1533 if (PageAnon(page)) 1534 return MM_ANONPAGES; 1535 return mm_counter_file(page); 1536 } 1537 1538 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1539 { 1540 return get_mm_counter(mm, MM_FILEPAGES) + 1541 get_mm_counter(mm, MM_ANONPAGES) + 1542 get_mm_counter(mm, MM_SHMEMPAGES); 1543 } 1544 1545 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1546 { 1547 return max(mm->hiwater_rss, get_mm_rss(mm)); 1548 } 1549 1550 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1551 { 1552 return max(mm->hiwater_vm, mm->total_vm); 1553 } 1554 1555 static inline void update_hiwater_rss(struct mm_struct *mm) 1556 { 1557 unsigned long _rss = get_mm_rss(mm); 1558 1559 if ((mm)->hiwater_rss < _rss) 1560 (mm)->hiwater_rss = _rss; 1561 } 1562 1563 static inline void update_hiwater_vm(struct mm_struct *mm) 1564 { 1565 if (mm->hiwater_vm < mm->total_vm) 1566 mm->hiwater_vm = mm->total_vm; 1567 } 1568 1569 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1570 { 1571 mm->hiwater_rss = get_mm_rss(mm); 1572 } 1573 1574 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1575 struct mm_struct *mm) 1576 { 1577 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1578 1579 if (*maxrss < hiwater_rss) 1580 *maxrss = hiwater_rss; 1581 } 1582 1583 #if defined(SPLIT_RSS_COUNTING) 1584 void sync_mm_rss(struct mm_struct *mm); 1585 #else 1586 static inline void sync_mm_rss(struct mm_struct *mm) 1587 { 1588 } 1589 #endif 1590 1591 #ifndef __HAVE_ARCH_PTE_DEVMAP 1592 static inline int pte_devmap(pte_t pte) 1593 { 1594 return 0; 1595 } 1596 #endif 1597 1598 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1599 1600 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1601 spinlock_t **ptl); 1602 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1603 spinlock_t **ptl) 1604 { 1605 pte_t *ptep; 1606 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1607 return ptep; 1608 } 1609 1610 #ifdef __PAGETABLE_P4D_FOLDED 1611 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1612 unsigned long address) 1613 { 1614 return 0; 1615 } 1616 #else 1617 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1618 #endif 1619 1620 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1621 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1622 unsigned long address) 1623 { 1624 return 0; 1625 } 1626 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1627 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1628 1629 #else 1630 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1631 1632 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1633 { 1634 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1635 } 1636 1637 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1638 { 1639 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1640 } 1641 #endif 1642 1643 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1644 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1645 unsigned long address) 1646 { 1647 return 0; 1648 } 1649 1650 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1651 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1652 1653 #else 1654 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1655 1656 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1657 { 1658 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1659 } 1660 1661 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1662 { 1663 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1664 } 1665 #endif 1666 1667 #ifdef CONFIG_MMU 1668 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1669 { 1670 atomic_long_set(&mm->pgtables_bytes, 0); 1671 } 1672 1673 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1674 { 1675 return atomic_long_read(&mm->pgtables_bytes); 1676 } 1677 1678 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1679 { 1680 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1681 } 1682 1683 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1684 { 1685 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1686 } 1687 #else 1688 1689 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1690 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1691 { 1692 return 0; 1693 } 1694 1695 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1696 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1697 #endif 1698 1699 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1700 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1701 1702 /* 1703 * The following ifdef needed to get the 4level-fixup.h header to work. 1704 * Remove it when 4level-fixup.h has been removed. 1705 */ 1706 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1707 1708 #ifndef __ARCH_HAS_5LEVEL_HACK 1709 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1710 unsigned long address) 1711 { 1712 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1713 NULL : p4d_offset(pgd, address); 1714 } 1715 1716 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1717 unsigned long address) 1718 { 1719 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1720 NULL : pud_offset(p4d, address); 1721 } 1722 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1723 1724 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1725 { 1726 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1727 NULL: pmd_offset(pud, address); 1728 } 1729 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1730 1731 #if USE_SPLIT_PTE_PTLOCKS 1732 #if ALLOC_SPLIT_PTLOCKS 1733 void __init ptlock_cache_init(void); 1734 extern bool ptlock_alloc(struct page *page); 1735 extern void ptlock_free(struct page *page); 1736 1737 static inline spinlock_t *ptlock_ptr(struct page *page) 1738 { 1739 return page->ptl; 1740 } 1741 #else /* ALLOC_SPLIT_PTLOCKS */ 1742 static inline void ptlock_cache_init(void) 1743 { 1744 } 1745 1746 static inline bool ptlock_alloc(struct page *page) 1747 { 1748 return true; 1749 } 1750 1751 static inline void ptlock_free(struct page *page) 1752 { 1753 } 1754 1755 static inline spinlock_t *ptlock_ptr(struct page *page) 1756 { 1757 return &page->ptl; 1758 } 1759 #endif /* ALLOC_SPLIT_PTLOCKS */ 1760 1761 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1762 { 1763 return ptlock_ptr(pmd_page(*pmd)); 1764 } 1765 1766 static inline bool ptlock_init(struct page *page) 1767 { 1768 /* 1769 * prep_new_page() initialize page->private (and therefore page->ptl) 1770 * with 0. Make sure nobody took it in use in between. 1771 * 1772 * It can happen if arch try to use slab for page table allocation: 1773 * slab code uses page->slab_cache, which share storage with page->ptl. 1774 */ 1775 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1776 if (!ptlock_alloc(page)) 1777 return false; 1778 spin_lock_init(ptlock_ptr(page)); 1779 return true; 1780 } 1781 1782 /* Reset page->mapping so free_pages_check won't complain. */ 1783 static inline void pte_lock_deinit(struct page *page) 1784 { 1785 page->mapping = NULL; 1786 ptlock_free(page); 1787 } 1788 1789 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1790 /* 1791 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1792 */ 1793 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1794 { 1795 return &mm->page_table_lock; 1796 } 1797 static inline void ptlock_cache_init(void) {} 1798 static inline bool ptlock_init(struct page *page) { return true; } 1799 static inline void pte_lock_deinit(struct page *page) {} 1800 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1801 1802 static inline void pgtable_init(void) 1803 { 1804 ptlock_cache_init(); 1805 pgtable_cache_init(); 1806 } 1807 1808 static inline bool pgtable_page_ctor(struct page *page) 1809 { 1810 if (!ptlock_init(page)) 1811 return false; 1812 inc_zone_page_state(page, NR_PAGETABLE); 1813 return true; 1814 } 1815 1816 static inline void pgtable_page_dtor(struct page *page) 1817 { 1818 pte_lock_deinit(page); 1819 dec_zone_page_state(page, NR_PAGETABLE); 1820 } 1821 1822 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1823 ({ \ 1824 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1825 pte_t *__pte = pte_offset_map(pmd, address); \ 1826 *(ptlp) = __ptl; \ 1827 spin_lock(__ptl); \ 1828 __pte; \ 1829 }) 1830 1831 #define pte_unmap_unlock(pte, ptl) do { \ 1832 spin_unlock(ptl); \ 1833 pte_unmap(pte); \ 1834 } while (0) 1835 1836 #define pte_alloc(mm, pmd, address) \ 1837 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1838 1839 #define pte_alloc_map(mm, pmd, address) \ 1840 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1841 1842 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1843 (pte_alloc(mm, pmd, address) ? \ 1844 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1845 1846 #define pte_alloc_kernel(pmd, address) \ 1847 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1848 NULL: pte_offset_kernel(pmd, address)) 1849 1850 #if USE_SPLIT_PMD_PTLOCKS 1851 1852 static struct page *pmd_to_page(pmd_t *pmd) 1853 { 1854 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1855 return virt_to_page((void *)((unsigned long) pmd & mask)); 1856 } 1857 1858 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1859 { 1860 return ptlock_ptr(pmd_to_page(pmd)); 1861 } 1862 1863 static inline bool pgtable_pmd_page_ctor(struct page *page) 1864 { 1865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1866 page->pmd_huge_pte = NULL; 1867 #endif 1868 return ptlock_init(page); 1869 } 1870 1871 static inline void pgtable_pmd_page_dtor(struct page *page) 1872 { 1873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1874 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1875 #endif 1876 ptlock_free(page); 1877 } 1878 1879 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1880 1881 #else 1882 1883 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1884 { 1885 return &mm->page_table_lock; 1886 } 1887 1888 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1889 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1890 1891 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1892 1893 #endif 1894 1895 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1896 { 1897 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1898 spin_lock(ptl); 1899 return ptl; 1900 } 1901 1902 /* 1903 * No scalability reason to split PUD locks yet, but follow the same pattern 1904 * as the PMD locks to make it easier if we decide to. The VM should not be 1905 * considered ready to switch to split PUD locks yet; there may be places 1906 * which need to be converted from page_table_lock. 1907 */ 1908 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1909 { 1910 return &mm->page_table_lock; 1911 } 1912 1913 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1914 { 1915 spinlock_t *ptl = pud_lockptr(mm, pud); 1916 1917 spin_lock(ptl); 1918 return ptl; 1919 } 1920 1921 extern void __init pagecache_init(void); 1922 extern void free_area_init(unsigned long * zones_size); 1923 extern void free_area_init_node(int nid, unsigned long * zones_size, 1924 unsigned long zone_start_pfn, unsigned long *zholes_size); 1925 extern void free_initmem(void); 1926 1927 /* 1928 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1929 * into the buddy system. The freed pages will be poisoned with pattern 1930 * "poison" if it's within range [0, UCHAR_MAX]. 1931 * Return pages freed into the buddy system. 1932 */ 1933 extern unsigned long free_reserved_area(void *start, void *end, 1934 int poison, char *s); 1935 1936 #ifdef CONFIG_HIGHMEM 1937 /* 1938 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1939 * and totalram_pages. 1940 */ 1941 extern void free_highmem_page(struct page *page); 1942 #endif 1943 1944 extern void adjust_managed_page_count(struct page *page, long count); 1945 extern void mem_init_print_info(const char *str); 1946 1947 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1948 1949 /* Free the reserved page into the buddy system, so it gets managed. */ 1950 static inline void __free_reserved_page(struct page *page) 1951 { 1952 ClearPageReserved(page); 1953 init_page_count(page); 1954 __free_page(page); 1955 } 1956 1957 static inline void free_reserved_page(struct page *page) 1958 { 1959 __free_reserved_page(page); 1960 adjust_managed_page_count(page, 1); 1961 } 1962 1963 static inline void mark_page_reserved(struct page *page) 1964 { 1965 SetPageReserved(page); 1966 adjust_managed_page_count(page, -1); 1967 } 1968 1969 /* 1970 * Default method to free all the __init memory into the buddy system. 1971 * The freed pages will be poisoned with pattern "poison" if it's within 1972 * range [0, UCHAR_MAX]. 1973 * Return pages freed into the buddy system. 1974 */ 1975 static inline unsigned long free_initmem_default(int poison) 1976 { 1977 extern char __init_begin[], __init_end[]; 1978 1979 return free_reserved_area(&__init_begin, &__init_end, 1980 poison, "unused kernel"); 1981 } 1982 1983 static inline unsigned long get_num_physpages(void) 1984 { 1985 int nid; 1986 unsigned long phys_pages = 0; 1987 1988 for_each_online_node(nid) 1989 phys_pages += node_present_pages(nid); 1990 1991 return phys_pages; 1992 } 1993 1994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1995 /* 1996 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1997 * zones, allocate the backing mem_map and account for memory holes in a more 1998 * architecture independent manner. This is a substitute for creating the 1999 * zone_sizes[] and zholes_size[] arrays and passing them to 2000 * free_area_init_node() 2001 * 2002 * An architecture is expected to register range of page frames backed by 2003 * physical memory with memblock_add[_node]() before calling 2004 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2005 * usage, an architecture is expected to do something like 2006 * 2007 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2008 * max_highmem_pfn}; 2009 * for_each_valid_physical_page_range() 2010 * memblock_add_node(base, size, nid) 2011 * free_area_init_nodes(max_zone_pfns); 2012 * 2013 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2014 * registered physical page range. Similarly 2015 * sparse_memory_present_with_active_regions() calls memory_present() for 2016 * each range when SPARSEMEM is enabled. 2017 * 2018 * See mm/page_alloc.c for more information on each function exposed by 2019 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2020 */ 2021 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2022 unsigned long node_map_pfn_alignment(void); 2023 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2024 unsigned long end_pfn); 2025 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2026 unsigned long end_pfn); 2027 extern void get_pfn_range_for_nid(unsigned int nid, 2028 unsigned long *start_pfn, unsigned long *end_pfn); 2029 extern unsigned long find_min_pfn_with_active_regions(void); 2030 extern void free_bootmem_with_active_regions(int nid, 2031 unsigned long max_low_pfn); 2032 extern void sparse_memory_present_with_active_regions(int nid); 2033 2034 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2035 2036 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2037 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2038 static inline int __early_pfn_to_nid(unsigned long pfn, 2039 struct mminit_pfnnid_cache *state) 2040 { 2041 return 0; 2042 } 2043 #else 2044 /* please see mm/page_alloc.c */ 2045 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2046 /* there is a per-arch backend function. */ 2047 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2048 struct mminit_pfnnid_cache *state); 2049 #endif 2050 2051 #ifdef CONFIG_HAVE_MEMBLOCK 2052 void zero_resv_unavail(void); 2053 #else 2054 static inline void zero_resv_unavail(void) {} 2055 #endif 2056 2057 extern void set_dma_reserve(unsigned long new_dma_reserve); 2058 extern void memmap_init_zone(unsigned long, int, unsigned long, 2059 unsigned long, enum memmap_context); 2060 extern void setup_per_zone_wmarks(void); 2061 extern int __meminit init_per_zone_wmark_min(void); 2062 extern void mem_init(void); 2063 extern void __init mmap_init(void); 2064 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2065 extern long si_mem_available(void); 2066 extern void si_meminfo(struct sysinfo * val); 2067 extern void si_meminfo_node(struct sysinfo *val, int nid); 2068 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2069 extern unsigned long arch_reserved_kernel_pages(void); 2070 #endif 2071 2072 extern __printf(3, 4) 2073 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2074 2075 extern void setup_per_cpu_pageset(void); 2076 2077 extern void zone_pcp_update(struct zone *zone); 2078 extern void zone_pcp_reset(struct zone *zone); 2079 2080 /* page_alloc.c */ 2081 extern int min_free_kbytes; 2082 extern int watermark_scale_factor; 2083 2084 /* nommu.c */ 2085 extern atomic_long_t mmap_pages_allocated; 2086 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2087 2088 /* interval_tree.c */ 2089 void vma_interval_tree_insert(struct vm_area_struct *node, 2090 struct rb_root_cached *root); 2091 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2092 struct vm_area_struct *prev, 2093 struct rb_root_cached *root); 2094 void vma_interval_tree_remove(struct vm_area_struct *node, 2095 struct rb_root_cached *root); 2096 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2097 unsigned long start, unsigned long last); 2098 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2099 unsigned long start, unsigned long last); 2100 2101 #define vma_interval_tree_foreach(vma, root, start, last) \ 2102 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2103 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2104 2105 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2106 struct rb_root_cached *root); 2107 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2108 struct rb_root_cached *root); 2109 struct anon_vma_chain * 2110 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2111 unsigned long start, unsigned long last); 2112 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2113 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2114 #ifdef CONFIG_DEBUG_VM_RB 2115 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2116 #endif 2117 2118 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2119 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2120 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2121 2122 /* mmap.c */ 2123 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2124 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2125 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2126 struct vm_area_struct *expand); 2127 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2128 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2129 { 2130 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2131 } 2132 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2133 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2134 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2135 struct mempolicy *, struct vm_userfaultfd_ctx); 2136 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2137 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2138 unsigned long addr, int new_below); 2139 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2140 unsigned long addr, int new_below); 2141 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2142 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2143 struct rb_node **, struct rb_node *); 2144 extern void unlink_file_vma(struct vm_area_struct *); 2145 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2146 unsigned long addr, unsigned long len, pgoff_t pgoff, 2147 bool *need_rmap_locks); 2148 extern void exit_mmap(struct mm_struct *); 2149 2150 static inline int check_data_rlimit(unsigned long rlim, 2151 unsigned long new, 2152 unsigned long start, 2153 unsigned long end_data, 2154 unsigned long start_data) 2155 { 2156 if (rlim < RLIM_INFINITY) { 2157 if (((new - start) + (end_data - start_data)) > rlim) 2158 return -ENOSPC; 2159 } 2160 2161 return 0; 2162 } 2163 2164 extern int mm_take_all_locks(struct mm_struct *mm); 2165 extern void mm_drop_all_locks(struct mm_struct *mm); 2166 2167 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2168 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2169 extern struct file *get_task_exe_file(struct task_struct *task); 2170 2171 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2172 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2173 2174 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2175 const struct vm_special_mapping *sm); 2176 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2177 unsigned long addr, unsigned long len, 2178 unsigned long flags, 2179 const struct vm_special_mapping *spec); 2180 /* This is an obsolete alternative to _install_special_mapping. */ 2181 extern int install_special_mapping(struct mm_struct *mm, 2182 unsigned long addr, unsigned long len, 2183 unsigned long flags, struct page **pages); 2184 2185 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2186 2187 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2188 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2189 struct list_head *uf); 2190 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2191 unsigned long len, unsigned long prot, unsigned long flags, 2192 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2193 struct list_head *uf); 2194 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2195 struct list_head *uf); 2196 2197 static inline unsigned long 2198 do_mmap_pgoff(struct file *file, unsigned long addr, 2199 unsigned long len, unsigned long prot, unsigned long flags, 2200 unsigned long pgoff, unsigned long *populate, 2201 struct list_head *uf) 2202 { 2203 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2204 } 2205 2206 #ifdef CONFIG_MMU 2207 extern int __mm_populate(unsigned long addr, unsigned long len, 2208 int ignore_errors); 2209 static inline void mm_populate(unsigned long addr, unsigned long len) 2210 { 2211 /* Ignore errors */ 2212 (void) __mm_populate(addr, len, 1); 2213 } 2214 #else 2215 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2216 #endif 2217 2218 /* These take the mm semaphore themselves */ 2219 extern int __must_check vm_brk(unsigned long, unsigned long); 2220 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2221 extern int vm_munmap(unsigned long, size_t); 2222 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2223 unsigned long, unsigned long, 2224 unsigned long, unsigned long); 2225 2226 struct vm_unmapped_area_info { 2227 #define VM_UNMAPPED_AREA_TOPDOWN 1 2228 unsigned long flags; 2229 unsigned long length; 2230 unsigned long low_limit; 2231 unsigned long high_limit; 2232 unsigned long align_mask; 2233 unsigned long align_offset; 2234 }; 2235 2236 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2237 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2238 2239 /* 2240 * Search for an unmapped address range. 2241 * 2242 * We are looking for a range that: 2243 * - does not intersect with any VMA; 2244 * - is contained within the [low_limit, high_limit) interval; 2245 * - is at least the desired size. 2246 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2247 */ 2248 static inline unsigned long 2249 vm_unmapped_area(struct vm_unmapped_area_info *info) 2250 { 2251 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2252 return unmapped_area_topdown(info); 2253 else 2254 return unmapped_area(info); 2255 } 2256 2257 /* truncate.c */ 2258 extern void truncate_inode_pages(struct address_space *, loff_t); 2259 extern void truncate_inode_pages_range(struct address_space *, 2260 loff_t lstart, loff_t lend); 2261 extern void truncate_inode_pages_final(struct address_space *); 2262 2263 /* generic vm_area_ops exported for stackable file systems */ 2264 extern int filemap_fault(struct vm_fault *vmf); 2265 extern void filemap_map_pages(struct vm_fault *vmf, 2266 pgoff_t start_pgoff, pgoff_t end_pgoff); 2267 extern int filemap_page_mkwrite(struct vm_fault *vmf); 2268 2269 /* mm/page-writeback.c */ 2270 int __must_check write_one_page(struct page *page); 2271 void task_dirty_inc(struct task_struct *tsk); 2272 2273 /* readahead.c */ 2274 #define VM_MAX_READAHEAD 128 /* kbytes */ 2275 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2276 2277 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2278 pgoff_t offset, unsigned long nr_to_read); 2279 2280 void page_cache_sync_readahead(struct address_space *mapping, 2281 struct file_ra_state *ra, 2282 struct file *filp, 2283 pgoff_t offset, 2284 unsigned long size); 2285 2286 void page_cache_async_readahead(struct address_space *mapping, 2287 struct file_ra_state *ra, 2288 struct file *filp, 2289 struct page *pg, 2290 pgoff_t offset, 2291 unsigned long size); 2292 2293 extern unsigned long stack_guard_gap; 2294 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2295 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2296 2297 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2298 extern int expand_downwards(struct vm_area_struct *vma, 2299 unsigned long address); 2300 #if VM_GROWSUP 2301 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2302 #else 2303 #define expand_upwards(vma, address) (0) 2304 #endif 2305 2306 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2307 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2308 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2309 struct vm_area_struct **pprev); 2310 2311 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2312 NULL if none. Assume start_addr < end_addr. */ 2313 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2314 { 2315 struct vm_area_struct * vma = find_vma(mm,start_addr); 2316 2317 if (vma && end_addr <= vma->vm_start) 2318 vma = NULL; 2319 return vma; 2320 } 2321 2322 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2323 { 2324 unsigned long vm_start = vma->vm_start; 2325 2326 if (vma->vm_flags & VM_GROWSDOWN) { 2327 vm_start -= stack_guard_gap; 2328 if (vm_start > vma->vm_start) 2329 vm_start = 0; 2330 } 2331 return vm_start; 2332 } 2333 2334 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2335 { 2336 unsigned long vm_end = vma->vm_end; 2337 2338 if (vma->vm_flags & VM_GROWSUP) { 2339 vm_end += stack_guard_gap; 2340 if (vm_end < vma->vm_end) 2341 vm_end = -PAGE_SIZE; 2342 } 2343 return vm_end; 2344 } 2345 2346 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2347 { 2348 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2349 } 2350 2351 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2352 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2353 unsigned long vm_start, unsigned long vm_end) 2354 { 2355 struct vm_area_struct *vma = find_vma(mm, vm_start); 2356 2357 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2358 vma = NULL; 2359 2360 return vma; 2361 } 2362 2363 #ifdef CONFIG_MMU 2364 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2365 void vma_set_page_prot(struct vm_area_struct *vma); 2366 #else 2367 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2368 { 2369 return __pgprot(0); 2370 } 2371 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2372 { 2373 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2374 } 2375 #endif 2376 2377 #ifdef CONFIG_NUMA_BALANCING 2378 unsigned long change_prot_numa(struct vm_area_struct *vma, 2379 unsigned long start, unsigned long end); 2380 #endif 2381 2382 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2383 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2384 unsigned long pfn, unsigned long size, pgprot_t); 2385 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2386 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2387 unsigned long pfn); 2388 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2389 unsigned long pfn, pgprot_t pgprot); 2390 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2391 pfn_t pfn); 2392 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, 2393 pfn_t pfn); 2394 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2395 2396 2397 struct page *follow_page_mask(struct vm_area_struct *vma, 2398 unsigned long address, unsigned int foll_flags, 2399 unsigned int *page_mask); 2400 2401 static inline struct page *follow_page(struct vm_area_struct *vma, 2402 unsigned long address, unsigned int foll_flags) 2403 { 2404 unsigned int unused_page_mask; 2405 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2406 } 2407 2408 #define FOLL_WRITE 0x01 /* check pte is writable */ 2409 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2410 #define FOLL_GET 0x04 /* do get_page on page */ 2411 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2412 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2413 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2414 * and return without waiting upon it */ 2415 #define FOLL_POPULATE 0x40 /* fault in page */ 2416 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2417 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2418 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2419 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2420 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2421 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2422 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2423 #define FOLL_COW 0x4000 /* internal GUP flag */ 2424 2425 static inline int vm_fault_to_errno(int vm_fault, int foll_flags) 2426 { 2427 if (vm_fault & VM_FAULT_OOM) 2428 return -ENOMEM; 2429 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2430 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2431 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2432 return -EFAULT; 2433 return 0; 2434 } 2435 2436 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2437 void *data); 2438 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2439 unsigned long size, pte_fn_t fn, void *data); 2440 2441 2442 #ifdef CONFIG_PAGE_POISONING 2443 extern bool page_poisoning_enabled(void); 2444 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2445 extern bool page_is_poisoned(struct page *page); 2446 #else 2447 static inline bool page_poisoning_enabled(void) { return false; } 2448 static inline void kernel_poison_pages(struct page *page, int numpages, 2449 int enable) { } 2450 static inline bool page_is_poisoned(struct page *page) { return false; } 2451 #endif 2452 2453 #ifdef CONFIG_DEBUG_PAGEALLOC 2454 extern bool _debug_pagealloc_enabled; 2455 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2456 2457 static inline bool debug_pagealloc_enabled(void) 2458 { 2459 return _debug_pagealloc_enabled; 2460 } 2461 2462 static inline void 2463 kernel_map_pages(struct page *page, int numpages, int enable) 2464 { 2465 if (!debug_pagealloc_enabled()) 2466 return; 2467 2468 __kernel_map_pages(page, numpages, enable); 2469 } 2470 #ifdef CONFIG_HIBERNATION 2471 extern bool kernel_page_present(struct page *page); 2472 #endif /* CONFIG_HIBERNATION */ 2473 #else /* CONFIG_DEBUG_PAGEALLOC */ 2474 static inline void 2475 kernel_map_pages(struct page *page, int numpages, int enable) {} 2476 #ifdef CONFIG_HIBERNATION 2477 static inline bool kernel_page_present(struct page *page) { return true; } 2478 #endif /* CONFIG_HIBERNATION */ 2479 static inline bool debug_pagealloc_enabled(void) 2480 { 2481 return false; 2482 } 2483 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2484 2485 #ifdef __HAVE_ARCH_GATE_AREA 2486 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2487 extern int in_gate_area_no_mm(unsigned long addr); 2488 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2489 #else 2490 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2491 { 2492 return NULL; 2493 } 2494 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2495 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2496 { 2497 return 0; 2498 } 2499 #endif /* __HAVE_ARCH_GATE_AREA */ 2500 2501 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2502 2503 #ifdef CONFIG_SYSCTL 2504 extern int sysctl_drop_caches; 2505 int drop_caches_sysctl_handler(struct ctl_table *, int, 2506 void __user *, size_t *, loff_t *); 2507 #endif 2508 2509 void drop_slab(void); 2510 void drop_slab_node(int nid); 2511 2512 #ifndef CONFIG_MMU 2513 #define randomize_va_space 0 2514 #else 2515 extern int randomize_va_space; 2516 #endif 2517 2518 const char * arch_vma_name(struct vm_area_struct *vma); 2519 void print_vma_addr(char *prefix, unsigned long rip); 2520 2521 void sparse_mem_maps_populate_node(struct page **map_map, 2522 unsigned long pnum_begin, 2523 unsigned long pnum_end, 2524 unsigned long map_count, 2525 int nodeid); 2526 2527 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2528 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2529 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2530 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2531 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2532 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2533 void *vmemmap_alloc_block(unsigned long size, int node); 2534 struct vmem_altmap; 2535 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2536 struct vmem_altmap *altmap); 2537 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2538 { 2539 return __vmemmap_alloc_block_buf(size, node, NULL); 2540 } 2541 2542 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2543 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2544 int node); 2545 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2546 void vmemmap_populate_print_last(void); 2547 #ifdef CONFIG_MEMORY_HOTPLUG 2548 void vmemmap_free(unsigned long start, unsigned long end); 2549 #endif 2550 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2551 unsigned long nr_pages); 2552 2553 enum mf_flags { 2554 MF_COUNT_INCREASED = 1 << 0, 2555 MF_ACTION_REQUIRED = 1 << 1, 2556 MF_MUST_KILL = 1 << 2, 2557 MF_SOFT_OFFLINE = 1 << 3, 2558 }; 2559 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2560 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2561 extern int unpoison_memory(unsigned long pfn); 2562 extern int get_hwpoison_page(struct page *page); 2563 #define put_hwpoison_page(page) put_page(page) 2564 extern int sysctl_memory_failure_early_kill; 2565 extern int sysctl_memory_failure_recovery; 2566 extern void shake_page(struct page *p, int access); 2567 extern atomic_long_t num_poisoned_pages; 2568 extern int soft_offline_page(struct page *page, int flags); 2569 2570 2571 /* 2572 * Error handlers for various types of pages. 2573 */ 2574 enum mf_result { 2575 MF_IGNORED, /* Error: cannot be handled */ 2576 MF_FAILED, /* Error: handling failed */ 2577 MF_DELAYED, /* Will be handled later */ 2578 MF_RECOVERED, /* Successfully recovered */ 2579 }; 2580 2581 enum mf_action_page_type { 2582 MF_MSG_KERNEL, 2583 MF_MSG_KERNEL_HIGH_ORDER, 2584 MF_MSG_SLAB, 2585 MF_MSG_DIFFERENT_COMPOUND, 2586 MF_MSG_POISONED_HUGE, 2587 MF_MSG_HUGE, 2588 MF_MSG_FREE_HUGE, 2589 MF_MSG_UNMAP_FAILED, 2590 MF_MSG_DIRTY_SWAPCACHE, 2591 MF_MSG_CLEAN_SWAPCACHE, 2592 MF_MSG_DIRTY_MLOCKED_LRU, 2593 MF_MSG_CLEAN_MLOCKED_LRU, 2594 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2595 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2596 MF_MSG_DIRTY_LRU, 2597 MF_MSG_CLEAN_LRU, 2598 MF_MSG_TRUNCATED_LRU, 2599 MF_MSG_BUDDY, 2600 MF_MSG_BUDDY_2ND, 2601 MF_MSG_UNKNOWN, 2602 }; 2603 2604 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2605 extern void clear_huge_page(struct page *page, 2606 unsigned long addr_hint, 2607 unsigned int pages_per_huge_page); 2608 extern void copy_user_huge_page(struct page *dst, struct page *src, 2609 unsigned long addr, struct vm_area_struct *vma, 2610 unsigned int pages_per_huge_page); 2611 extern long copy_huge_page_from_user(struct page *dst_page, 2612 const void __user *usr_src, 2613 unsigned int pages_per_huge_page, 2614 bool allow_pagefault); 2615 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2616 2617 extern struct page_ext_operations debug_guardpage_ops; 2618 2619 #ifdef CONFIG_DEBUG_PAGEALLOC 2620 extern unsigned int _debug_guardpage_minorder; 2621 extern bool _debug_guardpage_enabled; 2622 2623 static inline unsigned int debug_guardpage_minorder(void) 2624 { 2625 return _debug_guardpage_minorder; 2626 } 2627 2628 static inline bool debug_guardpage_enabled(void) 2629 { 2630 return _debug_guardpage_enabled; 2631 } 2632 2633 static inline bool page_is_guard(struct page *page) 2634 { 2635 struct page_ext *page_ext; 2636 2637 if (!debug_guardpage_enabled()) 2638 return false; 2639 2640 page_ext = lookup_page_ext(page); 2641 if (unlikely(!page_ext)) 2642 return false; 2643 2644 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2645 } 2646 #else 2647 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2648 static inline bool debug_guardpage_enabled(void) { return false; } 2649 static inline bool page_is_guard(struct page *page) { return false; } 2650 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2651 2652 #if MAX_NUMNODES > 1 2653 void __init setup_nr_node_ids(void); 2654 #else 2655 static inline void setup_nr_node_ids(void) {} 2656 #endif 2657 2658 #endif /* __KERNEL__ */ 2659 #endif /* _LINUX_MM_H */ 2660