1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 24 struct mempolicy; 25 struct anon_vma; 26 struct anon_vma_chain; 27 struct file_ra_state; 28 struct user_struct; 29 struct writeback_control; 30 struct bdi_writeback; 31 32 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 33 extern unsigned long max_mapnr; 34 35 static inline void set_max_mapnr(unsigned long limit) 36 { 37 max_mapnr = limit; 38 } 39 #else 40 static inline void set_max_mapnr(unsigned long limit) { } 41 #endif 42 43 extern unsigned long totalram_pages; 44 extern void * high_memory; 45 extern int page_cluster; 46 47 #ifdef CONFIG_SYSCTL 48 extern int sysctl_legacy_va_layout; 49 #else 50 #define sysctl_legacy_va_layout 0 51 #endif 52 53 #include <asm/page.h> 54 #include <asm/pgtable.h> 55 #include <asm/processor.h> 56 57 #ifndef __pa_symbol 58 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 59 #endif 60 61 /* 62 * To prevent common memory management code establishing 63 * a zero page mapping on a read fault. 64 * This macro should be defined within <asm/pgtable.h>. 65 * s390 does this to prevent multiplexing of hardware bits 66 * related to the physical page in case of virtualization. 67 */ 68 #ifndef mm_forbids_zeropage 69 #define mm_forbids_zeropage(X) (0) 70 #endif 71 72 extern unsigned long sysctl_user_reserve_kbytes; 73 extern unsigned long sysctl_admin_reserve_kbytes; 74 75 extern int sysctl_overcommit_memory; 76 extern int sysctl_overcommit_ratio; 77 extern unsigned long sysctl_overcommit_kbytes; 78 79 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 80 size_t *, loff_t *); 81 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 82 size_t *, loff_t *); 83 84 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 85 86 /* to align the pointer to the (next) page boundary */ 87 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 88 89 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 90 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 91 92 /* 93 * Linux kernel virtual memory manager primitives. 94 * The idea being to have a "virtual" mm in the same way 95 * we have a virtual fs - giving a cleaner interface to the 96 * mm details, and allowing different kinds of memory mappings 97 * (from shared memory to executable loading to arbitrary 98 * mmap() functions). 99 */ 100 101 extern struct kmem_cache *vm_area_cachep; 102 103 #ifndef CONFIG_MMU 104 extern struct rb_root nommu_region_tree; 105 extern struct rw_semaphore nommu_region_sem; 106 107 extern unsigned int kobjsize(const void *objp); 108 #endif 109 110 /* 111 * vm_flags in vm_area_struct, see mm_types.h. 112 */ 113 #define VM_NONE 0x00000000 114 115 #define VM_READ 0x00000001 /* currently active flags */ 116 #define VM_WRITE 0x00000002 117 #define VM_EXEC 0x00000004 118 #define VM_SHARED 0x00000008 119 120 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 121 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 122 #define VM_MAYWRITE 0x00000020 123 #define VM_MAYEXEC 0x00000040 124 #define VM_MAYSHARE 0x00000080 125 126 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 127 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 128 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 129 130 #define VM_LOCKED 0x00002000 131 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 132 133 /* Used by sys_madvise() */ 134 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 135 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 136 137 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 138 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 139 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 140 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 141 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 142 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 143 #define VM_ARCH_2 0x02000000 144 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 145 146 #ifdef CONFIG_MEM_SOFT_DIRTY 147 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 148 #else 149 # define VM_SOFTDIRTY 0 150 #endif 151 152 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 153 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 154 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 155 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 156 157 #if defined(CONFIG_X86) 158 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 159 #elif defined(CONFIG_PPC) 160 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 161 #elif defined(CONFIG_PARISC) 162 # define VM_GROWSUP VM_ARCH_1 163 #elif defined(CONFIG_METAG) 164 # define VM_GROWSUP VM_ARCH_1 165 #elif defined(CONFIG_IA64) 166 # define VM_GROWSUP VM_ARCH_1 167 #elif !defined(CONFIG_MMU) 168 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 169 #endif 170 171 #if defined(CONFIG_X86) 172 /* MPX specific bounds table or bounds directory */ 173 # define VM_MPX VM_ARCH_2 174 #endif 175 176 #ifndef VM_GROWSUP 177 # define VM_GROWSUP VM_NONE 178 #endif 179 180 /* Bits set in the VMA until the stack is in its final location */ 181 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 182 183 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 184 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 185 #endif 186 187 #ifdef CONFIG_STACK_GROWSUP 188 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 189 #else 190 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 191 #endif 192 193 /* 194 * Special vmas that are non-mergable, non-mlock()able. 195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 196 */ 197 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 198 199 /* This mask defines which mm->def_flags a process can inherit its parent */ 200 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 201 202 /* 203 * mapping from the currently active vm_flags protection bits (the 204 * low four bits) to a page protection mask.. 205 */ 206 extern pgprot_t protection_map[16]; 207 208 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 209 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 210 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 211 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 212 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 213 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 214 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 215 216 /* 217 * vm_fault is filled by the the pagefault handler and passed to the vma's 218 * ->fault function. The vma's ->fault is responsible for returning a bitmask 219 * of VM_FAULT_xxx flags that give details about how the fault was handled. 220 * 221 * pgoff should be used in favour of virtual_address, if possible. 222 */ 223 struct vm_fault { 224 unsigned int flags; /* FAULT_FLAG_xxx flags */ 225 pgoff_t pgoff; /* Logical page offset based on vma */ 226 void __user *virtual_address; /* Faulting virtual address */ 227 228 struct page *cow_page; /* Handler may choose to COW */ 229 struct page *page; /* ->fault handlers should return a 230 * page here, unless VM_FAULT_NOPAGE 231 * is set (which is also implied by 232 * VM_FAULT_ERROR). 233 */ 234 /* for ->map_pages() only */ 235 pgoff_t max_pgoff; /* map pages for offset from pgoff till 236 * max_pgoff inclusive */ 237 pte_t *pte; /* pte entry associated with ->pgoff */ 238 }; 239 240 /* 241 * These are the virtual MM functions - opening of an area, closing and 242 * unmapping it (needed to keep files on disk up-to-date etc), pointer 243 * to the functions called when a no-page or a wp-page exception occurs. 244 */ 245 struct vm_operations_struct { 246 void (*open)(struct vm_area_struct * area); 247 void (*close)(struct vm_area_struct * area); 248 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 249 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 250 251 /* notification that a previously read-only page is about to become 252 * writable, if an error is returned it will cause a SIGBUS */ 253 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 254 255 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 256 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 257 258 /* called by access_process_vm when get_user_pages() fails, typically 259 * for use by special VMAs that can switch between memory and hardware 260 */ 261 int (*access)(struct vm_area_struct *vma, unsigned long addr, 262 void *buf, int len, int write); 263 264 /* Called by the /proc/PID/maps code to ask the vma whether it 265 * has a special name. Returning non-NULL will also cause this 266 * vma to be dumped unconditionally. */ 267 const char *(*name)(struct vm_area_struct *vma); 268 269 #ifdef CONFIG_NUMA 270 /* 271 * set_policy() op must add a reference to any non-NULL @new mempolicy 272 * to hold the policy upon return. Caller should pass NULL @new to 273 * remove a policy and fall back to surrounding context--i.e. do not 274 * install a MPOL_DEFAULT policy, nor the task or system default 275 * mempolicy. 276 */ 277 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 278 279 /* 280 * get_policy() op must add reference [mpol_get()] to any policy at 281 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 282 * in mm/mempolicy.c will do this automatically. 283 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 284 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 285 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 286 * must return NULL--i.e., do not "fallback" to task or system default 287 * policy. 288 */ 289 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 290 unsigned long addr); 291 #endif 292 /* 293 * Called by vm_normal_page() for special PTEs to find the 294 * page for @addr. This is useful if the default behavior 295 * (using pte_page()) would not find the correct page. 296 */ 297 struct page *(*find_special_page)(struct vm_area_struct *vma, 298 unsigned long addr); 299 }; 300 301 struct mmu_gather; 302 struct inode; 303 304 #define page_private(page) ((page)->private) 305 #define set_page_private(page, v) ((page)->private = (v)) 306 307 /* It's valid only if the page is free path or free_list */ 308 static inline void set_freepage_migratetype(struct page *page, int migratetype) 309 { 310 page->index = migratetype; 311 } 312 313 /* It's valid only if the page is free path or free_list */ 314 static inline int get_freepage_migratetype(struct page *page) 315 { 316 return page->index; 317 } 318 319 /* 320 * FIXME: take this include out, include page-flags.h in 321 * files which need it (119 of them) 322 */ 323 #include <linux/page-flags.h> 324 #include <linux/huge_mm.h> 325 326 /* 327 * Methods to modify the page usage count. 328 * 329 * What counts for a page usage: 330 * - cache mapping (page->mapping) 331 * - private data (page->private) 332 * - page mapped in a task's page tables, each mapping 333 * is counted separately 334 * 335 * Also, many kernel routines increase the page count before a critical 336 * routine so they can be sure the page doesn't go away from under them. 337 */ 338 339 /* 340 * Drop a ref, return true if the refcount fell to zero (the page has no users) 341 */ 342 static inline int put_page_testzero(struct page *page) 343 { 344 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 345 return atomic_dec_and_test(&page->_count); 346 } 347 348 /* 349 * Try to grab a ref unless the page has a refcount of zero, return false if 350 * that is the case. 351 * This can be called when MMU is off so it must not access 352 * any of the virtual mappings. 353 */ 354 static inline int get_page_unless_zero(struct page *page) 355 { 356 return atomic_inc_not_zero(&page->_count); 357 } 358 359 /* 360 * Try to drop a ref unless the page has a refcount of one, return false if 361 * that is the case. 362 * This is to make sure that the refcount won't become zero after this drop. 363 * This can be called when MMU is off so it must not access 364 * any of the virtual mappings. 365 */ 366 static inline int put_page_unless_one(struct page *page) 367 { 368 return atomic_add_unless(&page->_count, -1, 1); 369 } 370 371 extern int page_is_ram(unsigned long pfn); 372 extern int region_is_ram(resource_size_t phys_addr, unsigned long size); 373 374 /* Support for virtually mapped pages */ 375 struct page *vmalloc_to_page(const void *addr); 376 unsigned long vmalloc_to_pfn(const void *addr); 377 378 /* 379 * Determine if an address is within the vmalloc range 380 * 381 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 382 * is no special casing required. 383 */ 384 static inline int is_vmalloc_addr(const void *x) 385 { 386 #ifdef CONFIG_MMU 387 unsigned long addr = (unsigned long)x; 388 389 return addr >= VMALLOC_START && addr < VMALLOC_END; 390 #else 391 return 0; 392 #endif 393 } 394 #ifdef CONFIG_MMU 395 extern int is_vmalloc_or_module_addr(const void *x); 396 #else 397 static inline int is_vmalloc_or_module_addr(const void *x) 398 { 399 return 0; 400 } 401 #endif 402 403 extern void kvfree(const void *addr); 404 405 static inline void compound_lock(struct page *page) 406 { 407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 408 VM_BUG_ON_PAGE(PageSlab(page), page); 409 bit_spin_lock(PG_compound_lock, &page->flags); 410 #endif 411 } 412 413 static inline void compound_unlock(struct page *page) 414 { 415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 416 VM_BUG_ON_PAGE(PageSlab(page), page); 417 bit_spin_unlock(PG_compound_lock, &page->flags); 418 #endif 419 } 420 421 static inline unsigned long compound_lock_irqsave(struct page *page) 422 { 423 unsigned long uninitialized_var(flags); 424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 425 local_irq_save(flags); 426 compound_lock(page); 427 #endif 428 return flags; 429 } 430 431 static inline void compound_unlock_irqrestore(struct page *page, 432 unsigned long flags) 433 { 434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 435 compound_unlock(page); 436 local_irq_restore(flags); 437 #endif 438 } 439 440 static inline struct page *compound_head_by_tail(struct page *tail) 441 { 442 struct page *head = tail->first_page; 443 444 /* 445 * page->first_page may be a dangling pointer to an old 446 * compound page, so recheck that it is still a tail 447 * page before returning. 448 */ 449 smp_rmb(); 450 if (likely(PageTail(tail))) 451 return head; 452 return tail; 453 } 454 455 /* 456 * Since either compound page could be dismantled asynchronously in THP 457 * or we access asynchronously arbitrary positioned struct page, there 458 * would be tail flag race. To handle this race, we should call 459 * smp_rmb() before checking tail flag. compound_head_by_tail() did it. 460 */ 461 static inline struct page *compound_head(struct page *page) 462 { 463 if (unlikely(PageTail(page))) 464 return compound_head_by_tail(page); 465 return page; 466 } 467 468 /* 469 * If we access compound page synchronously such as access to 470 * allocated page, there is no need to handle tail flag race, so we can 471 * check tail flag directly without any synchronization primitive. 472 */ 473 static inline struct page *compound_head_fast(struct page *page) 474 { 475 if (unlikely(PageTail(page))) 476 return page->first_page; 477 return page; 478 } 479 480 /* 481 * The atomic page->_mapcount, starts from -1: so that transitions 482 * both from it and to it can be tracked, using atomic_inc_and_test 483 * and atomic_add_negative(-1). 484 */ 485 static inline void page_mapcount_reset(struct page *page) 486 { 487 atomic_set(&(page)->_mapcount, -1); 488 } 489 490 static inline int page_mapcount(struct page *page) 491 { 492 VM_BUG_ON_PAGE(PageSlab(page), page); 493 return atomic_read(&page->_mapcount) + 1; 494 } 495 496 static inline int page_count(struct page *page) 497 { 498 return atomic_read(&compound_head(page)->_count); 499 } 500 501 static inline bool __compound_tail_refcounted(struct page *page) 502 { 503 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); 504 } 505 506 /* 507 * This takes a head page as parameter and tells if the 508 * tail page reference counting can be skipped. 509 * 510 * For this to be safe, PageSlab and PageHeadHuge must remain true on 511 * any given page where they return true here, until all tail pins 512 * have been released. 513 */ 514 static inline bool compound_tail_refcounted(struct page *page) 515 { 516 VM_BUG_ON_PAGE(!PageHead(page), page); 517 return __compound_tail_refcounted(page); 518 } 519 520 static inline void get_huge_page_tail(struct page *page) 521 { 522 /* 523 * __split_huge_page_refcount() cannot run from under us. 524 */ 525 VM_BUG_ON_PAGE(!PageTail(page), page); 526 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 527 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 528 if (compound_tail_refcounted(page->first_page)) 529 atomic_inc(&page->_mapcount); 530 } 531 532 extern bool __get_page_tail(struct page *page); 533 534 static inline void get_page(struct page *page) 535 { 536 if (unlikely(PageTail(page))) 537 if (likely(__get_page_tail(page))) 538 return; 539 /* 540 * Getting a normal page or the head of a compound page 541 * requires to already have an elevated page->_count. 542 */ 543 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 544 atomic_inc(&page->_count); 545 } 546 547 static inline struct page *virt_to_head_page(const void *x) 548 { 549 struct page *page = virt_to_page(x); 550 551 /* 552 * We don't need to worry about synchronization of tail flag 553 * when we call virt_to_head_page() since it is only called for 554 * already allocated page and this page won't be freed until 555 * this virt_to_head_page() is finished. So use _fast variant. 556 */ 557 return compound_head_fast(page); 558 } 559 560 /* 561 * Setup the page count before being freed into the page allocator for 562 * the first time (boot or memory hotplug) 563 */ 564 static inline void init_page_count(struct page *page) 565 { 566 atomic_set(&page->_count, 1); 567 } 568 569 void put_page(struct page *page); 570 void put_pages_list(struct list_head *pages); 571 572 void split_page(struct page *page, unsigned int order); 573 int split_free_page(struct page *page); 574 575 /* 576 * Compound pages have a destructor function. Provide a 577 * prototype for that function and accessor functions. 578 * These are _only_ valid on the head of a PG_compound page. 579 */ 580 581 static inline void set_compound_page_dtor(struct page *page, 582 compound_page_dtor *dtor) 583 { 584 page[1].compound_dtor = dtor; 585 } 586 587 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 588 { 589 return page[1].compound_dtor; 590 } 591 592 static inline int compound_order(struct page *page) 593 { 594 if (!PageHead(page)) 595 return 0; 596 return page[1].compound_order; 597 } 598 599 static inline void set_compound_order(struct page *page, unsigned long order) 600 { 601 page[1].compound_order = order; 602 } 603 604 #ifdef CONFIG_MMU 605 /* 606 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 607 * servicing faults for write access. In the normal case, do always want 608 * pte_mkwrite. But get_user_pages can cause write faults for mappings 609 * that do not have writing enabled, when used by access_process_vm. 610 */ 611 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 612 { 613 if (likely(vma->vm_flags & VM_WRITE)) 614 pte = pte_mkwrite(pte); 615 return pte; 616 } 617 618 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 619 struct page *page, pte_t *pte, bool write, bool anon); 620 #endif 621 622 /* 623 * Multiple processes may "see" the same page. E.g. for untouched 624 * mappings of /dev/null, all processes see the same page full of 625 * zeroes, and text pages of executables and shared libraries have 626 * only one copy in memory, at most, normally. 627 * 628 * For the non-reserved pages, page_count(page) denotes a reference count. 629 * page_count() == 0 means the page is free. page->lru is then used for 630 * freelist management in the buddy allocator. 631 * page_count() > 0 means the page has been allocated. 632 * 633 * Pages are allocated by the slab allocator in order to provide memory 634 * to kmalloc and kmem_cache_alloc. In this case, the management of the 635 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 636 * unless a particular usage is carefully commented. (the responsibility of 637 * freeing the kmalloc memory is the caller's, of course). 638 * 639 * A page may be used by anyone else who does a __get_free_page(). 640 * In this case, page_count still tracks the references, and should only 641 * be used through the normal accessor functions. The top bits of page->flags 642 * and page->virtual store page management information, but all other fields 643 * are unused and could be used privately, carefully. The management of this 644 * page is the responsibility of the one who allocated it, and those who have 645 * subsequently been given references to it. 646 * 647 * The other pages (we may call them "pagecache pages") are completely 648 * managed by the Linux memory manager: I/O, buffers, swapping etc. 649 * The following discussion applies only to them. 650 * 651 * A pagecache page contains an opaque `private' member, which belongs to the 652 * page's address_space. Usually, this is the address of a circular list of 653 * the page's disk buffers. PG_private must be set to tell the VM to call 654 * into the filesystem to release these pages. 655 * 656 * A page may belong to an inode's memory mapping. In this case, page->mapping 657 * is the pointer to the inode, and page->index is the file offset of the page, 658 * in units of PAGE_CACHE_SIZE. 659 * 660 * If pagecache pages are not associated with an inode, they are said to be 661 * anonymous pages. These may become associated with the swapcache, and in that 662 * case PG_swapcache is set, and page->private is an offset into the swapcache. 663 * 664 * In either case (swapcache or inode backed), the pagecache itself holds one 665 * reference to the page. Setting PG_private should also increment the 666 * refcount. The each user mapping also has a reference to the page. 667 * 668 * The pagecache pages are stored in a per-mapping radix tree, which is 669 * rooted at mapping->page_tree, and indexed by offset. 670 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 671 * lists, we instead now tag pages as dirty/writeback in the radix tree. 672 * 673 * All pagecache pages may be subject to I/O: 674 * - inode pages may need to be read from disk, 675 * - inode pages which have been modified and are MAP_SHARED may need 676 * to be written back to the inode on disk, 677 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 678 * modified may need to be swapped out to swap space and (later) to be read 679 * back into memory. 680 */ 681 682 /* 683 * The zone field is never updated after free_area_init_core() 684 * sets it, so none of the operations on it need to be atomic. 685 */ 686 687 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 688 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 689 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 690 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 691 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 692 693 /* 694 * Define the bit shifts to access each section. For non-existent 695 * sections we define the shift as 0; that plus a 0 mask ensures 696 * the compiler will optimise away reference to them. 697 */ 698 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 699 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 700 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 701 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 702 703 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 704 #ifdef NODE_NOT_IN_PAGE_FLAGS 705 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 706 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 707 SECTIONS_PGOFF : ZONES_PGOFF) 708 #else 709 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 710 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 711 NODES_PGOFF : ZONES_PGOFF) 712 #endif 713 714 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 715 716 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 717 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 718 #endif 719 720 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 721 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 722 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 723 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 724 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 725 726 static inline enum zone_type page_zonenum(const struct page *page) 727 { 728 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 729 } 730 731 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 732 #define SECTION_IN_PAGE_FLAGS 733 #endif 734 735 /* 736 * The identification function is mainly used by the buddy allocator for 737 * determining if two pages could be buddies. We are not really identifying 738 * the zone since we could be using the section number id if we do not have 739 * node id available in page flags. 740 * We only guarantee that it will return the same value for two combinable 741 * pages in a zone. 742 */ 743 static inline int page_zone_id(struct page *page) 744 { 745 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 746 } 747 748 static inline int zone_to_nid(struct zone *zone) 749 { 750 #ifdef CONFIG_NUMA 751 return zone->node; 752 #else 753 return 0; 754 #endif 755 } 756 757 #ifdef NODE_NOT_IN_PAGE_FLAGS 758 extern int page_to_nid(const struct page *page); 759 #else 760 static inline int page_to_nid(const struct page *page) 761 { 762 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 763 } 764 #endif 765 766 #ifdef CONFIG_NUMA_BALANCING 767 static inline int cpu_pid_to_cpupid(int cpu, int pid) 768 { 769 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 770 } 771 772 static inline int cpupid_to_pid(int cpupid) 773 { 774 return cpupid & LAST__PID_MASK; 775 } 776 777 static inline int cpupid_to_cpu(int cpupid) 778 { 779 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 780 } 781 782 static inline int cpupid_to_nid(int cpupid) 783 { 784 return cpu_to_node(cpupid_to_cpu(cpupid)); 785 } 786 787 static inline bool cpupid_pid_unset(int cpupid) 788 { 789 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 790 } 791 792 static inline bool cpupid_cpu_unset(int cpupid) 793 { 794 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 795 } 796 797 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 798 { 799 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 800 } 801 802 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 803 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 804 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 805 { 806 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 807 } 808 809 static inline int page_cpupid_last(struct page *page) 810 { 811 return page->_last_cpupid; 812 } 813 static inline void page_cpupid_reset_last(struct page *page) 814 { 815 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 816 } 817 #else 818 static inline int page_cpupid_last(struct page *page) 819 { 820 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 821 } 822 823 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 824 825 static inline void page_cpupid_reset_last(struct page *page) 826 { 827 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 828 829 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 830 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 831 } 832 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 833 #else /* !CONFIG_NUMA_BALANCING */ 834 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 835 { 836 return page_to_nid(page); /* XXX */ 837 } 838 839 static inline int page_cpupid_last(struct page *page) 840 { 841 return page_to_nid(page); /* XXX */ 842 } 843 844 static inline int cpupid_to_nid(int cpupid) 845 { 846 return -1; 847 } 848 849 static inline int cpupid_to_pid(int cpupid) 850 { 851 return -1; 852 } 853 854 static inline int cpupid_to_cpu(int cpupid) 855 { 856 return -1; 857 } 858 859 static inline int cpu_pid_to_cpupid(int nid, int pid) 860 { 861 return -1; 862 } 863 864 static inline bool cpupid_pid_unset(int cpupid) 865 { 866 return 1; 867 } 868 869 static inline void page_cpupid_reset_last(struct page *page) 870 { 871 } 872 873 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 874 { 875 return false; 876 } 877 #endif /* CONFIG_NUMA_BALANCING */ 878 879 static inline struct zone *page_zone(const struct page *page) 880 { 881 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 882 } 883 884 #ifdef SECTION_IN_PAGE_FLAGS 885 static inline void set_page_section(struct page *page, unsigned long section) 886 { 887 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 888 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 889 } 890 891 static inline unsigned long page_to_section(const struct page *page) 892 { 893 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 894 } 895 #endif 896 897 static inline void set_page_zone(struct page *page, enum zone_type zone) 898 { 899 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 900 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 901 } 902 903 static inline void set_page_node(struct page *page, unsigned long node) 904 { 905 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 906 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 907 } 908 909 static inline void set_page_links(struct page *page, enum zone_type zone, 910 unsigned long node, unsigned long pfn) 911 { 912 set_page_zone(page, zone); 913 set_page_node(page, node); 914 #ifdef SECTION_IN_PAGE_FLAGS 915 set_page_section(page, pfn_to_section_nr(pfn)); 916 #endif 917 } 918 919 /* 920 * Some inline functions in vmstat.h depend on page_zone() 921 */ 922 #include <linux/vmstat.h> 923 924 static __always_inline void *lowmem_page_address(const struct page *page) 925 { 926 return __va(PFN_PHYS(page_to_pfn(page))); 927 } 928 929 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 930 #define HASHED_PAGE_VIRTUAL 931 #endif 932 933 #if defined(WANT_PAGE_VIRTUAL) 934 static inline void *page_address(const struct page *page) 935 { 936 return page->virtual; 937 } 938 static inline void set_page_address(struct page *page, void *address) 939 { 940 page->virtual = address; 941 } 942 #define page_address_init() do { } while(0) 943 #endif 944 945 #if defined(HASHED_PAGE_VIRTUAL) 946 void *page_address(const struct page *page); 947 void set_page_address(struct page *page, void *virtual); 948 void page_address_init(void); 949 #endif 950 951 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 952 #define page_address(page) lowmem_page_address(page) 953 #define set_page_address(page, address) do { } while(0) 954 #define page_address_init() do { } while(0) 955 #endif 956 957 extern void *page_rmapping(struct page *page); 958 extern struct anon_vma *page_anon_vma(struct page *page); 959 extern struct address_space *page_mapping(struct page *page); 960 961 extern struct address_space *__page_file_mapping(struct page *); 962 963 static inline 964 struct address_space *page_file_mapping(struct page *page) 965 { 966 if (unlikely(PageSwapCache(page))) 967 return __page_file_mapping(page); 968 969 return page->mapping; 970 } 971 972 /* 973 * Return the pagecache index of the passed page. Regular pagecache pages 974 * use ->index whereas swapcache pages use ->private 975 */ 976 static inline pgoff_t page_index(struct page *page) 977 { 978 if (unlikely(PageSwapCache(page))) 979 return page_private(page); 980 return page->index; 981 } 982 983 extern pgoff_t __page_file_index(struct page *page); 984 985 /* 986 * Return the file index of the page. Regular pagecache pages use ->index 987 * whereas swapcache pages use swp_offset(->private) 988 */ 989 static inline pgoff_t page_file_index(struct page *page) 990 { 991 if (unlikely(PageSwapCache(page))) 992 return __page_file_index(page); 993 994 return page->index; 995 } 996 997 /* 998 * Return true if this page is mapped into pagetables. 999 */ 1000 static inline int page_mapped(struct page *page) 1001 { 1002 return atomic_read(&(page)->_mapcount) >= 0; 1003 } 1004 1005 /* 1006 * Different kinds of faults, as returned by handle_mm_fault(). 1007 * Used to decide whether a process gets delivered SIGBUS or 1008 * just gets major/minor fault counters bumped up. 1009 */ 1010 1011 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1012 1013 #define VM_FAULT_OOM 0x0001 1014 #define VM_FAULT_SIGBUS 0x0002 1015 #define VM_FAULT_MAJOR 0x0004 1016 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1017 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1018 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1019 #define VM_FAULT_SIGSEGV 0x0040 1020 1021 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1022 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1023 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1024 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1025 1026 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1027 1028 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1029 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1030 VM_FAULT_FALLBACK) 1031 1032 /* Encode hstate index for a hwpoisoned large page */ 1033 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1034 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1035 1036 /* 1037 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1038 */ 1039 extern void pagefault_out_of_memory(void); 1040 1041 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1042 1043 /* 1044 * Flags passed to show_mem() and show_free_areas() to suppress output in 1045 * various contexts. 1046 */ 1047 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1048 1049 extern void show_free_areas(unsigned int flags); 1050 extern bool skip_free_areas_node(unsigned int flags, int nid); 1051 1052 int shmem_zero_setup(struct vm_area_struct *); 1053 #ifdef CONFIG_SHMEM 1054 bool shmem_mapping(struct address_space *mapping); 1055 #else 1056 static inline bool shmem_mapping(struct address_space *mapping) 1057 { 1058 return false; 1059 } 1060 #endif 1061 1062 extern int can_do_mlock(void); 1063 extern int user_shm_lock(size_t, struct user_struct *); 1064 extern void user_shm_unlock(size_t, struct user_struct *); 1065 1066 /* 1067 * Parameter block passed down to zap_pte_range in exceptional cases. 1068 */ 1069 struct zap_details { 1070 struct address_space *check_mapping; /* Check page->mapping if set */ 1071 pgoff_t first_index; /* Lowest page->index to unmap */ 1072 pgoff_t last_index; /* Highest page->index to unmap */ 1073 }; 1074 1075 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1076 pte_t pte); 1077 1078 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1079 unsigned long size); 1080 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1081 unsigned long size, struct zap_details *); 1082 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1083 unsigned long start, unsigned long end); 1084 1085 /** 1086 * mm_walk - callbacks for walk_page_range 1087 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1088 * this handler is required to be able to handle 1089 * pmd_trans_huge() pmds. They may simply choose to 1090 * split_huge_page() instead of handling it explicitly. 1091 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1092 * @pte_hole: if set, called for each hole at all levels 1093 * @hugetlb_entry: if set, called for each hugetlb entry 1094 * @test_walk: caller specific callback function to determine whether 1095 * we walk over the current vma or not. A positive returned 1096 * value means "do page table walk over the current vma," 1097 * and a negative one means "abort current page table walk 1098 * right now." 0 means "skip the current vma." 1099 * @mm: mm_struct representing the target process of page table walk 1100 * @vma: vma currently walked (NULL if walking outside vmas) 1101 * @private: private data for callbacks' usage 1102 * 1103 * (see the comment on walk_page_range() for more details) 1104 */ 1105 struct mm_walk { 1106 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1107 unsigned long next, struct mm_walk *walk); 1108 int (*pte_entry)(pte_t *pte, unsigned long addr, 1109 unsigned long next, struct mm_walk *walk); 1110 int (*pte_hole)(unsigned long addr, unsigned long next, 1111 struct mm_walk *walk); 1112 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1113 unsigned long addr, unsigned long next, 1114 struct mm_walk *walk); 1115 int (*test_walk)(unsigned long addr, unsigned long next, 1116 struct mm_walk *walk); 1117 struct mm_struct *mm; 1118 struct vm_area_struct *vma; 1119 void *private; 1120 }; 1121 1122 int walk_page_range(unsigned long addr, unsigned long end, 1123 struct mm_walk *walk); 1124 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1125 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1126 unsigned long end, unsigned long floor, unsigned long ceiling); 1127 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1128 struct vm_area_struct *vma); 1129 void unmap_mapping_range(struct address_space *mapping, 1130 loff_t const holebegin, loff_t const holelen, int even_cows); 1131 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1132 unsigned long *pfn); 1133 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1134 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1135 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1136 void *buf, int len, int write); 1137 1138 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1139 loff_t const holebegin, loff_t const holelen) 1140 { 1141 unmap_mapping_range(mapping, holebegin, holelen, 0); 1142 } 1143 1144 extern void truncate_pagecache(struct inode *inode, loff_t new); 1145 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1146 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1147 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1148 int truncate_inode_page(struct address_space *mapping, struct page *page); 1149 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1150 int invalidate_inode_page(struct page *page); 1151 1152 #ifdef CONFIG_MMU 1153 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1154 unsigned long address, unsigned int flags); 1155 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1156 unsigned long address, unsigned int fault_flags); 1157 #else 1158 static inline int handle_mm_fault(struct mm_struct *mm, 1159 struct vm_area_struct *vma, unsigned long address, 1160 unsigned int flags) 1161 { 1162 /* should never happen if there's no MMU */ 1163 BUG(); 1164 return VM_FAULT_SIGBUS; 1165 } 1166 static inline int fixup_user_fault(struct task_struct *tsk, 1167 struct mm_struct *mm, unsigned long address, 1168 unsigned int fault_flags) 1169 { 1170 /* should never happen if there's no MMU */ 1171 BUG(); 1172 return -EFAULT; 1173 } 1174 #endif 1175 1176 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1177 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1178 void *buf, int len, int write); 1179 1180 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1181 unsigned long start, unsigned long nr_pages, 1182 unsigned int foll_flags, struct page **pages, 1183 struct vm_area_struct **vmas, int *nonblocking); 1184 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1185 unsigned long start, unsigned long nr_pages, 1186 int write, int force, struct page **pages, 1187 struct vm_area_struct **vmas); 1188 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1189 unsigned long start, unsigned long nr_pages, 1190 int write, int force, struct page **pages, 1191 int *locked); 1192 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1193 unsigned long start, unsigned long nr_pages, 1194 int write, int force, struct page **pages, 1195 unsigned int gup_flags); 1196 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1197 unsigned long start, unsigned long nr_pages, 1198 int write, int force, struct page **pages); 1199 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1200 struct page **pages); 1201 struct kvec; 1202 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1203 struct page **pages); 1204 int get_kernel_page(unsigned long start, int write, struct page **pages); 1205 struct page *get_dump_page(unsigned long addr); 1206 1207 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1208 extern void do_invalidatepage(struct page *page, unsigned int offset, 1209 unsigned int length); 1210 1211 int __set_page_dirty_nobuffers(struct page *page); 1212 int __set_page_dirty_no_writeback(struct page *page); 1213 int redirty_page_for_writepage(struct writeback_control *wbc, 1214 struct page *page); 1215 void account_page_dirtied(struct page *page, struct address_space *mapping, 1216 struct mem_cgroup *memcg); 1217 void account_page_cleaned(struct page *page, struct address_space *mapping, 1218 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1219 int set_page_dirty(struct page *page); 1220 int set_page_dirty_lock(struct page *page); 1221 void cancel_dirty_page(struct page *page); 1222 int clear_page_dirty_for_io(struct page *page); 1223 1224 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1225 1226 /* Is the vma a continuation of the stack vma above it? */ 1227 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1228 { 1229 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1230 } 1231 1232 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1233 unsigned long addr) 1234 { 1235 return (vma->vm_flags & VM_GROWSDOWN) && 1236 (vma->vm_start == addr) && 1237 !vma_growsdown(vma->vm_prev, addr); 1238 } 1239 1240 /* Is the vma a continuation of the stack vma below it? */ 1241 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1242 { 1243 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1244 } 1245 1246 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1247 unsigned long addr) 1248 { 1249 return (vma->vm_flags & VM_GROWSUP) && 1250 (vma->vm_end == addr) && 1251 !vma_growsup(vma->vm_next, addr); 1252 } 1253 1254 extern struct task_struct *task_of_stack(struct task_struct *task, 1255 struct vm_area_struct *vma, bool in_group); 1256 1257 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1258 unsigned long old_addr, struct vm_area_struct *new_vma, 1259 unsigned long new_addr, unsigned long len, 1260 bool need_rmap_locks); 1261 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1262 unsigned long end, pgprot_t newprot, 1263 int dirty_accountable, int prot_numa); 1264 extern int mprotect_fixup(struct vm_area_struct *vma, 1265 struct vm_area_struct **pprev, unsigned long start, 1266 unsigned long end, unsigned long newflags); 1267 1268 /* 1269 * doesn't attempt to fault and will return short. 1270 */ 1271 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1272 struct page **pages); 1273 /* 1274 * per-process(per-mm_struct) statistics. 1275 */ 1276 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1277 { 1278 long val = atomic_long_read(&mm->rss_stat.count[member]); 1279 1280 #ifdef SPLIT_RSS_COUNTING 1281 /* 1282 * counter is updated in asynchronous manner and may go to minus. 1283 * But it's never be expected number for users. 1284 */ 1285 if (val < 0) 1286 val = 0; 1287 #endif 1288 return (unsigned long)val; 1289 } 1290 1291 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1292 { 1293 atomic_long_add(value, &mm->rss_stat.count[member]); 1294 } 1295 1296 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1297 { 1298 atomic_long_inc(&mm->rss_stat.count[member]); 1299 } 1300 1301 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1302 { 1303 atomic_long_dec(&mm->rss_stat.count[member]); 1304 } 1305 1306 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1307 { 1308 return get_mm_counter(mm, MM_FILEPAGES) + 1309 get_mm_counter(mm, MM_ANONPAGES); 1310 } 1311 1312 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1313 { 1314 return max(mm->hiwater_rss, get_mm_rss(mm)); 1315 } 1316 1317 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1318 { 1319 return max(mm->hiwater_vm, mm->total_vm); 1320 } 1321 1322 static inline void update_hiwater_rss(struct mm_struct *mm) 1323 { 1324 unsigned long _rss = get_mm_rss(mm); 1325 1326 if ((mm)->hiwater_rss < _rss) 1327 (mm)->hiwater_rss = _rss; 1328 } 1329 1330 static inline void update_hiwater_vm(struct mm_struct *mm) 1331 { 1332 if (mm->hiwater_vm < mm->total_vm) 1333 mm->hiwater_vm = mm->total_vm; 1334 } 1335 1336 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1337 { 1338 mm->hiwater_rss = get_mm_rss(mm); 1339 } 1340 1341 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1342 struct mm_struct *mm) 1343 { 1344 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1345 1346 if (*maxrss < hiwater_rss) 1347 *maxrss = hiwater_rss; 1348 } 1349 1350 #if defined(SPLIT_RSS_COUNTING) 1351 void sync_mm_rss(struct mm_struct *mm); 1352 #else 1353 static inline void sync_mm_rss(struct mm_struct *mm) 1354 { 1355 } 1356 #endif 1357 1358 int vma_wants_writenotify(struct vm_area_struct *vma); 1359 1360 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1361 spinlock_t **ptl); 1362 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1363 spinlock_t **ptl) 1364 { 1365 pte_t *ptep; 1366 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1367 return ptep; 1368 } 1369 1370 #ifdef __PAGETABLE_PUD_FOLDED 1371 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1372 unsigned long address) 1373 { 1374 return 0; 1375 } 1376 #else 1377 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1378 #endif 1379 1380 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1381 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1382 unsigned long address) 1383 { 1384 return 0; 1385 } 1386 1387 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1388 1389 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1390 { 1391 return 0; 1392 } 1393 1394 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1395 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1396 1397 #else 1398 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1399 1400 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1401 { 1402 atomic_long_set(&mm->nr_pmds, 0); 1403 } 1404 1405 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1406 { 1407 return atomic_long_read(&mm->nr_pmds); 1408 } 1409 1410 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1411 { 1412 atomic_long_inc(&mm->nr_pmds); 1413 } 1414 1415 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1416 { 1417 atomic_long_dec(&mm->nr_pmds); 1418 } 1419 #endif 1420 1421 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1422 pmd_t *pmd, unsigned long address); 1423 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1424 1425 /* 1426 * The following ifdef needed to get the 4level-fixup.h header to work. 1427 * Remove it when 4level-fixup.h has been removed. 1428 */ 1429 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1430 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1431 { 1432 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1433 NULL: pud_offset(pgd, address); 1434 } 1435 1436 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1437 { 1438 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1439 NULL: pmd_offset(pud, address); 1440 } 1441 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1442 1443 #if USE_SPLIT_PTE_PTLOCKS 1444 #if ALLOC_SPLIT_PTLOCKS 1445 void __init ptlock_cache_init(void); 1446 extern bool ptlock_alloc(struct page *page); 1447 extern void ptlock_free(struct page *page); 1448 1449 static inline spinlock_t *ptlock_ptr(struct page *page) 1450 { 1451 return page->ptl; 1452 } 1453 #else /* ALLOC_SPLIT_PTLOCKS */ 1454 static inline void ptlock_cache_init(void) 1455 { 1456 } 1457 1458 static inline bool ptlock_alloc(struct page *page) 1459 { 1460 return true; 1461 } 1462 1463 static inline void ptlock_free(struct page *page) 1464 { 1465 } 1466 1467 static inline spinlock_t *ptlock_ptr(struct page *page) 1468 { 1469 return &page->ptl; 1470 } 1471 #endif /* ALLOC_SPLIT_PTLOCKS */ 1472 1473 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1474 { 1475 return ptlock_ptr(pmd_page(*pmd)); 1476 } 1477 1478 static inline bool ptlock_init(struct page *page) 1479 { 1480 /* 1481 * prep_new_page() initialize page->private (and therefore page->ptl) 1482 * with 0. Make sure nobody took it in use in between. 1483 * 1484 * It can happen if arch try to use slab for page table allocation: 1485 * slab code uses page->slab_cache and page->first_page (for tail 1486 * pages), which share storage with page->ptl. 1487 */ 1488 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1489 if (!ptlock_alloc(page)) 1490 return false; 1491 spin_lock_init(ptlock_ptr(page)); 1492 return true; 1493 } 1494 1495 /* Reset page->mapping so free_pages_check won't complain. */ 1496 static inline void pte_lock_deinit(struct page *page) 1497 { 1498 page->mapping = NULL; 1499 ptlock_free(page); 1500 } 1501 1502 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1503 /* 1504 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1505 */ 1506 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1507 { 1508 return &mm->page_table_lock; 1509 } 1510 static inline void ptlock_cache_init(void) {} 1511 static inline bool ptlock_init(struct page *page) { return true; } 1512 static inline void pte_lock_deinit(struct page *page) {} 1513 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1514 1515 static inline void pgtable_init(void) 1516 { 1517 ptlock_cache_init(); 1518 pgtable_cache_init(); 1519 } 1520 1521 static inline bool pgtable_page_ctor(struct page *page) 1522 { 1523 inc_zone_page_state(page, NR_PAGETABLE); 1524 return ptlock_init(page); 1525 } 1526 1527 static inline void pgtable_page_dtor(struct page *page) 1528 { 1529 pte_lock_deinit(page); 1530 dec_zone_page_state(page, NR_PAGETABLE); 1531 } 1532 1533 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1534 ({ \ 1535 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1536 pte_t *__pte = pte_offset_map(pmd, address); \ 1537 *(ptlp) = __ptl; \ 1538 spin_lock(__ptl); \ 1539 __pte; \ 1540 }) 1541 1542 #define pte_unmap_unlock(pte, ptl) do { \ 1543 spin_unlock(ptl); \ 1544 pte_unmap(pte); \ 1545 } while (0) 1546 1547 #define pte_alloc_map(mm, vma, pmd, address) \ 1548 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1549 pmd, address))? \ 1550 NULL: pte_offset_map(pmd, address)) 1551 1552 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1553 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1554 pmd, address))? \ 1555 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1556 1557 #define pte_alloc_kernel(pmd, address) \ 1558 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1559 NULL: pte_offset_kernel(pmd, address)) 1560 1561 #if USE_SPLIT_PMD_PTLOCKS 1562 1563 static struct page *pmd_to_page(pmd_t *pmd) 1564 { 1565 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1566 return virt_to_page((void *)((unsigned long) pmd & mask)); 1567 } 1568 1569 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1570 { 1571 return ptlock_ptr(pmd_to_page(pmd)); 1572 } 1573 1574 static inline bool pgtable_pmd_page_ctor(struct page *page) 1575 { 1576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1577 page->pmd_huge_pte = NULL; 1578 #endif 1579 return ptlock_init(page); 1580 } 1581 1582 static inline void pgtable_pmd_page_dtor(struct page *page) 1583 { 1584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1585 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1586 #endif 1587 ptlock_free(page); 1588 } 1589 1590 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1591 1592 #else 1593 1594 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1595 { 1596 return &mm->page_table_lock; 1597 } 1598 1599 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1600 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1601 1602 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1603 1604 #endif 1605 1606 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1607 { 1608 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1609 spin_lock(ptl); 1610 return ptl; 1611 } 1612 1613 extern void free_area_init(unsigned long * zones_size); 1614 extern void free_area_init_node(int nid, unsigned long * zones_size, 1615 unsigned long zone_start_pfn, unsigned long *zholes_size); 1616 extern void free_initmem(void); 1617 1618 /* 1619 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1620 * into the buddy system. The freed pages will be poisoned with pattern 1621 * "poison" if it's within range [0, UCHAR_MAX]. 1622 * Return pages freed into the buddy system. 1623 */ 1624 extern unsigned long free_reserved_area(void *start, void *end, 1625 int poison, char *s); 1626 1627 #ifdef CONFIG_HIGHMEM 1628 /* 1629 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1630 * and totalram_pages. 1631 */ 1632 extern void free_highmem_page(struct page *page); 1633 #endif 1634 1635 extern void adjust_managed_page_count(struct page *page, long count); 1636 extern void mem_init_print_info(const char *str); 1637 1638 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1639 1640 /* Free the reserved page into the buddy system, so it gets managed. */ 1641 static inline void __free_reserved_page(struct page *page) 1642 { 1643 ClearPageReserved(page); 1644 init_page_count(page); 1645 __free_page(page); 1646 } 1647 1648 static inline void free_reserved_page(struct page *page) 1649 { 1650 __free_reserved_page(page); 1651 adjust_managed_page_count(page, 1); 1652 } 1653 1654 static inline void mark_page_reserved(struct page *page) 1655 { 1656 SetPageReserved(page); 1657 adjust_managed_page_count(page, -1); 1658 } 1659 1660 /* 1661 * Default method to free all the __init memory into the buddy system. 1662 * The freed pages will be poisoned with pattern "poison" if it's within 1663 * range [0, UCHAR_MAX]. 1664 * Return pages freed into the buddy system. 1665 */ 1666 static inline unsigned long free_initmem_default(int poison) 1667 { 1668 extern char __init_begin[], __init_end[]; 1669 1670 return free_reserved_area(&__init_begin, &__init_end, 1671 poison, "unused kernel"); 1672 } 1673 1674 static inline unsigned long get_num_physpages(void) 1675 { 1676 int nid; 1677 unsigned long phys_pages = 0; 1678 1679 for_each_online_node(nid) 1680 phys_pages += node_present_pages(nid); 1681 1682 return phys_pages; 1683 } 1684 1685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1686 /* 1687 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1688 * zones, allocate the backing mem_map and account for memory holes in a more 1689 * architecture independent manner. This is a substitute for creating the 1690 * zone_sizes[] and zholes_size[] arrays and passing them to 1691 * free_area_init_node() 1692 * 1693 * An architecture is expected to register range of page frames backed by 1694 * physical memory with memblock_add[_node]() before calling 1695 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1696 * usage, an architecture is expected to do something like 1697 * 1698 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1699 * max_highmem_pfn}; 1700 * for_each_valid_physical_page_range() 1701 * memblock_add_node(base, size, nid) 1702 * free_area_init_nodes(max_zone_pfns); 1703 * 1704 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1705 * registered physical page range. Similarly 1706 * sparse_memory_present_with_active_regions() calls memory_present() for 1707 * each range when SPARSEMEM is enabled. 1708 * 1709 * See mm/page_alloc.c for more information on each function exposed by 1710 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1711 */ 1712 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1713 unsigned long node_map_pfn_alignment(void); 1714 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1715 unsigned long end_pfn); 1716 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1717 unsigned long end_pfn); 1718 extern void get_pfn_range_for_nid(unsigned int nid, 1719 unsigned long *start_pfn, unsigned long *end_pfn); 1720 extern unsigned long find_min_pfn_with_active_regions(void); 1721 extern void free_bootmem_with_active_regions(int nid, 1722 unsigned long max_low_pfn); 1723 extern void sparse_memory_present_with_active_regions(int nid); 1724 1725 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1726 1727 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1728 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1729 static inline int __early_pfn_to_nid(unsigned long pfn, 1730 struct mminit_pfnnid_cache *state) 1731 { 1732 return 0; 1733 } 1734 #else 1735 /* please see mm/page_alloc.c */ 1736 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1737 /* there is a per-arch backend function. */ 1738 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1739 struct mminit_pfnnid_cache *state); 1740 #endif 1741 1742 extern void set_dma_reserve(unsigned long new_dma_reserve); 1743 extern void memmap_init_zone(unsigned long, int, unsigned long, 1744 unsigned long, enum memmap_context); 1745 extern void setup_per_zone_wmarks(void); 1746 extern int __meminit init_per_zone_wmark_min(void); 1747 extern void mem_init(void); 1748 extern void __init mmap_init(void); 1749 extern void show_mem(unsigned int flags); 1750 extern void si_meminfo(struct sysinfo * val); 1751 extern void si_meminfo_node(struct sysinfo *val, int nid); 1752 1753 extern __printf(3, 4) 1754 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1755 1756 extern void setup_per_cpu_pageset(void); 1757 1758 extern void zone_pcp_update(struct zone *zone); 1759 extern void zone_pcp_reset(struct zone *zone); 1760 1761 /* page_alloc.c */ 1762 extern int min_free_kbytes; 1763 1764 /* nommu.c */ 1765 extern atomic_long_t mmap_pages_allocated; 1766 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1767 1768 /* interval_tree.c */ 1769 void vma_interval_tree_insert(struct vm_area_struct *node, 1770 struct rb_root *root); 1771 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1772 struct vm_area_struct *prev, 1773 struct rb_root *root); 1774 void vma_interval_tree_remove(struct vm_area_struct *node, 1775 struct rb_root *root); 1776 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1777 unsigned long start, unsigned long last); 1778 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1779 unsigned long start, unsigned long last); 1780 1781 #define vma_interval_tree_foreach(vma, root, start, last) \ 1782 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1783 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1784 1785 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1786 struct rb_root *root); 1787 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1788 struct rb_root *root); 1789 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1790 struct rb_root *root, unsigned long start, unsigned long last); 1791 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1792 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1793 #ifdef CONFIG_DEBUG_VM_RB 1794 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1795 #endif 1796 1797 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1798 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1799 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1800 1801 /* mmap.c */ 1802 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1803 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1804 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1805 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1806 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1807 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1808 struct mempolicy *); 1809 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1810 extern int split_vma(struct mm_struct *, 1811 struct vm_area_struct *, unsigned long addr, int new_below); 1812 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1813 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1814 struct rb_node **, struct rb_node *); 1815 extern void unlink_file_vma(struct vm_area_struct *); 1816 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1817 unsigned long addr, unsigned long len, pgoff_t pgoff, 1818 bool *need_rmap_locks); 1819 extern void exit_mmap(struct mm_struct *); 1820 1821 static inline int check_data_rlimit(unsigned long rlim, 1822 unsigned long new, 1823 unsigned long start, 1824 unsigned long end_data, 1825 unsigned long start_data) 1826 { 1827 if (rlim < RLIM_INFINITY) { 1828 if (((new - start) + (end_data - start_data)) > rlim) 1829 return -ENOSPC; 1830 } 1831 1832 return 0; 1833 } 1834 1835 extern int mm_take_all_locks(struct mm_struct *mm); 1836 extern void mm_drop_all_locks(struct mm_struct *mm); 1837 1838 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1839 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1840 1841 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1842 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1843 unsigned long addr, unsigned long len, 1844 unsigned long flags, 1845 const struct vm_special_mapping *spec); 1846 /* This is an obsolete alternative to _install_special_mapping. */ 1847 extern int install_special_mapping(struct mm_struct *mm, 1848 unsigned long addr, unsigned long len, 1849 unsigned long flags, struct page **pages); 1850 1851 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1852 1853 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1854 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1855 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1856 unsigned long len, unsigned long prot, unsigned long flags, 1857 unsigned long pgoff, unsigned long *populate); 1858 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1859 1860 #ifdef CONFIG_MMU 1861 extern int __mm_populate(unsigned long addr, unsigned long len, 1862 int ignore_errors); 1863 static inline void mm_populate(unsigned long addr, unsigned long len) 1864 { 1865 /* Ignore errors */ 1866 (void) __mm_populate(addr, len, 1); 1867 } 1868 #else 1869 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1870 #endif 1871 1872 /* These take the mm semaphore themselves */ 1873 extern unsigned long vm_brk(unsigned long, unsigned long); 1874 extern int vm_munmap(unsigned long, size_t); 1875 extern unsigned long vm_mmap(struct file *, unsigned long, 1876 unsigned long, unsigned long, 1877 unsigned long, unsigned long); 1878 1879 struct vm_unmapped_area_info { 1880 #define VM_UNMAPPED_AREA_TOPDOWN 1 1881 unsigned long flags; 1882 unsigned long length; 1883 unsigned long low_limit; 1884 unsigned long high_limit; 1885 unsigned long align_mask; 1886 unsigned long align_offset; 1887 }; 1888 1889 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1890 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1891 1892 /* 1893 * Search for an unmapped address range. 1894 * 1895 * We are looking for a range that: 1896 * - does not intersect with any VMA; 1897 * - is contained within the [low_limit, high_limit) interval; 1898 * - is at least the desired size. 1899 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1900 */ 1901 static inline unsigned long 1902 vm_unmapped_area(struct vm_unmapped_area_info *info) 1903 { 1904 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1905 return unmapped_area_topdown(info); 1906 else 1907 return unmapped_area(info); 1908 } 1909 1910 /* truncate.c */ 1911 extern void truncate_inode_pages(struct address_space *, loff_t); 1912 extern void truncate_inode_pages_range(struct address_space *, 1913 loff_t lstart, loff_t lend); 1914 extern void truncate_inode_pages_final(struct address_space *); 1915 1916 /* generic vm_area_ops exported for stackable file systems */ 1917 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1918 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1919 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1920 1921 /* mm/page-writeback.c */ 1922 int write_one_page(struct page *page, int wait); 1923 void task_dirty_inc(struct task_struct *tsk); 1924 1925 /* readahead.c */ 1926 #define VM_MAX_READAHEAD 128 /* kbytes */ 1927 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1928 1929 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1930 pgoff_t offset, unsigned long nr_to_read); 1931 1932 void page_cache_sync_readahead(struct address_space *mapping, 1933 struct file_ra_state *ra, 1934 struct file *filp, 1935 pgoff_t offset, 1936 unsigned long size); 1937 1938 void page_cache_async_readahead(struct address_space *mapping, 1939 struct file_ra_state *ra, 1940 struct file *filp, 1941 struct page *pg, 1942 pgoff_t offset, 1943 unsigned long size); 1944 1945 unsigned long max_sane_readahead(unsigned long nr); 1946 1947 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1948 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1949 1950 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1951 extern int expand_downwards(struct vm_area_struct *vma, 1952 unsigned long address); 1953 #if VM_GROWSUP 1954 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1955 #else 1956 #define expand_upwards(vma, address) (0) 1957 #endif 1958 1959 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1960 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1961 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1962 struct vm_area_struct **pprev); 1963 1964 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1965 NULL if none. Assume start_addr < end_addr. */ 1966 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1967 { 1968 struct vm_area_struct * vma = find_vma(mm,start_addr); 1969 1970 if (vma && end_addr <= vma->vm_start) 1971 vma = NULL; 1972 return vma; 1973 } 1974 1975 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1976 { 1977 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1978 } 1979 1980 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1981 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1982 unsigned long vm_start, unsigned long vm_end) 1983 { 1984 struct vm_area_struct *vma = find_vma(mm, vm_start); 1985 1986 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1987 vma = NULL; 1988 1989 return vma; 1990 } 1991 1992 #ifdef CONFIG_MMU 1993 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1994 void vma_set_page_prot(struct vm_area_struct *vma); 1995 #else 1996 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1997 { 1998 return __pgprot(0); 1999 } 2000 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2001 { 2002 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2003 } 2004 #endif 2005 2006 #ifdef CONFIG_NUMA_BALANCING 2007 unsigned long change_prot_numa(struct vm_area_struct *vma, 2008 unsigned long start, unsigned long end); 2009 #endif 2010 2011 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2012 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2013 unsigned long pfn, unsigned long size, pgprot_t); 2014 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2015 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2016 unsigned long pfn); 2017 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2018 unsigned long pfn); 2019 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2020 2021 2022 struct page *follow_page_mask(struct vm_area_struct *vma, 2023 unsigned long address, unsigned int foll_flags, 2024 unsigned int *page_mask); 2025 2026 static inline struct page *follow_page(struct vm_area_struct *vma, 2027 unsigned long address, unsigned int foll_flags) 2028 { 2029 unsigned int unused_page_mask; 2030 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2031 } 2032 2033 #define FOLL_WRITE 0x01 /* check pte is writable */ 2034 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2035 #define FOLL_GET 0x04 /* do get_page on page */ 2036 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2037 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2038 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2039 * and return without waiting upon it */ 2040 #define FOLL_POPULATE 0x40 /* fault in page */ 2041 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2042 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2043 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2044 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2045 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2046 2047 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2048 void *data); 2049 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2050 unsigned long size, pte_fn_t fn, void *data); 2051 2052 #ifdef CONFIG_PROC_FS 2053 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2054 #else 2055 static inline void vm_stat_account(struct mm_struct *mm, 2056 unsigned long flags, struct file *file, long pages) 2057 { 2058 mm->total_vm += pages; 2059 } 2060 #endif /* CONFIG_PROC_FS */ 2061 2062 #ifdef CONFIG_DEBUG_PAGEALLOC 2063 extern bool _debug_pagealloc_enabled; 2064 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2065 2066 static inline bool debug_pagealloc_enabled(void) 2067 { 2068 return _debug_pagealloc_enabled; 2069 } 2070 2071 static inline void 2072 kernel_map_pages(struct page *page, int numpages, int enable) 2073 { 2074 if (!debug_pagealloc_enabled()) 2075 return; 2076 2077 __kernel_map_pages(page, numpages, enable); 2078 } 2079 #ifdef CONFIG_HIBERNATION 2080 extern bool kernel_page_present(struct page *page); 2081 #endif /* CONFIG_HIBERNATION */ 2082 #else 2083 static inline void 2084 kernel_map_pages(struct page *page, int numpages, int enable) {} 2085 #ifdef CONFIG_HIBERNATION 2086 static inline bool kernel_page_present(struct page *page) { return true; } 2087 #endif /* CONFIG_HIBERNATION */ 2088 #endif 2089 2090 #ifdef __HAVE_ARCH_GATE_AREA 2091 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2092 extern int in_gate_area_no_mm(unsigned long addr); 2093 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2094 #else 2095 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2096 { 2097 return NULL; 2098 } 2099 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2100 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2101 { 2102 return 0; 2103 } 2104 #endif /* __HAVE_ARCH_GATE_AREA */ 2105 2106 #ifdef CONFIG_SYSCTL 2107 extern int sysctl_drop_caches; 2108 int drop_caches_sysctl_handler(struct ctl_table *, int, 2109 void __user *, size_t *, loff_t *); 2110 #endif 2111 2112 void drop_slab(void); 2113 void drop_slab_node(int nid); 2114 2115 #ifndef CONFIG_MMU 2116 #define randomize_va_space 0 2117 #else 2118 extern int randomize_va_space; 2119 #endif 2120 2121 const char * arch_vma_name(struct vm_area_struct *vma); 2122 void print_vma_addr(char *prefix, unsigned long rip); 2123 2124 void sparse_mem_maps_populate_node(struct page **map_map, 2125 unsigned long pnum_begin, 2126 unsigned long pnum_end, 2127 unsigned long map_count, 2128 int nodeid); 2129 2130 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2131 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2132 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2133 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2134 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2135 void *vmemmap_alloc_block(unsigned long size, int node); 2136 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2137 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2138 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2139 int node); 2140 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2141 void vmemmap_populate_print_last(void); 2142 #ifdef CONFIG_MEMORY_HOTPLUG 2143 void vmemmap_free(unsigned long start, unsigned long end); 2144 #endif 2145 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2146 unsigned long size); 2147 2148 enum mf_flags { 2149 MF_COUNT_INCREASED = 1 << 0, 2150 MF_ACTION_REQUIRED = 1 << 1, 2151 MF_MUST_KILL = 1 << 2, 2152 MF_SOFT_OFFLINE = 1 << 3, 2153 }; 2154 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2155 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2156 extern int unpoison_memory(unsigned long pfn); 2157 extern int get_hwpoison_page(struct page *page); 2158 extern int sysctl_memory_failure_early_kill; 2159 extern int sysctl_memory_failure_recovery; 2160 extern void shake_page(struct page *p, int access); 2161 extern atomic_long_t num_poisoned_pages; 2162 extern int soft_offline_page(struct page *page, int flags); 2163 2164 2165 /* 2166 * Error handlers for various types of pages. 2167 */ 2168 enum mf_result { 2169 MF_IGNORED, /* Error: cannot be handled */ 2170 MF_FAILED, /* Error: handling failed */ 2171 MF_DELAYED, /* Will be handled later */ 2172 MF_RECOVERED, /* Successfully recovered */ 2173 }; 2174 2175 enum mf_action_page_type { 2176 MF_MSG_KERNEL, 2177 MF_MSG_KERNEL_HIGH_ORDER, 2178 MF_MSG_SLAB, 2179 MF_MSG_DIFFERENT_COMPOUND, 2180 MF_MSG_POISONED_HUGE, 2181 MF_MSG_HUGE, 2182 MF_MSG_FREE_HUGE, 2183 MF_MSG_UNMAP_FAILED, 2184 MF_MSG_DIRTY_SWAPCACHE, 2185 MF_MSG_CLEAN_SWAPCACHE, 2186 MF_MSG_DIRTY_MLOCKED_LRU, 2187 MF_MSG_CLEAN_MLOCKED_LRU, 2188 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2189 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2190 MF_MSG_DIRTY_LRU, 2191 MF_MSG_CLEAN_LRU, 2192 MF_MSG_TRUNCATED_LRU, 2193 MF_MSG_BUDDY, 2194 MF_MSG_BUDDY_2ND, 2195 MF_MSG_UNKNOWN, 2196 }; 2197 2198 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2199 extern void clear_huge_page(struct page *page, 2200 unsigned long addr, 2201 unsigned int pages_per_huge_page); 2202 extern void copy_user_huge_page(struct page *dst, struct page *src, 2203 unsigned long addr, struct vm_area_struct *vma, 2204 unsigned int pages_per_huge_page); 2205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2206 2207 extern struct page_ext_operations debug_guardpage_ops; 2208 extern struct page_ext_operations page_poisoning_ops; 2209 2210 #ifdef CONFIG_DEBUG_PAGEALLOC 2211 extern unsigned int _debug_guardpage_minorder; 2212 extern bool _debug_guardpage_enabled; 2213 2214 static inline unsigned int debug_guardpage_minorder(void) 2215 { 2216 return _debug_guardpage_minorder; 2217 } 2218 2219 static inline bool debug_guardpage_enabled(void) 2220 { 2221 return _debug_guardpage_enabled; 2222 } 2223 2224 static inline bool page_is_guard(struct page *page) 2225 { 2226 struct page_ext *page_ext; 2227 2228 if (!debug_guardpage_enabled()) 2229 return false; 2230 2231 page_ext = lookup_page_ext(page); 2232 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2233 } 2234 #else 2235 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2236 static inline bool debug_guardpage_enabled(void) { return false; } 2237 static inline bool page_is_guard(struct page *page) { return false; } 2238 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2239 2240 #if MAX_NUMNODES > 1 2241 void __init setup_nr_node_ids(void); 2242 #else 2243 static inline void setup_nr_node_ids(void) {} 2244 #endif 2245 2246 #endif /* __KERNEL__ */ 2247 #endif /* _LINUX_MM_H */ 2248