xref: /linux-6.15/include/linux/mm.h (revision 06c7a489)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 
18 struct mempolicy;
19 struct anon_vma;
20 struct file_ra_state;
21 struct user_struct;
22 struct writeback_control;
23 
24 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27 
28 extern unsigned long num_physpages;
29 extern unsigned long totalram_pages;
30 extern void * high_memory;
31 extern int page_cluster;
32 
33 #ifdef CONFIG_SYSCTL
34 extern int sysctl_legacy_va_layout;
35 #else
36 #define sysctl_legacy_va_layout 0
37 #endif
38 
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42 
43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44 
45 /* to align the pointer to the (next) page boundary */
46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
47 
48 /*
49  * Linux kernel virtual memory manager primitives.
50  * The idea being to have a "virtual" mm in the same way
51  * we have a virtual fs - giving a cleaner interface to the
52  * mm details, and allowing different kinds of memory mappings
53  * (from shared memory to executable loading to arbitrary
54  * mmap() functions).
55  */
56 
57 extern struct kmem_cache *vm_area_cachep;
58 
59 #ifndef CONFIG_MMU
60 extern struct rb_root nommu_region_tree;
61 extern struct rw_semaphore nommu_region_sem;
62 
63 extern unsigned int kobjsize(const void *objp);
64 #endif
65 
66 /*
67  * vm_flags in vm_area_struct, see mm_types.h.
68  */
69 #define VM_READ		0x00000001	/* currently active flags */
70 #define VM_WRITE	0x00000002
71 #define VM_EXEC		0x00000004
72 #define VM_SHARED	0x00000008
73 
74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
75 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
76 #define VM_MAYWRITE	0x00000020
77 #define VM_MAYEXEC	0x00000040
78 #define VM_MAYSHARE	0x00000080
79 
80 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
81 #define VM_GROWSUP	0x00000200
82 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
83 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
84 
85 #define VM_EXECUTABLE	0x00001000
86 #define VM_LOCKED	0x00002000
87 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
88 
89 					/* Used by sys_madvise() */
90 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
91 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
92 
93 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
94 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
95 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
96 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
97 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
98 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
99 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
100 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
101 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
102 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
103 
104 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
105 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
106 #define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
107 #define VM_PFN_AT_MMAP	0x40000000	/* PFNMAP vma that is fully mapped at mmap time */
108 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
109 
110 /* Bits set in the VMA until the stack is in its final location */
111 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
112 
113 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
114 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
115 #endif
116 
117 #ifdef CONFIG_STACK_GROWSUP
118 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #else
120 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
121 #endif
122 
123 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
124 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
125 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
126 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
127 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
128 
129 /*
130  * special vmas that are non-mergable, non-mlock()able
131  */
132 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
133 
134 /*
135  * mapping from the currently active vm_flags protection bits (the
136  * low four bits) to a page protection mask..
137  */
138 extern pgprot_t protection_map[16];
139 
140 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
141 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
142 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
143 
144 /*
145  * This interface is used by x86 PAT code to identify a pfn mapping that is
146  * linear over entire vma. This is to optimize PAT code that deals with
147  * marking the physical region with a particular prot. This is not for generic
148  * mm use. Note also that this check will not work if the pfn mapping is
149  * linear for a vma starting at physical address 0. In which case PAT code
150  * falls back to slow path of reserving physical range page by page.
151  */
152 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
153 {
154 	return (vma->vm_flags & VM_PFN_AT_MMAP);
155 }
156 
157 static inline int is_pfn_mapping(struct vm_area_struct *vma)
158 {
159 	return (vma->vm_flags & VM_PFNMAP);
160 }
161 
162 /*
163  * vm_fault is filled by the the pagefault handler and passed to the vma's
164  * ->fault function. The vma's ->fault is responsible for returning a bitmask
165  * of VM_FAULT_xxx flags that give details about how the fault was handled.
166  *
167  * pgoff should be used in favour of virtual_address, if possible. If pgoff
168  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
169  * mapping support.
170  */
171 struct vm_fault {
172 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
173 	pgoff_t pgoff;			/* Logical page offset based on vma */
174 	void __user *virtual_address;	/* Faulting virtual address */
175 
176 	struct page *page;		/* ->fault handlers should return a
177 					 * page here, unless VM_FAULT_NOPAGE
178 					 * is set (which is also implied by
179 					 * VM_FAULT_ERROR).
180 					 */
181 };
182 
183 /*
184  * These are the virtual MM functions - opening of an area, closing and
185  * unmapping it (needed to keep files on disk up-to-date etc), pointer
186  * to the functions called when a no-page or a wp-page exception occurs.
187  */
188 struct vm_operations_struct {
189 	void (*open)(struct vm_area_struct * area);
190 	void (*close)(struct vm_area_struct * area);
191 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
192 
193 	/* notification that a previously read-only page is about to become
194 	 * writable, if an error is returned it will cause a SIGBUS */
195 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
196 
197 	/* called by access_process_vm when get_user_pages() fails, typically
198 	 * for use by special VMAs that can switch between memory and hardware
199 	 */
200 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
201 		      void *buf, int len, int write);
202 #ifdef CONFIG_NUMA
203 	/*
204 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
205 	 * to hold the policy upon return.  Caller should pass NULL @new to
206 	 * remove a policy and fall back to surrounding context--i.e. do not
207 	 * install a MPOL_DEFAULT policy, nor the task or system default
208 	 * mempolicy.
209 	 */
210 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
211 
212 	/*
213 	 * get_policy() op must add reference [mpol_get()] to any policy at
214 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
215 	 * in mm/mempolicy.c will do this automatically.
216 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
217 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
218 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
219 	 * must return NULL--i.e., do not "fallback" to task or system default
220 	 * policy.
221 	 */
222 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
223 					unsigned long addr);
224 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
225 		const nodemask_t *to, unsigned long flags);
226 #endif
227 };
228 
229 struct mmu_gather;
230 struct inode;
231 
232 #define page_private(page)		((page)->private)
233 #define set_page_private(page, v)	((page)->private = (v))
234 
235 /*
236  * FIXME: take this include out, include page-flags.h in
237  * files which need it (119 of them)
238  */
239 #include <linux/page-flags.h>
240 
241 /*
242  * Methods to modify the page usage count.
243  *
244  * What counts for a page usage:
245  * - cache mapping   (page->mapping)
246  * - private data    (page->private)
247  * - page mapped in a task's page tables, each mapping
248  *   is counted separately
249  *
250  * Also, many kernel routines increase the page count before a critical
251  * routine so they can be sure the page doesn't go away from under them.
252  */
253 
254 /*
255  * Drop a ref, return true if the refcount fell to zero (the page has no users)
256  */
257 static inline int put_page_testzero(struct page *page)
258 {
259 	VM_BUG_ON(atomic_read(&page->_count) == 0);
260 	return atomic_dec_and_test(&page->_count);
261 }
262 
263 /*
264  * Try to grab a ref unless the page has a refcount of zero, return false if
265  * that is the case.
266  */
267 static inline int get_page_unless_zero(struct page *page)
268 {
269 	return atomic_inc_not_zero(&page->_count);
270 }
271 
272 extern int page_is_ram(unsigned long pfn);
273 
274 /* Support for virtually mapped pages */
275 struct page *vmalloc_to_page(const void *addr);
276 unsigned long vmalloc_to_pfn(const void *addr);
277 
278 /*
279  * Determine if an address is within the vmalloc range
280  *
281  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
282  * is no special casing required.
283  */
284 static inline int is_vmalloc_addr(const void *x)
285 {
286 #ifdef CONFIG_MMU
287 	unsigned long addr = (unsigned long)x;
288 
289 	return addr >= VMALLOC_START && addr < VMALLOC_END;
290 #else
291 	return 0;
292 #endif
293 }
294 #ifdef CONFIG_MMU
295 extern int is_vmalloc_or_module_addr(const void *x);
296 #else
297 static inline int is_vmalloc_or_module_addr(const void *x)
298 {
299 	return 0;
300 }
301 #endif
302 
303 static inline struct page *compound_head(struct page *page)
304 {
305 	if (unlikely(PageTail(page)))
306 		return page->first_page;
307 	return page;
308 }
309 
310 static inline int page_count(struct page *page)
311 {
312 	return atomic_read(&compound_head(page)->_count);
313 }
314 
315 static inline void get_page(struct page *page)
316 {
317 	page = compound_head(page);
318 	VM_BUG_ON(atomic_read(&page->_count) == 0);
319 	atomic_inc(&page->_count);
320 }
321 
322 static inline struct page *virt_to_head_page(const void *x)
323 {
324 	struct page *page = virt_to_page(x);
325 	return compound_head(page);
326 }
327 
328 /*
329  * Setup the page count before being freed into the page allocator for
330  * the first time (boot or memory hotplug)
331  */
332 static inline void init_page_count(struct page *page)
333 {
334 	atomic_set(&page->_count, 1);
335 }
336 
337 void put_page(struct page *page);
338 void put_pages_list(struct list_head *pages);
339 
340 void split_page(struct page *page, unsigned int order);
341 int split_free_page(struct page *page);
342 
343 /*
344  * Compound pages have a destructor function.  Provide a
345  * prototype for that function and accessor functions.
346  * These are _only_ valid on the head of a PG_compound page.
347  */
348 typedef void compound_page_dtor(struct page *);
349 
350 static inline void set_compound_page_dtor(struct page *page,
351 						compound_page_dtor *dtor)
352 {
353 	page[1].lru.next = (void *)dtor;
354 }
355 
356 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
357 {
358 	return (compound_page_dtor *)page[1].lru.next;
359 }
360 
361 static inline int compound_order(struct page *page)
362 {
363 	if (!PageHead(page))
364 		return 0;
365 	return (unsigned long)page[1].lru.prev;
366 }
367 
368 static inline void set_compound_order(struct page *page, unsigned long order)
369 {
370 	page[1].lru.prev = (void *)order;
371 }
372 
373 /*
374  * Multiple processes may "see" the same page. E.g. for untouched
375  * mappings of /dev/null, all processes see the same page full of
376  * zeroes, and text pages of executables and shared libraries have
377  * only one copy in memory, at most, normally.
378  *
379  * For the non-reserved pages, page_count(page) denotes a reference count.
380  *   page_count() == 0 means the page is free. page->lru is then used for
381  *   freelist management in the buddy allocator.
382  *   page_count() > 0  means the page has been allocated.
383  *
384  * Pages are allocated by the slab allocator in order to provide memory
385  * to kmalloc and kmem_cache_alloc. In this case, the management of the
386  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
387  * unless a particular usage is carefully commented. (the responsibility of
388  * freeing the kmalloc memory is the caller's, of course).
389  *
390  * A page may be used by anyone else who does a __get_free_page().
391  * In this case, page_count still tracks the references, and should only
392  * be used through the normal accessor functions. The top bits of page->flags
393  * and page->virtual store page management information, but all other fields
394  * are unused and could be used privately, carefully. The management of this
395  * page is the responsibility of the one who allocated it, and those who have
396  * subsequently been given references to it.
397  *
398  * The other pages (we may call them "pagecache pages") are completely
399  * managed by the Linux memory manager: I/O, buffers, swapping etc.
400  * The following discussion applies only to them.
401  *
402  * A pagecache page contains an opaque `private' member, which belongs to the
403  * page's address_space. Usually, this is the address of a circular list of
404  * the page's disk buffers. PG_private must be set to tell the VM to call
405  * into the filesystem to release these pages.
406  *
407  * A page may belong to an inode's memory mapping. In this case, page->mapping
408  * is the pointer to the inode, and page->index is the file offset of the page,
409  * in units of PAGE_CACHE_SIZE.
410  *
411  * If pagecache pages are not associated with an inode, they are said to be
412  * anonymous pages. These may become associated with the swapcache, and in that
413  * case PG_swapcache is set, and page->private is an offset into the swapcache.
414  *
415  * In either case (swapcache or inode backed), the pagecache itself holds one
416  * reference to the page. Setting PG_private should also increment the
417  * refcount. The each user mapping also has a reference to the page.
418  *
419  * The pagecache pages are stored in a per-mapping radix tree, which is
420  * rooted at mapping->page_tree, and indexed by offset.
421  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
422  * lists, we instead now tag pages as dirty/writeback in the radix tree.
423  *
424  * All pagecache pages may be subject to I/O:
425  * - inode pages may need to be read from disk,
426  * - inode pages which have been modified and are MAP_SHARED may need
427  *   to be written back to the inode on disk,
428  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
429  *   modified may need to be swapped out to swap space and (later) to be read
430  *   back into memory.
431  */
432 
433 /*
434  * The zone field is never updated after free_area_init_core()
435  * sets it, so none of the operations on it need to be atomic.
436  */
437 
438 
439 /*
440  * page->flags layout:
441  *
442  * There are three possibilities for how page->flags get
443  * laid out.  The first is for the normal case, without
444  * sparsemem.  The second is for sparsemem when there is
445  * plenty of space for node and section.  The last is when
446  * we have run out of space and have to fall back to an
447  * alternate (slower) way of determining the node.
448  *
449  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
450  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
451  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
452  */
453 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
454 #define SECTIONS_WIDTH		SECTIONS_SHIFT
455 #else
456 #define SECTIONS_WIDTH		0
457 #endif
458 
459 #define ZONES_WIDTH		ZONES_SHIFT
460 
461 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
462 #define NODES_WIDTH		NODES_SHIFT
463 #else
464 #ifdef CONFIG_SPARSEMEM_VMEMMAP
465 #error "Vmemmap: No space for nodes field in page flags"
466 #endif
467 #define NODES_WIDTH		0
468 #endif
469 
470 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
471 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
472 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
473 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
474 
475 /*
476  * We are going to use the flags for the page to node mapping if its in
477  * there.  This includes the case where there is no node, so it is implicit.
478  */
479 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
480 #define NODE_NOT_IN_PAGE_FLAGS
481 #endif
482 
483 #ifndef PFN_SECTION_SHIFT
484 #define PFN_SECTION_SHIFT 0
485 #endif
486 
487 /*
488  * Define the bit shifts to access each section.  For non-existant
489  * sections we define the shift as 0; that plus a 0 mask ensures
490  * the compiler will optimise away reference to them.
491  */
492 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
493 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
494 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
495 
496 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
497 #ifdef NODE_NOT_IN_PAGEFLAGS
498 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
499 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
500 						SECTIONS_PGOFF : ZONES_PGOFF)
501 #else
502 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
503 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
504 						NODES_PGOFF : ZONES_PGOFF)
505 #endif
506 
507 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
508 
509 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
510 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
511 #endif
512 
513 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
514 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
515 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
516 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
517 
518 static inline enum zone_type page_zonenum(struct page *page)
519 {
520 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
521 }
522 
523 /*
524  * The identification function is only used by the buddy allocator for
525  * determining if two pages could be buddies. We are not really
526  * identifying a zone since we could be using a the section number
527  * id if we have not node id available in page flags.
528  * We guarantee only that it will return the same value for two
529  * combinable pages in a zone.
530  */
531 static inline int page_zone_id(struct page *page)
532 {
533 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
534 }
535 
536 static inline int zone_to_nid(struct zone *zone)
537 {
538 #ifdef CONFIG_NUMA
539 	return zone->node;
540 #else
541 	return 0;
542 #endif
543 }
544 
545 #ifdef NODE_NOT_IN_PAGE_FLAGS
546 extern int page_to_nid(struct page *page);
547 #else
548 static inline int page_to_nid(struct page *page)
549 {
550 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
551 }
552 #endif
553 
554 static inline struct zone *page_zone(struct page *page)
555 {
556 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
557 }
558 
559 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
560 static inline unsigned long page_to_section(struct page *page)
561 {
562 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
563 }
564 #endif
565 
566 static inline void set_page_zone(struct page *page, enum zone_type zone)
567 {
568 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
569 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
570 }
571 
572 static inline void set_page_node(struct page *page, unsigned long node)
573 {
574 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
575 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
576 }
577 
578 static inline void set_page_section(struct page *page, unsigned long section)
579 {
580 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
581 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
582 }
583 
584 static inline void set_page_links(struct page *page, enum zone_type zone,
585 	unsigned long node, unsigned long pfn)
586 {
587 	set_page_zone(page, zone);
588 	set_page_node(page, node);
589 	set_page_section(page, pfn_to_section_nr(pfn));
590 }
591 
592 /*
593  * Some inline functions in vmstat.h depend on page_zone()
594  */
595 #include <linux/vmstat.h>
596 
597 static __always_inline void *lowmem_page_address(struct page *page)
598 {
599 	return __va(PFN_PHYS(page_to_pfn(page)));
600 }
601 
602 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
603 #define HASHED_PAGE_VIRTUAL
604 #endif
605 
606 #if defined(WANT_PAGE_VIRTUAL)
607 #define page_address(page) ((page)->virtual)
608 #define set_page_address(page, address)			\
609 	do {						\
610 		(page)->virtual = (address);		\
611 	} while(0)
612 #define page_address_init()  do { } while(0)
613 #endif
614 
615 #if defined(HASHED_PAGE_VIRTUAL)
616 void *page_address(struct page *page);
617 void set_page_address(struct page *page, void *virtual);
618 void page_address_init(void);
619 #endif
620 
621 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
622 #define page_address(page) lowmem_page_address(page)
623 #define set_page_address(page, address)  do { } while(0)
624 #define page_address_init()  do { } while(0)
625 #endif
626 
627 /*
628  * On an anonymous page mapped into a user virtual memory area,
629  * page->mapping points to its anon_vma, not to a struct address_space;
630  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
631  *
632  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
633  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
634  * and then page->mapping points, not to an anon_vma, but to a private
635  * structure which KSM associates with that merged page.  See ksm.h.
636  *
637  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
638  *
639  * Please note that, confusingly, "page_mapping" refers to the inode
640  * address_space which maps the page from disk; whereas "page_mapped"
641  * refers to user virtual address space into which the page is mapped.
642  */
643 #define PAGE_MAPPING_ANON	1
644 #define PAGE_MAPPING_KSM	2
645 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
646 
647 extern struct address_space swapper_space;
648 static inline struct address_space *page_mapping(struct page *page)
649 {
650 	struct address_space *mapping = page->mapping;
651 
652 	VM_BUG_ON(PageSlab(page));
653 	if (unlikely(PageSwapCache(page)))
654 		mapping = &swapper_space;
655 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
656 		mapping = NULL;
657 	return mapping;
658 }
659 
660 /* Neutral page->mapping pointer to address_space or anon_vma or other */
661 static inline void *page_rmapping(struct page *page)
662 {
663 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
664 }
665 
666 static inline int PageAnon(struct page *page)
667 {
668 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
669 }
670 
671 /*
672  * Return the pagecache index of the passed page.  Regular pagecache pages
673  * use ->index whereas swapcache pages use ->private
674  */
675 static inline pgoff_t page_index(struct page *page)
676 {
677 	if (unlikely(PageSwapCache(page)))
678 		return page_private(page);
679 	return page->index;
680 }
681 
682 /*
683  * The atomic page->_mapcount, like _count, starts from -1:
684  * so that transitions both from it and to it can be tracked,
685  * using atomic_inc_and_test and atomic_add_negative(-1).
686  */
687 static inline void reset_page_mapcount(struct page *page)
688 {
689 	atomic_set(&(page)->_mapcount, -1);
690 }
691 
692 static inline int page_mapcount(struct page *page)
693 {
694 	return atomic_read(&(page)->_mapcount) + 1;
695 }
696 
697 /*
698  * Return true if this page is mapped into pagetables.
699  */
700 static inline int page_mapped(struct page *page)
701 {
702 	return atomic_read(&(page)->_mapcount) >= 0;
703 }
704 
705 /*
706  * Different kinds of faults, as returned by handle_mm_fault().
707  * Used to decide whether a process gets delivered SIGBUS or
708  * just gets major/minor fault counters bumped up.
709  */
710 
711 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
712 
713 #define VM_FAULT_OOM	0x0001
714 #define VM_FAULT_SIGBUS	0x0002
715 #define VM_FAULT_MAJOR	0x0004
716 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
717 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned page */
718 
719 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
720 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
721 
722 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
723 
724 /*
725  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
726  */
727 extern void pagefault_out_of_memory(void);
728 
729 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
730 
731 extern void show_free_areas(void);
732 
733 int shmem_lock(struct file *file, int lock, struct user_struct *user);
734 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
735 int shmem_zero_setup(struct vm_area_struct *);
736 
737 #ifndef CONFIG_MMU
738 extern unsigned long shmem_get_unmapped_area(struct file *file,
739 					     unsigned long addr,
740 					     unsigned long len,
741 					     unsigned long pgoff,
742 					     unsigned long flags);
743 #endif
744 
745 extern int can_do_mlock(void);
746 extern int user_shm_lock(size_t, struct user_struct *);
747 extern void user_shm_unlock(size_t, struct user_struct *);
748 
749 /*
750  * Parameter block passed down to zap_pte_range in exceptional cases.
751  */
752 struct zap_details {
753 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
754 	struct address_space *check_mapping;	/* Check page->mapping if set */
755 	pgoff_t	first_index;			/* Lowest page->index to unmap */
756 	pgoff_t last_index;			/* Highest page->index to unmap */
757 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
758 	unsigned long truncate_count;		/* Compare vm_truncate_count */
759 };
760 
761 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
762 		pte_t pte);
763 
764 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
765 		unsigned long size);
766 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
767 		unsigned long size, struct zap_details *);
768 unsigned long unmap_vmas(struct mmu_gather **tlb,
769 		struct vm_area_struct *start_vma, unsigned long start_addr,
770 		unsigned long end_addr, unsigned long *nr_accounted,
771 		struct zap_details *);
772 
773 /**
774  * mm_walk - callbacks for walk_page_range
775  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
776  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
777  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
778  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
779  * @pte_hole: if set, called for each hole at all levels
780  * @hugetlb_entry: if set, called for each hugetlb entry
781  *
782  * (see walk_page_range for more details)
783  */
784 struct mm_walk {
785 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
786 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
787 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
788 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
789 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
790 	int (*hugetlb_entry)(pte_t *, unsigned long,
791 			     unsigned long, unsigned long, struct mm_walk *);
792 	struct mm_struct *mm;
793 	void *private;
794 };
795 
796 int walk_page_range(unsigned long addr, unsigned long end,
797 		struct mm_walk *walk);
798 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
799 		unsigned long end, unsigned long floor, unsigned long ceiling);
800 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
801 			struct vm_area_struct *vma);
802 void unmap_mapping_range(struct address_space *mapping,
803 		loff_t const holebegin, loff_t const holelen, int even_cows);
804 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
805 	unsigned long *pfn);
806 int follow_phys(struct vm_area_struct *vma, unsigned long address,
807 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
808 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
809 			void *buf, int len, int write);
810 
811 static inline void unmap_shared_mapping_range(struct address_space *mapping,
812 		loff_t const holebegin, loff_t const holelen)
813 {
814 	unmap_mapping_range(mapping, holebegin, holelen, 0);
815 }
816 
817 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
818 extern void truncate_setsize(struct inode *inode, loff_t newsize);
819 extern int vmtruncate(struct inode *inode, loff_t offset);
820 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
821 
822 int truncate_inode_page(struct address_space *mapping, struct page *page);
823 int generic_error_remove_page(struct address_space *mapping, struct page *page);
824 
825 int invalidate_inode_page(struct page *page);
826 
827 #ifdef CONFIG_MMU
828 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
829 			unsigned long address, unsigned int flags);
830 #else
831 static inline int handle_mm_fault(struct mm_struct *mm,
832 			struct vm_area_struct *vma, unsigned long address,
833 			unsigned int flags)
834 {
835 	/* should never happen if there's no MMU */
836 	BUG();
837 	return VM_FAULT_SIGBUS;
838 }
839 #endif
840 
841 extern int make_pages_present(unsigned long addr, unsigned long end);
842 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
843 
844 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
845 			unsigned long start, int nr_pages, int write, int force,
846 			struct page **pages, struct vm_area_struct **vmas);
847 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
848 			struct page **pages);
849 struct page *get_dump_page(unsigned long addr);
850 
851 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
852 extern void do_invalidatepage(struct page *page, unsigned long offset);
853 
854 int __set_page_dirty_nobuffers(struct page *page);
855 int __set_page_dirty_no_writeback(struct page *page);
856 int redirty_page_for_writepage(struct writeback_control *wbc,
857 				struct page *page);
858 void account_page_dirtied(struct page *page, struct address_space *mapping);
859 int set_page_dirty(struct page *page);
860 int set_page_dirty_lock(struct page *page);
861 int clear_page_dirty_for_io(struct page *page);
862 
863 extern unsigned long move_page_tables(struct vm_area_struct *vma,
864 		unsigned long old_addr, struct vm_area_struct *new_vma,
865 		unsigned long new_addr, unsigned long len);
866 extern unsigned long do_mremap(unsigned long addr,
867 			       unsigned long old_len, unsigned long new_len,
868 			       unsigned long flags, unsigned long new_addr);
869 extern int mprotect_fixup(struct vm_area_struct *vma,
870 			  struct vm_area_struct **pprev, unsigned long start,
871 			  unsigned long end, unsigned long newflags);
872 
873 /*
874  * doesn't attempt to fault and will return short.
875  */
876 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
877 			  struct page **pages);
878 /*
879  * per-process(per-mm_struct) statistics.
880  */
881 #if defined(SPLIT_RSS_COUNTING)
882 /*
883  * The mm counters are not protected by its page_table_lock,
884  * so must be incremented atomically.
885  */
886 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
887 {
888 	atomic_long_set(&mm->rss_stat.count[member], value);
889 }
890 
891 unsigned long get_mm_counter(struct mm_struct *mm, int member);
892 
893 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
894 {
895 	atomic_long_add(value, &mm->rss_stat.count[member]);
896 }
897 
898 static inline void inc_mm_counter(struct mm_struct *mm, int member)
899 {
900 	atomic_long_inc(&mm->rss_stat.count[member]);
901 }
902 
903 static inline void dec_mm_counter(struct mm_struct *mm, int member)
904 {
905 	atomic_long_dec(&mm->rss_stat.count[member]);
906 }
907 
908 #else  /* !USE_SPLIT_PTLOCKS */
909 /*
910  * The mm counters are protected by its page_table_lock,
911  * so can be incremented directly.
912  */
913 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
914 {
915 	mm->rss_stat.count[member] = value;
916 }
917 
918 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
919 {
920 	return mm->rss_stat.count[member];
921 }
922 
923 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
924 {
925 	mm->rss_stat.count[member] += value;
926 }
927 
928 static inline void inc_mm_counter(struct mm_struct *mm, int member)
929 {
930 	mm->rss_stat.count[member]++;
931 }
932 
933 static inline void dec_mm_counter(struct mm_struct *mm, int member)
934 {
935 	mm->rss_stat.count[member]--;
936 }
937 
938 #endif /* !USE_SPLIT_PTLOCKS */
939 
940 static inline unsigned long get_mm_rss(struct mm_struct *mm)
941 {
942 	return get_mm_counter(mm, MM_FILEPAGES) +
943 		get_mm_counter(mm, MM_ANONPAGES);
944 }
945 
946 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
947 {
948 	return max(mm->hiwater_rss, get_mm_rss(mm));
949 }
950 
951 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
952 {
953 	return max(mm->hiwater_vm, mm->total_vm);
954 }
955 
956 static inline void update_hiwater_rss(struct mm_struct *mm)
957 {
958 	unsigned long _rss = get_mm_rss(mm);
959 
960 	if ((mm)->hiwater_rss < _rss)
961 		(mm)->hiwater_rss = _rss;
962 }
963 
964 static inline void update_hiwater_vm(struct mm_struct *mm)
965 {
966 	if (mm->hiwater_vm < mm->total_vm)
967 		mm->hiwater_vm = mm->total_vm;
968 }
969 
970 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
971 					 struct mm_struct *mm)
972 {
973 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
974 
975 	if (*maxrss < hiwater_rss)
976 		*maxrss = hiwater_rss;
977 }
978 
979 #if defined(SPLIT_RSS_COUNTING)
980 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
981 #else
982 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
983 {
984 }
985 #endif
986 
987 /*
988  * A callback you can register to apply pressure to ageable caches.
989  *
990  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
991  * look through the least-recently-used 'nr_to_scan' entries and
992  * attempt to free them up.  It should return the number of objects
993  * which remain in the cache.  If it returns -1, it means it cannot do
994  * any scanning at this time (eg. there is a risk of deadlock).
995  *
996  * The 'gfpmask' refers to the allocation we are currently trying to
997  * fulfil.
998  *
999  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1000  * querying the cache size, so a fastpath for that case is appropriate.
1001  */
1002 struct shrinker {
1003 	int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1004 	int seeks;	/* seeks to recreate an obj */
1005 
1006 	/* These are for internal use */
1007 	struct list_head list;
1008 	long nr;	/* objs pending delete */
1009 };
1010 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1011 extern void register_shrinker(struct shrinker *);
1012 extern void unregister_shrinker(struct shrinker *);
1013 
1014 int vma_wants_writenotify(struct vm_area_struct *vma);
1015 
1016 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
1017 
1018 #ifdef __PAGETABLE_PUD_FOLDED
1019 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1020 						unsigned long address)
1021 {
1022 	return 0;
1023 }
1024 #else
1025 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1026 #endif
1027 
1028 #ifdef __PAGETABLE_PMD_FOLDED
1029 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1030 						unsigned long address)
1031 {
1032 	return 0;
1033 }
1034 #else
1035 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1036 #endif
1037 
1038 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1039 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1040 
1041 /*
1042  * The following ifdef needed to get the 4level-fixup.h header to work.
1043  * Remove it when 4level-fixup.h has been removed.
1044  */
1045 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1046 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1047 {
1048 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1049 		NULL: pud_offset(pgd, address);
1050 }
1051 
1052 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1053 {
1054 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1055 		NULL: pmd_offset(pud, address);
1056 }
1057 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1058 
1059 #if USE_SPLIT_PTLOCKS
1060 /*
1061  * We tuck a spinlock to guard each pagetable page into its struct page,
1062  * at page->private, with BUILD_BUG_ON to make sure that this will not
1063  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1064  * When freeing, reset page->mapping so free_pages_check won't complain.
1065  */
1066 #define __pte_lockptr(page)	&((page)->ptl)
1067 #define pte_lock_init(_page)	do {					\
1068 	spin_lock_init(__pte_lockptr(_page));				\
1069 } while (0)
1070 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1071 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1072 #else	/* !USE_SPLIT_PTLOCKS */
1073 /*
1074  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1075  */
1076 #define pte_lock_init(page)	do {} while (0)
1077 #define pte_lock_deinit(page)	do {} while (0)
1078 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1079 #endif /* USE_SPLIT_PTLOCKS */
1080 
1081 static inline void pgtable_page_ctor(struct page *page)
1082 {
1083 	pte_lock_init(page);
1084 	inc_zone_page_state(page, NR_PAGETABLE);
1085 }
1086 
1087 static inline void pgtable_page_dtor(struct page *page)
1088 {
1089 	pte_lock_deinit(page);
1090 	dec_zone_page_state(page, NR_PAGETABLE);
1091 }
1092 
1093 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1094 ({							\
1095 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1096 	pte_t *__pte = pte_offset_map(pmd, address);	\
1097 	*(ptlp) = __ptl;				\
1098 	spin_lock(__ptl);				\
1099 	__pte;						\
1100 })
1101 
1102 #define pte_unmap_unlock(pte, ptl)	do {		\
1103 	spin_unlock(ptl);				\
1104 	pte_unmap(pte);					\
1105 } while (0)
1106 
1107 #define pte_alloc_map(mm, pmd, address)			\
1108 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1109 		NULL: pte_offset_map(pmd, address))
1110 
1111 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1112 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1113 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1114 
1115 #define pte_alloc_kernel(pmd, address)			\
1116 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1117 		NULL: pte_offset_kernel(pmd, address))
1118 
1119 extern void free_area_init(unsigned long * zones_size);
1120 extern void free_area_init_node(int nid, unsigned long * zones_size,
1121 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1122 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1123 /*
1124  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1125  * zones, allocate the backing mem_map and account for memory holes in a more
1126  * architecture independent manner. This is a substitute for creating the
1127  * zone_sizes[] and zholes_size[] arrays and passing them to
1128  * free_area_init_node()
1129  *
1130  * An architecture is expected to register range of page frames backed by
1131  * physical memory with add_active_range() before calling
1132  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1133  * usage, an architecture is expected to do something like
1134  *
1135  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1136  * 							 max_highmem_pfn};
1137  * for_each_valid_physical_page_range()
1138  * 	add_active_range(node_id, start_pfn, end_pfn)
1139  * free_area_init_nodes(max_zone_pfns);
1140  *
1141  * If the architecture guarantees that there are no holes in the ranges
1142  * registered with add_active_range(), free_bootmem_active_regions()
1143  * will call free_bootmem_node() for each registered physical page range.
1144  * Similarly sparse_memory_present_with_active_regions() calls
1145  * memory_present() for each range when SPARSEMEM is enabled.
1146  *
1147  * See mm/page_alloc.c for more information on each function exposed by
1148  * CONFIG_ARCH_POPULATES_NODE_MAP
1149  */
1150 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1151 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1152 					unsigned long end_pfn);
1153 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1154 					unsigned long end_pfn);
1155 extern void remove_all_active_ranges(void);
1156 void sort_node_map(void);
1157 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1158 						unsigned long end_pfn);
1159 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1160 						unsigned long end_pfn);
1161 extern void get_pfn_range_for_nid(unsigned int nid,
1162 			unsigned long *start_pfn, unsigned long *end_pfn);
1163 extern unsigned long find_min_pfn_with_active_regions(void);
1164 extern void free_bootmem_with_active_regions(int nid,
1165 						unsigned long max_low_pfn);
1166 int add_from_early_node_map(struct range *range, int az,
1167 				   int nr_range, int nid);
1168 void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1169 				 u64 goal, u64 limit);
1170 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1171 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1172 extern void sparse_memory_present_with_active_regions(int nid);
1173 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1174 
1175 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1176     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1177 static inline int __early_pfn_to_nid(unsigned long pfn)
1178 {
1179 	return 0;
1180 }
1181 #else
1182 /* please see mm/page_alloc.c */
1183 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1184 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1185 /* there is a per-arch backend function. */
1186 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1187 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1188 #endif
1189 
1190 extern void set_dma_reserve(unsigned long new_dma_reserve);
1191 extern void memmap_init_zone(unsigned long, int, unsigned long,
1192 				unsigned long, enum memmap_context);
1193 extern void setup_per_zone_wmarks(void);
1194 extern void calculate_zone_inactive_ratio(struct zone *zone);
1195 extern void mem_init(void);
1196 extern void __init mmap_init(void);
1197 extern void show_mem(void);
1198 extern void si_meminfo(struct sysinfo * val);
1199 extern void si_meminfo_node(struct sysinfo *val, int nid);
1200 extern int after_bootmem;
1201 
1202 extern void setup_per_cpu_pageset(void);
1203 
1204 extern void zone_pcp_update(struct zone *zone);
1205 
1206 /* nommu.c */
1207 extern atomic_long_t mmap_pages_allocated;
1208 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1209 
1210 /* prio_tree.c */
1211 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1212 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1213 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1214 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1215 	struct prio_tree_iter *iter);
1216 
1217 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1218 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1219 		(vma = vma_prio_tree_next(vma, iter)); )
1220 
1221 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1222 					struct list_head *list)
1223 {
1224 	vma->shared.vm_set.parent = NULL;
1225 	list_add_tail(&vma->shared.vm_set.list, list);
1226 }
1227 
1228 /* mmap.c */
1229 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1230 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1231 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1232 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1233 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1234 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1235 	struct mempolicy *);
1236 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1237 extern int split_vma(struct mm_struct *,
1238 	struct vm_area_struct *, unsigned long addr, int new_below);
1239 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1240 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1241 	struct rb_node **, struct rb_node *);
1242 extern void unlink_file_vma(struct vm_area_struct *);
1243 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1244 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1245 extern void exit_mmap(struct mm_struct *);
1246 
1247 extern int mm_take_all_locks(struct mm_struct *mm);
1248 extern void mm_drop_all_locks(struct mm_struct *mm);
1249 
1250 #ifdef CONFIG_PROC_FS
1251 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1252 extern void added_exe_file_vma(struct mm_struct *mm);
1253 extern void removed_exe_file_vma(struct mm_struct *mm);
1254 #else
1255 static inline void added_exe_file_vma(struct mm_struct *mm)
1256 {}
1257 
1258 static inline void removed_exe_file_vma(struct mm_struct *mm)
1259 {}
1260 #endif /* CONFIG_PROC_FS */
1261 
1262 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1263 extern int install_special_mapping(struct mm_struct *mm,
1264 				   unsigned long addr, unsigned long len,
1265 				   unsigned long flags, struct page **pages);
1266 
1267 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1268 
1269 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1270 	unsigned long len, unsigned long prot,
1271 	unsigned long flag, unsigned long pgoff);
1272 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1273 	unsigned long len, unsigned long flags,
1274 	unsigned int vm_flags, unsigned long pgoff);
1275 
1276 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1277 	unsigned long len, unsigned long prot,
1278 	unsigned long flag, unsigned long offset)
1279 {
1280 	unsigned long ret = -EINVAL;
1281 	if ((offset + PAGE_ALIGN(len)) < offset)
1282 		goto out;
1283 	if (!(offset & ~PAGE_MASK))
1284 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1285 out:
1286 	return ret;
1287 }
1288 
1289 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1290 
1291 extern unsigned long do_brk(unsigned long, unsigned long);
1292 
1293 /* filemap.c */
1294 extern unsigned long page_unuse(struct page *);
1295 extern void truncate_inode_pages(struct address_space *, loff_t);
1296 extern void truncate_inode_pages_range(struct address_space *,
1297 				       loff_t lstart, loff_t lend);
1298 
1299 /* generic vm_area_ops exported for stackable file systems */
1300 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1301 
1302 /* mm/page-writeback.c */
1303 int write_one_page(struct page *page, int wait);
1304 void task_dirty_inc(struct task_struct *tsk);
1305 
1306 /* readahead.c */
1307 #define VM_MAX_READAHEAD	128	/* kbytes */
1308 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1309 
1310 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1311 			pgoff_t offset, unsigned long nr_to_read);
1312 
1313 void page_cache_sync_readahead(struct address_space *mapping,
1314 			       struct file_ra_state *ra,
1315 			       struct file *filp,
1316 			       pgoff_t offset,
1317 			       unsigned long size);
1318 
1319 void page_cache_async_readahead(struct address_space *mapping,
1320 				struct file_ra_state *ra,
1321 				struct file *filp,
1322 				struct page *pg,
1323 				pgoff_t offset,
1324 				unsigned long size);
1325 
1326 unsigned long max_sane_readahead(unsigned long nr);
1327 unsigned long ra_submit(struct file_ra_state *ra,
1328 			struct address_space *mapping,
1329 			struct file *filp);
1330 
1331 /* Do stack extension */
1332 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1333 #ifdef CONFIG_IA64
1334 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1335 #endif
1336 extern int expand_stack_downwards(struct vm_area_struct *vma,
1337 				  unsigned long address);
1338 
1339 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1340 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1341 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1342 					     struct vm_area_struct **pprev);
1343 
1344 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1345    NULL if none.  Assume start_addr < end_addr. */
1346 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1347 {
1348 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1349 
1350 	if (vma && end_addr <= vma->vm_start)
1351 		vma = NULL;
1352 	return vma;
1353 }
1354 
1355 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1356 {
1357 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1358 }
1359 
1360 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1361 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1362 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1363 			unsigned long pfn, unsigned long size, pgprot_t);
1364 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1365 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1366 			unsigned long pfn);
1367 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1368 			unsigned long pfn);
1369 
1370 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1371 			unsigned int foll_flags);
1372 #define FOLL_WRITE	0x01	/* check pte is writable */
1373 #define FOLL_TOUCH	0x02	/* mark page accessed */
1374 #define FOLL_GET	0x04	/* do get_page on page */
1375 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1376 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1377 
1378 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1379 			void *data);
1380 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1381 			       unsigned long size, pte_fn_t fn, void *data);
1382 
1383 #ifdef CONFIG_PROC_FS
1384 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1385 #else
1386 static inline void vm_stat_account(struct mm_struct *mm,
1387 			unsigned long flags, struct file *file, long pages)
1388 {
1389 }
1390 #endif /* CONFIG_PROC_FS */
1391 
1392 #ifdef CONFIG_DEBUG_PAGEALLOC
1393 extern int debug_pagealloc_enabled;
1394 
1395 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1396 
1397 static inline void enable_debug_pagealloc(void)
1398 {
1399 	debug_pagealloc_enabled = 1;
1400 }
1401 #ifdef CONFIG_HIBERNATION
1402 extern bool kernel_page_present(struct page *page);
1403 #endif /* CONFIG_HIBERNATION */
1404 #else
1405 static inline void
1406 kernel_map_pages(struct page *page, int numpages, int enable) {}
1407 static inline void enable_debug_pagealloc(void)
1408 {
1409 }
1410 #ifdef CONFIG_HIBERNATION
1411 static inline bool kernel_page_present(struct page *page) { return true; }
1412 #endif /* CONFIG_HIBERNATION */
1413 #endif
1414 
1415 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1416 #ifdef	__HAVE_ARCH_GATE_AREA
1417 int in_gate_area_no_task(unsigned long addr);
1418 int in_gate_area(struct task_struct *task, unsigned long addr);
1419 #else
1420 int in_gate_area_no_task(unsigned long addr);
1421 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1422 #endif	/* __HAVE_ARCH_GATE_AREA */
1423 
1424 int drop_caches_sysctl_handler(struct ctl_table *, int,
1425 					void __user *, size_t *, loff_t *);
1426 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1427 			unsigned long lru_pages);
1428 
1429 #ifndef CONFIG_MMU
1430 #define randomize_va_space 0
1431 #else
1432 extern int randomize_va_space;
1433 #endif
1434 
1435 const char * arch_vma_name(struct vm_area_struct *vma);
1436 void print_vma_addr(char *prefix, unsigned long rip);
1437 
1438 void sparse_mem_maps_populate_node(struct page **map_map,
1439 				   unsigned long pnum_begin,
1440 				   unsigned long pnum_end,
1441 				   unsigned long map_count,
1442 				   int nodeid);
1443 
1444 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1445 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1446 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1447 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1448 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1449 void *vmemmap_alloc_block(unsigned long size, int node);
1450 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1451 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1452 int vmemmap_populate_basepages(struct page *start_page,
1453 						unsigned long pages, int node);
1454 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1455 void vmemmap_populate_print_last(void);
1456 
1457 
1458 enum mf_flags {
1459 	MF_COUNT_INCREASED = 1 << 0,
1460 };
1461 extern void memory_failure(unsigned long pfn, int trapno);
1462 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1463 extern int unpoison_memory(unsigned long pfn);
1464 extern int sysctl_memory_failure_early_kill;
1465 extern int sysctl_memory_failure_recovery;
1466 extern void shake_page(struct page *p, int access);
1467 extern atomic_long_t mce_bad_pages;
1468 extern int soft_offline_page(struct page *page, int flags);
1469 #ifdef CONFIG_MEMORY_FAILURE
1470 int is_hwpoison_address(unsigned long addr);
1471 #else
1472 static inline int is_hwpoison_address(unsigned long addr)
1473 {
1474 	return 0;
1475 }
1476 #endif
1477 
1478 extern void dump_page(struct page *page);
1479 
1480 #endif /* __KERNEL__ */
1481 #endif /* _LINUX_MM_H */
1482