xref: /linux-6.15/include/linux/mm.h (revision 080d72f4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef PHYSMEM_END
101 # define PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
102 #endif
103 
104 #include <asm/page.h>
105 #include <asm/processor.h>
106 
107 #ifndef __pa_symbol
108 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
109 #endif
110 
111 #ifndef page_to_virt
112 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
113 #endif
114 
115 #ifndef lm_alias
116 #define lm_alias(x)	__va(__pa_symbol(x))
117 #endif
118 
119 /*
120  * To prevent common memory management code establishing
121  * a zero page mapping on a read fault.
122  * This macro should be defined within <asm/pgtable.h>.
123  * s390 does this to prevent multiplexing of hardware bits
124  * related to the physical page in case of virtualization.
125  */
126 #ifndef mm_forbids_zeropage
127 #define mm_forbids_zeropage(X)	(0)
128 #endif
129 
130 /*
131  * On some architectures it is expensive to call memset() for small sizes.
132  * If an architecture decides to implement their own version of
133  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
134  * define their own version of this macro in <asm/pgtable.h>
135  */
136 #if BITS_PER_LONG == 64
137 /* This function must be updated when the size of struct page grows above 96
138  * or reduces below 56. The idea that compiler optimizes out switch()
139  * statement, and only leaves move/store instructions. Also the compiler can
140  * combine write statements if they are both assignments and can be reordered,
141  * this can result in several of the writes here being dropped.
142  */
143 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
144 static inline void __mm_zero_struct_page(struct page *page)
145 {
146 	unsigned long *_pp = (void *)page;
147 
148 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
149 	BUILD_BUG_ON(sizeof(struct page) & 7);
150 	BUILD_BUG_ON(sizeof(struct page) < 56);
151 	BUILD_BUG_ON(sizeof(struct page) > 96);
152 
153 	switch (sizeof(struct page)) {
154 	case 96:
155 		_pp[11] = 0;
156 		fallthrough;
157 	case 88:
158 		_pp[10] = 0;
159 		fallthrough;
160 	case 80:
161 		_pp[9] = 0;
162 		fallthrough;
163 	case 72:
164 		_pp[8] = 0;
165 		fallthrough;
166 	case 64:
167 		_pp[7] = 0;
168 		fallthrough;
169 	case 56:
170 		_pp[6] = 0;
171 		_pp[5] = 0;
172 		_pp[4] = 0;
173 		_pp[3] = 0;
174 		_pp[2] = 0;
175 		_pp[1] = 0;
176 		_pp[0] = 0;
177 	}
178 }
179 #else
180 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
181 #endif
182 
183 /*
184  * Default maximum number of active map areas, this limits the number of vmas
185  * per mm struct. Users can overwrite this number by sysctl but there is a
186  * problem.
187  *
188  * When a program's coredump is generated as ELF format, a section is created
189  * per a vma. In ELF, the number of sections is represented in unsigned short.
190  * This means the number of sections should be smaller than 65535 at coredump.
191  * Because the kernel adds some informative sections to a image of program at
192  * generating coredump, we need some margin. The number of extra sections is
193  * 1-3 now and depends on arch. We use "5" as safe margin, here.
194  *
195  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
196  * not a hard limit any more. Although some userspace tools can be surprised by
197  * that.
198  */
199 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
200 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
201 
202 extern int sysctl_max_map_count;
203 
204 extern unsigned long sysctl_user_reserve_kbytes;
205 extern unsigned long sysctl_admin_reserve_kbytes;
206 
207 extern int sysctl_overcommit_memory;
208 extern int sysctl_overcommit_ratio;
209 extern unsigned long sysctl_overcommit_kbytes;
210 
211 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 
218 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
221 #else
222 #define nth_page(page,n) ((page) + (n))
223 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
224 #endif
225 
226 /* to align the pointer to the (next) page boundary */
227 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
228 
229 /* to align the pointer to the (prev) page boundary */
230 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
231 
232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234 
235 static inline struct folio *lru_to_folio(struct list_head *head)
236 {
237 	return list_entry((head)->prev, struct folio, lru);
238 }
239 
240 void setup_initial_init_mm(void *start_code, void *end_code,
241 			   void *end_data, void *brk);
242 
243 /*
244  * Linux kernel virtual memory manager primitives.
245  * The idea being to have a "virtual" mm in the same way
246  * we have a virtual fs - giving a cleaner interface to the
247  * mm details, and allowing different kinds of memory mappings
248  * (from shared memory to executable loading to arbitrary
249  * mmap() functions).
250  */
251 
252 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
253 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
254 void vm_area_free(struct vm_area_struct *);
255 /* Use only if VMA has no other users */
256 void __vm_area_free(struct vm_area_struct *vma);
257 
258 #ifndef CONFIG_MMU
259 extern struct rb_root nommu_region_tree;
260 extern struct rw_semaphore nommu_region_sem;
261 
262 extern unsigned int kobjsize(const void *objp);
263 #endif
264 
265 /*
266  * vm_flags in vm_area_struct, see mm_types.h.
267  * When changing, update also include/trace/events/mmflags.h
268  */
269 #define VM_NONE		0x00000000
270 
271 #define VM_READ		0x00000001	/* currently active flags */
272 #define VM_WRITE	0x00000002
273 #define VM_EXEC		0x00000004
274 #define VM_SHARED	0x00000008
275 
276 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
277 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
278 #define VM_MAYWRITE	0x00000020
279 #define VM_MAYEXEC	0x00000040
280 #define VM_MAYSHARE	0x00000080
281 
282 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
283 #ifdef CONFIG_MMU
284 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
285 #else /* CONFIG_MMU */
286 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
287 #define VM_UFFD_MISSING	0
288 #endif /* CONFIG_MMU */
289 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
290 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
291 
292 #define VM_LOCKED	0x00002000
293 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
294 
295 					/* Used by sys_madvise() */
296 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
297 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
298 
299 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
300 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
301 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
302 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
303 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
304 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
305 #define VM_SYNC		0x00800000	/* Synchronous page faults */
306 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
307 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
308 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
309 
310 #ifdef CONFIG_MEM_SOFT_DIRTY
311 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
312 #else
313 # define VM_SOFTDIRTY	0
314 #endif
315 
316 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
317 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
318 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
319 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
320 
321 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
322 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
326 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
329 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
330 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
331 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
332 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
333 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
334 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
335 
336 #ifdef CONFIG_ARCH_HAS_PKEYS
337 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
338 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
339 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
340 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
341 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
342 #ifdef CONFIG_PPC
343 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
344 #else
345 # define VM_PKEY_BIT4  0
346 #endif
347 #endif /* CONFIG_ARCH_HAS_PKEYS */
348 
349 #ifdef CONFIG_X86_USER_SHADOW_STACK
350 /*
351  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
352  * support core mm.
353  *
354  * These VMAs will get a single end guard page. This helps userspace protect
355  * itself from attacks. A single page is enough for current shadow stack archs
356  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
357  * for more details on the guard size.
358  */
359 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
360 #else
361 # define VM_SHADOW_STACK	VM_NONE
362 #endif
363 
364 #if defined(CONFIG_X86)
365 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
366 #elif defined(CONFIG_PPC)
367 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
368 #elif defined(CONFIG_PARISC)
369 # define VM_GROWSUP	VM_ARCH_1
370 #elif defined(CONFIG_SPARC64)
371 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
372 # define VM_ARCH_CLEAR	VM_SPARC_ADI
373 #elif defined(CONFIG_ARM64)
374 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
375 # define VM_ARCH_CLEAR	VM_ARM64_BTI
376 #elif !defined(CONFIG_MMU)
377 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
378 #endif
379 
380 #if defined(CONFIG_ARM64_MTE)
381 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
382 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
383 #else
384 # define VM_MTE		VM_NONE
385 # define VM_MTE_ALLOWED	VM_NONE
386 #endif
387 
388 #ifndef VM_GROWSUP
389 # define VM_GROWSUP	VM_NONE
390 #endif
391 
392 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
393 # define VM_UFFD_MINOR_BIT	38
394 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
395 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
396 # define VM_UFFD_MINOR		VM_NONE
397 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
398 
399 /*
400  * This flag is used to connect VFIO to arch specific KVM code. It
401  * indicates that the memory under this VMA is safe for use with any
402  * non-cachable memory type inside KVM. Some VFIO devices, on some
403  * platforms, are thought to be unsafe and can cause machine crashes
404  * if KVM does not lock down the memory type.
405  */
406 #ifdef CONFIG_64BIT
407 #define VM_ALLOW_ANY_UNCACHED_BIT	39
408 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
409 #else
410 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
411 #endif
412 
413 #ifdef CONFIG_64BIT
414 #define VM_DROPPABLE_BIT	40
415 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
416 #else
417 #define VM_DROPPABLE		VM_NONE
418 #endif
419 
420 #ifdef CONFIG_64BIT
421 /* VM is sealed, in vm_flags */
422 #define VM_SEALED	_BITUL(63)
423 #endif
424 
425 /* Bits set in the VMA until the stack is in its final location */
426 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
427 
428 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
429 
430 /* Common data flag combinations */
431 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
432 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
434 				 VM_MAYWRITE | VM_MAYEXEC)
435 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
436 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
437 
438 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
439 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
440 #endif
441 
442 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
443 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
444 #endif
445 
446 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
447 
448 #ifdef CONFIG_STACK_GROWSUP
449 #define VM_STACK	VM_GROWSUP
450 #define VM_STACK_EARLY	VM_GROWSDOWN
451 #else
452 #define VM_STACK	VM_GROWSDOWN
453 #define VM_STACK_EARLY	0
454 #endif
455 
456 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
457 
458 /* VMA basic access permission flags */
459 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
460 
461 
462 /*
463  * Special vmas that are non-mergable, non-mlock()able.
464  */
465 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
466 
467 /* This mask prevents VMA from being scanned with khugepaged */
468 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
469 
470 /* This mask defines which mm->def_flags a process can inherit its parent */
471 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
472 
473 /* This mask represents all the VMA flag bits used by mlock */
474 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
475 
476 /* Arch-specific flags to clear when updating VM flags on protection change */
477 #ifndef VM_ARCH_CLEAR
478 # define VM_ARCH_CLEAR	VM_NONE
479 #endif
480 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
481 
482 /*
483  * mapping from the currently active vm_flags protection bits (the
484  * low four bits) to a page protection mask..
485  */
486 
487 /*
488  * The default fault flags that should be used by most of the
489  * arch-specific page fault handlers.
490  */
491 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
492 			     FAULT_FLAG_KILLABLE | \
493 			     FAULT_FLAG_INTERRUPTIBLE)
494 
495 /**
496  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
497  * @flags: Fault flags.
498  *
499  * This is mostly used for places where we want to try to avoid taking
500  * the mmap_lock for too long a time when waiting for another condition
501  * to change, in which case we can try to be polite to release the
502  * mmap_lock in the first round to avoid potential starvation of other
503  * processes that would also want the mmap_lock.
504  *
505  * Return: true if the page fault allows retry and this is the first
506  * attempt of the fault handling; false otherwise.
507  */
508 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
509 {
510 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
511 	    (!(flags & FAULT_FLAG_TRIED));
512 }
513 
514 #define FAULT_FLAG_TRACE \
515 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
516 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
517 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
518 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
519 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
520 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
521 	{ FAULT_FLAG_USER,		"USER" }, \
522 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
523 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
524 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
525 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
526 
527 /*
528  * vm_fault is filled by the pagefault handler and passed to the vma's
529  * ->fault function. The vma's ->fault is responsible for returning a bitmask
530  * of VM_FAULT_xxx flags that give details about how the fault was handled.
531  *
532  * MM layer fills up gfp_mask for page allocations but fault handler might
533  * alter it if its implementation requires a different allocation context.
534  *
535  * pgoff should be used in favour of virtual_address, if possible.
536  */
537 struct vm_fault {
538 	const struct {
539 		struct vm_area_struct *vma;	/* Target VMA */
540 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
541 		pgoff_t pgoff;			/* Logical page offset based on vma */
542 		unsigned long address;		/* Faulting virtual address - masked */
543 		unsigned long real_address;	/* Faulting virtual address - unmasked */
544 	};
545 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
546 					 * XXX: should really be 'const' */
547 	pmd_t *pmd;			/* Pointer to pmd entry matching
548 					 * the 'address' */
549 	pud_t *pud;			/* Pointer to pud entry matching
550 					 * the 'address'
551 					 */
552 	union {
553 		pte_t orig_pte;		/* Value of PTE at the time of fault */
554 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
555 					 * used by PMD fault only.
556 					 */
557 	};
558 
559 	struct page *cow_page;		/* Page handler may use for COW fault */
560 	struct page *page;		/* ->fault handlers should return a
561 					 * page here, unless VM_FAULT_NOPAGE
562 					 * is set (which is also implied by
563 					 * VM_FAULT_ERROR).
564 					 */
565 	/* These three entries are valid only while holding ptl lock */
566 	pte_t *pte;			/* Pointer to pte entry matching
567 					 * the 'address'. NULL if the page
568 					 * table hasn't been allocated.
569 					 */
570 	spinlock_t *ptl;		/* Page table lock.
571 					 * Protects pte page table if 'pte'
572 					 * is not NULL, otherwise pmd.
573 					 */
574 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
575 					 * vm_ops->map_pages() sets up a page
576 					 * table from atomic context.
577 					 * do_fault_around() pre-allocates
578 					 * page table to avoid allocation from
579 					 * atomic context.
580 					 */
581 };
582 
583 /*
584  * These are the virtual MM functions - opening of an area, closing and
585  * unmapping it (needed to keep files on disk up-to-date etc), pointer
586  * to the functions called when a no-page or a wp-page exception occurs.
587  */
588 struct vm_operations_struct {
589 	void (*open)(struct vm_area_struct * area);
590 	/**
591 	 * @close: Called when the VMA is being removed from the MM.
592 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
593 	 */
594 	void (*close)(struct vm_area_struct * area);
595 	/* Called any time before splitting to check if it's allowed */
596 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
597 	int (*mremap)(struct vm_area_struct *area);
598 	/*
599 	 * Called by mprotect() to make driver-specific permission
600 	 * checks before mprotect() is finalised.   The VMA must not
601 	 * be modified.  Returns 0 if mprotect() can proceed.
602 	 */
603 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
604 			unsigned long end, unsigned long newflags);
605 	vm_fault_t (*fault)(struct vm_fault *vmf);
606 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
607 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
608 			pgoff_t start_pgoff, pgoff_t end_pgoff);
609 	unsigned long (*pagesize)(struct vm_area_struct * area);
610 
611 	/* notification that a previously read-only page is about to become
612 	 * writable, if an error is returned it will cause a SIGBUS */
613 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
614 
615 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
616 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
617 
618 	/* called by access_process_vm when get_user_pages() fails, typically
619 	 * for use by special VMAs. See also generic_access_phys() for a generic
620 	 * implementation useful for any iomem mapping.
621 	 */
622 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
623 		      void *buf, int len, int write);
624 
625 	/* Called by the /proc/PID/maps code to ask the vma whether it
626 	 * has a special name.  Returning non-NULL will also cause this
627 	 * vma to be dumped unconditionally. */
628 	const char *(*name)(struct vm_area_struct *vma);
629 
630 #ifdef CONFIG_NUMA
631 	/*
632 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
633 	 * to hold the policy upon return.  Caller should pass NULL @new to
634 	 * remove a policy and fall back to surrounding context--i.e. do not
635 	 * install a MPOL_DEFAULT policy, nor the task or system default
636 	 * mempolicy.
637 	 */
638 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
639 
640 	/*
641 	 * get_policy() op must add reference [mpol_get()] to any policy at
642 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
643 	 * in mm/mempolicy.c will do this automatically.
644 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
645 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
646 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
647 	 * must return NULL--i.e., do not "fallback" to task or system default
648 	 * policy.
649 	 */
650 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
651 					unsigned long addr, pgoff_t *ilx);
652 #endif
653 	/*
654 	 * Called by vm_normal_page() for special PTEs to find the
655 	 * page for @addr.  This is useful if the default behavior
656 	 * (using pte_page()) would not find the correct page.
657 	 */
658 	struct page *(*find_special_page)(struct vm_area_struct *vma,
659 					  unsigned long addr);
660 };
661 
662 #ifdef CONFIG_NUMA_BALANCING
663 static inline void vma_numab_state_init(struct vm_area_struct *vma)
664 {
665 	vma->numab_state = NULL;
666 }
667 static inline void vma_numab_state_free(struct vm_area_struct *vma)
668 {
669 	kfree(vma->numab_state);
670 }
671 #else
672 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
673 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
674 #endif /* CONFIG_NUMA_BALANCING */
675 
676 #ifdef CONFIG_PER_VMA_LOCK
677 /*
678  * Try to read-lock a vma. The function is allowed to occasionally yield false
679  * locked result to avoid performance overhead, in which case we fall back to
680  * using mmap_lock. The function should never yield false unlocked result.
681  */
682 static inline bool vma_start_read(struct vm_area_struct *vma)
683 {
684 	/*
685 	 * Check before locking. A race might cause false locked result.
686 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
687 	 * ACQUIRE semantics, because this is just a lockless check whose result
688 	 * we don't rely on for anything - the mm_lock_seq read against which we
689 	 * need ordering is below.
690 	 */
691 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
692 		return false;
693 
694 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
695 		return false;
696 
697 	/*
698 	 * Overflow might produce false locked result.
699 	 * False unlocked result is impossible because we modify and check
700 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
701 	 * modification invalidates all existing locks.
702 	 *
703 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
704 	 * racing with vma_end_write_all(), we only start reading from the VMA
705 	 * after it has been unlocked.
706 	 * This pairs with RELEASE semantics in vma_end_write_all().
707 	 */
708 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
709 		up_read(&vma->vm_lock->lock);
710 		return false;
711 	}
712 	return true;
713 }
714 
715 static inline void vma_end_read(struct vm_area_struct *vma)
716 {
717 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
718 	up_read(&vma->vm_lock->lock);
719 	rcu_read_unlock();
720 }
721 
722 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
723 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
724 {
725 	mmap_assert_write_locked(vma->vm_mm);
726 
727 	/*
728 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
729 	 * mm->mm_lock_seq can't be concurrently modified.
730 	 */
731 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
732 	return (vma->vm_lock_seq == *mm_lock_seq);
733 }
734 
735 /*
736  * Begin writing to a VMA.
737  * Exclude concurrent readers under the per-VMA lock until the currently
738  * write-locked mmap_lock is dropped or downgraded.
739  */
740 static inline void vma_start_write(struct vm_area_struct *vma)
741 {
742 	int mm_lock_seq;
743 
744 	if (__is_vma_write_locked(vma, &mm_lock_seq))
745 		return;
746 
747 	down_write(&vma->vm_lock->lock);
748 	/*
749 	 * We should use WRITE_ONCE() here because we can have concurrent reads
750 	 * from the early lockless pessimistic check in vma_start_read().
751 	 * We don't really care about the correctness of that early check, but
752 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
753 	 */
754 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
755 	up_write(&vma->vm_lock->lock);
756 }
757 
758 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
759 {
760 	int mm_lock_seq;
761 
762 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
763 }
764 
765 static inline void vma_assert_locked(struct vm_area_struct *vma)
766 {
767 	if (!rwsem_is_locked(&vma->vm_lock->lock))
768 		vma_assert_write_locked(vma);
769 }
770 
771 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
772 {
773 	/* When detaching vma should be write-locked */
774 	if (detached)
775 		vma_assert_write_locked(vma);
776 	vma->detached = detached;
777 }
778 
779 static inline void release_fault_lock(struct vm_fault *vmf)
780 {
781 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
782 		vma_end_read(vmf->vma);
783 	else
784 		mmap_read_unlock(vmf->vma->vm_mm);
785 }
786 
787 static inline void assert_fault_locked(struct vm_fault *vmf)
788 {
789 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
790 		vma_assert_locked(vmf->vma);
791 	else
792 		mmap_assert_locked(vmf->vma->vm_mm);
793 }
794 
795 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
796 					  unsigned long address);
797 
798 #else /* CONFIG_PER_VMA_LOCK */
799 
800 static inline bool vma_start_read(struct vm_area_struct *vma)
801 		{ return false; }
802 static inline void vma_end_read(struct vm_area_struct *vma) {}
803 static inline void vma_start_write(struct vm_area_struct *vma) {}
804 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
805 		{ mmap_assert_write_locked(vma->vm_mm); }
806 static inline void vma_mark_detached(struct vm_area_struct *vma,
807 				     bool detached) {}
808 
809 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
810 		unsigned long address)
811 {
812 	return NULL;
813 }
814 
815 static inline void vma_assert_locked(struct vm_area_struct *vma)
816 {
817 	mmap_assert_locked(vma->vm_mm);
818 }
819 
820 static inline void release_fault_lock(struct vm_fault *vmf)
821 {
822 	mmap_read_unlock(vmf->vma->vm_mm);
823 }
824 
825 static inline void assert_fault_locked(struct vm_fault *vmf)
826 {
827 	mmap_assert_locked(vmf->vma->vm_mm);
828 }
829 
830 #endif /* CONFIG_PER_VMA_LOCK */
831 
832 extern const struct vm_operations_struct vma_dummy_vm_ops;
833 
834 /*
835  * WARNING: vma_init does not initialize vma->vm_lock.
836  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
837  */
838 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
839 {
840 	memset(vma, 0, sizeof(*vma));
841 	vma->vm_mm = mm;
842 	vma->vm_ops = &vma_dummy_vm_ops;
843 	INIT_LIST_HEAD(&vma->anon_vma_chain);
844 	vma_mark_detached(vma, false);
845 	vma_numab_state_init(vma);
846 }
847 
848 /* Use when VMA is not part of the VMA tree and needs no locking */
849 static inline void vm_flags_init(struct vm_area_struct *vma,
850 				 vm_flags_t flags)
851 {
852 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
853 }
854 
855 /*
856  * Use when VMA is part of the VMA tree and modifications need coordination
857  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
858  * it should be locked explicitly beforehand.
859  */
860 static inline void vm_flags_reset(struct vm_area_struct *vma,
861 				  vm_flags_t flags)
862 {
863 	vma_assert_write_locked(vma);
864 	vm_flags_init(vma, flags);
865 }
866 
867 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
868 				       vm_flags_t flags)
869 {
870 	vma_assert_write_locked(vma);
871 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
872 }
873 
874 static inline void vm_flags_set(struct vm_area_struct *vma,
875 				vm_flags_t flags)
876 {
877 	vma_start_write(vma);
878 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
879 }
880 
881 static inline void vm_flags_clear(struct vm_area_struct *vma,
882 				  vm_flags_t flags)
883 {
884 	vma_start_write(vma);
885 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
886 }
887 
888 /*
889  * Use only if VMA is not part of the VMA tree or has no other users and
890  * therefore needs no locking.
891  */
892 static inline void __vm_flags_mod(struct vm_area_struct *vma,
893 				  vm_flags_t set, vm_flags_t clear)
894 {
895 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
896 }
897 
898 /*
899  * Use only when the order of set/clear operations is unimportant, otherwise
900  * use vm_flags_{set|clear} explicitly.
901  */
902 static inline void vm_flags_mod(struct vm_area_struct *vma,
903 				vm_flags_t set, vm_flags_t clear)
904 {
905 	vma_start_write(vma);
906 	__vm_flags_mod(vma, set, clear);
907 }
908 
909 static inline void vma_set_anonymous(struct vm_area_struct *vma)
910 {
911 	vma->vm_ops = NULL;
912 }
913 
914 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
915 {
916 	return !vma->vm_ops;
917 }
918 
919 /*
920  * Indicate if the VMA is a heap for the given task; for
921  * /proc/PID/maps that is the heap of the main task.
922  */
923 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
924 {
925 	return vma->vm_start < vma->vm_mm->brk &&
926 		vma->vm_end > vma->vm_mm->start_brk;
927 }
928 
929 /*
930  * Indicate if the VMA is a stack for the given task; for
931  * /proc/PID/maps that is the stack of the main task.
932  */
933 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
934 {
935 	/*
936 	 * We make no effort to guess what a given thread considers to be
937 	 * its "stack".  It's not even well-defined for programs written
938 	 * languages like Go.
939 	 */
940 	return vma->vm_start <= vma->vm_mm->start_stack &&
941 		vma->vm_end >= vma->vm_mm->start_stack;
942 }
943 
944 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
945 {
946 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
947 
948 	if (!maybe_stack)
949 		return false;
950 
951 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
952 						VM_STACK_INCOMPLETE_SETUP)
953 		return true;
954 
955 	return false;
956 }
957 
958 static inline bool vma_is_foreign(struct vm_area_struct *vma)
959 {
960 	if (!current->mm)
961 		return true;
962 
963 	if (current->mm != vma->vm_mm)
964 		return true;
965 
966 	return false;
967 }
968 
969 static inline bool vma_is_accessible(struct vm_area_struct *vma)
970 {
971 	return vma->vm_flags & VM_ACCESS_FLAGS;
972 }
973 
974 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
975 {
976 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
977 		(VM_SHARED | VM_MAYWRITE);
978 }
979 
980 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
981 {
982 	return is_shared_maywrite(vma->vm_flags);
983 }
984 
985 static inline
986 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
987 {
988 	return mas_find(&vmi->mas, max - 1);
989 }
990 
991 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
992 {
993 	/*
994 	 * Uses mas_find() to get the first VMA when the iterator starts.
995 	 * Calling mas_next() could skip the first entry.
996 	 */
997 	return mas_find(&vmi->mas, ULONG_MAX);
998 }
999 
1000 static inline
1001 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1002 {
1003 	return mas_next_range(&vmi->mas, ULONG_MAX);
1004 }
1005 
1006 
1007 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1008 {
1009 	return mas_prev(&vmi->mas, 0);
1010 }
1011 
1012 static inline
1013 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1014 {
1015 	return mas_prev_range(&vmi->mas, 0);
1016 }
1017 
1018 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1019 {
1020 	return vmi->mas.index;
1021 }
1022 
1023 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1024 {
1025 	return vmi->mas.last + 1;
1026 }
1027 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1028 				      unsigned long count)
1029 {
1030 	return mas_expected_entries(&vmi->mas, count);
1031 }
1032 
1033 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1034 			unsigned long start, unsigned long end, gfp_t gfp)
1035 {
1036 	__mas_set_range(&vmi->mas, start, end - 1);
1037 	mas_store_gfp(&vmi->mas, NULL, gfp);
1038 	if (unlikely(mas_is_err(&vmi->mas)))
1039 		return -ENOMEM;
1040 
1041 	return 0;
1042 }
1043 
1044 /* Free any unused preallocations */
1045 static inline void vma_iter_free(struct vma_iterator *vmi)
1046 {
1047 	mas_destroy(&vmi->mas);
1048 }
1049 
1050 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1051 				      struct vm_area_struct *vma)
1052 {
1053 	vmi->mas.index = vma->vm_start;
1054 	vmi->mas.last = vma->vm_end - 1;
1055 	mas_store(&vmi->mas, vma);
1056 	if (unlikely(mas_is_err(&vmi->mas)))
1057 		return -ENOMEM;
1058 
1059 	return 0;
1060 }
1061 
1062 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1063 {
1064 	mas_pause(&vmi->mas);
1065 }
1066 
1067 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1068 {
1069 	mas_set(&vmi->mas, addr);
1070 }
1071 
1072 #define for_each_vma(__vmi, __vma)					\
1073 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1074 
1075 /* The MM code likes to work with exclusive end addresses */
1076 #define for_each_vma_range(__vmi, __vma, __end)				\
1077 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1078 
1079 #ifdef CONFIG_SHMEM
1080 /*
1081  * The vma_is_shmem is not inline because it is used only by slow
1082  * paths in userfault.
1083  */
1084 bool vma_is_shmem(struct vm_area_struct *vma);
1085 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1086 #else
1087 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1088 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1089 #endif
1090 
1091 int vma_is_stack_for_current(struct vm_area_struct *vma);
1092 
1093 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1094 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1095 
1096 struct mmu_gather;
1097 struct inode;
1098 
1099 /*
1100  * compound_order() can be called without holding a reference, which means
1101  * that niceties like page_folio() don't work.  These callers should be
1102  * prepared to handle wild return values.  For example, PG_head may be
1103  * set before the order is initialised, or this may be a tail page.
1104  * See compaction.c for some good examples.
1105  */
1106 static inline unsigned int compound_order(struct page *page)
1107 {
1108 	struct folio *folio = (struct folio *)page;
1109 
1110 	if (!test_bit(PG_head, &folio->flags))
1111 		return 0;
1112 	return folio->_flags_1 & 0xff;
1113 }
1114 
1115 /**
1116  * folio_order - The allocation order of a folio.
1117  * @folio: The folio.
1118  *
1119  * A folio is composed of 2^order pages.  See get_order() for the definition
1120  * of order.
1121  *
1122  * Return: The order of the folio.
1123  */
1124 static inline unsigned int folio_order(const struct folio *folio)
1125 {
1126 	if (!folio_test_large(folio))
1127 		return 0;
1128 	return folio->_flags_1 & 0xff;
1129 }
1130 
1131 #include <linux/huge_mm.h>
1132 
1133 /*
1134  * Methods to modify the page usage count.
1135  *
1136  * What counts for a page usage:
1137  * - cache mapping   (page->mapping)
1138  * - private data    (page->private)
1139  * - page mapped in a task's page tables, each mapping
1140  *   is counted separately
1141  *
1142  * Also, many kernel routines increase the page count before a critical
1143  * routine so they can be sure the page doesn't go away from under them.
1144  */
1145 
1146 /*
1147  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1148  */
1149 static inline int put_page_testzero(struct page *page)
1150 {
1151 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1152 	return page_ref_dec_and_test(page);
1153 }
1154 
1155 static inline int folio_put_testzero(struct folio *folio)
1156 {
1157 	return put_page_testzero(&folio->page);
1158 }
1159 
1160 /*
1161  * Try to grab a ref unless the page has a refcount of zero, return false if
1162  * that is the case.
1163  * This can be called when MMU is off so it must not access
1164  * any of the virtual mappings.
1165  */
1166 static inline bool get_page_unless_zero(struct page *page)
1167 {
1168 	return page_ref_add_unless(page, 1, 0);
1169 }
1170 
1171 static inline struct folio *folio_get_nontail_page(struct page *page)
1172 {
1173 	if (unlikely(!get_page_unless_zero(page)))
1174 		return NULL;
1175 	return (struct folio *)page;
1176 }
1177 
1178 extern int page_is_ram(unsigned long pfn);
1179 
1180 enum {
1181 	REGION_INTERSECTS,
1182 	REGION_DISJOINT,
1183 	REGION_MIXED,
1184 };
1185 
1186 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1187 		      unsigned long desc);
1188 
1189 /* Support for virtually mapped pages */
1190 struct page *vmalloc_to_page(const void *addr);
1191 unsigned long vmalloc_to_pfn(const void *addr);
1192 
1193 /*
1194  * Determine if an address is within the vmalloc range
1195  *
1196  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1197  * is no special casing required.
1198  */
1199 #ifdef CONFIG_MMU
1200 extern bool is_vmalloc_addr(const void *x);
1201 extern int is_vmalloc_or_module_addr(const void *x);
1202 #else
1203 static inline bool is_vmalloc_addr(const void *x)
1204 {
1205 	return false;
1206 }
1207 static inline int is_vmalloc_or_module_addr(const void *x)
1208 {
1209 	return 0;
1210 }
1211 #endif
1212 
1213 /*
1214  * How many times the entire folio is mapped as a single unit (eg by a
1215  * PMD or PUD entry).  This is probably not what you want, except for
1216  * debugging purposes or implementation of other core folio_*() primitives.
1217  */
1218 static inline int folio_entire_mapcount(const struct folio *folio)
1219 {
1220 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1221 	return atomic_read(&folio->_entire_mapcount) + 1;
1222 }
1223 
1224 static inline int folio_large_mapcount(const struct folio *folio)
1225 {
1226 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1227 	return atomic_read(&folio->_large_mapcount) + 1;
1228 }
1229 
1230 /**
1231  * folio_mapcount() - Number of mappings of this folio.
1232  * @folio: The folio.
1233  *
1234  * The folio mapcount corresponds to the number of present user page table
1235  * entries that reference any part of a folio. Each such present user page
1236  * table entry must be paired with exactly on folio reference.
1237  *
1238  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1239  * exactly once.
1240  *
1241  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1242  * references the entire folio counts exactly once, even when such special
1243  * page table entries are comprised of multiple ordinary page table entries.
1244  *
1245  * Will report 0 for pages which cannot be mapped into userspace, such as
1246  * slab, page tables and similar.
1247  *
1248  * Return: The number of times this folio is mapped.
1249  */
1250 static inline int folio_mapcount(const struct folio *folio)
1251 {
1252 	int mapcount;
1253 
1254 	if (likely(!folio_test_large(folio))) {
1255 		mapcount = atomic_read(&folio->_mapcount) + 1;
1256 		/* Handle page_has_type() pages */
1257 		if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1258 			mapcount = 0;
1259 		return mapcount;
1260 	}
1261 	return folio_large_mapcount(folio);
1262 }
1263 
1264 /**
1265  * folio_mapped - Is this folio mapped into userspace?
1266  * @folio: The folio.
1267  *
1268  * Return: True if any page in this folio is referenced by user page tables.
1269  */
1270 static inline bool folio_mapped(const struct folio *folio)
1271 {
1272 	return folio_mapcount(folio) >= 1;
1273 }
1274 
1275 /*
1276  * Return true if this page is mapped into pagetables.
1277  * For compound page it returns true if any sub-page of compound page is mapped,
1278  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1279  */
1280 static inline bool page_mapped(const struct page *page)
1281 {
1282 	return folio_mapped(page_folio(page));
1283 }
1284 
1285 static inline struct page *virt_to_head_page(const void *x)
1286 {
1287 	struct page *page = virt_to_page(x);
1288 
1289 	return compound_head(page);
1290 }
1291 
1292 static inline struct folio *virt_to_folio(const void *x)
1293 {
1294 	struct page *page = virt_to_page(x);
1295 
1296 	return page_folio(page);
1297 }
1298 
1299 void __folio_put(struct folio *folio);
1300 
1301 void put_pages_list(struct list_head *pages);
1302 
1303 void split_page(struct page *page, unsigned int order);
1304 void folio_copy(struct folio *dst, struct folio *src);
1305 int folio_mc_copy(struct folio *dst, struct folio *src);
1306 
1307 unsigned long nr_free_buffer_pages(void);
1308 
1309 /* Returns the number of bytes in this potentially compound page. */
1310 static inline unsigned long page_size(struct page *page)
1311 {
1312 	return PAGE_SIZE << compound_order(page);
1313 }
1314 
1315 /* Returns the number of bits needed for the number of bytes in a page */
1316 static inline unsigned int page_shift(struct page *page)
1317 {
1318 	return PAGE_SHIFT + compound_order(page);
1319 }
1320 
1321 /**
1322  * thp_order - Order of a transparent huge page.
1323  * @page: Head page of a transparent huge page.
1324  */
1325 static inline unsigned int thp_order(struct page *page)
1326 {
1327 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1328 	return compound_order(page);
1329 }
1330 
1331 /**
1332  * thp_size - Size of a transparent huge page.
1333  * @page: Head page of a transparent huge page.
1334  *
1335  * Return: Number of bytes in this page.
1336  */
1337 static inline unsigned long thp_size(struct page *page)
1338 {
1339 	return PAGE_SIZE << thp_order(page);
1340 }
1341 
1342 #ifdef CONFIG_MMU
1343 /*
1344  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1345  * servicing faults for write access.  In the normal case, do always want
1346  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1347  * that do not have writing enabled, when used by access_process_vm.
1348  */
1349 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1350 {
1351 	if (likely(vma->vm_flags & VM_WRITE))
1352 		pte = pte_mkwrite(pte, vma);
1353 	return pte;
1354 }
1355 
1356 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1357 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1358 		struct page *page, unsigned int nr, unsigned long addr);
1359 
1360 vm_fault_t finish_fault(struct vm_fault *vmf);
1361 #endif
1362 
1363 /*
1364  * Multiple processes may "see" the same page. E.g. for untouched
1365  * mappings of /dev/null, all processes see the same page full of
1366  * zeroes, and text pages of executables and shared libraries have
1367  * only one copy in memory, at most, normally.
1368  *
1369  * For the non-reserved pages, page_count(page) denotes a reference count.
1370  *   page_count() == 0 means the page is free. page->lru is then used for
1371  *   freelist management in the buddy allocator.
1372  *   page_count() > 0  means the page has been allocated.
1373  *
1374  * Pages are allocated by the slab allocator in order to provide memory
1375  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1376  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1377  * unless a particular usage is carefully commented. (the responsibility of
1378  * freeing the kmalloc memory is the caller's, of course).
1379  *
1380  * A page may be used by anyone else who does a __get_free_page().
1381  * In this case, page_count still tracks the references, and should only
1382  * be used through the normal accessor functions. The top bits of page->flags
1383  * and page->virtual store page management information, but all other fields
1384  * are unused and could be used privately, carefully. The management of this
1385  * page is the responsibility of the one who allocated it, and those who have
1386  * subsequently been given references to it.
1387  *
1388  * The other pages (we may call them "pagecache pages") are completely
1389  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1390  * The following discussion applies only to them.
1391  *
1392  * A pagecache page contains an opaque `private' member, which belongs to the
1393  * page's address_space. Usually, this is the address of a circular list of
1394  * the page's disk buffers. PG_private must be set to tell the VM to call
1395  * into the filesystem to release these pages.
1396  *
1397  * A page may belong to an inode's memory mapping. In this case, page->mapping
1398  * is the pointer to the inode, and page->index is the file offset of the page,
1399  * in units of PAGE_SIZE.
1400  *
1401  * If pagecache pages are not associated with an inode, they are said to be
1402  * anonymous pages. These may become associated with the swapcache, and in that
1403  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1404  *
1405  * In either case (swapcache or inode backed), the pagecache itself holds one
1406  * reference to the page. Setting PG_private should also increment the
1407  * refcount. The each user mapping also has a reference to the page.
1408  *
1409  * The pagecache pages are stored in a per-mapping radix tree, which is
1410  * rooted at mapping->i_pages, and indexed by offset.
1411  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1412  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1413  *
1414  * All pagecache pages may be subject to I/O:
1415  * - inode pages may need to be read from disk,
1416  * - inode pages which have been modified and are MAP_SHARED may need
1417  *   to be written back to the inode on disk,
1418  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1419  *   modified may need to be swapped out to swap space and (later) to be read
1420  *   back into memory.
1421  */
1422 
1423 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1424 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1425 
1426 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1427 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1428 {
1429 	if (!static_branch_unlikely(&devmap_managed_key))
1430 		return false;
1431 	if (!folio_is_zone_device(folio))
1432 		return false;
1433 	return __put_devmap_managed_folio_refs(folio, refs);
1434 }
1435 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1436 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1437 {
1438 	return false;
1439 }
1440 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1441 
1442 /* 127: arbitrary random number, small enough to assemble well */
1443 #define folio_ref_zero_or_close_to_overflow(folio) \
1444 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1445 
1446 /**
1447  * folio_get - Increment the reference count on a folio.
1448  * @folio: The folio.
1449  *
1450  * Context: May be called in any context, as long as you know that
1451  * you have a refcount on the folio.  If you do not already have one,
1452  * folio_try_get() may be the right interface for you to use.
1453  */
1454 static inline void folio_get(struct folio *folio)
1455 {
1456 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1457 	folio_ref_inc(folio);
1458 }
1459 
1460 static inline void get_page(struct page *page)
1461 {
1462 	folio_get(page_folio(page));
1463 }
1464 
1465 static inline __must_check bool try_get_page(struct page *page)
1466 {
1467 	page = compound_head(page);
1468 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1469 		return false;
1470 	page_ref_inc(page);
1471 	return true;
1472 }
1473 
1474 /**
1475  * folio_put - Decrement the reference count on a folio.
1476  * @folio: The folio.
1477  *
1478  * If the folio's reference count reaches zero, the memory will be
1479  * released back to the page allocator and may be used by another
1480  * allocation immediately.  Do not access the memory or the struct folio
1481  * after calling folio_put() unless you can be sure that it wasn't the
1482  * last reference.
1483  *
1484  * Context: May be called in process or interrupt context, but not in NMI
1485  * context.  May be called while holding a spinlock.
1486  */
1487 static inline void folio_put(struct folio *folio)
1488 {
1489 	if (folio_put_testzero(folio))
1490 		__folio_put(folio);
1491 }
1492 
1493 /**
1494  * folio_put_refs - Reduce the reference count on a folio.
1495  * @folio: The folio.
1496  * @refs: The amount to subtract from the folio's reference count.
1497  *
1498  * If the folio's reference count reaches zero, the memory will be
1499  * released back to the page allocator and may be used by another
1500  * allocation immediately.  Do not access the memory or the struct folio
1501  * after calling folio_put_refs() unless you can be sure that these weren't
1502  * the last references.
1503  *
1504  * Context: May be called in process or interrupt context, but not in NMI
1505  * context.  May be called while holding a spinlock.
1506  */
1507 static inline void folio_put_refs(struct folio *folio, int refs)
1508 {
1509 	if (folio_ref_sub_and_test(folio, refs))
1510 		__folio_put(folio);
1511 }
1512 
1513 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1514 
1515 /*
1516  * union release_pages_arg - an array of pages or folios
1517  *
1518  * release_pages() releases a simple array of multiple pages, and
1519  * accepts various different forms of said page array: either
1520  * a regular old boring array of pages, an array of folios, or
1521  * an array of encoded page pointers.
1522  *
1523  * The transparent union syntax for this kind of "any of these
1524  * argument types" is all kinds of ugly, so look away.
1525  */
1526 typedef union {
1527 	struct page **pages;
1528 	struct folio **folios;
1529 	struct encoded_page **encoded_pages;
1530 } release_pages_arg __attribute__ ((__transparent_union__));
1531 
1532 void release_pages(release_pages_arg, int nr);
1533 
1534 /**
1535  * folios_put - Decrement the reference count on an array of folios.
1536  * @folios: The folios.
1537  *
1538  * Like folio_put(), but for a batch of folios.  This is more efficient
1539  * than writing the loop yourself as it will optimise the locks which need
1540  * to be taken if the folios are freed.  The folios batch is returned
1541  * empty and ready to be reused for another batch; there is no need to
1542  * reinitialise it.
1543  *
1544  * Context: May be called in process or interrupt context, but not in NMI
1545  * context.  May be called while holding a spinlock.
1546  */
1547 static inline void folios_put(struct folio_batch *folios)
1548 {
1549 	folios_put_refs(folios, NULL);
1550 }
1551 
1552 static inline void put_page(struct page *page)
1553 {
1554 	struct folio *folio = page_folio(page);
1555 
1556 	/*
1557 	 * For some devmap managed pages we need to catch refcount transition
1558 	 * from 2 to 1:
1559 	 */
1560 	if (put_devmap_managed_folio_refs(folio, 1))
1561 		return;
1562 	folio_put(folio);
1563 }
1564 
1565 /*
1566  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1567  * the page's refcount so that two separate items are tracked: the original page
1568  * reference count, and also a new count of how many pin_user_pages() calls were
1569  * made against the page. ("gup-pinned" is another term for the latter).
1570  *
1571  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1572  * distinct from normal pages. As such, the unpin_user_page() call (and its
1573  * variants) must be used in order to release gup-pinned pages.
1574  *
1575  * Choice of value:
1576  *
1577  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1578  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1579  * simpler, due to the fact that adding an even power of two to the page
1580  * refcount has the effect of using only the upper N bits, for the code that
1581  * counts up using the bias value. This means that the lower bits are left for
1582  * the exclusive use of the original code that increments and decrements by one
1583  * (or at least, by much smaller values than the bias value).
1584  *
1585  * Of course, once the lower bits overflow into the upper bits (and this is
1586  * OK, because subtraction recovers the original values), then visual inspection
1587  * no longer suffices to directly view the separate counts. However, for normal
1588  * applications that don't have huge page reference counts, this won't be an
1589  * issue.
1590  *
1591  * Locking: the lockless algorithm described in folio_try_get_rcu()
1592  * provides safe operation for get_user_pages(), folio_mkclean() and
1593  * other calls that race to set up page table entries.
1594  */
1595 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1596 
1597 void unpin_user_page(struct page *page);
1598 void unpin_folio(struct folio *folio);
1599 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1600 				 bool make_dirty);
1601 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1602 				      bool make_dirty);
1603 void unpin_user_pages(struct page **pages, unsigned long npages);
1604 void unpin_folios(struct folio **folios, unsigned long nfolios);
1605 
1606 static inline bool is_cow_mapping(vm_flags_t flags)
1607 {
1608 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1609 }
1610 
1611 #ifndef CONFIG_MMU
1612 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1613 {
1614 	/*
1615 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1616 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1617 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1618 	 * underlying memory if ptrace is active, so this is only possible if
1619 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1620 	 * write permissions later.
1621 	 */
1622 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1623 }
1624 #endif
1625 
1626 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1627 #define SECTION_IN_PAGE_FLAGS
1628 #endif
1629 
1630 /*
1631  * The identification function is mainly used by the buddy allocator for
1632  * determining if two pages could be buddies. We are not really identifying
1633  * the zone since we could be using the section number id if we do not have
1634  * node id available in page flags.
1635  * We only guarantee that it will return the same value for two combinable
1636  * pages in a zone.
1637  */
1638 static inline int page_zone_id(struct page *page)
1639 {
1640 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1641 }
1642 
1643 #ifdef NODE_NOT_IN_PAGE_FLAGS
1644 int page_to_nid(const struct page *page);
1645 #else
1646 static inline int page_to_nid(const struct page *page)
1647 {
1648 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1649 }
1650 #endif
1651 
1652 static inline int folio_nid(const struct folio *folio)
1653 {
1654 	return page_to_nid(&folio->page);
1655 }
1656 
1657 #ifdef CONFIG_NUMA_BALANCING
1658 /* page access time bits needs to hold at least 4 seconds */
1659 #define PAGE_ACCESS_TIME_MIN_BITS	12
1660 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1661 #define PAGE_ACCESS_TIME_BUCKETS				\
1662 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1663 #else
1664 #define PAGE_ACCESS_TIME_BUCKETS	0
1665 #endif
1666 
1667 #define PAGE_ACCESS_TIME_MASK				\
1668 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1669 
1670 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1671 {
1672 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1673 }
1674 
1675 static inline int cpupid_to_pid(int cpupid)
1676 {
1677 	return cpupid & LAST__PID_MASK;
1678 }
1679 
1680 static inline int cpupid_to_cpu(int cpupid)
1681 {
1682 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1683 }
1684 
1685 static inline int cpupid_to_nid(int cpupid)
1686 {
1687 	return cpu_to_node(cpupid_to_cpu(cpupid));
1688 }
1689 
1690 static inline bool cpupid_pid_unset(int cpupid)
1691 {
1692 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1693 }
1694 
1695 static inline bool cpupid_cpu_unset(int cpupid)
1696 {
1697 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1698 }
1699 
1700 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1701 {
1702 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1703 }
1704 
1705 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1706 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1707 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1708 {
1709 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1710 }
1711 
1712 static inline int folio_last_cpupid(struct folio *folio)
1713 {
1714 	return folio->_last_cpupid;
1715 }
1716 static inline void page_cpupid_reset_last(struct page *page)
1717 {
1718 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1719 }
1720 #else
1721 static inline int folio_last_cpupid(struct folio *folio)
1722 {
1723 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1724 }
1725 
1726 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1727 
1728 static inline void page_cpupid_reset_last(struct page *page)
1729 {
1730 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1731 }
1732 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1733 
1734 static inline int folio_xchg_access_time(struct folio *folio, int time)
1735 {
1736 	int last_time;
1737 
1738 	last_time = folio_xchg_last_cpupid(folio,
1739 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1740 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1741 }
1742 
1743 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1744 {
1745 	unsigned int pid_bit;
1746 
1747 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1748 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1749 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1750 	}
1751 }
1752 #else /* !CONFIG_NUMA_BALANCING */
1753 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1754 {
1755 	return folio_nid(folio); /* XXX */
1756 }
1757 
1758 static inline int folio_xchg_access_time(struct folio *folio, int time)
1759 {
1760 	return 0;
1761 }
1762 
1763 static inline int folio_last_cpupid(struct folio *folio)
1764 {
1765 	return folio_nid(folio); /* XXX */
1766 }
1767 
1768 static inline int cpupid_to_nid(int cpupid)
1769 {
1770 	return -1;
1771 }
1772 
1773 static inline int cpupid_to_pid(int cpupid)
1774 {
1775 	return -1;
1776 }
1777 
1778 static inline int cpupid_to_cpu(int cpupid)
1779 {
1780 	return -1;
1781 }
1782 
1783 static inline int cpu_pid_to_cpupid(int nid, int pid)
1784 {
1785 	return -1;
1786 }
1787 
1788 static inline bool cpupid_pid_unset(int cpupid)
1789 {
1790 	return true;
1791 }
1792 
1793 static inline void page_cpupid_reset_last(struct page *page)
1794 {
1795 }
1796 
1797 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1798 {
1799 	return false;
1800 }
1801 
1802 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1803 {
1804 }
1805 #endif /* CONFIG_NUMA_BALANCING */
1806 
1807 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1808 
1809 /*
1810  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1811  * setting tags for all pages to native kernel tag value 0xff, as the default
1812  * value 0x00 maps to 0xff.
1813  */
1814 
1815 static inline u8 page_kasan_tag(const struct page *page)
1816 {
1817 	u8 tag = KASAN_TAG_KERNEL;
1818 
1819 	if (kasan_enabled()) {
1820 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1821 		tag ^= 0xff;
1822 	}
1823 
1824 	return tag;
1825 }
1826 
1827 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1828 {
1829 	unsigned long old_flags, flags;
1830 
1831 	if (!kasan_enabled())
1832 		return;
1833 
1834 	tag ^= 0xff;
1835 	old_flags = READ_ONCE(page->flags);
1836 	do {
1837 		flags = old_flags;
1838 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1839 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1840 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1841 }
1842 
1843 static inline void page_kasan_tag_reset(struct page *page)
1844 {
1845 	if (kasan_enabled())
1846 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1847 }
1848 
1849 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1850 
1851 static inline u8 page_kasan_tag(const struct page *page)
1852 {
1853 	return 0xff;
1854 }
1855 
1856 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1857 static inline void page_kasan_tag_reset(struct page *page) { }
1858 
1859 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1860 
1861 static inline struct zone *page_zone(const struct page *page)
1862 {
1863 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1864 }
1865 
1866 static inline pg_data_t *page_pgdat(const struct page *page)
1867 {
1868 	return NODE_DATA(page_to_nid(page));
1869 }
1870 
1871 static inline struct zone *folio_zone(const struct folio *folio)
1872 {
1873 	return page_zone(&folio->page);
1874 }
1875 
1876 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1877 {
1878 	return page_pgdat(&folio->page);
1879 }
1880 
1881 #ifdef SECTION_IN_PAGE_FLAGS
1882 static inline void set_page_section(struct page *page, unsigned long section)
1883 {
1884 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1885 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1886 }
1887 
1888 static inline unsigned long page_to_section(const struct page *page)
1889 {
1890 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1891 }
1892 #endif
1893 
1894 /**
1895  * folio_pfn - Return the Page Frame Number of a folio.
1896  * @folio: The folio.
1897  *
1898  * A folio may contain multiple pages.  The pages have consecutive
1899  * Page Frame Numbers.
1900  *
1901  * Return: The Page Frame Number of the first page in the folio.
1902  */
1903 static inline unsigned long folio_pfn(struct folio *folio)
1904 {
1905 	return page_to_pfn(&folio->page);
1906 }
1907 
1908 static inline struct folio *pfn_folio(unsigned long pfn)
1909 {
1910 	return page_folio(pfn_to_page(pfn));
1911 }
1912 
1913 /**
1914  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1915  * @folio: The folio.
1916  *
1917  * This function checks if a folio has been pinned via a call to
1918  * a function in the pin_user_pages() family.
1919  *
1920  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1921  * because it means "definitely not pinned for DMA", but true means "probably
1922  * pinned for DMA, but possibly a false positive due to having at least
1923  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1924  *
1925  * False positives are OK, because: a) it's unlikely for a folio to
1926  * get that many refcounts, and b) all the callers of this routine are
1927  * expected to be able to deal gracefully with a false positive.
1928  *
1929  * For large folios, the result will be exactly correct. That's because
1930  * we have more tracking data available: the _pincount field is used
1931  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1932  *
1933  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1934  *
1935  * Return: True, if it is likely that the folio has been "dma-pinned".
1936  * False, if the folio is definitely not dma-pinned.
1937  */
1938 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1939 {
1940 	if (folio_test_large(folio))
1941 		return atomic_read(&folio->_pincount) > 0;
1942 
1943 	/*
1944 	 * folio_ref_count() is signed. If that refcount overflows, then
1945 	 * folio_ref_count() returns a negative value, and callers will avoid
1946 	 * further incrementing the refcount.
1947 	 *
1948 	 * Here, for that overflow case, use the sign bit to count a little
1949 	 * bit higher via unsigned math, and thus still get an accurate result.
1950 	 */
1951 	return ((unsigned int)folio_ref_count(folio)) >=
1952 		GUP_PIN_COUNTING_BIAS;
1953 }
1954 
1955 /*
1956  * This should most likely only be called during fork() to see whether we
1957  * should break the cow immediately for an anon page on the src mm.
1958  *
1959  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1960  */
1961 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1962 					  struct folio *folio)
1963 {
1964 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1965 
1966 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1967 		return false;
1968 
1969 	return folio_maybe_dma_pinned(folio);
1970 }
1971 
1972 /**
1973  * is_zero_page - Query if a page is a zero page
1974  * @page: The page to query
1975  *
1976  * This returns true if @page is one of the permanent zero pages.
1977  */
1978 static inline bool is_zero_page(const struct page *page)
1979 {
1980 	return is_zero_pfn(page_to_pfn(page));
1981 }
1982 
1983 /**
1984  * is_zero_folio - Query if a folio is a zero page
1985  * @folio: The folio to query
1986  *
1987  * This returns true if @folio is one of the permanent zero pages.
1988  */
1989 static inline bool is_zero_folio(const struct folio *folio)
1990 {
1991 	return is_zero_page(&folio->page);
1992 }
1993 
1994 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1995 #ifdef CONFIG_MIGRATION
1996 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1997 {
1998 #ifdef CONFIG_CMA
1999 	int mt = folio_migratetype(folio);
2000 
2001 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2002 		return false;
2003 #endif
2004 	/* The zero page can be "pinned" but gets special handling. */
2005 	if (is_zero_folio(folio))
2006 		return true;
2007 
2008 	/* Coherent device memory must always allow eviction. */
2009 	if (folio_is_device_coherent(folio))
2010 		return false;
2011 
2012 	/* Otherwise, non-movable zone folios can be pinned. */
2013 	return !folio_is_zone_movable(folio);
2014 
2015 }
2016 #else
2017 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2018 {
2019 	return true;
2020 }
2021 #endif
2022 
2023 static inline void set_page_zone(struct page *page, enum zone_type zone)
2024 {
2025 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2026 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2027 }
2028 
2029 static inline void set_page_node(struct page *page, unsigned long node)
2030 {
2031 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2032 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2033 }
2034 
2035 static inline void set_page_links(struct page *page, enum zone_type zone,
2036 	unsigned long node, unsigned long pfn)
2037 {
2038 	set_page_zone(page, zone);
2039 	set_page_node(page, node);
2040 #ifdef SECTION_IN_PAGE_FLAGS
2041 	set_page_section(page, pfn_to_section_nr(pfn));
2042 #endif
2043 }
2044 
2045 /**
2046  * folio_nr_pages - The number of pages in the folio.
2047  * @folio: The folio.
2048  *
2049  * Return: A positive power of two.
2050  */
2051 static inline long folio_nr_pages(const struct folio *folio)
2052 {
2053 	if (!folio_test_large(folio))
2054 		return 1;
2055 #ifdef CONFIG_64BIT
2056 	return folio->_folio_nr_pages;
2057 #else
2058 	return 1L << (folio->_flags_1 & 0xff);
2059 #endif
2060 }
2061 
2062 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2063 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2064 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2065 #else
2066 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2067 #endif
2068 
2069 /*
2070  * compound_nr() returns the number of pages in this potentially compound
2071  * page.  compound_nr() can be called on a tail page, and is defined to
2072  * return 1 in that case.
2073  */
2074 static inline unsigned long compound_nr(struct page *page)
2075 {
2076 	struct folio *folio = (struct folio *)page;
2077 
2078 	if (!test_bit(PG_head, &folio->flags))
2079 		return 1;
2080 #ifdef CONFIG_64BIT
2081 	return folio->_folio_nr_pages;
2082 #else
2083 	return 1L << (folio->_flags_1 & 0xff);
2084 #endif
2085 }
2086 
2087 /**
2088  * thp_nr_pages - The number of regular pages in this huge page.
2089  * @page: The head page of a huge page.
2090  */
2091 static inline int thp_nr_pages(struct page *page)
2092 {
2093 	return folio_nr_pages((struct folio *)page);
2094 }
2095 
2096 /**
2097  * folio_next - Move to the next physical folio.
2098  * @folio: The folio we're currently operating on.
2099  *
2100  * If you have physically contiguous memory which may span more than
2101  * one folio (eg a &struct bio_vec), use this function to move from one
2102  * folio to the next.  Do not use it if the memory is only virtually
2103  * contiguous as the folios are almost certainly not adjacent to each
2104  * other.  This is the folio equivalent to writing ``page++``.
2105  *
2106  * Context: We assume that the folios are refcounted and/or locked at a
2107  * higher level and do not adjust the reference counts.
2108  * Return: The next struct folio.
2109  */
2110 static inline struct folio *folio_next(struct folio *folio)
2111 {
2112 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2113 }
2114 
2115 /**
2116  * folio_shift - The size of the memory described by this folio.
2117  * @folio: The folio.
2118  *
2119  * A folio represents a number of bytes which is a power-of-two in size.
2120  * This function tells you which power-of-two the folio is.  See also
2121  * folio_size() and folio_order().
2122  *
2123  * Context: The caller should have a reference on the folio to prevent
2124  * it from being split.  It is not necessary for the folio to be locked.
2125  * Return: The base-2 logarithm of the size of this folio.
2126  */
2127 static inline unsigned int folio_shift(const struct folio *folio)
2128 {
2129 	return PAGE_SHIFT + folio_order(folio);
2130 }
2131 
2132 /**
2133  * folio_size - The number of bytes in a folio.
2134  * @folio: The folio.
2135  *
2136  * Context: The caller should have a reference on the folio to prevent
2137  * it from being split.  It is not necessary for the folio to be locked.
2138  * Return: The number of bytes in this folio.
2139  */
2140 static inline size_t folio_size(const struct folio *folio)
2141 {
2142 	return PAGE_SIZE << folio_order(folio);
2143 }
2144 
2145 /**
2146  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2147  *				tables of more than one MM
2148  * @folio: The folio.
2149  *
2150  * This function checks if the folio is currently mapped into more than one
2151  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2152  * ("mapped exclusively").
2153  *
2154  * As precise information is not easily available for all folios, this function
2155  * estimates the number of MMs ("sharers") that are currently mapping a folio
2156  * using the number of times the first page of the folio is currently mapped
2157  * into page tables.
2158  *
2159  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2160  * the return value will be exactly correct, because they can only be mapped
2161  * at most once into an MM, and they cannot be partially mapped.
2162  *
2163  * For other folios, the result can be fuzzy:
2164  *    #. For partially-mappable large folios (THP), the return value can wrongly
2165  *       indicate "mapped exclusively" (false negative) when the folio is
2166  *       only partially mapped into at least one MM.
2167  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2168  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2169  *       cover the same file range.
2170  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2171  *       shared" (false positive), when the folio is mapped multiple times into
2172  *       the same MM.
2173  *
2174  * Further, this function only considers current page table mappings that
2175  * are tracked using the folio mapcount(s).
2176  *
2177  * This function does not consider:
2178  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2179  *       pagecache, temporary unmapping for migration).
2180  *    #. If the folio is mapped differently (VM_PFNMAP).
2181  *    #. If hugetlb page table sharing applies. Callers might want to check
2182  *       hugetlb_pmd_shared().
2183  *
2184  * Return: Whether the folio is estimated to be mapped into more than one MM.
2185  */
2186 static inline bool folio_likely_mapped_shared(struct folio *folio)
2187 {
2188 	int mapcount = folio_mapcount(folio);
2189 
2190 	/* Only partially-mappable folios require more care. */
2191 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2192 		return mapcount > 1;
2193 
2194 	/* A single mapping implies "mapped exclusively". */
2195 	if (mapcount <= 1)
2196 		return false;
2197 
2198 	/* If any page is mapped more than once we treat it "mapped shared". */
2199 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2200 		return true;
2201 
2202 	/* Let's guess based on the first subpage. */
2203 	return atomic_read(&folio->_mapcount) > 0;
2204 }
2205 
2206 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2207 static inline int arch_make_page_accessible(struct page *page)
2208 {
2209 	return 0;
2210 }
2211 #endif
2212 
2213 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2214 static inline int arch_make_folio_accessible(struct folio *folio)
2215 {
2216 	int ret;
2217 	long i, nr = folio_nr_pages(folio);
2218 
2219 	for (i = 0; i < nr; i++) {
2220 		ret = arch_make_page_accessible(folio_page(folio, i));
2221 		if (ret)
2222 			break;
2223 	}
2224 
2225 	return ret;
2226 }
2227 #endif
2228 
2229 /*
2230  * Some inline functions in vmstat.h depend on page_zone()
2231  */
2232 #include <linux/vmstat.h>
2233 
2234 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2235 #define HASHED_PAGE_VIRTUAL
2236 #endif
2237 
2238 #if defined(WANT_PAGE_VIRTUAL)
2239 static inline void *page_address(const struct page *page)
2240 {
2241 	return page->virtual;
2242 }
2243 static inline void set_page_address(struct page *page, void *address)
2244 {
2245 	page->virtual = address;
2246 }
2247 #define page_address_init()  do { } while(0)
2248 #endif
2249 
2250 #if defined(HASHED_PAGE_VIRTUAL)
2251 void *page_address(const struct page *page);
2252 void set_page_address(struct page *page, void *virtual);
2253 void page_address_init(void);
2254 #endif
2255 
2256 static __always_inline void *lowmem_page_address(const struct page *page)
2257 {
2258 	return page_to_virt(page);
2259 }
2260 
2261 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2262 #define page_address(page) lowmem_page_address(page)
2263 #define set_page_address(page, address)  do { } while(0)
2264 #define page_address_init()  do { } while(0)
2265 #endif
2266 
2267 static inline void *folio_address(const struct folio *folio)
2268 {
2269 	return page_address(&folio->page);
2270 }
2271 
2272 /*
2273  * Return true only if the page has been allocated with
2274  * ALLOC_NO_WATERMARKS and the low watermark was not
2275  * met implying that the system is under some pressure.
2276  */
2277 static inline bool page_is_pfmemalloc(const struct page *page)
2278 {
2279 	/*
2280 	 * lru.next has bit 1 set if the page is allocated from the
2281 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2282 	 * they do not need to preserve that information.
2283 	 */
2284 	return (uintptr_t)page->lru.next & BIT(1);
2285 }
2286 
2287 /*
2288  * Return true only if the folio has been allocated with
2289  * ALLOC_NO_WATERMARKS and the low watermark was not
2290  * met implying that the system is under some pressure.
2291  */
2292 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2293 {
2294 	/*
2295 	 * lru.next has bit 1 set if the page is allocated from the
2296 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2297 	 * they do not need to preserve that information.
2298 	 */
2299 	return (uintptr_t)folio->lru.next & BIT(1);
2300 }
2301 
2302 /*
2303  * Only to be called by the page allocator on a freshly allocated
2304  * page.
2305  */
2306 static inline void set_page_pfmemalloc(struct page *page)
2307 {
2308 	page->lru.next = (void *)BIT(1);
2309 }
2310 
2311 static inline void clear_page_pfmemalloc(struct page *page)
2312 {
2313 	page->lru.next = NULL;
2314 }
2315 
2316 /*
2317  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2318  */
2319 extern void pagefault_out_of_memory(void);
2320 
2321 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2322 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2323 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2324 
2325 /*
2326  * Parameter block passed down to zap_pte_range in exceptional cases.
2327  */
2328 struct zap_details {
2329 	struct folio *single_folio;	/* Locked folio to be unmapped */
2330 	bool even_cows;			/* Zap COWed private pages too? */
2331 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2332 };
2333 
2334 /*
2335  * Whether to drop the pte markers, for example, the uffd-wp information for
2336  * file-backed memory.  This should only be specified when we will completely
2337  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2338  * default, the flag is not set.
2339  */
2340 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2341 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2342 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2343 
2344 #ifdef CONFIG_SCHED_MM_CID
2345 void sched_mm_cid_before_execve(struct task_struct *t);
2346 void sched_mm_cid_after_execve(struct task_struct *t);
2347 void sched_mm_cid_fork(struct task_struct *t);
2348 void sched_mm_cid_exit_signals(struct task_struct *t);
2349 static inline int task_mm_cid(struct task_struct *t)
2350 {
2351 	return t->mm_cid;
2352 }
2353 #else
2354 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2355 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2356 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2357 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2358 static inline int task_mm_cid(struct task_struct *t)
2359 {
2360 	/*
2361 	 * Use the processor id as a fall-back when the mm cid feature is
2362 	 * disabled. This provides functional per-cpu data structure accesses
2363 	 * in user-space, althrough it won't provide the memory usage benefits.
2364 	 */
2365 	return raw_smp_processor_id();
2366 }
2367 #endif
2368 
2369 #ifdef CONFIG_MMU
2370 extern bool can_do_mlock(void);
2371 #else
2372 static inline bool can_do_mlock(void) { return false; }
2373 #endif
2374 extern int user_shm_lock(size_t, struct ucounts *);
2375 extern void user_shm_unlock(size_t, struct ucounts *);
2376 
2377 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2378 			     pte_t pte);
2379 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2380 			     pte_t pte);
2381 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2382 				  unsigned long addr, pmd_t pmd);
2383 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2384 				pmd_t pmd);
2385 
2386 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2387 		  unsigned long size);
2388 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2389 			   unsigned long size, struct zap_details *details);
2390 static inline void zap_vma_pages(struct vm_area_struct *vma)
2391 {
2392 	zap_page_range_single(vma, vma->vm_start,
2393 			      vma->vm_end - vma->vm_start, NULL);
2394 }
2395 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2396 		struct vm_area_struct *start_vma, unsigned long start,
2397 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2398 
2399 struct mmu_notifier_range;
2400 
2401 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2402 		unsigned long end, unsigned long floor, unsigned long ceiling);
2403 int
2404 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2405 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2406 	       pte_t **ptepp, spinlock_t **ptlp);
2407 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2408 			void *buf, int len, int write);
2409 
2410 extern void truncate_pagecache(struct inode *inode, loff_t new);
2411 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2412 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2413 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2414 int generic_error_remove_folio(struct address_space *mapping,
2415 		struct folio *folio);
2416 
2417 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2418 		unsigned long address, struct pt_regs *regs);
2419 
2420 #ifdef CONFIG_MMU
2421 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2422 				  unsigned long address, unsigned int flags,
2423 				  struct pt_regs *regs);
2424 extern int fixup_user_fault(struct mm_struct *mm,
2425 			    unsigned long address, unsigned int fault_flags,
2426 			    bool *unlocked);
2427 void unmap_mapping_pages(struct address_space *mapping,
2428 		pgoff_t start, pgoff_t nr, bool even_cows);
2429 void unmap_mapping_range(struct address_space *mapping,
2430 		loff_t const holebegin, loff_t const holelen, int even_cows);
2431 #else
2432 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2433 					 unsigned long address, unsigned int flags,
2434 					 struct pt_regs *regs)
2435 {
2436 	/* should never happen if there's no MMU */
2437 	BUG();
2438 	return VM_FAULT_SIGBUS;
2439 }
2440 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2441 		unsigned int fault_flags, bool *unlocked)
2442 {
2443 	/* should never happen if there's no MMU */
2444 	BUG();
2445 	return -EFAULT;
2446 }
2447 static inline void unmap_mapping_pages(struct address_space *mapping,
2448 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2449 static inline void unmap_mapping_range(struct address_space *mapping,
2450 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2451 #endif
2452 
2453 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2454 		loff_t const holebegin, loff_t const holelen)
2455 {
2456 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2457 }
2458 
2459 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2460 						unsigned long addr);
2461 
2462 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2463 		void *buf, int len, unsigned int gup_flags);
2464 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2465 		void *buf, int len, unsigned int gup_flags);
2466 
2467 long get_user_pages_remote(struct mm_struct *mm,
2468 			   unsigned long start, unsigned long nr_pages,
2469 			   unsigned int gup_flags, struct page **pages,
2470 			   int *locked);
2471 long pin_user_pages_remote(struct mm_struct *mm,
2472 			   unsigned long start, unsigned long nr_pages,
2473 			   unsigned int gup_flags, struct page **pages,
2474 			   int *locked);
2475 
2476 /*
2477  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2478  */
2479 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2480 						    unsigned long addr,
2481 						    int gup_flags,
2482 						    struct vm_area_struct **vmap)
2483 {
2484 	struct page *page;
2485 	struct vm_area_struct *vma;
2486 	int got;
2487 
2488 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2489 		return ERR_PTR(-EINVAL);
2490 
2491 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2492 
2493 	if (got < 0)
2494 		return ERR_PTR(got);
2495 
2496 	vma = vma_lookup(mm, addr);
2497 	if (WARN_ON_ONCE(!vma)) {
2498 		put_page(page);
2499 		return ERR_PTR(-EINVAL);
2500 	}
2501 
2502 	*vmap = vma;
2503 	return page;
2504 }
2505 
2506 long get_user_pages(unsigned long start, unsigned long nr_pages,
2507 		    unsigned int gup_flags, struct page **pages);
2508 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2509 		    unsigned int gup_flags, struct page **pages);
2510 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2511 		    struct page **pages, unsigned int gup_flags);
2512 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2513 		    struct page **pages, unsigned int gup_flags);
2514 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2515 		      struct folio **folios, unsigned int max_folios,
2516 		      pgoff_t *offset);
2517 
2518 int get_user_pages_fast(unsigned long start, int nr_pages,
2519 			unsigned int gup_flags, struct page **pages);
2520 int pin_user_pages_fast(unsigned long start, int nr_pages,
2521 			unsigned int gup_flags, struct page **pages);
2522 void folio_add_pin(struct folio *folio);
2523 
2524 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2525 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2526 			struct task_struct *task, bool bypass_rlim);
2527 
2528 struct kvec;
2529 struct page *get_dump_page(unsigned long addr);
2530 
2531 bool folio_mark_dirty(struct folio *folio);
2532 bool set_page_dirty(struct page *page);
2533 int set_page_dirty_lock(struct page *page);
2534 
2535 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2536 
2537 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2538 		unsigned long old_addr, struct vm_area_struct *new_vma,
2539 		unsigned long new_addr, unsigned long len,
2540 		bool need_rmap_locks, bool for_stack);
2541 
2542 /*
2543  * Flags used by change_protection().  For now we make it a bitmap so
2544  * that we can pass in multiple flags just like parameters.  However
2545  * for now all the callers are only use one of the flags at the same
2546  * time.
2547  */
2548 /*
2549  * Whether we should manually check if we can map individual PTEs writable,
2550  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2551  * PTEs automatically in a writable mapping.
2552  */
2553 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2554 /* Whether this protection change is for NUMA hints */
2555 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2556 /* Whether this change is for write protecting */
2557 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2558 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2559 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2560 					    MM_CP_UFFD_WP_RESOLVE)
2561 
2562 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2563 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2564 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2565 {
2566 	/*
2567 	 * We want to check manually if we can change individual PTEs writable
2568 	 * if we can't do that automatically for all PTEs in a mapping. For
2569 	 * private mappings, that's always the case when we have write
2570 	 * permissions as we properly have to handle COW.
2571 	 */
2572 	if (vma->vm_flags & VM_SHARED)
2573 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2574 	return !!(vma->vm_flags & VM_WRITE);
2575 
2576 }
2577 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2578 			     pte_t pte);
2579 extern long change_protection(struct mmu_gather *tlb,
2580 			      struct vm_area_struct *vma, unsigned long start,
2581 			      unsigned long end, unsigned long cp_flags);
2582 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2583 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2584 	  unsigned long start, unsigned long end, unsigned long newflags);
2585 
2586 /*
2587  * doesn't attempt to fault and will return short.
2588  */
2589 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2590 			     unsigned int gup_flags, struct page **pages);
2591 
2592 static inline bool get_user_page_fast_only(unsigned long addr,
2593 			unsigned int gup_flags, struct page **pagep)
2594 {
2595 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2596 }
2597 /*
2598  * per-process(per-mm_struct) statistics.
2599  */
2600 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2601 {
2602 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2603 }
2604 
2605 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2606 
2607 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2608 {
2609 	percpu_counter_add(&mm->rss_stat[member], value);
2610 
2611 	mm_trace_rss_stat(mm, member);
2612 }
2613 
2614 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2615 {
2616 	percpu_counter_inc(&mm->rss_stat[member]);
2617 
2618 	mm_trace_rss_stat(mm, member);
2619 }
2620 
2621 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2622 {
2623 	percpu_counter_dec(&mm->rss_stat[member]);
2624 
2625 	mm_trace_rss_stat(mm, member);
2626 }
2627 
2628 /* Optimized variant when folio is already known not to be anon */
2629 static inline int mm_counter_file(struct folio *folio)
2630 {
2631 	if (folio_test_swapbacked(folio))
2632 		return MM_SHMEMPAGES;
2633 	return MM_FILEPAGES;
2634 }
2635 
2636 static inline int mm_counter(struct folio *folio)
2637 {
2638 	if (folio_test_anon(folio))
2639 		return MM_ANONPAGES;
2640 	return mm_counter_file(folio);
2641 }
2642 
2643 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2644 {
2645 	return get_mm_counter(mm, MM_FILEPAGES) +
2646 		get_mm_counter(mm, MM_ANONPAGES) +
2647 		get_mm_counter(mm, MM_SHMEMPAGES);
2648 }
2649 
2650 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2651 {
2652 	return max(mm->hiwater_rss, get_mm_rss(mm));
2653 }
2654 
2655 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2656 {
2657 	return max(mm->hiwater_vm, mm->total_vm);
2658 }
2659 
2660 static inline void update_hiwater_rss(struct mm_struct *mm)
2661 {
2662 	unsigned long _rss = get_mm_rss(mm);
2663 
2664 	if ((mm)->hiwater_rss < _rss)
2665 		(mm)->hiwater_rss = _rss;
2666 }
2667 
2668 static inline void update_hiwater_vm(struct mm_struct *mm)
2669 {
2670 	if (mm->hiwater_vm < mm->total_vm)
2671 		mm->hiwater_vm = mm->total_vm;
2672 }
2673 
2674 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2675 {
2676 	mm->hiwater_rss = get_mm_rss(mm);
2677 }
2678 
2679 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2680 					 struct mm_struct *mm)
2681 {
2682 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2683 
2684 	if (*maxrss < hiwater_rss)
2685 		*maxrss = hiwater_rss;
2686 }
2687 
2688 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2689 static inline int pte_special(pte_t pte)
2690 {
2691 	return 0;
2692 }
2693 
2694 static inline pte_t pte_mkspecial(pte_t pte)
2695 {
2696 	return pte;
2697 }
2698 #endif
2699 
2700 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2701 static inline int pte_devmap(pte_t pte)
2702 {
2703 	return 0;
2704 }
2705 #endif
2706 
2707 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2708 			       spinlock_t **ptl);
2709 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2710 				    spinlock_t **ptl)
2711 {
2712 	pte_t *ptep;
2713 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2714 	return ptep;
2715 }
2716 
2717 #ifdef __PAGETABLE_P4D_FOLDED
2718 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2719 						unsigned long address)
2720 {
2721 	return 0;
2722 }
2723 #else
2724 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2725 #endif
2726 
2727 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2728 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2729 						unsigned long address)
2730 {
2731 	return 0;
2732 }
2733 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2734 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2735 
2736 #else
2737 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2738 
2739 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2740 {
2741 	if (mm_pud_folded(mm))
2742 		return;
2743 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2744 }
2745 
2746 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2747 {
2748 	if (mm_pud_folded(mm))
2749 		return;
2750 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2751 }
2752 #endif
2753 
2754 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2755 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2756 						unsigned long address)
2757 {
2758 	return 0;
2759 }
2760 
2761 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2762 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2763 
2764 #else
2765 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2766 
2767 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2768 {
2769 	if (mm_pmd_folded(mm))
2770 		return;
2771 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2772 }
2773 
2774 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2775 {
2776 	if (mm_pmd_folded(mm))
2777 		return;
2778 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2779 }
2780 #endif
2781 
2782 #ifdef CONFIG_MMU
2783 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2784 {
2785 	atomic_long_set(&mm->pgtables_bytes, 0);
2786 }
2787 
2788 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2789 {
2790 	return atomic_long_read(&mm->pgtables_bytes);
2791 }
2792 
2793 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2794 {
2795 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2796 }
2797 
2798 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2799 {
2800 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2801 }
2802 #else
2803 
2804 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2805 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2806 {
2807 	return 0;
2808 }
2809 
2810 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2811 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2812 #endif
2813 
2814 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2815 int __pte_alloc_kernel(pmd_t *pmd);
2816 
2817 #if defined(CONFIG_MMU)
2818 
2819 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2820 		unsigned long address)
2821 {
2822 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2823 		NULL : p4d_offset(pgd, address);
2824 }
2825 
2826 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2827 		unsigned long address)
2828 {
2829 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2830 		NULL : pud_offset(p4d, address);
2831 }
2832 
2833 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2834 {
2835 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2836 		NULL: pmd_offset(pud, address);
2837 }
2838 #endif /* CONFIG_MMU */
2839 
2840 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2841 {
2842 	return page_ptdesc(virt_to_page(x));
2843 }
2844 
2845 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2846 {
2847 	return page_to_virt(ptdesc_page(pt));
2848 }
2849 
2850 static inline void *ptdesc_address(const struct ptdesc *pt)
2851 {
2852 	return folio_address(ptdesc_folio(pt));
2853 }
2854 
2855 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2856 {
2857 	return folio_test_reserved(ptdesc_folio(pt));
2858 }
2859 
2860 /**
2861  * pagetable_alloc - Allocate pagetables
2862  * @gfp:    GFP flags
2863  * @order:  desired pagetable order
2864  *
2865  * pagetable_alloc allocates memory for page tables as well as a page table
2866  * descriptor to describe that memory.
2867  *
2868  * Return: The ptdesc describing the allocated page tables.
2869  */
2870 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2871 {
2872 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2873 
2874 	return page_ptdesc(page);
2875 }
2876 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2877 
2878 /**
2879  * pagetable_free - Free pagetables
2880  * @pt:	The page table descriptor
2881  *
2882  * pagetable_free frees the memory of all page tables described by a page
2883  * table descriptor and the memory for the descriptor itself.
2884  */
2885 static inline void pagetable_free(struct ptdesc *pt)
2886 {
2887 	struct page *page = ptdesc_page(pt);
2888 
2889 	__free_pages(page, compound_order(page));
2890 }
2891 
2892 #if USE_SPLIT_PTE_PTLOCKS
2893 #if ALLOC_SPLIT_PTLOCKS
2894 void __init ptlock_cache_init(void);
2895 bool ptlock_alloc(struct ptdesc *ptdesc);
2896 void ptlock_free(struct ptdesc *ptdesc);
2897 
2898 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2899 {
2900 	return ptdesc->ptl;
2901 }
2902 #else /* ALLOC_SPLIT_PTLOCKS */
2903 static inline void ptlock_cache_init(void)
2904 {
2905 }
2906 
2907 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2908 {
2909 	return true;
2910 }
2911 
2912 static inline void ptlock_free(struct ptdesc *ptdesc)
2913 {
2914 }
2915 
2916 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2917 {
2918 	return &ptdesc->ptl;
2919 }
2920 #endif /* ALLOC_SPLIT_PTLOCKS */
2921 
2922 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2923 {
2924 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2925 }
2926 
2927 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2928 {
2929 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2930 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2931 	return ptlock_ptr(virt_to_ptdesc(pte));
2932 }
2933 
2934 static inline bool ptlock_init(struct ptdesc *ptdesc)
2935 {
2936 	/*
2937 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2938 	 * with 0. Make sure nobody took it in use in between.
2939 	 *
2940 	 * It can happen if arch try to use slab for page table allocation:
2941 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2942 	 */
2943 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2944 	if (!ptlock_alloc(ptdesc))
2945 		return false;
2946 	spin_lock_init(ptlock_ptr(ptdesc));
2947 	return true;
2948 }
2949 
2950 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2951 /*
2952  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2953  */
2954 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2955 {
2956 	return &mm->page_table_lock;
2957 }
2958 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2959 {
2960 	return &mm->page_table_lock;
2961 }
2962 static inline void ptlock_cache_init(void) {}
2963 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2964 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2965 #endif /* USE_SPLIT_PTE_PTLOCKS */
2966 
2967 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2968 {
2969 	struct folio *folio = ptdesc_folio(ptdesc);
2970 
2971 	if (!ptlock_init(ptdesc))
2972 		return false;
2973 	__folio_set_pgtable(folio);
2974 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2975 	return true;
2976 }
2977 
2978 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2979 {
2980 	struct folio *folio = ptdesc_folio(ptdesc);
2981 
2982 	ptlock_free(ptdesc);
2983 	__folio_clear_pgtable(folio);
2984 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2985 }
2986 
2987 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2988 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2989 {
2990 	return __pte_offset_map(pmd, addr, NULL);
2991 }
2992 
2993 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2994 			unsigned long addr, spinlock_t **ptlp);
2995 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2996 			unsigned long addr, spinlock_t **ptlp)
2997 {
2998 	pte_t *pte;
2999 
3000 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3001 	return pte;
3002 }
3003 
3004 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3005 			unsigned long addr, spinlock_t **ptlp);
3006 
3007 #define pte_unmap_unlock(pte, ptl)	do {		\
3008 	spin_unlock(ptl);				\
3009 	pte_unmap(pte);					\
3010 } while (0)
3011 
3012 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3013 
3014 #define pte_alloc_map(mm, pmd, address)			\
3015 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3016 
3017 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3018 	(pte_alloc(mm, pmd) ?			\
3019 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3020 
3021 #define pte_alloc_kernel(pmd, address)			\
3022 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3023 		NULL: pte_offset_kernel(pmd, address))
3024 
3025 #if USE_SPLIT_PMD_PTLOCKS
3026 
3027 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3028 {
3029 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3030 	return virt_to_page((void *)((unsigned long) pmd & mask));
3031 }
3032 
3033 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3034 {
3035 	return page_ptdesc(pmd_pgtable_page(pmd));
3036 }
3037 
3038 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3039 {
3040 	return ptlock_ptr(pmd_ptdesc(pmd));
3041 }
3042 
3043 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3044 {
3045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3046 	ptdesc->pmd_huge_pte = NULL;
3047 #endif
3048 	return ptlock_init(ptdesc);
3049 }
3050 
3051 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3052 {
3053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3054 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3055 #endif
3056 	ptlock_free(ptdesc);
3057 }
3058 
3059 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3060 
3061 #else
3062 
3063 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3064 {
3065 	return &mm->page_table_lock;
3066 }
3067 
3068 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3069 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3070 
3071 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3072 
3073 #endif
3074 
3075 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3076 {
3077 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3078 	spin_lock(ptl);
3079 	return ptl;
3080 }
3081 
3082 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3083 {
3084 	struct folio *folio = ptdesc_folio(ptdesc);
3085 
3086 	if (!pmd_ptlock_init(ptdesc))
3087 		return false;
3088 	__folio_set_pgtable(folio);
3089 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3090 	return true;
3091 }
3092 
3093 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3094 {
3095 	struct folio *folio = ptdesc_folio(ptdesc);
3096 
3097 	pmd_ptlock_free(ptdesc);
3098 	__folio_clear_pgtable(folio);
3099 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3100 }
3101 
3102 /*
3103  * No scalability reason to split PUD locks yet, but follow the same pattern
3104  * as the PMD locks to make it easier if we decide to.  The VM should not be
3105  * considered ready to switch to split PUD locks yet; there may be places
3106  * which need to be converted from page_table_lock.
3107  */
3108 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3109 {
3110 	return &mm->page_table_lock;
3111 }
3112 
3113 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3114 {
3115 	spinlock_t *ptl = pud_lockptr(mm, pud);
3116 
3117 	spin_lock(ptl);
3118 	return ptl;
3119 }
3120 
3121 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3122 {
3123 	struct folio *folio = ptdesc_folio(ptdesc);
3124 
3125 	__folio_set_pgtable(folio);
3126 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3127 }
3128 
3129 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3130 {
3131 	struct folio *folio = ptdesc_folio(ptdesc);
3132 
3133 	__folio_clear_pgtable(folio);
3134 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3135 }
3136 
3137 extern void __init pagecache_init(void);
3138 extern void free_initmem(void);
3139 
3140 /*
3141  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3142  * into the buddy system. The freed pages will be poisoned with pattern
3143  * "poison" if it's within range [0, UCHAR_MAX].
3144  * Return pages freed into the buddy system.
3145  */
3146 extern unsigned long free_reserved_area(void *start, void *end,
3147 					int poison, const char *s);
3148 
3149 extern void adjust_managed_page_count(struct page *page, long count);
3150 
3151 extern void reserve_bootmem_region(phys_addr_t start,
3152 				   phys_addr_t end, int nid);
3153 
3154 /* Free the reserved page into the buddy system, so it gets managed. */
3155 void free_reserved_page(struct page *page);
3156 #define free_highmem_page(page) free_reserved_page(page)
3157 
3158 static inline void mark_page_reserved(struct page *page)
3159 {
3160 	SetPageReserved(page);
3161 	adjust_managed_page_count(page, -1);
3162 }
3163 
3164 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3165 {
3166 	free_reserved_page(ptdesc_page(pt));
3167 }
3168 
3169 /*
3170  * Default method to free all the __init memory into the buddy system.
3171  * The freed pages will be poisoned with pattern "poison" if it's within
3172  * range [0, UCHAR_MAX].
3173  * Return pages freed into the buddy system.
3174  */
3175 static inline unsigned long free_initmem_default(int poison)
3176 {
3177 	extern char __init_begin[], __init_end[];
3178 
3179 	return free_reserved_area(&__init_begin, &__init_end,
3180 				  poison, "unused kernel image (initmem)");
3181 }
3182 
3183 static inline unsigned long get_num_physpages(void)
3184 {
3185 	int nid;
3186 	unsigned long phys_pages = 0;
3187 
3188 	for_each_online_node(nid)
3189 		phys_pages += node_present_pages(nid);
3190 
3191 	return phys_pages;
3192 }
3193 
3194 /*
3195  * Using memblock node mappings, an architecture may initialise its
3196  * zones, allocate the backing mem_map and account for memory holes in an
3197  * architecture independent manner.
3198  *
3199  * An architecture is expected to register range of page frames backed by
3200  * physical memory with memblock_add[_node]() before calling
3201  * free_area_init() passing in the PFN each zone ends at. At a basic
3202  * usage, an architecture is expected to do something like
3203  *
3204  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3205  * 							 max_highmem_pfn};
3206  * for_each_valid_physical_page_range()
3207  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3208  * free_area_init(max_zone_pfns);
3209  */
3210 void free_area_init(unsigned long *max_zone_pfn);
3211 unsigned long node_map_pfn_alignment(void);
3212 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3213 						unsigned long end_pfn);
3214 extern void get_pfn_range_for_nid(unsigned int nid,
3215 			unsigned long *start_pfn, unsigned long *end_pfn);
3216 
3217 #ifndef CONFIG_NUMA
3218 static inline int early_pfn_to_nid(unsigned long pfn)
3219 {
3220 	return 0;
3221 }
3222 #else
3223 /* please see mm/page_alloc.c */
3224 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3225 #endif
3226 
3227 extern void mem_init(void);
3228 extern void __init mmap_init(void);
3229 
3230 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3231 static inline void show_mem(void)
3232 {
3233 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3234 }
3235 extern long si_mem_available(void);
3236 extern void si_meminfo(struct sysinfo * val);
3237 extern void si_meminfo_node(struct sysinfo *val, int nid);
3238 
3239 extern __printf(3, 4)
3240 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3241 
3242 extern void setup_per_cpu_pageset(void);
3243 
3244 /* nommu.c */
3245 extern atomic_long_t mmap_pages_allocated;
3246 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3247 
3248 /* interval_tree.c */
3249 void vma_interval_tree_insert(struct vm_area_struct *node,
3250 			      struct rb_root_cached *root);
3251 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3252 				    struct vm_area_struct *prev,
3253 				    struct rb_root_cached *root);
3254 void vma_interval_tree_remove(struct vm_area_struct *node,
3255 			      struct rb_root_cached *root);
3256 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3257 				unsigned long start, unsigned long last);
3258 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3259 				unsigned long start, unsigned long last);
3260 
3261 #define vma_interval_tree_foreach(vma, root, start, last)		\
3262 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3263 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3264 
3265 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3266 				   struct rb_root_cached *root);
3267 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3268 				   struct rb_root_cached *root);
3269 struct anon_vma_chain *
3270 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3271 				  unsigned long start, unsigned long last);
3272 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3273 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3274 #ifdef CONFIG_DEBUG_VM_RB
3275 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3276 #endif
3277 
3278 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3279 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3280 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3281 
3282 /* mmap.c */
3283 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3284 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3285 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3286 		      struct vm_area_struct *next);
3287 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3288 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3289 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3290 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3291 extern void unlink_file_vma(struct vm_area_struct *);
3292 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3293 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3294 	bool *need_rmap_locks);
3295 extern void exit_mmap(struct mm_struct *);
3296 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3297 				  struct vm_area_struct *prev,
3298 				  struct vm_area_struct *vma,
3299 				  unsigned long start, unsigned long end,
3300 				  unsigned long vm_flags,
3301 				  struct mempolicy *policy,
3302 				  struct vm_userfaultfd_ctx uffd_ctx,
3303 				  struct anon_vma_name *anon_name);
3304 
3305 /* We are about to modify the VMA's flags. */
3306 static inline struct vm_area_struct
3307 *vma_modify_flags(struct vma_iterator *vmi,
3308 		  struct vm_area_struct *prev,
3309 		  struct vm_area_struct *vma,
3310 		  unsigned long start, unsigned long end,
3311 		  unsigned long new_flags)
3312 {
3313 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3314 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3315 			  anon_vma_name(vma));
3316 }
3317 
3318 /* We are about to modify the VMA's flags and/or anon_name. */
3319 static inline struct vm_area_struct
3320 *vma_modify_flags_name(struct vma_iterator *vmi,
3321 		       struct vm_area_struct *prev,
3322 		       struct vm_area_struct *vma,
3323 		       unsigned long start,
3324 		       unsigned long end,
3325 		       unsigned long new_flags,
3326 		       struct anon_vma_name *new_name)
3327 {
3328 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3329 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3330 }
3331 
3332 /* We are about to modify the VMA's memory policy. */
3333 static inline struct vm_area_struct
3334 *vma_modify_policy(struct vma_iterator *vmi,
3335 		   struct vm_area_struct *prev,
3336 		   struct vm_area_struct *vma,
3337 		   unsigned long start, unsigned long end,
3338 		   struct mempolicy *new_pol)
3339 {
3340 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3341 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3342 }
3343 
3344 /* We are about to modify the VMA's flags and/or uffd context. */
3345 static inline struct vm_area_struct
3346 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3347 		       struct vm_area_struct *prev,
3348 		       struct vm_area_struct *vma,
3349 		       unsigned long start, unsigned long end,
3350 		       unsigned long new_flags,
3351 		       struct vm_userfaultfd_ctx new_ctx)
3352 {
3353 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3354 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3355 }
3356 
3357 static inline int check_data_rlimit(unsigned long rlim,
3358 				    unsigned long new,
3359 				    unsigned long start,
3360 				    unsigned long end_data,
3361 				    unsigned long start_data)
3362 {
3363 	if (rlim < RLIM_INFINITY) {
3364 		if (((new - start) + (end_data - start_data)) > rlim)
3365 			return -ENOSPC;
3366 	}
3367 
3368 	return 0;
3369 }
3370 
3371 extern int mm_take_all_locks(struct mm_struct *mm);
3372 extern void mm_drop_all_locks(struct mm_struct *mm);
3373 
3374 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3375 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3376 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3377 extern struct file *get_task_exe_file(struct task_struct *task);
3378 
3379 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3380 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3381 
3382 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3383 				   const struct vm_special_mapping *sm);
3384 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3385 				   unsigned long addr, unsigned long len,
3386 				   unsigned long flags,
3387 				   const struct vm_special_mapping *spec);
3388 /* This is an obsolete alternative to _install_special_mapping. */
3389 extern int install_special_mapping(struct mm_struct *mm,
3390 				   unsigned long addr, unsigned long len,
3391 				   unsigned long flags, struct page **pages);
3392 
3393 unsigned long randomize_stack_top(unsigned long stack_top);
3394 unsigned long randomize_page(unsigned long start, unsigned long range);
3395 
3396 unsigned long
3397 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3398 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3399 
3400 static inline unsigned long
3401 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3402 		  unsigned long pgoff, unsigned long flags)
3403 {
3404 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3405 }
3406 
3407 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3408 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3409 	struct list_head *uf);
3410 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3411 	unsigned long len, unsigned long prot, unsigned long flags,
3412 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3413 	struct list_head *uf);
3414 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3415 			 unsigned long start, size_t len, struct list_head *uf,
3416 			 bool unlock);
3417 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3418 		     struct list_head *uf);
3419 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3420 
3421 #ifdef CONFIG_MMU
3422 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3423 			 unsigned long start, unsigned long end,
3424 			 struct list_head *uf, bool unlock);
3425 extern int __mm_populate(unsigned long addr, unsigned long len,
3426 			 int ignore_errors);
3427 static inline void mm_populate(unsigned long addr, unsigned long len)
3428 {
3429 	/* Ignore errors */
3430 	(void) __mm_populate(addr, len, 1);
3431 }
3432 #else
3433 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3434 #endif
3435 
3436 /* This takes the mm semaphore itself */
3437 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3438 extern int vm_munmap(unsigned long, size_t);
3439 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3440         unsigned long, unsigned long,
3441         unsigned long, unsigned long);
3442 
3443 struct vm_unmapped_area_info {
3444 #define VM_UNMAPPED_AREA_TOPDOWN 1
3445 	unsigned long flags;
3446 	unsigned long length;
3447 	unsigned long low_limit;
3448 	unsigned long high_limit;
3449 	unsigned long align_mask;
3450 	unsigned long align_offset;
3451 	unsigned long start_gap;
3452 };
3453 
3454 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3455 
3456 /* truncate.c */
3457 extern void truncate_inode_pages(struct address_space *, loff_t);
3458 extern void truncate_inode_pages_range(struct address_space *,
3459 				       loff_t lstart, loff_t lend);
3460 extern void truncate_inode_pages_final(struct address_space *);
3461 
3462 /* generic vm_area_ops exported for stackable file systems */
3463 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3464 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3465 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3466 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3467 
3468 extern unsigned long stack_guard_gap;
3469 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3470 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3471 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3472 
3473 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3474 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3475 
3476 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3477 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3478 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3479 					     struct vm_area_struct **pprev);
3480 
3481 /*
3482  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3483  * NULL if none.  Assume start_addr < end_addr.
3484  */
3485 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3486 			unsigned long start_addr, unsigned long end_addr);
3487 
3488 /**
3489  * vma_lookup() - Find a VMA at a specific address
3490  * @mm: The process address space.
3491  * @addr: The user address.
3492  *
3493  * Return: The vm_area_struct at the given address, %NULL otherwise.
3494  */
3495 static inline
3496 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3497 {
3498 	return mtree_load(&mm->mm_mt, addr);
3499 }
3500 
3501 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3502 {
3503 	if (vma->vm_flags & VM_GROWSDOWN)
3504 		return stack_guard_gap;
3505 
3506 	/* See reasoning around the VM_SHADOW_STACK definition */
3507 	if (vma->vm_flags & VM_SHADOW_STACK)
3508 		return PAGE_SIZE;
3509 
3510 	return 0;
3511 }
3512 
3513 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3514 {
3515 	unsigned long gap = stack_guard_start_gap(vma);
3516 	unsigned long vm_start = vma->vm_start;
3517 
3518 	vm_start -= gap;
3519 	if (vm_start > vma->vm_start)
3520 		vm_start = 0;
3521 	return vm_start;
3522 }
3523 
3524 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3525 {
3526 	unsigned long vm_end = vma->vm_end;
3527 
3528 	if (vma->vm_flags & VM_GROWSUP) {
3529 		vm_end += stack_guard_gap;
3530 		if (vm_end < vma->vm_end)
3531 			vm_end = -PAGE_SIZE;
3532 	}
3533 	return vm_end;
3534 }
3535 
3536 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3537 {
3538 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3539 }
3540 
3541 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3542 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3543 				unsigned long vm_start, unsigned long vm_end)
3544 {
3545 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3546 
3547 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3548 		vma = NULL;
3549 
3550 	return vma;
3551 }
3552 
3553 static inline bool range_in_vma(struct vm_area_struct *vma,
3554 				unsigned long start, unsigned long end)
3555 {
3556 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3557 }
3558 
3559 #ifdef CONFIG_MMU
3560 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3561 void vma_set_page_prot(struct vm_area_struct *vma);
3562 #else
3563 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3564 {
3565 	return __pgprot(0);
3566 }
3567 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3568 {
3569 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3570 }
3571 #endif
3572 
3573 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3574 
3575 #ifdef CONFIG_NUMA_BALANCING
3576 unsigned long change_prot_numa(struct vm_area_struct *vma,
3577 			unsigned long start, unsigned long end);
3578 #endif
3579 
3580 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3581 		unsigned long addr);
3582 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3583 			unsigned long pfn, unsigned long size, pgprot_t);
3584 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3585 		unsigned long pfn, unsigned long size, pgprot_t prot);
3586 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3588 			struct page **pages, unsigned long *num);
3589 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3590 				unsigned long num);
3591 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3592 				unsigned long num);
3593 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3594 			unsigned long pfn);
3595 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3596 			unsigned long pfn, pgprot_t pgprot);
3597 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3598 			pfn_t pfn);
3599 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3600 		unsigned long addr, pfn_t pfn);
3601 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3602 
3603 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3604 				unsigned long addr, struct page *page)
3605 {
3606 	int err = vm_insert_page(vma, addr, page);
3607 
3608 	if (err == -ENOMEM)
3609 		return VM_FAULT_OOM;
3610 	if (err < 0 && err != -EBUSY)
3611 		return VM_FAULT_SIGBUS;
3612 
3613 	return VM_FAULT_NOPAGE;
3614 }
3615 
3616 #ifndef io_remap_pfn_range
3617 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3618 				     unsigned long addr, unsigned long pfn,
3619 				     unsigned long size, pgprot_t prot)
3620 {
3621 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3622 }
3623 #endif
3624 
3625 static inline vm_fault_t vmf_error(int err)
3626 {
3627 	if (err == -ENOMEM)
3628 		return VM_FAULT_OOM;
3629 	else if (err == -EHWPOISON)
3630 		return VM_FAULT_HWPOISON;
3631 	return VM_FAULT_SIGBUS;
3632 }
3633 
3634 /*
3635  * Convert errno to return value for ->page_mkwrite() calls.
3636  *
3637  * This should eventually be merged with vmf_error() above, but will need a
3638  * careful audit of all vmf_error() callers.
3639  */
3640 static inline vm_fault_t vmf_fs_error(int err)
3641 {
3642 	if (err == 0)
3643 		return VM_FAULT_LOCKED;
3644 	if (err == -EFAULT || err == -EAGAIN)
3645 		return VM_FAULT_NOPAGE;
3646 	if (err == -ENOMEM)
3647 		return VM_FAULT_OOM;
3648 	/* -ENOSPC, -EDQUOT, -EIO ... */
3649 	return VM_FAULT_SIGBUS;
3650 }
3651 
3652 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3653 			 unsigned int foll_flags);
3654 
3655 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3656 {
3657 	if (vm_fault & VM_FAULT_OOM)
3658 		return -ENOMEM;
3659 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3660 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3661 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3662 		return -EFAULT;
3663 	return 0;
3664 }
3665 
3666 /*
3667  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3668  * a (NUMA hinting) fault is required.
3669  */
3670 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3671 					   unsigned int flags)
3672 {
3673 	/*
3674 	 * If callers don't want to honor NUMA hinting faults, no need to
3675 	 * determine if we would actually have to trigger a NUMA hinting fault.
3676 	 */
3677 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3678 		return true;
3679 
3680 	/*
3681 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3682 	 *
3683 	 * Requiring a fault here even for inaccessible VMAs would mean that
3684 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3685 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3686 	 */
3687 	return !vma_is_accessible(vma);
3688 }
3689 
3690 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3691 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3692 			       unsigned long size, pte_fn_t fn, void *data);
3693 extern int apply_to_existing_page_range(struct mm_struct *mm,
3694 				   unsigned long address, unsigned long size,
3695 				   pte_fn_t fn, void *data);
3696 
3697 #ifdef CONFIG_PAGE_POISONING
3698 extern void __kernel_poison_pages(struct page *page, int numpages);
3699 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3700 extern bool _page_poisoning_enabled_early;
3701 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3702 static inline bool page_poisoning_enabled(void)
3703 {
3704 	return _page_poisoning_enabled_early;
3705 }
3706 /*
3707  * For use in fast paths after init_mem_debugging() has run, or when a
3708  * false negative result is not harmful when called too early.
3709  */
3710 static inline bool page_poisoning_enabled_static(void)
3711 {
3712 	return static_branch_unlikely(&_page_poisoning_enabled);
3713 }
3714 static inline void kernel_poison_pages(struct page *page, int numpages)
3715 {
3716 	if (page_poisoning_enabled_static())
3717 		__kernel_poison_pages(page, numpages);
3718 }
3719 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3720 {
3721 	if (page_poisoning_enabled_static())
3722 		__kernel_unpoison_pages(page, numpages);
3723 }
3724 #else
3725 static inline bool page_poisoning_enabled(void) { return false; }
3726 static inline bool page_poisoning_enabled_static(void) { return false; }
3727 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3728 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3729 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3730 #endif
3731 
3732 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3733 static inline bool want_init_on_alloc(gfp_t flags)
3734 {
3735 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3736 				&init_on_alloc))
3737 		return true;
3738 	return flags & __GFP_ZERO;
3739 }
3740 
3741 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3742 static inline bool want_init_on_free(void)
3743 {
3744 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3745 				   &init_on_free);
3746 }
3747 
3748 extern bool _debug_pagealloc_enabled_early;
3749 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3750 
3751 static inline bool debug_pagealloc_enabled(void)
3752 {
3753 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3754 		_debug_pagealloc_enabled_early;
3755 }
3756 
3757 /*
3758  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3759  * or when a false negative result is not harmful when called too early.
3760  */
3761 static inline bool debug_pagealloc_enabled_static(void)
3762 {
3763 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3764 		return false;
3765 
3766 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3767 }
3768 
3769 /*
3770  * To support DEBUG_PAGEALLOC architecture must ensure that
3771  * __kernel_map_pages() never fails
3772  */
3773 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3774 #ifdef CONFIG_DEBUG_PAGEALLOC
3775 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3776 {
3777 	if (debug_pagealloc_enabled_static())
3778 		__kernel_map_pages(page, numpages, 1);
3779 }
3780 
3781 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3782 {
3783 	if (debug_pagealloc_enabled_static())
3784 		__kernel_map_pages(page, numpages, 0);
3785 }
3786 
3787 extern unsigned int _debug_guardpage_minorder;
3788 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3789 
3790 static inline unsigned int debug_guardpage_minorder(void)
3791 {
3792 	return _debug_guardpage_minorder;
3793 }
3794 
3795 static inline bool debug_guardpage_enabled(void)
3796 {
3797 	return static_branch_unlikely(&_debug_guardpage_enabled);
3798 }
3799 
3800 static inline bool page_is_guard(struct page *page)
3801 {
3802 	if (!debug_guardpage_enabled())
3803 		return false;
3804 
3805 	return PageGuard(page);
3806 }
3807 
3808 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3809 static inline bool set_page_guard(struct zone *zone, struct page *page,
3810 				  unsigned int order)
3811 {
3812 	if (!debug_guardpage_enabled())
3813 		return false;
3814 	return __set_page_guard(zone, page, order);
3815 }
3816 
3817 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3818 static inline void clear_page_guard(struct zone *zone, struct page *page,
3819 				    unsigned int order)
3820 {
3821 	if (!debug_guardpage_enabled())
3822 		return;
3823 	__clear_page_guard(zone, page, order);
3824 }
3825 
3826 #else	/* CONFIG_DEBUG_PAGEALLOC */
3827 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3828 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3829 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3830 static inline bool debug_guardpage_enabled(void) { return false; }
3831 static inline bool page_is_guard(struct page *page) { return false; }
3832 static inline bool set_page_guard(struct zone *zone, struct page *page,
3833 			unsigned int order) { return false; }
3834 static inline void clear_page_guard(struct zone *zone, struct page *page,
3835 				unsigned int order) {}
3836 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3837 
3838 #ifdef __HAVE_ARCH_GATE_AREA
3839 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3840 extern int in_gate_area_no_mm(unsigned long addr);
3841 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3842 #else
3843 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3844 {
3845 	return NULL;
3846 }
3847 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3848 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3849 {
3850 	return 0;
3851 }
3852 #endif	/* __HAVE_ARCH_GATE_AREA */
3853 
3854 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3855 
3856 #ifdef CONFIG_SYSCTL
3857 extern int sysctl_drop_caches;
3858 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3859 		loff_t *);
3860 #endif
3861 
3862 void drop_slab(void);
3863 
3864 #ifndef CONFIG_MMU
3865 #define randomize_va_space 0
3866 #else
3867 extern int randomize_va_space;
3868 #endif
3869 
3870 const char * arch_vma_name(struct vm_area_struct *vma);
3871 #ifdef CONFIG_MMU
3872 void print_vma_addr(char *prefix, unsigned long rip);
3873 #else
3874 static inline void print_vma_addr(char *prefix, unsigned long rip)
3875 {
3876 }
3877 #endif
3878 
3879 void *sparse_buffer_alloc(unsigned long size);
3880 struct page * __populate_section_memmap(unsigned long pfn,
3881 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3882 		struct dev_pagemap *pgmap);
3883 void pmd_init(void *addr);
3884 void pud_init(void *addr);
3885 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3886 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3887 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3888 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3889 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3890 			    struct vmem_altmap *altmap, struct page *reuse);
3891 void *vmemmap_alloc_block(unsigned long size, int node);
3892 struct vmem_altmap;
3893 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3894 			      struct vmem_altmap *altmap);
3895 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3896 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3897 		     unsigned long addr, unsigned long next);
3898 int vmemmap_check_pmd(pmd_t *pmd, int node,
3899 		      unsigned long addr, unsigned long next);
3900 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3901 			       int node, struct vmem_altmap *altmap);
3902 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3903 			       int node, struct vmem_altmap *altmap);
3904 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3905 		struct vmem_altmap *altmap);
3906 void vmemmap_populate_print_last(void);
3907 #ifdef CONFIG_MEMORY_HOTPLUG
3908 void vmemmap_free(unsigned long start, unsigned long end,
3909 		struct vmem_altmap *altmap);
3910 #endif
3911 
3912 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3913 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3914 {
3915 	/* number of pfns from base where pfn_to_page() is valid */
3916 	if (altmap)
3917 		return altmap->reserve + altmap->free;
3918 	return 0;
3919 }
3920 
3921 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3922 				    unsigned long nr_pfns)
3923 {
3924 	altmap->alloc -= nr_pfns;
3925 }
3926 #else
3927 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3928 {
3929 	return 0;
3930 }
3931 
3932 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3933 				    unsigned long nr_pfns)
3934 {
3935 }
3936 #endif
3937 
3938 #define VMEMMAP_RESERVE_NR	2
3939 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3940 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3941 					  struct dev_pagemap *pgmap)
3942 {
3943 	unsigned long nr_pages;
3944 	unsigned long nr_vmemmap_pages;
3945 
3946 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3947 		return false;
3948 
3949 	nr_pages = pgmap_vmemmap_nr(pgmap);
3950 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3951 	/*
3952 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3953 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3954 	 */
3955 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3956 }
3957 /*
3958  * If we don't have an architecture override, use the generic rule
3959  */
3960 #ifndef vmemmap_can_optimize
3961 #define vmemmap_can_optimize __vmemmap_can_optimize
3962 #endif
3963 
3964 #else
3965 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3966 					   struct dev_pagemap *pgmap)
3967 {
3968 	return false;
3969 }
3970 #endif
3971 
3972 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3973 				  unsigned long nr_pages);
3974 
3975 enum mf_flags {
3976 	MF_COUNT_INCREASED = 1 << 0,
3977 	MF_ACTION_REQUIRED = 1 << 1,
3978 	MF_MUST_KILL = 1 << 2,
3979 	MF_SOFT_OFFLINE = 1 << 3,
3980 	MF_UNPOISON = 1 << 4,
3981 	MF_SW_SIMULATED = 1 << 5,
3982 	MF_NO_RETRY = 1 << 6,
3983 	MF_MEM_PRE_REMOVE = 1 << 7,
3984 };
3985 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3986 		      unsigned long count, int mf_flags);
3987 extern int memory_failure(unsigned long pfn, int flags);
3988 extern void memory_failure_queue_kick(int cpu);
3989 extern int unpoison_memory(unsigned long pfn);
3990 extern atomic_long_t num_poisoned_pages __read_mostly;
3991 extern int soft_offline_page(unsigned long pfn, int flags);
3992 #ifdef CONFIG_MEMORY_FAILURE
3993 /*
3994  * Sysfs entries for memory failure handling statistics.
3995  */
3996 extern const struct attribute_group memory_failure_attr_group;
3997 extern void memory_failure_queue(unsigned long pfn, int flags);
3998 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3999 					bool *migratable_cleared);
4000 void num_poisoned_pages_inc(unsigned long pfn);
4001 void num_poisoned_pages_sub(unsigned long pfn, long i);
4002 #else
4003 static inline void memory_failure_queue(unsigned long pfn, int flags)
4004 {
4005 }
4006 
4007 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4008 					bool *migratable_cleared)
4009 {
4010 	return 0;
4011 }
4012 
4013 static inline void num_poisoned_pages_inc(unsigned long pfn)
4014 {
4015 }
4016 
4017 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4018 {
4019 }
4020 #endif
4021 
4022 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4023 extern void memblk_nr_poison_inc(unsigned long pfn);
4024 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4025 #else
4026 static inline void memblk_nr_poison_inc(unsigned long pfn)
4027 {
4028 }
4029 
4030 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4031 {
4032 }
4033 #endif
4034 
4035 #ifndef arch_memory_failure
4036 static inline int arch_memory_failure(unsigned long pfn, int flags)
4037 {
4038 	return -ENXIO;
4039 }
4040 #endif
4041 
4042 #ifndef arch_is_platform_page
4043 static inline bool arch_is_platform_page(u64 paddr)
4044 {
4045 	return false;
4046 }
4047 #endif
4048 
4049 /*
4050  * Error handlers for various types of pages.
4051  */
4052 enum mf_result {
4053 	MF_IGNORED,	/* Error: cannot be handled */
4054 	MF_FAILED,	/* Error: handling failed */
4055 	MF_DELAYED,	/* Will be handled later */
4056 	MF_RECOVERED,	/* Successfully recovered */
4057 };
4058 
4059 enum mf_action_page_type {
4060 	MF_MSG_KERNEL,
4061 	MF_MSG_KERNEL_HIGH_ORDER,
4062 	MF_MSG_DIFFERENT_COMPOUND,
4063 	MF_MSG_HUGE,
4064 	MF_MSG_FREE_HUGE,
4065 	MF_MSG_GET_HWPOISON,
4066 	MF_MSG_UNMAP_FAILED,
4067 	MF_MSG_DIRTY_SWAPCACHE,
4068 	MF_MSG_CLEAN_SWAPCACHE,
4069 	MF_MSG_DIRTY_MLOCKED_LRU,
4070 	MF_MSG_CLEAN_MLOCKED_LRU,
4071 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4072 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4073 	MF_MSG_DIRTY_LRU,
4074 	MF_MSG_CLEAN_LRU,
4075 	MF_MSG_TRUNCATED_LRU,
4076 	MF_MSG_BUDDY,
4077 	MF_MSG_DAX,
4078 	MF_MSG_UNSPLIT_THP,
4079 	MF_MSG_ALREADY_POISONED,
4080 	MF_MSG_UNKNOWN,
4081 };
4082 
4083 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4084 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4085 int copy_user_large_folio(struct folio *dst, struct folio *src,
4086 			  unsigned long addr_hint,
4087 			  struct vm_area_struct *vma);
4088 long copy_folio_from_user(struct folio *dst_folio,
4089 			   const void __user *usr_src,
4090 			   bool allow_pagefault);
4091 
4092 /**
4093  * vma_is_special_huge - Are transhuge page-table entries considered special?
4094  * @vma: Pointer to the struct vm_area_struct to consider
4095  *
4096  * Whether transhuge page-table entries are considered "special" following
4097  * the definition in vm_normal_page().
4098  *
4099  * Return: true if transhuge page-table entries should be considered special,
4100  * false otherwise.
4101  */
4102 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4103 {
4104 	return vma_is_dax(vma) || (vma->vm_file &&
4105 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4106 }
4107 
4108 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4109 
4110 #if MAX_NUMNODES > 1
4111 void __init setup_nr_node_ids(void);
4112 #else
4113 static inline void setup_nr_node_ids(void) {}
4114 #endif
4115 
4116 extern int memcmp_pages(struct page *page1, struct page *page2);
4117 
4118 static inline int pages_identical(struct page *page1, struct page *page2)
4119 {
4120 	return !memcmp_pages(page1, page2);
4121 }
4122 
4123 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4124 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4125 						pgoff_t first_index, pgoff_t nr,
4126 						pgoff_t bitmap_pgoff,
4127 						unsigned long *bitmap,
4128 						pgoff_t *start,
4129 						pgoff_t *end);
4130 
4131 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4132 				      pgoff_t first_index, pgoff_t nr);
4133 #endif
4134 
4135 extern int sysctl_nr_trim_pages;
4136 
4137 #ifdef CONFIG_PRINTK
4138 void mem_dump_obj(void *object);
4139 #else
4140 static inline void mem_dump_obj(void *object) {}
4141 #endif
4142 
4143 /**
4144  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4145  *                    handle them.
4146  * @seals: the seals to check
4147  * @vma: the vma to operate on
4148  *
4149  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4150  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4151  */
4152 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4153 {
4154 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4155 		/*
4156 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4157 		 * write seals are active.
4158 		 */
4159 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4160 			return -EPERM;
4161 
4162 		/*
4163 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4164 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4165 		 * revert protections on such mappings. Do this only for shared
4166 		 * mappings. For private mappings, don't need to mask
4167 		 * VM_MAYWRITE as we still want them to be COW-writable.
4168 		 */
4169 		if (vma->vm_flags & VM_SHARED)
4170 			vm_flags_clear(vma, VM_MAYWRITE);
4171 	}
4172 
4173 	return 0;
4174 }
4175 
4176 #ifdef CONFIG_ANON_VMA_NAME
4177 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4178 			  unsigned long len_in,
4179 			  struct anon_vma_name *anon_name);
4180 #else
4181 static inline int
4182 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4183 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4184 	return 0;
4185 }
4186 #endif
4187 
4188 #ifdef CONFIG_UNACCEPTED_MEMORY
4189 
4190 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4191 void accept_memory(phys_addr_t start, phys_addr_t end);
4192 
4193 #else
4194 
4195 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4196 						    phys_addr_t end)
4197 {
4198 	return false;
4199 }
4200 
4201 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4202 {
4203 }
4204 
4205 #endif
4206 
4207 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4208 {
4209 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4210 
4211 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4212 }
4213 
4214 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4215 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4216 
4217 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4218 
4219 #endif /* _LINUX_MM_H */
4220