xref: /linux-6.15/include/linux/mm.h (revision 0bdede8a)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30 struct bdi_writeback;
31 
32 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
33 extern unsigned long max_mapnr;
34 
35 static inline void set_max_mapnr(unsigned long limit)
36 {
37 	max_mapnr = limit;
38 }
39 #else
40 static inline void set_max_mapnr(unsigned long limit) { }
41 #endif
42 
43 extern unsigned long totalram_pages;
44 extern void * high_memory;
45 extern int page_cluster;
46 
47 #ifdef CONFIG_SYSCTL
48 extern int sysctl_legacy_va_layout;
49 #else
50 #define sysctl_legacy_va_layout 0
51 #endif
52 
53 #include <asm/page.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 
57 #ifndef __pa_symbol
58 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
59 #endif
60 
61 /*
62  * To prevent common memory management code establishing
63  * a zero page mapping on a read fault.
64  * This macro should be defined within <asm/pgtable.h>.
65  * s390 does this to prevent multiplexing of hardware bits
66  * related to the physical page in case of virtualization.
67  */
68 #ifndef mm_forbids_zeropage
69 #define mm_forbids_zeropage(X)	(0)
70 #endif
71 
72 extern unsigned long sysctl_user_reserve_kbytes;
73 extern unsigned long sysctl_admin_reserve_kbytes;
74 
75 extern int sysctl_overcommit_memory;
76 extern int sysctl_overcommit_ratio;
77 extern unsigned long sysctl_overcommit_kbytes;
78 
79 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 				    size_t *, loff_t *);
81 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 				    size_t *, loff_t *);
83 
84 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85 
86 /* to align the pointer to the (next) page boundary */
87 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88 
89 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91 
92 /*
93  * Linux kernel virtual memory manager primitives.
94  * The idea being to have a "virtual" mm in the same way
95  * we have a virtual fs - giving a cleaner interface to the
96  * mm details, and allowing different kinds of memory mappings
97  * (from shared memory to executable loading to arbitrary
98  * mmap() functions).
99  */
100 
101 extern struct kmem_cache *vm_area_cachep;
102 
103 #ifndef CONFIG_MMU
104 extern struct rb_root nommu_region_tree;
105 extern struct rw_semaphore nommu_region_sem;
106 
107 extern unsigned int kobjsize(const void *objp);
108 #endif
109 
110 /*
111  * vm_flags in vm_area_struct, see mm_types.h.
112  */
113 #define VM_NONE		0x00000000
114 
115 #define VM_READ		0x00000001	/* currently active flags */
116 #define VM_WRITE	0x00000002
117 #define VM_EXEC		0x00000004
118 #define VM_SHARED	0x00000008
119 
120 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
121 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
122 #define VM_MAYWRITE	0x00000020
123 #define VM_MAYEXEC	0x00000040
124 #define VM_MAYSHARE	0x00000080
125 
126 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
127 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
128 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
129 
130 #define VM_LOCKED	0x00002000
131 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
132 
133 					/* Used by sys_madvise() */
134 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
135 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
136 
137 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
138 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
139 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
140 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
141 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
142 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
143 #define VM_ARCH_2	0x02000000
144 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
145 
146 #ifdef CONFIG_MEM_SOFT_DIRTY
147 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
148 #else
149 # define VM_SOFTDIRTY	0
150 #endif
151 
152 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
153 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
154 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
155 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
156 
157 #if defined(CONFIG_X86)
158 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
159 #elif defined(CONFIG_PPC)
160 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
161 #elif defined(CONFIG_PARISC)
162 # define VM_GROWSUP	VM_ARCH_1
163 #elif defined(CONFIG_METAG)
164 # define VM_GROWSUP	VM_ARCH_1
165 #elif defined(CONFIG_IA64)
166 # define VM_GROWSUP	VM_ARCH_1
167 #elif !defined(CONFIG_MMU)
168 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
169 #endif
170 
171 #if defined(CONFIG_X86)
172 /* MPX specific bounds table or bounds directory */
173 # define VM_MPX		VM_ARCH_2
174 #endif
175 
176 #ifndef VM_GROWSUP
177 # define VM_GROWSUP	VM_NONE
178 #endif
179 
180 /* Bits set in the VMA until the stack is in its final location */
181 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
182 
183 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
184 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185 #endif
186 
187 #ifdef CONFIG_STACK_GROWSUP
188 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189 #else
190 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #endif
192 
193 /*
194  * Special vmas that are non-mergable, non-mlock()able.
195  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
196  */
197 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
198 
199 /* This mask defines which mm->def_flags a process can inherit its parent */
200 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
201 
202 /*
203  * mapping from the currently active vm_flags protection bits (the
204  * low four bits) to a page protection mask..
205  */
206 extern pgprot_t protection_map[16];
207 
208 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
209 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
210 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
211 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
212 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
213 #define FAULT_FLAG_TRIED	0x20	/* Second try */
214 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
215 
216 /*
217  * vm_fault is filled by the the pagefault handler and passed to the vma's
218  * ->fault function. The vma's ->fault is responsible for returning a bitmask
219  * of VM_FAULT_xxx flags that give details about how the fault was handled.
220  *
221  * pgoff should be used in favour of virtual_address, if possible.
222  */
223 struct vm_fault {
224 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
225 	pgoff_t pgoff;			/* Logical page offset based on vma */
226 	void __user *virtual_address;	/* Faulting virtual address */
227 
228 	struct page *cow_page;		/* Handler may choose to COW */
229 	struct page *page;		/* ->fault handlers should return a
230 					 * page here, unless VM_FAULT_NOPAGE
231 					 * is set (which is also implied by
232 					 * VM_FAULT_ERROR).
233 					 */
234 	/* for ->map_pages() only */
235 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
236 					 * max_pgoff inclusive */
237 	pte_t *pte;			/* pte entry associated with ->pgoff */
238 };
239 
240 /*
241  * These are the virtual MM functions - opening of an area, closing and
242  * unmapping it (needed to keep files on disk up-to-date etc), pointer
243  * to the functions called when a no-page or a wp-page exception occurs.
244  */
245 struct vm_operations_struct {
246 	void (*open)(struct vm_area_struct * area);
247 	void (*close)(struct vm_area_struct * area);
248 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
249 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
250 
251 	/* notification that a previously read-only page is about to become
252 	 * writable, if an error is returned it will cause a SIGBUS */
253 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
254 
255 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
256 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
257 
258 	/* called by access_process_vm when get_user_pages() fails, typically
259 	 * for use by special VMAs that can switch between memory and hardware
260 	 */
261 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
262 		      void *buf, int len, int write);
263 
264 	/* Called by the /proc/PID/maps code to ask the vma whether it
265 	 * has a special name.  Returning non-NULL will also cause this
266 	 * vma to be dumped unconditionally. */
267 	const char *(*name)(struct vm_area_struct *vma);
268 
269 #ifdef CONFIG_NUMA
270 	/*
271 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
272 	 * to hold the policy upon return.  Caller should pass NULL @new to
273 	 * remove a policy and fall back to surrounding context--i.e. do not
274 	 * install a MPOL_DEFAULT policy, nor the task or system default
275 	 * mempolicy.
276 	 */
277 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
278 
279 	/*
280 	 * get_policy() op must add reference [mpol_get()] to any policy at
281 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
282 	 * in mm/mempolicy.c will do this automatically.
283 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
284 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
285 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
286 	 * must return NULL--i.e., do not "fallback" to task or system default
287 	 * policy.
288 	 */
289 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
290 					unsigned long addr);
291 #endif
292 	/*
293 	 * Called by vm_normal_page() for special PTEs to find the
294 	 * page for @addr.  This is useful if the default behavior
295 	 * (using pte_page()) would not find the correct page.
296 	 */
297 	struct page *(*find_special_page)(struct vm_area_struct *vma,
298 					  unsigned long addr);
299 };
300 
301 struct mmu_gather;
302 struct inode;
303 
304 #define page_private(page)		((page)->private)
305 #define set_page_private(page, v)	((page)->private = (v))
306 
307 /* It's valid only if the page is free path or free_list */
308 static inline void set_freepage_migratetype(struct page *page, int migratetype)
309 {
310 	page->index = migratetype;
311 }
312 
313 /* It's valid only if the page is free path or free_list */
314 static inline int get_freepage_migratetype(struct page *page)
315 {
316 	return page->index;
317 }
318 
319 /*
320  * FIXME: take this include out, include page-flags.h in
321  * files which need it (119 of them)
322  */
323 #include <linux/page-flags.h>
324 #include <linux/huge_mm.h>
325 
326 /*
327  * Methods to modify the page usage count.
328  *
329  * What counts for a page usage:
330  * - cache mapping   (page->mapping)
331  * - private data    (page->private)
332  * - page mapped in a task's page tables, each mapping
333  *   is counted separately
334  *
335  * Also, many kernel routines increase the page count before a critical
336  * routine so they can be sure the page doesn't go away from under them.
337  */
338 
339 /*
340  * Drop a ref, return true if the refcount fell to zero (the page has no users)
341  */
342 static inline int put_page_testzero(struct page *page)
343 {
344 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
345 	return atomic_dec_and_test(&page->_count);
346 }
347 
348 /*
349  * Try to grab a ref unless the page has a refcount of zero, return false if
350  * that is the case.
351  * This can be called when MMU is off so it must not access
352  * any of the virtual mappings.
353  */
354 static inline int get_page_unless_zero(struct page *page)
355 {
356 	return atomic_inc_not_zero(&page->_count);
357 }
358 
359 /*
360  * Try to drop a ref unless the page has a refcount of one, return false if
361  * that is the case.
362  * This is to make sure that the refcount won't become zero after this drop.
363  * This can be called when MMU is off so it must not access
364  * any of the virtual mappings.
365  */
366 static inline int put_page_unless_one(struct page *page)
367 {
368 	return atomic_add_unless(&page->_count, -1, 1);
369 }
370 
371 extern int page_is_ram(unsigned long pfn);
372 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
373 
374 /* Support for virtually mapped pages */
375 struct page *vmalloc_to_page(const void *addr);
376 unsigned long vmalloc_to_pfn(const void *addr);
377 
378 /*
379  * Determine if an address is within the vmalloc range
380  *
381  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
382  * is no special casing required.
383  */
384 static inline int is_vmalloc_addr(const void *x)
385 {
386 #ifdef CONFIG_MMU
387 	unsigned long addr = (unsigned long)x;
388 
389 	return addr >= VMALLOC_START && addr < VMALLOC_END;
390 #else
391 	return 0;
392 #endif
393 }
394 #ifdef CONFIG_MMU
395 extern int is_vmalloc_or_module_addr(const void *x);
396 #else
397 static inline int is_vmalloc_or_module_addr(const void *x)
398 {
399 	return 0;
400 }
401 #endif
402 
403 extern void kvfree(const void *addr);
404 
405 static inline void compound_lock(struct page *page)
406 {
407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
408 	VM_BUG_ON_PAGE(PageSlab(page), page);
409 	bit_spin_lock(PG_compound_lock, &page->flags);
410 #endif
411 }
412 
413 static inline void compound_unlock(struct page *page)
414 {
415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
416 	VM_BUG_ON_PAGE(PageSlab(page), page);
417 	bit_spin_unlock(PG_compound_lock, &page->flags);
418 #endif
419 }
420 
421 static inline unsigned long compound_lock_irqsave(struct page *page)
422 {
423 	unsigned long uninitialized_var(flags);
424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
425 	local_irq_save(flags);
426 	compound_lock(page);
427 #endif
428 	return flags;
429 }
430 
431 static inline void compound_unlock_irqrestore(struct page *page,
432 					      unsigned long flags)
433 {
434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
435 	compound_unlock(page);
436 	local_irq_restore(flags);
437 #endif
438 }
439 
440 static inline struct page *compound_head_by_tail(struct page *tail)
441 {
442 	struct page *head = tail->first_page;
443 
444 	/*
445 	 * page->first_page may be a dangling pointer to an old
446 	 * compound page, so recheck that it is still a tail
447 	 * page before returning.
448 	 */
449 	smp_rmb();
450 	if (likely(PageTail(tail)))
451 		return head;
452 	return tail;
453 }
454 
455 /*
456  * Since either compound page could be dismantled asynchronously in THP
457  * or we access asynchronously arbitrary positioned struct page, there
458  * would be tail flag race. To handle this race, we should call
459  * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
460  */
461 static inline struct page *compound_head(struct page *page)
462 {
463 	if (unlikely(PageTail(page)))
464 		return compound_head_by_tail(page);
465 	return page;
466 }
467 
468 /*
469  * If we access compound page synchronously such as access to
470  * allocated page, there is no need to handle tail flag race, so we can
471  * check tail flag directly without any synchronization primitive.
472  */
473 static inline struct page *compound_head_fast(struct page *page)
474 {
475 	if (unlikely(PageTail(page)))
476 		return page->first_page;
477 	return page;
478 }
479 
480 /*
481  * The atomic page->_mapcount, starts from -1: so that transitions
482  * both from it and to it can be tracked, using atomic_inc_and_test
483  * and atomic_add_negative(-1).
484  */
485 static inline void page_mapcount_reset(struct page *page)
486 {
487 	atomic_set(&(page)->_mapcount, -1);
488 }
489 
490 static inline int page_mapcount(struct page *page)
491 {
492 	VM_BUG_ON_PAGE(PageSlab(page), page);
493 	return atomic_read(&page->_mapcount) + 1;
494 }
495 
496 static inline int page_count(struct page *page)
497 {
498 	return atomic_read(&compound_head(page)->_count);
499 }
500 
501 static inline bool __compound_tail_refcounted(struct page *page)
502 {
503 	return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
504 }
505 
506 /*
507  * This takes a head page as parameter and tells if the
508  * tail page reference counting can be skipped.
509  *
510  * For this to be safe, PageSlab and PageHeadHuge must remain true on
511  * any given page where they return true here, until all tail pins
512  * have been released.
513  */
514 static inline bool compound_tail_refcounted(struct page *page)
515 {
516 	VM_BUG_ON_PAGE(!PageHead(page), page);
517 	return __compound_tail_refcounted(page);
518 }
519 
520 static inline void get_huge_page_tail(struct page *page)
521 {
522 	/*
523 	 * __split_huge_page_refcount() cannot run from under us.
524 	 */
525 	VM_BUG_ON_PAGE(!PageTail(page), page);
526 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
527 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
528 	if (compound_tail_refcounted(page->first_page))
529 		atomic_inc(&page->_mapcount);
530 }
531 
532 extern bool __get_page_tail(struct page *page);
533 
534 static inline void get_page(struct page *page)
535 {
536 	if (unlikely(PageTail(page)))
537 		if (likely(__get_page_tail(page)))
538 			return;
539 	/*
540 	 * Getting a normal page or the head of a compound page
541 	 * requires to already have an elevated page->_count.
542 	 */
543 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
544 	atomic_inc(&page->_count);
545 }
546 
547 static inline struct page *virt_to_head_page(const void *x)
548 {
549 	struct page *page = virt_to_page(x);
550 
551 	/*
552 	 * We don't need to worry about synchronization of tail flag
553 	 * when we call virt_to_head_page() since it is only called for
554 	 * already allocated page and this page won't be freed until
555 	 * this virt_to_head_page() is finished. So use _fast variant.
556 	 */
557 	return compound_head_fast(page);
558 }
559 
560 /*
561  * Setup the page count before being freed into the page allocator for
562  * the first time (boot or memory hotplug)
563  */
564 static inline void init_page_count(struct page *page)
565 {
566 	atomic_set(&page->_count, 1);
567 }
568 
569 void put_page(struct page *page);
570 void put_pages_list(struct list_head *pages);
571 
572 void split_page(struct page *page, unsigned int order);
573 int split_free_page(struct page *page);
574 
575 /*
576  * Compound pages have a destructor function.  Provide a
577  * prototype for that function and accessor functions.
578  * These are _only_ valid on the head of a PG_compound page.
579  */
580 
581 static inline void set_compound_page_dtor(struct page *page,
582 						compound_page_dtor *dtor)
583 {
584 	page[1].compound_dtor = dtor;
585 }
586 
587 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
588 {
589 	return page[1].compound_dtor;
590 }
591 
592 static inline int compound_order(struct page *page)
593 {
594 	if (!PageHead(page))
595 		return 0;
596 	return page[1].compound_order;
597 }
598 
599 static inline void set_compound_order(struct page *page, unsigned long order)
600 {
601 	page[1].compound_order = order;
602 }
603 
604 #ifdef CONFIG_MMU
605 /*
606  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
607  * servicing faults for write access.  In the normal case, do always want
608  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
609  * that do not have writing enabled, when used by access_process_vm.
610  */
611 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
612 {
613 	if (likely(vma->vm_flags & VM_WRITE))
614 		pte = pte_mkwrite(pte);
615 	return pte;
616 }
617 
618 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
619 		struct page *page, pte_t *pte, bool write, bool anon);
620 #endif
621 
622 /*
623  * Multiple processes may "see" the same page. E.g. for untouched
624  * mappings of /dev/null, all processes see the same page full of
625  * zeroes, and text pages of executables and shared libraries have
626  * only one copy in memory, at most, normally.
627  *
628  * For the non-reserved pages, page_count(page) denotes a reference count.
629  *   page_count() == 0 means the page is free. page->lru is then used for
630  *   freelist management in the buddy allocator.
631  *   page_count() > 0  means the page has been allocated.
632  *
633  * Pages are allocated by the slab allocator in order to provide memory
634  * to kmalloc and kmem_cache_alloc. In this case, the management of the
635  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
636  * unless a particular usage is carefully commented. (the responsibility of
637  * freeing the kmalloc memory is the caller's, of course).
638  *
639  * A page may be used by anyone else who does a __get_free_page().
640  * In this case, page_count still tracks the references, and should only
641  * be used through the normal accessor functions. The top bits of page->flags
642  * and page->virtual store page management information, but all other fields
643  * are unused and could be used privately, carefully. The management of this
644  * page is the responsibility of the one who allocated it, and those who have
645  * subsequently been given references to it.
646  *
647  * The other pages (we may call them "pagecache pages") are completely
648  * managed by the Linux memory manager: I/O, buffers, swapping etc.
649  * The following discussion applies only to them.
650  *
651  * A pagecache page contains an opaque `private' member, which belongs to the
652  * page's address_space. Usually, this is the address of a circular list of
653  * the page's disk buffers. PG_private must be set to tell the VM to call
654  * into the filesystem to release these pages.
655  *
656  * A page may belong to an inode's memory mapping. In this case, page->mapping
657  * is the pointer to the inode, and page->index is the file offset of the page,
658  * in units of PAGE_CACHE_SIZE.
659  *
660  * If pagecache pages are not associated with an inode, they are said to be
661  * anonymous pages. These may become associated with the swapcache, and in that
662  * case PG_swapcache is set, and page->private is an offset into the swapcache.
663  *
664  * In either case (swapcache or inode backed), the pagecache itself holds one
665  * reference to the page. Setting PG_private should also increment the
666  * refcount. The each user mapping also has a reference to the page.
667  *
668  * The pagecache pages are stored in a per-mapping radix tree, which is
669  * rooted at mapping->page_tree, and indexed by offset.
670  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
671  * lists, we instead now tag pages as dirty/writeback in the radix tree.
672  *
673  * All pagecache pages may be subject to I/O:
674  * - inode pages may need to be read from disk,
675  * - inode pages which have been modified and are MAP_SHARED may need
676  *   to be written back to the inode on disk,
677  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
678  *   modified may need to be swapped out to swap space and (later) to be read
679  *   back into memory.
680  */
681 
682 /*
683  * The zone field is never updated after free_area_init_core()
684  * sets it, so none of the operations on it need to be atomic.
685  */
686 
687 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
688 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
689 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
690 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
691 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
692 
693 /*
694  * Define the bit shifts to access each section.  For non-existent
695  * sections we define the shift as 0; that plus a 0 mask ensures
696  * the compiler will optimise away reference to them.
697  */
698 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
699 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
700 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
701 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
702 
703 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
704 #ifdef NODE_NOT_IN_PAGE_FLAGS
705 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
706 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
707 						SECTIONS_PGOFF : ZONES_PGOFF)
708 #else
709 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
710 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
711 						NODES_PGOFF : ZONES_PGOFF)
712 #endif
713 
714 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
715 
716 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
717 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
718 #endif
719 
720 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
721 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
722 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
723 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
724 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
725 
726 static inline enum zone_type page_zonenum(const struct page *page)
727 {
728 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
729 }
730 
731 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
732 #define SECTION_IN_PAGE_FLAGS
733 #endif
734 
735 /*
736  * The identification function is mainly used by the buddy allocator for
737  * determining if two pages could be buddies. We are not really identifying
738  * the zone since we could be using the section number id if we do not have
739  * node id available in page flags.
740  * We only guarantee that it will return the same value for two combinable
741  * pages in a zone.
742  */
743 static inline int page_zone_id(struct page *page)
744 {
745 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
746 }
747 
748 static inline int zone_to_nid(struct zone *zone)
749 {
750 #ifdef CONFIG_NUMA
751 	return zone->node;
752 #else
753 	return 0;
754 #endif
755 }
756 
757 #ifdef NODE_NOT_IN_PAGE_FLAGS
758 extern int page_to_nid(const struct page *page);
759 #else
760 static inline int page_to_nid(const struct page *page)
761 {
762 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
763 }
764 #endif
765 
766 #ifdef CONFIG_NUMA_BALANCING
767 static inline int cpu_pid_to_cpupid(int cpu, int pid)
768 {
769 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
770 }
771 
772 static inline int cpupid_to_pid(int cpupid)
773 {
774 	return cpupid & LAST__PID_MASK;
775 }
776 
777 static inline int cpupid_to_cpu(int cpupid)
778 {
779 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
780 }
781 
782 static inline int cpupid_to_nid(int cpupid)
783 {
784 	return cpu_to_node(cpupid_to_cpu(cpupid));
785 }
786 
787 static inline bool cpupid_pid_unset(int cpupid)
788 {
789 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
790 }
791 
792 static inline bool cpupid_cpu_unset(int cpupid)
793 {
794 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
795 }
796 
797 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
798 {
799 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
800 }
801 
802 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
803 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
804 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
805 {
806 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
807 }
808 
809 static inline int page_cpupid_last(struct page *page)
810 {
811 	return page->_last_cpupid;
812 }
813 static inline void page_cpupid_reset_last(struct page *page)
814 {
815 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
816 }
817 #else
818 static inline int page_cpupid_last(struct page *page)
819 {
820 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
821 }
822 
823 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
824 
825 static inline void page_cpupid_reset_last(struct page *page)
826 {
827 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
828 
829 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
830 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
831 }
832 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
833 #else /* !CONFIG_NUMA_BALANCING */
834 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
835 {
836 	return page_to_nid(page); /* XXX */
837 }
838 
839 static inline int page_cpupid_last(struct page *page)
840 {
841 	return page_to_nid(page); /* XXX */
842 }
843 
844 static inline int cpupid_to_nid(int cpupid)
845 {
846 	return -1;
847 }
848 
849 static inline int cpupid_to_pid(int cpupid)
850 {
851 	return -1;
852 }
853 
854 static inline int cpupid_to_cpu(int cpupid)
855 {
856 	return -1;
857 }
858 
859 static inline int cpu_pid_to_cpupid(int nid, int pid)
860 {
861 	return -1;
862 }
863 
864 static inline bool cpupid_pid_unset(int cpupid)
865 {
866 	return 1;
867 }
868 
869 static inline void page_cpupid_reset_last(struct page *page)
870 {
871 }
872 
873 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
874 {
875 	return false;
876 }
877 #endif /* CONFIG_NUMA_BALANCING */
878 
879 static inline struct zone *page_zone(const struct page *page)
880 {
881 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
882 }
883 
884 #ifdef SECTION_IN_PAGE_FLAGS
885 static inline void set_page_section(struct page *page, unsigned long section)
886 {
887 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
888 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
889 }
890 
891 static inline unsigned long page_to_section(const struct page *page)
892 {
893 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
894 }
895 #endif
896 
897 static inline void set_page_zone(struct page *page, enum zone_type zone)
898 {
899 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
900 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
901 }
902 
903 static inline void set_page_node(struct page *page, unsigned long node)
904 {
905 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
906 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
907 }
908 
909 static inline void set_page_links(struct page *page, enum zone_type zone,
910 	unsigned long node, unsigned long pfn)
911 {
912 	set_page_zone(page, zone);
913 	set_page_node(page, node);
914 #ifdef SECTION_IN_PAGE_FLAGS
915 	set_page_section(page, pfn_to_section_nr(pfn));
916 #endif
917 }
918 
919 /*
920  * Some inline functions in vmstat.h depend on page_zone()
921  */
922 #include <linux/vmstat.h>
923 
924 static __always_inline void *lowmem_page_address(const struct page *page)
925 {
926 	return __va(PFN_PHYS(page_to_pfn(page)));
927 }
928 
929 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
930 #define HASHED_PAGE_VIRTUAL
931 #endif
932 
933 #if defined(WANT_PAGE_VIRTUAL)
934 static inline void *page_address(const struct page *page)
935 {
936 	return page->virtual;
937 }
938 static inline void set_page_address(struct page *page, void *address)
939 {
940 	page->virtual = address;
941 }
942 #define page_address_init()  do { } while(0)
943 #endif
944 
945 #if defined(HASHED_PAGE_VIRTUAL)
946 void *page_address(const struct page *page);
947 void set_page_address(struct page *page, void *virtual);
948 void page_address_init(void);
949 #endif
950 
951 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
952 #define page_address(page) lowmem_page_address(page)
953 #define set_page_address(page, address)  do { } while(0)
954 #define page_address_init()  do { } while(0)
955 #endif
956 
957 extern void *page_rmapping(struct page *page);
958 extern struct anon_vma *page_anon_vma(struct page *page);
959 extern struct address_space *page_mapping(struct page *page);
960 
961 extern struct address_space *__page_file_mapping(struct page *);
962 
963 static inline
964 struct address_space *page_file_mapping(struct page *page)
965 {
966 	if (unlikely(PageSwapCache(page)))
967 		return __page_file_mapping(page);
968 
969 	return page->mapping;
970 }
971 
972 /*
973  * Return the pagecache index of the passed page.  Regular pagecache pages
974  * use ->index whereas swapcache pages use ->private
975  */
976 static inline pgoff_t page_index(struct page *page)
977 {
978 	if (unlikely(PageSwapCache(page)))
979 		return page_private(page);
980 	return page->index;
981 }
982 
983 extern pgoff_t __page_file_index(struct page *page);
984 
985 /*
986  * Return the file index of the page. Regular pagecache pages use ->index
987  * whereas swapcache pages use swp_offset(->private)
988  */
989 static inline pgoff_t page_file_index(struct page *page)
990 {
991 	if (unlikely(PageSwapCache(page)))
992 		return __page_file_index(page);
993 
994 	return page->index;
995 }
996 
997 /*
998  * Return true if this page is mapped into pagetables.
999  */
1000 static inline int page_mapped(struct page *page)
1001 {
1002 	return atomic_read(&(page)->_mapcount) >= 0;
1003 }
1004 
1005 /*
1006  * Different kinds of faults, as returned by handle_mm_fault().
1007  * Used to decide whether a process gets delivered SIGBUS or
1008  * just gets major/minor fault counters bumped up.
1009  */
1010 
1011 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1012 
1013 #define VM_FAULT_OOM	0x0001
1014 #define VM_FAULT_SIGBUS	0x0002
1015 #define VM_FAULT_MAJOR	0x0004
1016 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1017 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1018 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1019 #define VM_FAULT_SIGSEGV 0x0040
1020 
1021 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1022 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1023 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1024 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1025 
1026 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1027 
1028 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1029 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1030 			 VM_FAULT_FALLBACK)
1031 
1032 /* Encode hstate index for a hwpoisoned large page */
1033 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1034 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1035 
1036 /*
1037  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1038  */
1039 extern void pagefault_out_of_memory(void);
1040 
1041 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1042 
1043 /*
1044  * Flags passed to show_mem() and show_free_areas() to suppress output in
1045  * various contexts.
1046  */
1047 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1048 
1049 extern void show_free_areas(unsigned int flags);
1050 extern bool skip_free_areas_node(unsigned int flags, int nid);
1051 
1052 int shmem_zero_setup(struct vm_area_struct *);
1053 #ifdef CONFIG_SHMEM
1054 bool shmem_mapping(struct address_space *mapping);
1055 #else
1056 static inline bool shmem_mapping(struct address_space *mapping)
1057 {
1058 	return false;
1059 }
1060 #endif
1061 
1062 extern int can_do_mlock(void);
1063 extern int user_shm_lock(size_t, struct user_struct *);
1064 extern void user_shm_unlock(size_t, struct user_struct *);
1065 
1066 /*
1067  * Parameter block passed down to zap_pte_range in exceptional cases.
1068  */
1069 struct zap_details {
1070 	struct address_space *check_mapping;	/* Check page->mapping if set */
1071 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1072 	pgoff_t last_index;			/* Highest page->index to unmap */
1073 };
1074 
1075 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1076 		pte_t pte);
1077 
1078 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1079 		unsigned long size);
1080 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1081 		unsigned long size, struct zap_details *);
1082 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1083 		unsigned long start, unsigned long end);
1084 
1085 /**
1086  * mm_walk - callbacks for walk_page_range
1087  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1088  *	       this handler is required to be able to handle
1089  *	       pmd_trans_huge() pmds.  They may simply choose to
1090  *	       split_huge_page() instead of handling it explicitly.
1091  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1092  * @pte_hole: if set, called for each hole at all levels
1093  * @hugetlb_entry: if set, called for each hugetlb entry
1094  * @test_walk: caller specific callback function to determine whether
1095  *             we walk over the current vma or not. A positive returned
1096  *             value means "do page table walk over the current vma,"
1097  *             and a negative one means "abort current page table walk
1098  *             right now." 0 means "skip the current vma."
1099  * @mm:        mm_struct representing the target process of page table walk
1100  * @vma:       vma currently walked (NULL if walking outside vmas)
1101  * @private:   private data for callbacks' usage
1102  *
1103  * (see the comment on walk_page_range() for more details)
1104  */
1105 struct mm_walk {
1106 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1107 			 unsigned long next, struct mm_walk *walk);
1108 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1109 			 unsigned long next, struct mm_walk *walk);
1110 	int (*pte_hole)(unsigned long addr, unsigned long next,
1111 			struct mm_walk *walk);
1112 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1113 			     unsigned long addr, unsigned long next,
1114 			     struct mm_walk *walk);
1115 	int (*test_walk)(unsigned long addr, unsigned long next,
1116 			struct mm_walk *walk);
1117 	struct mm_struct *mm;
1118 	struct vm_area_struct *vma;
1119 	void *private;
1120 };
1121 
1122 int walk_page_range(unsigned long addr, unsigned long end,
1123 		struct mm_walk *walk);
1124 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1125 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1126 		unsigned long end, unsigned long floor, unsigned long ceiling);
1127 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1128 			struct vm_area_struct *vma);
1129 void unmap_mapping_range(struct address_space *mapping,
1130 		loff_t const holebegin, loff_t const holelen, int even_cows);
1131 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1132 	unsigned long *pfn);
1133 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1134 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1135 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1136 			void *buf, int len, int write);
1137 
1138 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1139 		loff_t const holebegin, loff_t const holelen)
1140 {
1141 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1142 }
1143 
1144 extern void truncate_pagecache(struct inode *inode, loff_t new);
1145 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1146 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1147 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1148 int truncate_inode_page(struct address_space *mapping, struct page *page);
1149 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1150 int invalidate_inode_page(struct page *page);
1151 
1152 #ifdef CONFIG_MMU
1153 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1154 			unsigned long address, unsigned int flags);
1155 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1156 			    unsigned long address, unsigned int fault_flags);
1157 #else
1158 static inline int handle_mm_fault(struct mm_struct *mm,
1159 			struct vm_area_struct *vma, unsigned long address,
1160 			unsigned int flags)
1161 {
1162 	/* should never happen if there's no MMU */
1163 	BUG();
1164 	return VM_FAULT_SIGBUS;
1165 }
1166 static inline int fixup_user_fault(struct task_struct *tsk,
1167 		struct mm_struct *mm, unsigned long address,
1168 		unsigned int fault_flags)
1169 {
1170 	/* should never happen if there's no MMU */
1171 	BUG();
1172 	return -EFAULT;
1173 }
1174 #endif
1175 
1176 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1177 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1178 		void *buf, int len, int write);
1179 
1180 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 		      unsigned long start, unsigned long nr_pages,
1182 		      unsigned int foll_flags, struct page **pages,
1183 		      struct vm_area_struct **vmas, int *nonblocking);
1184 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1185 		    unsigned long start, unsigned long nr_pages,
1186 		    int write, int force, struct page **pages,
1187 		    struct vm_area_struct **vmas);
1188 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1189 		    unsigned long start, unsigned long nr_pages,
1190 		    int write, int force, struct page **pages,
1191 		    int *locked);
1192 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1193 			       unsigned long start, unsigned long nr_pages,
1194 			       int write, int force, struct page **pages,
1195 			       unsigned int gup_flags);
1196 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1197 		    unsigned long start, unsigned long nr_pages,
1198 		    int write, int force, struct page **pages);
1199 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1200 			struct page **pages);
1201 struct kvec;
1202 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1203 			struct page **pages);
1204 int get_kernel_page(unsigned long start, int write, struct page **pages);
1205 struct page *get_dump_page(unsigned long addr);
1206 
1207 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1208 extern void do_invalidatepage(struct page *page, unsigned int offset,
1209 			      unsigned int length);
1210 
1211 int __set_page_dirty_nobuffers(struct page *page);
1212 int __set_page_dirty_no_writeback(struct page *page);
1213 int redirty_page_for_writepage(struct writeback_control *wbc,
1214 				struct page *page);
1215 void account_page_dirtied(struct page *page, struct address_space *mapping,
1216 			  struct mem_cgroup *memcg);
1217 void account_page_cleaned(struct page *page, struct address_space *mapping,
1218 			  struct mem_cgroup *memcg, struct bdi_writeback *wb);
1219 int set_page_dirty(struct page *page);
1220 int set_page_dirty_lock(struct page *page);
1221 void cancel_dirty_page(struct page *page);
1222 int clear_page_dirty_for_io(struct page *page);
1223 
1224 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1225 
1226 /* Is the vma a continuation of the stack vma above it? */
1227 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1228 {
1229 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1230 }
1231 
1232 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1233 					     unsigned long addr)
1234 {
1235 	return (vma->vm_flags & VM_GROWSDOWN) &&
1236 		(vma->vm_start == addr) &&
1237 		!vma_growsdown(vma->vm_prev, addr);
1238 }
1239 
1240 /* Is the vma a continuation of the stack vma below it? */
1241 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1242 {
1243 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1244 }
1245 
1246 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1247 					   unsigned long addr)
1248 {
1249 	return (vma->vm_flags & VM_GROWSUP) &&
1250 		(vma->vm_end == addr) &&
1251 		!vma_growsup(vma->vm_next, addr);
1252 }
1253 
1254 extern struct task_struct *task_of_stack(struct task_struct *task,
1255 				struct vm_area_struct *vma, bool in_group);
1256 
1257 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1258 		unsigned long old_addr, struct vm_area_struct *new_vma,
1259 		unsigned long new_addr, unsigned long len,
1260 		bool need_rmap_locks);
1261 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1262 			      unsigned long end, pgprot_t newprot,
1263 			      int dirty_accountable, int prot_numa);
1264 extern int mprotect_fixup(struct vm_area_struct *vma,
1265 			  struct vm_area_struct **pprev, unsigned long start,
1266 			  unsigned long end, unsigned long newflags);
1267 
1268 /*
1269  * doesn't attempt to fault and will return short.
1270  */
1271 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1272 			  struct page **pages);
1273 /*
1274  * per-process(per-mm_struct) statistics.
1275  */
1276 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1277 {
1278 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1279 
1280 #ifdef SPLIT_RSS_COUNTING
1281 	/*
1282 	 * counter is updated in asynchronous manner and may go to minus.
1283 	 * But it's never be expected number for users.
1284 	 */
1285 	if (val < 0)
1286 		val = 0;
1287 #endif
1288 	return (unsigned long)val;
1289 }
1290 
1291 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1292 {
1293 	atomic_long_add(value, &mm->rss_stat.count[member]);
1294 }
1295 
1296 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1297 {
1298 	atomic_long_inc(&mm->rss_stat.count[member]);
1299 }
1300 
1301 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1302 {
1303 	atomic_long_dec(&mm->rss_stat.count[member]);
1304 }
1305 
1306 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1307 {
1308 	return get_mm_counter(mm, MM_FILEPAGES) +
1309 		get_mm_counter(mm, MM_ANONPAGES);
1310 }
1311 
1312 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1313 {
1314 	return max(mm->hiwater_rss, get_mm_rss(mm));
1315 }
1316 
1317 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1318 {
1319 	return max(mm->hiwater_vm, mm->total_vm);
1320 }
1321 
1322 static inline void update_hiwater_rss(struct mm_struct *mm)
1323 {
1324 	unsigned long _rss = get_mm_rss(mm);
1325 
1326 	if ((mm)->hiwater_rss < _rss)
1327 		(mm)->hiwater_rss = _rss;
1328 }
1329 
1330 static inline void update_hiwater_vm(struct mm_struct *mm)
1331 {
1332 	if (mm->hiwater_vm < mm->total_vm)
1333 		mm->hiwater_vm = mm->total_vm;
1334 }
1335 
1336 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1337 {
1338 	mm->hiwater_rss = get_mm_rss(mm);
1339 }
1340 
1341 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1342 					 struct mm_struct *mm)
1343 {
1344 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1345 
1346 	if (*maxrss < hiwater_rss)
1347 		*maxrss = hiwater_rss;
1348 }
1349 
1350 #if defined(SPLIT_RSS_COUNTING)
1351 void sync_mm_rss(struct mm_struct *mm);
1352 #else
1353 static inline void sync_mm_rss(struct mm_struct *mm)
1354 {
1355 }
1356 #endif
1357 
1358 int vma_wants_writenotify(struct vm_area_struct *vma);
1359 
1360 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1361 			       spinlock_t **ptl);
1362 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1363 				    spinlock_t **ptl)
1364 {
1365 	pte_t *ptep;
1366 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1367 	return ptep;
1368 }
1369 
1370 #ifdef __PAGETABLE_PUD_FOLDED
1371 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1372 						unsigned long address)
1373 {
1374 	return 0;
1375 }
1376 #else
1377 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1378 #endif
1379 
1380 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1381 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1382 						unsigned long address)
1383 {
1384 	return 0;
1385 }
1386 
1387 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1388 
1389 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1390 {
1391 	return 0;
1392 }
1393 
1394 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1395 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1396 
1397 #else
1398 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1399 
1400 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1401 {
1402 	atomic_long_set(&mm->nr_pmds, 0);
1403 }
1404 
1405 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1406 {
1407 	return atomic_long_read(&mm->nr_pmds);
1408 }
1409 
1410 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1411 {
1412 	atomic_long_inc(&mm->nr_pmds);
1413 }
1414 
1415 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1416 {
1417 	atomic_long_dec(&mm->nr_pmds);
1418 }
1419 #endif
1420 
1421 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1422 		pmd_t *pmd, unsigned long address);
1423 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1424 
1425 /*
1426  * The following ifdef needed to get the 4level-fixup.h header to work.
1427  * Remove it when 4level-fixup.h has been removed.
1428  */
1429 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1430 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1431 {
1432 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1433 		NULL: pud_offset(pgd, address);
1434 }
1435 
1436 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1437 {
1438 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1439 		NULL: pmd_offset(pud, address);
1440 }
1441 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1442 
1443 #if USE_SPLIT_PTE_PTLOCKS
1444 #if ALLOC_SPLIT_PTLOCKS
1445 void __init ptlock_cache_init(void);
1446 extern bool ptlock_alloc(struct page *page);
1447 extern void ptlock_free(struct page *page);
1448 
1449 static inline spinlock_t *ptlock_ptr(struct page *page)
1450 {
1451 	return page->ptl;
1452 }
1453 #else /* ALLOC_SPLIT_PTLOCKS */
1454 static inline void ptlock_cache_init(void)
1455 {
1456 }
1457 
1458 static inline bool ptlock_alloc(struct page *page)
1459 {
1460 	return true;
1461 }
1462 
1463 static inline void ptlock_free(struct page *page)
1464 {
1465 }
1466 
1467 static inline spinlock_t *ptlock_ptr(struct page *page)
1468 {
1469 	return &page->ptl;
1470 }
1471 #endif /* ALLOC_SPLIT_PTLOCKS */
1472 
1473 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1474 {
1475 	return ptlock_ptr(pmd_page(*pmd));
1476 }
1477 
1478 static inline bool ptlock_init(struct page *page)
1479 {
1480 	/*
1481 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1482 	 * with 0. Make sure nobody took it in use in between.
1483 	 *
1484 	 * It can happen if arch try to use slab for page table allocation:
1485 	 * slab code uses page->slab_cache and page->first_page (for tail
1486 	 * pages), which share storage with page->ptl.
1487 	 */
1488 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1489 	if (!ptlock_alloc(page))
1490 		return false;
1491 	spin_lock_init(ptlock_ptr(page));
1492 	return true;
1493 }
1494 
1495 /* Reset page->mapping so free_pages_check won't complain. */
1496 static inline void pte_lock_deinit(struct page *page)
1497 {
1498 	page->mapping = NULL;
1499 	ptlock_free(page);
1500 }
1501 
1502 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1503 /*
1504  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1505  */
1506 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1507 {
1508 	return &mm->page_table_lock;
1509 }
1510 static inline void ptlock_cache_init(void) {}
1511 static inline bool ptlock_init(struct page *page) { return true; }
1512 static inline void pte_lock_deinit(struct page *page) {}
1513 #endif /* USE_SPLIT_PTE_PTLOCKS */
1514 
1515 static inline void pgtable_init(void)
1516 {
1517 	ptlock_cache_init();
1518 	pgtable_cache_init();
1519 }
1520 
1521 static inline bool pgtable_page_ctor(struct page *page)
1522 {
1523 	inc_zone_page_state(page, NR_PAGETABLE);
1524 	return ptlock_init(page);
1525 }
1526 
1527 static inline void pgtable_page_dtor(struct page *page)
1528 {
1529 	pte_lock_deinit(page);
1530 	dec_zone_page_state(page, NR_PAGETABLE);
1531 }
1532 
1533 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1534 ({							\
1535 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1536 	pte_t *__pte = pte_offset_map(pmd, address);	\
1537 	*(ptlp) = __ptl;				\
1538 	spin_lock(__ptl);				\
1539 	__pte;						\
1540 })
1541 
1542 #define pte_unmap_unlock(pte, ptl)	do {		\
1543 	spin_unlock(ptl);				\
1544 	pte_unmap(pte);					\
1545 } while (0)
1546 
1547 #define pte_alloc_map(mm, vma, pmd, address)				\
1548 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1549 							pmd, address))?	\
1550 	 NULL: pte_offset_map(pmd, address))
1551 
1552 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1553 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1554 							pmd, address))?	\
1555 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1556 
1557 #define pte_alloc_kernel(pmd, address)			\
1558 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1559 		NULL: pte_offset_kernel(pmd, address))
1560 
1561 #if USE_SPLIT_PMD_PTLOCKS
1562 
1563 static struct page *pmd_to_page(pmd_t *pmd)
1564 {
1565 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1566 	return virt_to_page((void *)((unsigned long) pmd & mask));
1567 }
1568 
1569 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1570 {
1571 	return ptlock_ptr(pmd_to_page(pmd));
1572 }
1573 
1574 static inline bool pgtable_pmd_page_ctor(struct page *page)
1575 {
1576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1577 	page->pmd_huge_pte = NULL;
1578 #endif
1579 	return ptlock_init(page);
1580 }
1581 
1582 static inline void pgtable_pmd_page_dtor(struct page *page)
1583 {
1584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1585 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1586 #endif
1587 	ptlock_free(page);
1588 }
1589 
1590 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1591 
1592 #else
1593 
1594 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1595 {
1596 	return &mm->page_table_lock;
1597 }
1598 
1599 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1600 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1601 
1602 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1603 
1604 #endif
1605 
1606 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1607 {
1608 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1609 	spin_lock(ptl);
1610 	return ptl;
1611 }
1612 
1613 extern void free_area_init(unsigned long * zones_size);
1614 extern void free_area_init_node(int nid, unsigned long * zones_size,
1615 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1616 extern void free_initmem(void);
1617 
1618 /*
1619  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1620  * into the buddy system. The freed pages will be poisoned with pattern
1621  * "poison" if it's within range [0, UCHAR_MAX].
1622  * Return pages freed into the buddy system.
1623  */
1624 extern unsigned long free_reserved_area(void *start, void *end,
1625 					int poison, char *s);
1626 
1627 #ifdef	CONFIG_HIGHMEM
1628 /*
1629  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1630  * and totalram_pages.
1631  */
1632 extern void free_highmem_page(struct page *page);
1633 #endif
1634 
1635 extern void adjust_managed_page_count(struct page *page, long count);
1636 extern void mem_init_print_info(const char *str);
1637 
1638 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1639 
1640 /* Free the reserved page into the buddy system, so it gets managed. */
1641 static inline void __free_reserved_page(struct page *page)
1642 {
1643 	ClearPageReserved(page);
1644 	init_page_count(page);
1645 	__free_page(page);
1646 }
1647 
1648 static inline void free_reserved_page(struct page *page)
1649 {
1650 	__free_reserved_page(page);
1651 	adjust_managed_page_count(page, 1);
1652 }
1653 
1654 static inline void mark_page_reserved(struct page *page)
1655 {
1656 	SetPageReserved(page);
1657 	adjust_managed_page_count(page, -1);
1658 }
1659 
1660 /*
1661  * Default method to free all the __init memory into the buddy system.
1662  * The freed pages will be poisoned with pattern "poison" if it's within
1663  * range [0, UCHAR_MAX].
1664  * Return pages freed into the buddy system.
1665  */
1666 static inline unsigned long free_initmem_default(int poison)
1667 {
1668 	extern char __init_begin[], __init_end[];
1669 
1670 	return free_reserved_area(&__init_begin, &__init_end,
1671 				  poison, "unused kernel");
1672 }
1673 
1674 static inline unsigned long get_num_physpages(void)
1675 {
1676 	int nid;
1677 	unsigned long phys_pages = 0;
1678 
1679 	for_each_online_node(nid)
1680 		phys_pages += node_present_pages(nid);
1681 
1682 	return phys_pages;
1683 }
1684 
1685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1686 /*
1687  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1688  * zones, allocate the backing mem_map and account for memory holes in a more
1689  * architecture independent manner. This is a substitute for creating the
1690  * zone_sizes[] and zholes_size[] arrays and passing them to
1691  * free_area_init_node()
1692  *
1693  * An architecture is expected to register range of page frames backed by
1694  * physical memory with memblock_add[_node]() before calling
1695  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1696  * usage, an architecture is expected to do something like
1697  *
1698  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1699  * 							 max_highmem_pfn};
1700  * for_each_valid_physical_page_range()
1701  * 	memblock_add_node(base, size, nid)
1702  * free_area_init_nodes(max_zone_pfns);
1703  *
1704  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1705  * registered physical page range.  Similarly
1706  * sparse_memory_present_with_active_regions() calls memory_present() for
1707  * each range when SPARSEMEM is enabled.
1708  *
1709  * See mm/page_alloc.c for more information on each function exposed by
1710  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1711  */
1712 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1713 unsigned long node_map_pfn_alignment(void);
1714 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1715 						unsigned long end_pfn);
1716 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1717 						unsigned long end_pfn);
1718 extern void get_pfn_range_for_nid(unsigned int nid,
1719 			unsigned long *start_pfn, unsigned long *end_pfn);
1720 extern unsigned long find_min_pfn_with_active_regions(void);
1721 extern void free_bootmem_with_active_regions(int nid,
1722 						unsigned long max_low_pfn);
1723 extern void sparse_memory_present_with_active_regions(int nid);
1724 
1725 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1726 
1727 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1728     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1729 static inline int __early_pfn_to_nid(unsigned long pfn,
1730 					struct mminit_pfnnid_cache *state)
1731 {
1732 	return 0;
1733 }
1734 #else
1735 /* please see mm/page_alloc.c */
1736 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1737 /* there is a per-arch backend function. */
1738 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1739 					struct mminit_pfnnid_cache *state);
1740 #endif
1741 
1742 extern void set_dma_reserve(unsigned long new_dma_reserve);
1743 extern void memmap_init_zone(unsigned long, int, unsigned long,
1744 				unsigned long, enum memmap_context);
1745 extern void setup_per_zone_wmarks(void);
1746 extern int __meminit init_per_zone_wmark_min(void);
1747 extern void mem_init(void);
1748 extern void __init mmap_init(void);
1749 extern void show_mem(unsigned int flags);
1750 extern void si_meminfo(struct sysinfo * val);
1751 extern void si_meminfo_node(struct sysinfo *val, int nid);
1752 
1753 extern __printf(3, 4)
1754 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1755 
1756 extern void setup_per_cpu_pageset(void);
1757 
1758 extern void zone_pcp_update(struct zone *zone);
1759 extern void zone_pcp_reset(struct zone *zone);
1760 
1761 /* page_alloc.c */
1762 extern int min_free_kbytes;
1763 
1764 /* nommu.c */
1765 extern atomic_long_t mmap_pages_allocated;
1766 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1767 
1768 /* interval_tree.c */
1769 void vma_interval_tree_insert(struct vm_area_struct *node,
1770 			      struct rb_root *root);
1771 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1772 				    struct vm_area_struct *prev,
1773 				    struct rb_root *root);
1774 void vma_interval_tree_remove(struct vm_area_struct *node,
1775 			      struct rb_root *root);
1776 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1777 				unsigned long start, unsigned long last);
1778 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1779 				unsigned long start, unsigned long last);
1780 
1781 #define vma_interval_tree_foreach(vma, root, start, last)		\
1782 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1783 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1784 
1785 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1786 				   struct rb_root *root);
1787 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1788 				   struct rb_root *root);
1789 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1790 	struct rb_root *root, unsigned long start, unsigned long last);
1791 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1792 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1793 #ifdef CONFIG_DEBUG_VM_RB
1794 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1795 #endif
1796 
1797 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1798 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1799 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1800 
1801 /* mmap.c */
1802 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1803 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1804 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1805 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1806 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1807 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1808 	struct mempolicy *);
1809 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1810 extern int split_vma(struct mm_struct *,
1811 	struct vm_area_struct *, unsigned long addr, int new_below);
1812 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1813 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1814 	struct rb_node **, struct rb_node *);
1815 extern void unlink_file_vma(struct vm_area_struct *);
1816 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1817 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1818 	bool *need_rmap_locks);
1819 extern void exit_mmap(struct mm_struct *);
1820 
1821 static inline int check_data_rlimit(unsigned long rlim,
1822 				    unsigned long new,
1823 				    unsigned long start,
1824 				    unsigned long end_data,
1825 				    unsigned long start_data)
1826 {
1827 	if (rlim < RLIM_INFINITY) {
1828 		if (((new - start) + (end_data - start_data)) > rlim)
1829 			return -ENOSPC;
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 extern int mm_take_all_locks(struct mm_struct *mm);
1836 extern void mm_drop_all_locks(struct mm_struct *mm);
1837 
1838 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1839 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1840 
1841 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1842 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1843 				   unsigned long addr, unsigned long len,
1844 				   unsigned long flags,
1845 				   const struct vm_special_mapping *spec);
1846 /* This is an obsolete alternative to _install_special_mapping. */
1847 extern int install_special_mapping(struct mm_struct *mm,
1848 				   unsigned long addr, unsigned long len,
1849 				   unsigned long flags, struct page **pages);
1850 
1851 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1852 
1853 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1854 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1855 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1856 	unsigned long len, unsigned long prot, unsigned long flags,
1857 	unsigned long pgoff, unsigned long *populate);
1858 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1859 
1860 #ifdef CONFIG_MMU
1861 extern int __mm_populate(unsigned long addr, unsigned long len,
1862 			 int ignore_errors);
1863 static inline void mm_populate(unsigned long addr, unsigned long len)
1864 {
1865 	/* Ignore errors */
1866 	(void) __mm_populate(addr, len, 1);
1867 }
1868 #else
1869 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1870 #endif
1871 
1872 /* These take the mm semaphore themselves */
1873 extern unsigned long vm_brk(unsigned long, unsigned long);
1874 extern int vm_munmap(unsigned long, size_t);
1875 extern unsigned long vm_mmap(struct file *, unsigned long,
1876         unsigned long, unsigned long,
1877         unsigned long, unsigned long);
1878 
1879 struct vm_unmapped_area_info {
1880 #define VM_UNMAPPED_AREA_TOPDOWN 1
1881 	unsigned long flags;
1882 	unsigned long length;
1883 	unsigned long low_limit;
1884 	unsigned long high_limit;
1885 	unsigned long align_mask;
1886 	unsigned long align_offset;
1887 };
1888 
1889 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1890 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1891 
1892 /*
1893  * Search for an unmapped address range.
1894  *
1895  * We are looking for a range that:
1896  * - does not intersect with any VMA;
1897  * - is contained within the [low_limit, high_limit) interval;
1898  * - is at least the desired size.
1899  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1900  */
1901 static inline unsigned long
1902 vm_unmapped_area(struct vm_unmapped_area_info *info)
1903 {
1904 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1905 		return unmapped_area_topdown(info);
1906 	else
1907 		return unmapped_area(info);
1908 }
1909 
1910 /* truncate.c */
1911 extern void truncate_inode_pages(struct address_space *, loff_t);
1912 extern void truncate_inode_pages_range(struct address_space *,
1913 				       loff_t lstart, loff_t lend);
1914 extern void truncate_inode_pages_final(struct address_space *);
1915 
1916 /* generic vm_area_ops exported for stackable file systems */
1917 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1918 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1919 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1920 
1921 /* mm/page-writeback.c */
1922 int write_one_page(struct page *page, int wait);
1923 void task_dirty_inc(struct task_struct *tsk);
1924 
1925 /* readahead.c */
1926 #define VM_MAX_READAHEAD	128	/* kbytes */
1927 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1928 
1929 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1930 			pgoff_t offset, unsigned long nr_to_read);
1931 
1932 void page_cache_sync_readahead(struct address_space *mapping,
1933 			       struct file_ra_state *ra,
1934 			       struct file *filp,
1935 			       pgoff_t offset,
1936 			       unsigned long size);
1937 
1938 void page_cache_async_readahead(struct address_space *mapping,
1939 				struct file_ra_state *ra,
1940 				struct file *filp,
1941 				struct page *pg,
1942 				pgoff_t offset,
1943 				unsigned long size);
1944 
1945 unsigned long max_sane_readahead(unsigned long nr);
1946 
1947 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1948 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1949 
1950 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1951 extern int expand_downwards(struct vm_area_struct *vma,
1952 		unsigned long address);
1953 #if VM_GROWSUP
1954 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1955 #else
1956   #define expand_upwards(vma, address) (0)
1957 #endif
1958 
1959 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1960 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1961 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1962 					     struct vm_area_struct **pprev);
1963 
1964 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1965    NULL if none.  Assume start_addr < end_addr. */
1966 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1967 {
1968 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1969 
1970 	if (vma && end_addr <= vma->vm_start)
1971 		vma = NULL;
1972 	return vma;
1973 }
1974 
1975 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1976 {
1977 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1978 }
1979 
1980 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1981 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1982 				unsigned long vm_start, unsigned long vm_end)
1983 {
1984 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1985 
1986 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1987 		vma = NULL;
1988 
1989 	return vma;
1990 }
1991 
1992 #ifdef CONFIG_MMU
1993 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1994 void vma_set_page_prot(struct vm_area_struct *vma);
1995 #else
1996 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1997 {
1998 	return __pgprot(0);
1999 }
2000 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2001 {
2002 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2003 }
2004 #endif
2005 
2006 #ifdef CONFIG_NUMA_BALANCING
2007 unsigned long change_prot_numa(struct vm_area_struct *vma,
2008 			unsigned long start, unsigned long end);
2009 #endif
2010 
2011 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2012 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2013 			unsigned long pfn, unsigned long size, pgprot_t);
2014 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2015 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2016 			unsigned long pfn);
2017 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2018 			unsigned long pfn);
2019 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2020 
2021 
2022 struct page *follow_page_mask(struct vm_area_struct *vma,
2023 			      unsigned long address, unsigned int foll_flags,
2024 			      unsigned int *page_mask);
2025 
2026 static inline struct page *follow_page(struct vm_area_struct *vma,
2027 		unsigned long address, unsigned int foll_flags)
2028 {
2029 	unsigned int unused_page_mask;
2030 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2031 }
2032 
2033 #define FOLL_WRITE	0x01	/* check pte is writable */
2034 #define FOLL_TOUCH	0x02	/* mark page accessed */
2035 #define FOLL_GET	0x04	/* do get_page on page */
2036 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2037 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2038 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2039 				 * and return without waiting upon it */
2040 #define FOLL_POPULATE	0x40	/* fault in page */
2041 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2042 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2043 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2044 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2045 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2046 
2047 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2048 			void *data);
2049 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2050 			       unsigned long size, pte_fn_t fn, void *data);
2051 
2052 #ifdef CONFIG_PROC_FS
2053 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2054 #else
2055 static inline void vm_stat_account(struct mm_struct *mm,
2056 			unsigned long flags, struct file *file, long pages)
2057 {
2058 	mm->total_vm += pages;
2059 }
2060 #endif /* CONFIG_PROC_FS */
2061 
2062 #ifdef CONFIG_DEBUG_PAGEALLOC
2063 extern bool _debug_pagealloc_enabled;
2064 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2065 
2066 static inline bool debug_pagealloc_enabled(void)
2067 {
2068 	return _debug_pagealloc_enabled;
2069 }
2070 
2071 static inline void
2072 kernel_map_pages(struct page *page, int numpages, int enable)
2073 {
2074 	if (!debug_pagealloc_enabled())
2075 		return;
2076 
2077 	__kernel_map_pages(page, numpages, enable);
2078 }
2079 #ifdef CONFIG_HIBERNATION
2080 extern bool kernel_page_present(struct page *page);
2081 #endif /* CONFIG_HIBERNATION */
2082 #else
2083 static inline void
2084 kernel_map_pages(struct page *page, int numpages, int enable) {}
2085 #ifdef CONFIG_HIBERNATION
2086 static inline bool kernel_page_present(struct page *page) { return true; }
2087 #endif /* CONFIG_HIBERNATION */
2088 #endif
2089 
2090 #ifdef __HAVE_ARCH_GATE_AREA
2091 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2092 extern int in_gate_area_no_mm(unsigned long addr);
2093 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2094 #else
2095 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2096 {
2097 	return NULL;
2098 }
2099 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2100 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2101 {
2102 	return 0;
2103 }
2104 #endif	/* __HAVE_ARCH_GATE_AREA */
2105 
2106 #ifdef CONFIG_SYSCTL
2107 extern int sysctl_drop_caches;
2108 int drop_caches_sysctl_handler(struct ctl_table *, int,
2109 					void __user *, size_t *, loff_t *);
2110 #endif
2111 
2112 void drop_slab(void);
2113 void drop_slab_node(int nid);
2114 
2115 #ifndef CONFIG_MMU
2116 #define randomize_va_space 0
2117 #else
2118 extern int randomize_va_space;
2119 #endif
2120 
2121 const char * arch_vma_name(struct vm_area_struct *vma);
2122 void print_vma_addr(char *prefix, unsigned long rip);
2123 
2124 void sparse_mem_maps_populate_node(struct page **map_map,
2125 				   unsigned long pnum_begin,
2126 				   unsigned long pnum_end,
2127 				   unsigned long map_count,
2128 				   int nodeid);
2129 
2130 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2131 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2132 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2133 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2134 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2135 void *vmemmap_alloc_block(unsigned long size, int node);
2136 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2137 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2138 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2139 			       int node);
2140 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2141 void vmemmap_populate_print_last(void);
2142 #ifdef CONFIG_MEMORY_HOTPLUG
2143 void vmemmap_free(unsigned long start, unsigned long end);
2144 #endif
2145 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2146 				  unsigned long size);
2147 
2148 enum mf_flags {
2149 	MF_COUNT_INCREASED = 1 << 0,
2150 	MF_ACTION_REQUIRED = 1 << 1,
2151 	MF_MUST_KILL = 1 << 2,
2152 	MF_SOFT_OFFLINE = 1 << 3,
2153 };
2154 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2155 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2156 extern int unpoison_memory(unsigned long pfn);
2157 extern int get_hwpoison_page(struct page *page);
2158 extern int sysctl_memory_failure_early_kill;
2159 extern int sysctl_memory_failure_recovery;
2160 extern void shake_page(struct page *p, int access);
2161 extern atomic_long_t num_poisoned_pages;
2162 extern int soft_offline_page(struct page *page, int flags);
2163 
2164 
2165 /*
2166  * Error handlers for various types of pages.
2167  */
2168 enum mf_result {
2169 	MF_IGNORED,	/* Error: cannot be handled */
2170 	MF_FAILED,	/* Error: handling failed */
2171 	MF_DELAYED,	/* Will be handled later */
2172 	MF_RECOVERED,	/* Successfully recovered */
2173 };
2174 
2175 enum mf_action_page_type {
2176 	MF_MSG_KERNEL,
2177 	MF_MSG_KERNEL_HIGH_ORDER,
2178 	MF_MSG_SLAB,
2179 	MF_MSG_DIFFERENT_COMPOUND,
2180 	MF_MSG_POISONED_HUGE,
2181 	MF_MSG_HUGE,
2182 	MF_MSG_FREE_HUGE,
2183 	MF_MSG_UNMAP_FAILED,
2184 	MF_MSG_DIRTY_SWAPCACHE,
2185 	MF_MSG_CLEAN_SWAPCACHE,
2186 	MF_MSG_DIRTY_MLOCKED_LRU,
2187 	MF_MSG_CLEAN_MLOCKED_LRU,
2188 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2189 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2190 	MF_MSG_DIRTY_LRU,
2191 	MF_MSG_CLEAN_LRU,
2192 	MF_MSG_TRUNCATED_LRU,
2193 	MF_MSG_BUDDY,
2194 	MF_MSG_BUDDY_2ND,
2195 	MF_MSG_UNKNOWN,
2196 };
2197 
2198 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2199 extern void clear_huge_page(struct page *page,
2200 			    unsigned long addr,
2201 			    unsigned int pages_per_huge_page);
2202 extern void copy_user_huge_page(struct page *dst, struct page *src,
2203 				unsigned long addr, struct vm_area_struct *vma,
2204 				unsigned int pages_per_huge_page);
2205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2206 
2207 extern struct page_ext_operations debug_guardpage_ops;
2208 extern struct page_ext_operations page_poisoning_ops;
2209 
2210 #ifdef CONFIG_DEBUG_PAGEALLOC
2211 extern unsigned int _debug_guardpage_minorder;
2212 extern bool _debug_guardpage_enabled;
2213 
2214 static inline unsigned int debug_guardpage_minorder(void)
2215 {
2216 	return _debug_guardpage_minorder;
2217 }
2218 
2219 static inline bool debug_guardpage_enabled(void)
2220 {
2221 	return _debug_guardpage_enabled;
2222 }
2223 
2224 static inline bool page_is_guard(struct page *page)
2225 {
2226 	struct page_ext *page_ext;
2227 
2228 	if (!debug_guardpage_enabled())
2229 		return false;
2230 
2231 	page_ext = lookup_page_ext(page);
2232 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2233 }
2234 #else
2235 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2236 static inline bool debug_guardpage_enabled(void) { return false; }
2237 static inline bool page_is_guard(struct page *page) { return false; }
2238 #endif /* CONFIG_DEBUG_PAGEALLOC */
2239 
2240 #if MAX_NUMNODES > 1
2241 void __init setup_nr_node_ids(void);
2242 #else
2243 static inline void setup_nr_node_ids(void) {}
2244 #endif
2245 
2246 #endif /* __KERNEL__ */
2247 #endif /* _LINUX_MM_H */
2248