1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/range.h> 16 #include <linux/pfn.h> 17 18 struct mempolicy; 19 struct anon_vma; 20 struct file_ra_state; 21 struct user_struct; 22 struct writeback_control; 23 24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 25 extern unsigned long max_mapnr; 26 #endif 27 28 extern unsigned long num_physpages; 29 extern unsigned long totalram_pages; 30 extern void * high_memory; 31 extern int page_cluster; 32 33 #ifdef CONFIG_SYSCTL 34 extern int sysctl_legacy_va_layout; 35 #else 36 #define sysctl_legacy_va_layout 0 37 #endif 38 39 #include <asm/page.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45 /* to align the pointer to the (next) page boundary */ 46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 48 /* 49 * Linux kernel virtual memory manager primitives. 50 * The idea being to have a "virtual" mm in the same way 51 * we have a virtual fs - giving a cleaner interface to the 52 * mm details, and allowing different kinds of memory mappings 53 * (from shared memory to executable loading to arbitrary 54 * mmap() functions). 55 */ 56 57 extern struct kmem_cache *vm_area_cachep; 58 59 #ifndef CONFIG_MMU 60 extern struct rb_root nommu_region_tree; 61 extern struct rw_semaphore nommu_region_sem; 62 63 extern unsigned int kobjsize(const void *objp); 64 #endif 65 66 /* 67 * vm_flags in vm_area_struct, see mm_types.h. 68 */ 69 #define VM_READ 0x00000001 /* currently active flags */ 70 #define VM_WRITE 0x00000002 71 #define VM_EXEC 0x00000004 72 #define VM_SHARED 0x00000008 73 74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 75 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 76 #define VM_MAYWRITE 0x00000020 77 #define VM_MAYEXEC 0x00000040 78 #define VM_MAYSHARE 0x00000080 79 80 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 81 #define VM_GROWSUP 0x00000200 82 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 83 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 84 85 #define VM_EXECUTABLE 0x00001000 86 #define VM_LOCKED 0x00002000 87 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 88 89 /* Used by sys_madvise() */ 90 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 91 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 92 93 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 94 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 95 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 96 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 97 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 98 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 99 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 100 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 101 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 102 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 103 104 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 105 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 106 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 107 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 108 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 109 110 /* Bits set in the VMA until the stack is in its final location */ 111 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 112 113 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 114 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 115 #endif 116 117 #ifdef CONFIG_STACK_GROWSUP 118 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 119 #else 120 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 121 #endif 122 123 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 124 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 125 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 126 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 127 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 128 129 /* 130 * special vmas that are non-mergable, non-mlock()able 131 */ 132 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 133 134 /* 135 * mapping from the currently active vm_flags protection bits (the 136 * low four bits) to a page protection mask.. 137 */ 138 extern pgprot_t protection_map[16]; 139 140 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 141 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 142 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 143 144 /* 145 * This interface is used by x86 PAT code to identify a pfn mapping that is 146 * linear over entire vma. This is to optimize PAT code that deals with 147 * marking the physical region with a particular prot. This is not for generic 148 * mm use. Note also that this check will not work if the pfn mapping is 149 * linear for a vma starting at physical address 0. In which case PAT code 150 * falls back to slow path of reserving physical range page by page. 151 */ 152 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 153 { 154 return (vma->vm_flags & VM_PFN_AT_MMAP); 155 } 156 157 static inline int is_pfn_mapping(struct vm_area_struct *vma) 158 { 159 return (vma->vm_flags & VM_PFNMAP); 160 } 161 162 /* 163 * vm_fault is filled by the the pagefault handler and passed to the vma's 164 * ->fault function. The vma's ->fault is responsible for returning a bitmask 165 * of VM_FAULT_xxx flags that give details about how the fault was handled. 166 * 167 * pgoff should be used in favour of virtual_address, if possible. If pgoff 168 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 169 * mapping support. 170 */ 171 struct vm_fault { 172 unsigned int flags; /* FAULT_FLAG_xxx flags */ 173 pgoff_t pgoff; /* Logical page offset based on vma */ 174 void __user *virtual_address; /* Faulting virtual address */ 175 176 struct page *page; /* ->fault handlers should return a 177 * page here, unless VM_FAULT_NOPAGE 178 * is set (which is also implied by 179 * VM_FAULT_ERROR). 180 */ 181 }; 182 183 /* 184 * These are the virtual MM functions - opening of an area, closing and 185 * unmapping it (needed to keep files on disk up-to-date etc), pointer 186 * to the functions called when a no-page or a wp-page exception occurs. 187 */ 188 struct vm_operations_struct { 189 void (*open)(struct vm_area_struct * area); 190 void (*close)(struct vm_area_struct * area); 191 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 192 193 /* notification that a previously read-only page is about to become 194 * writable, if an error is returned it will cause a SIGBUS */ 195 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 196 197 /* called by access_process_vm when get_user_pages() fails, typically 198 * for use by special VMAs that can switch between memory and hardware 199 */ 200 int (*access)(struct vm_area_struct *vma, unsigned long addr, 201 void *buf, int len, int write); 202 #ifdef CONFIG_NUMA 203 /* 204 * set_policy() op must add a reference to any non-NULL @new mempolicy 205 * to hold the policy upon return. Caller should pass NULL @new to 206 * remove a policy and fall back to surrounding context--i.e. do not 207 * install a MPOL_DEFAULT policy, nor the task or system default 208 * mempolicy. 209 */ 210 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 211 212 /* 213 * get_policy() op must add reference [mpol_get()] to any policy at 214 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 215 * in mm/mempolicy.c will do this automatically. 216 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 217 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 218 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 219 * must return NULL--i.e., do not "fallback" to task or system default 220 * policy. 221 */ 222 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 223 unsigned long addr); 224 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 225 const nodemask_t *to, unsigned long flags); 226 #endif 227 }; 228 229 struct mmu_gather; 230 struct inode; 231 232 #define page_private(page) ((page)->private) 233 #define set_page_private(page, v) ((page)->private = (v)) 234 235 /* 236 * FIXME: take this include out, include page-flags.h in 237 * files which need it (119 of them) 238 */ 239 #include <linux/page-flags.h> 240 241 /* 242 * Methods to modify the page usage count. 243 * 244 * What counts for a page usage: 245 * - cache mapping (page->mapping) 246 * - private data (page->private) 247 * - page mapped in a task's page tables, each mapping 248 * is counted separately 249 * 250 * Also, many kernel routines increase the page count before a critical 251 * routine so they can be sure the page doesn't go away from under them. 252 */ 253 254 /* 255 * Drop a ref, return true if the refcount fell to zero (the page has no users) 256 */ 257 static inline int put_page_testzero(struct page *page) 258 { 259 VM_BUG_ON(atomic_read(&page->_count) == 0); 260 return atomic_dec_and_test(&page->_count); 261 } 262 263 /* 264 * Try to grab a ref unless the page has a refcount of zero, return false if 265 * that is the case. 266 */ 267 static inline int get_page_unless_zero(struct page *page) 268 { 269 return atomic_inc_not_zero(&page->_count); 270 } 271 272 extern int page_is_ram(unsigned long pfn); 273 274 /* Support for virtually mapped pages */ 275 struct page *vmalloc_to_page(const void *addr); 276 unsigned long vmalloc_to_pfn(const void *addr); 277 278 /* 279 * Determine if an address is within the vmalloc range 280 * 281 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 282 * is no special casing required. 283 */ 284 static inline int is_vmalloc_addr(const void *x) 285 { 286 #ifdef CONFIG_MMU 287 unsigned long addr = (unsigned long)x; 288 289 return addr >= VMALLOC_START && addr < VMALLOC_END; 290 #else 291 return 0; 292 #endif 293 } 294 #ifdef CONFIG_MMU 295 extern int is_vmalloc_or_module_addr(const void *x); 296 #else 297 static inline int is_vmalloc_or_module_addr(const void *x) 298 { 299 return 0; 300 } 301 #endif 302 303 static inline struct page *compound_head(struct page *page) 304 { 305 if (unlikely(PageTail(page))) 306 return page->first_page; 307 return page; 308 } 309 310 static inline int page_count(struct page *page) 311 { 312 return atomic_read(&compound_head(page)->_count); 313 } 314 315 static inline void get_page(struct page *page) 316 { 317 page = compound_head(page); 318 VM_BUG_ON(atomic_read(&page->_count) == 0); 319 atomic_inc(&page->_count); 320 } 321 322 static inline struct page *virt_to_head_page(const void *x) 323 { 324 struct page *page = virt_to_page(x); 325 return compound_head(page); 326 } 327 328 /* 329 * Setup the page count before being freed into the page allocator for 330 * the first time (boot or memory hotplug) 331 */ 332 static inline void init_page_count(struct page *page) 333 { 334 atomic_set(&page->_count, 1); 335 } 336 337 void put_page(struct page *page); 338 void put_pages_list(struct list_head *pages); 339 340 void split_page(struct page *page, unsigned int order); 341 int split_free_page(struct page *page); 342 343 /* 344 * Compound pages have a destructor function. Provide a 345 * prototype for that function and accessor functions. 346 * These are _only_ valid on the head of a PG_compound page. 347 */ 348 typedef void compound_page_dtor(struct page *); 349 350 static inline void set_compound_page_dtor(struct page *page, 351 compound_page_dtor *dtor) 352 { 353 page[1].lru.next = (void *)dtor; 354 } 355 356 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 357 { 358 return (compound_page_dtor *)page[1].lru.next; 359 } 360 361 static inline int compound_order(struct page *page) 362 { 363 if (!PageHead(page)) 364 return 0; 365 return (unsigned long)page[1].lru.prev; 366 } 367 368 static inline void set_compound_order(struct page *page, unsigned long order) 369 { 370 page[1].lru.prev = (void *)order; 371 } 372 373 /* 374 * Multiple processes may "see" the same page. E.g. for untouched 375 * mappings of /dev/null, all processes see the same page full of 376 * zeroes, and text pages of executables and shared libraries have 377 * only one copy in memory, at most, normally. 378 * 379 * For the non-reserved pages, page_count(page) denotes a reference count. 380 * page_count() == 0 means the page is free. page->lru is then used for 381 * freelist management in the buddy allocator. 382 * page_count() > 0 means the page has been allocated. 383 * 384 * Pages are allocated by the slab allocator in order to provide memory 385 * to kmalloc and kmem_cache_alloc. In this case, the management of the 386 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 387 * unless a particular usage is carefully commented. (the responsibility of 388 * freeing the kmalloc memory is the caller's, of course). 389 * 390 * A page may be used by anyone else who does a __get_free_page(). 391 * In this case, page_count still tracks the references, and should only 392 * be used through the normal accessor functions. The top bits of page->flags 393 * and page->virtual store page management information, but all other fields 394 * are unused and could be used privately, carefully. The management of this 395 * page is the responsibility of the one who allocated it, and those who have 396 * subsequently been given references to it. 397 * 398 * The other pages (we may call them "pagecache pages") are completely 399 * managed by the Linux memory manager: I/O, buffers, swapping etc. 400 * The following discussion applies only to them. 401 * 402 * A pagecache page contains an opaque `private' member, which belongs to the 403 * page's address_space. Usually, this is the address of a circular list of 404 * the page's disk buffers. PG_private must be set to tell the VM to call 405 * into the filesystem to release these pages. 406 * 407 * A page may belong to an inode's memory mapping. In this case, page->mapping 408 * is the pointer to the inode, and page->index is the file offset of the page, 409 * in units of PAGE_CACHE_SIZE. 410 * 411 * If pagecache pages are not associated with an inode, they are said to be 412 * anonymous pages. These may become associated with the swapcache, and in that 413 * case PG_swapcache is set, and page->private is an offset into the swapcache. 414 * 415 * In either case (swapcache or inode backed), the pagecache itself holds one 416 * reference to the page. Setting PG_private should also increment the 417 * refcount. The each user mapping also has a reference to the page. 418 * 419 * The pagecache pages are stored in a per-mapping radix tree, which is 420 * rooted at mapping->page_tree, and indexed by offset. 421 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 422 * lists, we instead now tag pages as dirty/writeback in the radix tree. 423 * 424 * All pagecache pages may be subject to I/O: 425 * - inode pages may need to be read from disk, 426 * - inode pages which have been modified and are MAP_SHARED may need 427 * to be written back to the inode on disk, 428 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 429 * modified may need to be swapped out to swap space and (later) to be read 430 * back into memory. 431 */ 432 433 /* 434 * The zone field is never updated after free_area_init_core() 435 * sets it, so none of the operations on it need to be atomic. 436 */ 437 438 439 /* 440 * page->flags layout: 441 * 442 * There are three possibilities for how page->flags get 443 * laid out. The first is for the normal case, without 444 * sparsemem. The second is for sparsemem when there is 445 * plenty of space for node and section. The last is when 446 * we have run out of space and have to fall back to an 447 * alternate (slower) way of determining the node. 448 * 449 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 450 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 451 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 452 */ 453 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 454 #define SECTIONS_WIDTH SECTIONS_SHIFT 455 #else 456 #define SECTIONS_WIDTH 0 457 #endif 458 459 #define ZONES_WIDTH ZONES_SHIFT 460 461 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 462 #define NODES_WIDTH NODES_SHIFT 463 #else 464 #ifdef CONFIG_SPARSEMEM_VMEMMAP 465 #error "Vmemmap: No space for nodes field in page flags" 466 #endif 467 #define NODES_WIDTH 0 468 #endif 469 470 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 471 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 472 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 473 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 474 475 /* 476 * We are going to use the flags for the page to node mapping if its in 477 * there. This includes the case where there is no node, so it is implicit. 478 */ 479 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 480 #define NODE_NOT_IN_PAGE_FLAGS 481 #endif 482 483 #ifndef PFN_SECTION_SHIFT 484 #define PFN_SECTION_SHIFT 0 485 #endif 486 487 /* 488 * Define the bit shifts to access each section. For non-existant 489 * sections we define the shift as 0; that plus a 0 mask ensures 490 * the compiler will optimise away reference to them. 491 */ 492 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 493 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 494 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 495 496 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 497 #ifdef NODE_NOT_IN_PAGEFLAGS 498 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 499 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 500 SECTIONS_PGOFF : ZONES_PGOFF) 501 #else 502 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 503 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 504 NODES_PGOFF : ZONES_PGOFF) 505 #endif 506 507 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 508 509 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 510 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 511 #endif 512 513 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 514 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 515 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 516 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 517 518 static inline enum zone_type page_zonenum(struct page *page) 519 { 520 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 521 } 522 523 /* 524 * The identification function is only used by the buddy allocator for 525 * determining if two pages could be buddies. We are not really 526 * identifying a zone since we could be using a the section number 527 * id if we have not node id available in page flags. 528 * We guarantee only that it will return the same value for two 529 * combinable pages in a zone. 530 */ 531 static inline int page_zone_id(struct page *page) 532 { 533 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 534 } 535 536 static inline int zone_to_nid(struct zone *zone) 537 { 538 #ifdef CONFIG_NUMA 539 return zone->node; 540 #else 541 return 0; 542 #endif 543 } 544 545 #ifdef NODE_NOT_IN_PAGE_FLAGS 546 extern int page_to_nid(struct page *page); 547 #else 548 static inline int page_to_nid(struct page *page) 549 { 550 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 551 } 552 #endif 553 554 static inline struct zone *page_zone(struct page *page) 555 { 556 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 557 } 558 559 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 560 static inline unsigned long page_to_section(struct page *page) 561 { 562 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 563 } 564 #endif 565 566 static inline void set_page_zone(struct page *page, enum zone_type zone) 567 { 568 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 569 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 570 } 571 572 static inline void set_page_node(struct page *page, unsigned long node) 573 { 574 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 575 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 576 } 577 578 static inline void set_page_section(struct page *page, unsigned long section) 579 { 580 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 581 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 582 } 583 584 static inline void set_page_links(struct page *page, enum zone_type zone, 585 unsigned long node, unsigned long pfn) 586 { 587 set_page_zone(page, zone); 588 set_page_node(page, node); 589 set_page_section(page, pfn_to_section_nr(pfn)); 590 } 591 592 /* 593 * Some inline functions in vmstat.h depend on page_zone() 594 */ 595 #include <linux/vmstat.h> 596 597 static __always_inline void *lowmem_page_address(struct page *page) 598 { 599 return __va(PFN_PHYS(page_to_pfn(page))); 600 } 601 602 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 603 #define HASHED_PAGE_VIRTUAL 604 #endif 605 606 #if defined(WANT_PAGE_VIRTUAL) 607 #define page_address(page) ((page)->virtual) 608 #define set_page_address(page, address) \ 609 do { \ 610 (page)->virtual = (address); \ 611 } while(0) 612 #define page_address_init() do { } while(0) 613 #endif 614 615 #if defined(HASHED_PAGE_VIRTUAL) 616 void *page_address(struct page *page); 617 void set_page_address(struct page *page, void *virtual); 618 void page_address_init(void); 619 #endif 620 621 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 622 #define page_address(page) lowmem_page_address(page) 623 #define set_page_address(page, address) do { } while(0) 624 #define page_address_init() do { } while(0) 625 #endif 626 627 /* 628 * On an anonymous page mapped into a user virtual memory area, 629 * page->mapping points to its anon_vma, not to a struct address_space; 630 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 631 * 632 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 633 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 634 * and then page->mapping points, not to an anon_vma, but to a private 635 * structure which KSM associates with that merged page. See ksm.h. 636 * 637 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 638 * 639 * Please note that, confusingly, "page_mapping" refers to the inode 640 * address_space which maps the page from disk; whereas "page_mapped" 641 * refers to user virtual address space into which the page is mapped. 642 */ 643 #define PAGE_MAPPING_ANON 1 644 #define PAGE_MAPPING_KSM 2 645 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 646 647 extern struct address_space swapper_space; 648 static inline struct address_space *page_mapping(struct page *page) 649 { 650 struct address_space *mapping = page->mapping; 651 652 VM_BUG_ON(PageSlab(page)); 653 if (unlikely(PageSwapCache(page))) 654 mapping = &swapper_space; 655 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 656 mapping = NULL; 657 return mapping; 658 } 659 660 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 661 static inline void *page_rmapping(struct page *page) 662 { 663 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 664 } 665 666 static inline int PageAnon(struct page *page) 667 { 668 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 669 } 670 671 /* 672 * Return the pagecache index of the passed page. Regular pagecache pages 673 * use ->index whereas swapcache pages use ->private 674 */ 675 static inline pgoff_t page_index(struct page *page) 676 { 677 if (unlikely(PageSwapCache(page))) 678 return page_private(page); 679 return page->index; 680 } 681 682 /* 683 * The atomic page->_mapcount, like _count, starts from -1: 684 * so that transitions both from it and to it can be tracked, 685 * using atomic_inc_and_test and atomic_add_negative(-1). 686 */ 687 static inline void reset_page_mapcount(struct page *page) 688 { 689 atomic_set(&(page)->_mapcount, -1); 690 } 691 692 static inline int page_mapcount(struct page *page) 693 { 694 return atomic_read(&(page)->_mapcount) + 1; 695 } 696 697 /* 698 * Return true if this page is mapped into pagetables. 699 */ 700 static inline int page_mapped(struct page *page) 701 { 702 return atomic_read(&(page)->_mapcount) >= 0; 703 } 704 705 /* 706 * Different kinds of faults, as returned by handle_mm_fault(). 707 * Used to decide whether a process gets delivered SIGBUS or 708 * just gets major/minor fault counters bumped up. 709 */ 710 711 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 712 713 #define VM_FAULT_OOM 0x0001 714 #define VM_FAULT_SIGBUS 0x0002 715 #define VM_FAULT_MAJOR 0x0004 716 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 717 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */ 718 719 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 720 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 721 722 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON) 723 724 /* 725 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 726 */ 727 extern void pagefault_out_of_memory(void); 728 729 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 730 731 extern void show_free_areas(void); 732 733 int shmem_lock(struct file *file, int lock, struct user_struct *user); 734 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 735 int shmem_zero_setup(struct vm_area_struct *); 736 737 #ifndef CONFIG_MMU 738 extern unsigned long shmem_get_unmapped_area(struct file *file, 739 unsigned long addr, 740 unsigned long len, 741 unsigned long pgoff, 742 unsigned long flags); 743 #endif 744 745 extern int can_do_mlock(void); 746 extern int user_shm_lock(size_t, struct user_struct *); 747 extern void user_shm_unlock(size_t, struct user_struct *); 748 749 /* 750 * Parameter block passed down to zap_pte_range in exceptional cases. 751 */ 752 struct zap_details { 753 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 754 struct address_space *check_mapping; /* Check page->mapping if set */ 755 pgoff_t first_index; /* Lowest page->index to unmap */ 756 pgoff_t last_index; /* Highest page->index to unmap */ 757 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 758 unsigned long truncate_count; /* Compare vm_truncate_count */ 759 }; 760 761 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 762 pte_t pte); 763 764 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 765 unsigned long size); 766 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 767 unsigned long size, struct zap_details *); 768 unsigned long unmap_vmas(struct mmu_gather **tlb, 769 struct vm_area_struct *start_vma, unsigned long start_addr, 770 unsigned long end_addr, unsigned long *nr_accounted, 771 struct zap_details *); 772 773 /** 774 * mm_walk - callbacks for walk_page_range 775 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 776 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 777 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 778 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 779 * @pte_hole: if set, called for each hole at all levels 780 * @hugetlb_entry: if set, called for each hugetlb entry 781 * 782 * (see walk_page_range for more details) 783 */ 784 struct mm_walk { 785 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 786 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 787 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 788 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 789 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 790 int (*hugetlb_entry)(pte_t *, unsigned long, 791 unsigned long, unsigned long, struct mm_walk *); 792 struct mm_struct *mm; 793 void *private; 794 }; 795 796 int walk_page_range(unsigned long addr, unsigned long end, 797 struct mm_walk *walk); 798 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 799 unsigned long end, unsigned long floor, unsigned long ceiling); 800 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 801 struct vm_area_struct *vma); 802 void unmap_mapping_range(struct address_space *mapping, 803 loff_t const holebegin, loff_t const holelen, int even_cows); 804 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 805 unsigned long *pfn); 806 int follow_phys(struct vm_area_struct *vma, unsigned long address, 807 unsigned int flags, unsigned long *prot, resource_size_t *phys); 808 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 809 void *buf, int len, int write); 810 811 static inline void unmap_shared_mapping_range(struct address_space *mapping, 812 loff_t const holebegin, loff_t const holelen) 813 { 814 unmap_mapping_range(mapping, holebegin, holelen, 0); 815 } 816 817 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 818 extern void truncate_setsize(struct inode *inode, loff_t newsize); 819 extern int vmtruncate(struct inode *inode, loff_t offset); 820 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 821 822 int truncate_inode_page(struct address_space *mapping, struct page *page); 823 int generic_error_remove_page(struct address_space *mapping, struct page *page); 824 825 int invalidate_inode_page(struct page *page); 826 827 #ifdef CONFIG_MMU 828 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 829 unsigned long address, unsigned int flags); 830 #else 831 static inline int handle_mm_fault(struct mm_struct *mm, 832 struct vm_area_struct *vma, unsigned long address, 833 unsigned int flags) 834 { 835 /* should never happen if there's no MMU */ 836 BUG(); 837 return VM_FAULT_SIGBUS; 838 } 839 #endif 840 841 extern int make_pages_present(unsigned long addr, unsigned long end); 842 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 843 844 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 845 unsigned long start, int nr_pages, int write, int force, 846 struct page **pages, struct vm_area_struct **vmas); 847 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 848 struct page **pages); 849 struct page *get_dump_page(unsigned long addr); 850 851 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 852 extern void do_invalidatepage(struct page *page, unsigned long offset); 853 854 int __set_page_dirty_nobuffers(struct page *page); 855 int __set_page_dirty_no_writeback(struct page *page); 856 int redirty_page_for_writepage(struct writeback_control *wbc, 857 struct page *page); 858 void account_page_dirtied(struct page *page, struct address_space *mapping); 859 int set_page_dirty(struct page *page); 860 int set_page_dirty_lock(struct page *page); 861 int clear_page_dirty_for_io(struct page *page); 862 863 extern unsigned long move_page_tables(struct vm_area_struct *vma, 864 unsigned long old_addr, struct vm_area_struct *new_vma, 865 unsigned long new_addr, unsigned long len); 866 extern unsigned long do_mremap(unsigned long addr, 867 unsigned long old_len, unsigned long new_len, 868 unsigned long flags, unsigned long new_addr); 869 extern int mprotect_fixup(struct vm_area_struct *vma, 870 struct vm_area_struct **pprev, unsigned long start, 871 unsigned long end, unsigned long newflags); 872 873 /* 874 * doesn't attempt to fault and will return short. 875 */ 876 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 877 struct page **pages); 878 /* 879 * per-process(per-mm_struct) statistics. 880 */ 881 #if defined(SPLIT_RSS_COUNTING) 882 /* 883 * The mm counters are not protected by its page_table_lock, 884 * so must be incremented atomically. 885 */ 886 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 887 { 888 atomic_long_set(&mm->rss_stat.count[member], value); 889 } 890 891 unsigned long get_mm_counter(struct mm_struct *mm, int member); 892 893 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 894 { 895 atomic_long_add(value, &mm->rss_stat.count[member]); 896 } 897 898 static inline void inc_mm_counter(struct mm_struct *mm, int member) 899 { 900 atomic_long_inc(&mm->rss_stat.count[member]); 901 } 902 903 static inline void dec_mm_counter(struct mm_struct *mm, int member) 904 { 905 atomic_long_dec(&mm->rss_stat.count[member]); 906 } 907 908 #else /* !USE_SPLIT_PTLOCKS */ 909 /* 910 * The mm counters are protected by its page_table_lock, 911 * so can be incremented directly. 912 */ 913 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 914 { 915 mm->rss_stat.count[member] = value; 916 } 917 918 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 919 { 920 return mm->rss_stat.count[member]; 921 } 922 923 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 924 { 925 mm->rss_stat.count[member] += value; 926 } 927 928 static inline void inc_mm_counter(struct mm_struct *mm, int member) 929 { 930 mm->rss_stat.count[member]++; 931 } 932 933 static inline void dec_mm_counter(struct mm_struct *mm, int member) 934 { 935 mm->rss_stat.count[member]--; 936 } 937 938 #endif /* !USE_SPLIT_PTLOCKS */ 939 940 static inline unsigned long get_mm_rss(struct mm_struct *mm) 941 { 942 return get_mm_counter(mm, MM_FILEPAGES) + 943 get_mm_counter(mm, MM_ANONPAGES); 944 } 945 946 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 947 { 948 return max(mm->hiwater_rss, get_mm_rss(mm)); 949 } 950 951 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 952 { 953 return max(mm->hiwater_vm, mm->total_vm); 954 } 955 956 static inline void update_hiwater_rss(struct mm_struct *mm) 957 { 958 unsigned long _rss = get_mm_rss(mm); 959 960 if ((mm)->hiwater_rss < _rss) 961 (mm)->hiwater_rss = _rss; 962 } 963 964 static inline void update_hiwater_vm(struct mm_struct *mm) 965 { 966 if (mm->hiwater_vm < mm->total_vm) 967 mm->hiwater_vm = mm->total_vm; 968 } 969 970 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 971 struct mm_struct *mm) 972 { 973 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 974 975 if (*maxrss < hiwater_rss) 976 *maxrss = hiwater_rss; 977 } 978 979 #if defined(SPLIT_RSS_COUNTING) 980 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 981 #else 982 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 983 { 984 } 985 #endif 986 987 /* 988 * A callback you can register to apply pressure to ageable caches. 989 * 990 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 991 * look through the least-recently-used 'nr_to_scan' entries and 992 * attempt to free them up. It should return the number of objects 993 * which remain in the cache. If it returns -1, it means it cannot do 994 * any scanning at this time (eg. there is a risk of deadlock). 995 * 996 * The 'gfpmask' refers to the allocation we are currently trying to 997 * fulfil. 998 * 999 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 1000 * querying the cache size, so a fastpath for that case is appropriate. 1001 */ 1002 struct shrinker { 1003 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); 1004 int seeks; /* seeks to recreate an obj */ 1005 1006 /* These are for internal use */ 1007 struct list_head list; 1008 long nr; /* objs pending delete */ 1009 }; 1010 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 1011 extern void register_shrinker(struct shrinker *); 1012 extern void unregister_shrinker(struct shrinker *); 1013 1014 int vma_wants_writenotify(struct vm_area_struct *vma); 1015 1016 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 1017 1018 #ifdef __PAGETABLE_PUD_FOLDED 1019 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1020 unsigned long address) 1021 { 1022 return 0; 1023 } 1024 #else 1025 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1026 #endif 1027 1028 #ifdef __PAGETABLE_PMD_FOLDED 1029 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1030 unsigned long address) 1031 { 1032 return 0; 1033 } 1034 #else 1035 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1036 #endif 1037 1038 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1039 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1040 1041 /* 1042 * The following ifdef needed to get the 4level-fixup.h header to work. 1043 * Remove it when 4level-fixup.h has been removed. 1044 */ 1045 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1046 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1047 { 1048 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1049 NULL: pud_offset(pgd, address); 1050 } 1051 1052 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1053 { 1054 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1055 NULL: pmd_offset(pud, address); 1056 } 1057 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1058 1059 #if USE_SPLIT_PTLOCKS 1060 /* 1061 * We tuck a spinlock to guard each pagetable page into its struct page, 1062 * at page->private, with BUILD_BUG_ON to make sure that this will not 1063 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1064 * When freeing, reset page->mapping so free_pages_check won't complain. 1065 */ 1066 #define __pte_lockptr(page) &((page)->ptl) 1067 #define pte_lock_init(_page) do { \ 1068 spin_lock_init(__pte_lockptr(_page)); \ 1069 } while (0) 1070 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1071 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1072 #else /* !USE_SPLIT_PTLOCKS */ 1073 /* 1074 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1075 */ 1076 #define pte_lock_init(page) do {} while (0) 1077 #define pte_lock_deinit(page) do {} while (0) 1078 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1079 #endif /* USE_SPLIT_PTLOCKS */ 1080 1081 static inline void pgtable_page_ctor(struct page *page) 1082 { 1083 pte_lock_init(page); 1084 inc_zone_page_state(page, NR_PAGETABLE); 1085 } 1086 1087 static inline void pgtable_page_dtor(struct page *page) 1088 { 1089 pte_lock_deinit(page); 1090 dec_zone_page_state(page, NR_PAGETABLE); 1091 } 1092 1093 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1094 ({ \ 1095 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1096 pte_t *__pte = pte_offset_map(pmd, address); \ 1097 *(ptlp) = __ptl; \ 1098 spin_lock(__ptl); \ 1099 __pte; \ 1100 }) 1101 1102 #define pte_unmap_unlock(pte, ptl) do { \ 1103 spin_unlock(ptl); \ 1104 pte_unmap(pte); \ 1105 } while (0) 1106 1107 #define pte_alloc_map(mm, pmd, address) \ 1108 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 1109 NULL: pte_offset_map(pmd, address)) 1110 1111 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1112 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 1113 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1114 1115 #define pte_alloc_kernel(pmd, address) \ 1116 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1117 NULL: pte_offset_kernel(pmd, address)) 1118 1119 extern void free_area_init(unsigned long * zones_size); 1120 extern void free_area_init_node(int nid, unsigned long * zones_size, 1121 unsigned long zone_start_pfn, unsigned long *zholes_size); 1122 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1123 /* 1124 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1125 * zones, allocate the backing mem_map and account for memory holes in a more 1126 * architecture independent manner. This is a substitute for creating the 1127 * zone_sizes[] and zholes_size[] arrays and passing them to 1128 * free_area_init_node() 1129 * 1130 * An architecture is expected to register range of page frames backed by 1131 * physical memory with add_active_range() before calling 1132 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1133 * usage, an architecture is expected to do something like 1134 * 1135 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1136 * max_highmem_pfn}; 1137 * for_each_valid_physical_page_range() 1138 * add_active_range(node_id, start_pfn, end_pfn) 1139 * free_area_init_nodes(max_zone_pfns); 1140 * 1141 * If the architecture guarantees that there are no holes in the ranges 1142 * registered with add_active_range(), free_bootmem_active_regions() 1143 * will call free_bootmem_node() for each registered physical page range. 1144 * Similarly sparse_memory_present_with_active_regions() calls 1145 * memory_present() for each range when SPARSEMEM is enabled. 1146 * 1147 * See mm/page_alloc.c for more information on each function exposed by 1148 * CONFIG_ARCH_POPULATES_NODE_MAP 1149 */ 1150 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1151 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1152 unsigned long end_pfn); 1153 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1154 unsigned long end_pfn); 1155 extern void remove_all_active_ranges(void); 1156 void sort_node_map(void); 1157 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1158 unsigned long end_pfn); 1159 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1160 unsigned long end_pfn); 1161 extern void get_pfn_range_for_nid(unsigned int nid, 1162 unsigned long *start_pfn, unsigned long *end_pfn); 1163 extern unsigned long find_min_pfn_with_active_regions(void); 1164 extern void free_bootmem_with_active_regions(int nid, 1165 unsigned long max_low_pfn); 1166 int add_from_early_node_map(struct range *range, int az, 1167 int nr_range, int nid); 1168 void *__alloc_memory_core_early(int nodeid, u64 size, u64 align, 1169 u64 goal, u64 limit); 1170 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1171 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1172 extern void sparse_memory_present_with_active_regions(int nid); 1173 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1174 1175 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1176 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1177 static inline int __early_pfn_to_nid(unsigned long pfn) 1178 { 1179 return 0; 1180 } 1181 #else 1182 /* please see mm/page_alloc.c */ 1183 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1184 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1185 /* there is a per-arch backend function. */ 1186 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1187 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1188 #endif 1189 1190 extern void set_dma_reserve(unsigned long new_dma_reserve); 1191 extern void memmap_init_zone(unsigned long, int, unsigned long, 1192 unsigned long, enum memmap_context); 1193 extern void setup_per_zone_wmarks(void); 1194 extern void calculate_zone_inactive_ratio(struct zone *zone); 1195 extern void mem_init(void); 1196 extern void __init mmap_init(void); 1197 extern void show_mem(void); 1198 extern void si_meminfo(struct sysinfo * val); 1199 extern void si_meminfo_node(struct sysinfo *val, int nid); 1200 extern int after_bootmem; 1201 1202 extern void setup_per_cpu_pageset(void); 1203 1204 extern void zone_pcp_update(struct zone *zone); 1205 1206 /* nommu.c */ 1207 extern atomic_long_t mmap_pages_allocated; 1208 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1209 1210 /* prio_tree.c */ 1211 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1212 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1213 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1214 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1215 struct prio_tree_iter *iter); 1216 1217 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1218 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1219 (vma = vma_prio_tree_next(vma, iter)); ) 1220 1221 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1222 struct list_head *list) 1223 { 1224 vma->shared.vm_set.parent = NULL; 1225 list_add_tail(&vma->shared.vm_set.list, list); 1226 } 1227 1228 /* mmap.c */ 1229 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1230 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1231 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1232 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1233 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1234 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1235 struct mempolicy *); 1236 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1237 extern int split_vma(struct mm_struct *, 1238 struct vm_area_struct *, unsigned long addr, int new_below); 1239 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1240 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1241 struct rb_node **, struct rb_node *); 1242 extern void unlink_file_vma(struct vm_area_struct *); 1243 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1244 unsigned long addr, unsigned long len, pgoff_t pgoff); 1245 extern void exit_mmap(struct mm_struct *); 1246 1247 extern int mm_take_all_locks(struct mm_struct *mm); 1248 extern void mm_drop_all_locks(struct mm_struct *mm); 1249 1250 #ifdef CONFIG_PROC_FS 1251 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1252 extern void added_exe_file_vma(struct mm_struct *mm); 1253 extern void removed_exe_file_vma(struct mm_struct *mm); 1254 #else 1255 static inline void added_exe_file_vma(struct mm_struct *mm) 1256 {} 1257 1258 static inline void removed_exe_file_vma(struct mm_struct *mm) 1259 {} 1260 #endif /* CONFIG_PROC_FS */ 1261 1262 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1263 extern int install_special_mapping(struct mm_struct *mm, 1264 unsigned long addr, unsigned long len, 1265 unsigned long flags, struct page **pages); 1266 1267 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1268 1269 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1270 unsigned long len, unsigned long prot, 1271 unsigned long flag, unsigned long pgoff); 1272 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1273 unsigned long len, unsigned long flags, 1274 unsigned int vm_flags, unsigned long pgoff); 1275 1276 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1277 unsigned long len, unsigned long prot, 1278 unsigned long flag, unsigned long offset) 1279 { 1280 unsigned long ret = -EINVAL; 1281 if ((offset + PAGE_ALIGN(len)) < offset) 1282 goto out; 1283 if (!(offset & ~PAGE_MASK)) 1284 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1285 out: 1286 return ret; 1287 } 1288 1289 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1290 1291 extern unsigned long do_brk(unsigned long, unsigned long); 1292 1293 /* filemap.c */ 1294 extern unsigned long page_unuse(struct page *); 1295 extern void truncate_inode_pages(struct address_space *, loff_t); 1296 extern void truncate_inode_pages_range(struct address_space *, 1297 loff_t lstart, loff_t lend); 1298 1299 /* generic vm_area_ops exported for stackable file systems */ 1300 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1301 1302 /* mm/page-writeback.c */ 1303 int write_one_page(struct page *page, int wait); 1304 void task_dirty_inc(struct task_struct *tsk); 1305 1306 /* readahead.c */ 1307 #define VM_MAX_READAHEAD 128 /* kbytes */ 1308 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1309 1310 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1311 pgoff_t offset, unsigned long nr_to_read); 1312 1313 void page_cache_sync_readahead(struct address_space *mapping, 1314 struct file_ra_state *ra, 1315 struct file *filp, 1316 pgoff_t offset, 1317 unsigned long size); 1318 1319 void page_cache_async_readahead(struct address_space *mapping, 1320 struct file_ra_state *ra, 1321 struct file *filp, 1322 struct page *pg, 1323 pgoff_t offset, 1324 unsigned long size); 1325 1326 unsigned long max_sane_readahead(unsigned long nr); 1327 unsigned long ra_submit(struct file_ra_state *ra, 1328 struct address_space *mapping, 1329 struct file *filp); 1330 1331 /* Do stack extension */ 1332 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1333 #ifdef CONFIG_IA64 1334 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1335 #endif 1336 extern int expand_stack_downwards(struct vm_area_struct *vma, 1337 unsigned long address); 1338 1339 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1340 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1341 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1342 struct vm_area_struct **pprev); 1343 1344 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1345 NULL if none. Assume start_addr < end_addr. */ 1346 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1347 { 1348 struct vm_area_struct * vma = find_vma(mm,start_addr); 1349 1350 if (vma && end_addr <= vma->vm_start) 1351 vma = NULL; 1352 return vma; 1353 } 1354 1355 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1356 { 1357 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1358 } 1359 1360 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1361 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1362 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1363 unsigned long pfn, unsigned long size, pgprot_t); 1364 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1365 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1366 unsigned long pfn); 1367 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1368 unsigned long pfn); 1369 1370 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1371 unsigned int foll_flags); 1372 #define FOLL_WRITE 0x01 /* check pte is writable */ 1373 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1374 #define FOLL_GET 0x04 /* do get_page on page */ 1375 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1376 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1377 1378 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1379 void *data); 1380 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1381 unsigned long size, pte_fn_t fn, void *data); 1382 1383 #ifdef CONFIG_PROC_FS 1384 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1385 #else 1386 static inline void vm_stat_account(struct mm_struct *mm, 1387 unsigned long flags, struct file *file, long pages) 1388 { 1389 } 1390 #endif /* CONFIG_PROC_FS */ 1391 1392 #ifdef CONFIG_DEBUG_PAGEALLOC 1393 extern int debug_pagealloc_enabled; 1394 1395 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1396 1397 static inline void enable_debug_pagealloc(void) 1398 { 1399 debug_pagealloc_enabled = 1; 1400 } 1401 #ifdef CONFIG_HIBERNATION 1402 extern bool kernel_page_present(struct page *page); 1403 #endif /* CONFIG_HIBERNATION */ 1404 #else 1405 static inline void 1406 kernel_map_pages(struct page *page, int numpages, int enable) {} 1407 static inline void enable_debug_pagealloc(void) 1408 { 1409 } 1410 #ifdef CONFIG_HIBERNATION 1411 static inline bool kernel_page_present(struct page *page) { return true; } 1412 #endif /* CONFIG_HIBERNATION */ 1413 #endif 1414 1415 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1416 #ifdef __HAVE_ARCH_GATE_AREA 1417 int in_gate_area_no_task(unsigned long addr); 1418 int in_gate_area(struct task_struct *task, unsigned long addr); 1419 #else 1420 int in_gate_area_no_task(unsigned long addr); 1421 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1422 #endif /* __HAVE_ARCH_GATE_AREA */ 1423 1424 int drop_caches_sysctl_handler(struct ctl_table *, int, 1425 void __user *, size_t *, loff_t *); 1426 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1427 unsigned long lru_pages); 1428 1429 #ifndef CONFIG_MMU 1430 #define randomize_va_space 0 1431 #else 1432 extern int randomize_va_space; 1433 #endif 1434 1435 const char * arch_vma_name(struct vm_area_struct *vma); 1436 void print_vma_addr(char *prefix, unsigned long rip); 1437 1438 void sparse_mem_maps_populate_node(struct page **map_map, 1439 unsigned long pnum_begin, 1440 unsigned long pnum_end, 1441 unsigned long map_count, 1442 int nodeid); 1443 1444 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1445 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1446 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1447 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1448 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1449 void *vmemmap_alloc_block(unsigned long size, int node); 1450 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1451 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1452 int vmemmap_populate_basepages(struct page *start_page, 1453 unsigned long pages, int node); 1454 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1455 void vmemmap_populate_print_last(void); 1456 1457 1458 enum mf_flags { 1459 MF_COUNT_INCREASED = 1 << 0, 1460 }; 1461 extern void memory_failure(unsigned long pfn, int trapno); 1462 extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1463 extern int unpoison_memory(unsigned long pfn); 1464 extern int sysctl_memory_failure_early_kill; 1465 extern int sysctl_memory_failure_recovery; 1466 extern void shake_page(struct page *p, int access); 1467 extern atomic_long_t mce_bad_pages; 1468 extern int soft_offline_page(struct page *page, int flags); 1469 #ifdef CONFIG_MEMORY_FAILURE 1470 int is_hwpoison_address(unsigned long addr); 1471 #else 1472 static inline int is_hwpoison_address(unsigned long addr) 1473 { 1474 return 0; 1475 } 1476 #endif 1477 1478 extern void dump_page(struct page *page); 1479 1480 #endif /* __KERNEL__ */ 1481 #endif /* _LINUX_MM_H */ 1482