xref: /linux-6.15/include/linux/mm.h (revision 055d752f)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20 
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27 
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31 
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36 
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42 
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46 
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48 
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51 
52 /*
53  * Linux kernel virtual memory manager primitives.
54  * The idea being to have a "virtual" mm in the same way
55  * we have a virtual fs - giving a cleaner interface to the
56  * mm details, and allowing different kinds of memory mappings
57  * (from shared memory to executable loading to arbitrary
58  * mmap() functions).
59  */
60 
61 extern struct kmem_cache *vm_area_cachep;
62 
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66 
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69 
70 /*
71  * vm_flags in vm_area_struct, see mm_types.h.
72  */
73 #define VM_NONE		0x00000000
74 
75 #define VM_READ		0x00000001	/* currently active flags */
76 #define VM_WRITE	0x00000002
77 #define VM_EXEC		0x00000004
78 #define VM_SHARED	0x00000008
79 
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
82 #define VM_MAYWRITE	0x00000020
83 #define VM_MAYEXEC	0x00000040
84 #define VM_MAYSHARE	0x00000080
85 
86 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
87 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
89 
90 #define VM_LOCKED	0x00002000
91 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
92 
93 					/* Used by sys_madvise() */
94 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
95 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
96 
97 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
99 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
100 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
101 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
102 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
104 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
105 
106 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
110 
111 #if defined(CONFIG_X86)
112 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP	VM_ARCH_1
117 #elif defined(CONFIG_METAG)
118 # define VM_GROWSUP	VM_ARCH_1
119 #elif defined(CONFIG_IA64)
120 # define VM_GROWSUP	VM_ARCH_1
121 #elif !defined(CONFIG_MMU)
122 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
123 #endif
124 
125 #ifndef VM_GROWSUP
126 # define VM_GROWSUP	VM_NONE
127 #endif
128 
129 /* Bits set in the VMA until the stack is in its final location */
130 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
131 
132 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
133 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
134 #endif
135 
136 #ifdef CONFIG_STACK_GROWSUP
137 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #else
139 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
140 #endif
141 
142 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
143 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
144 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
145 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
146 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
147 
148 /*
149  * Special vmas that are non-mergable, non-mlock()able.
150  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
151  */
152 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
153 
154 /*
155  * mapping from the currently active vm_flags protection bits (the
156  * low four bits) to a page protection mask..
157  */
158 extern pgprot_t protection_map[16];
159 
160 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
161 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
162 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
163 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
164 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
165 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
166 #define FAULT_FLAG_TRIED	0x40	/* second try */
167 
168 /*
169  * vm_fault is filled by the the pagefault handler and passed to the vma's
170  * ->fault function. The vma's ->fault is responsible for returning a bitmask
171  * of VM_FAULT_xxx flags that give details about how the fault was handled.
172  *
173  * pgoff should be used in favour of virtual_address, if possible. If pgoff
174  * is used, one may implement ->remap_pages to get nonlinear mapping support.
175  */
176 struct vm_fault {
177 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
178 	pgoff_t pgoff;			/* Logical page offset based on vma */
179 	void __user *virtual_address;	/* Faulting virtual address */
180 
181 	struct page *page;		/* ->fault handlers should return a
182 					 * page here, unless VM_FAULT_NOPAGE
183 					 * is set (which is also implied by
184 					 * VM_FAULT_ERROR).
185 					 */
186 };
187 
188 /*
189  * These are the virtual MM functions - opening of an area, closing and
190  * unmapping it (needed to keep files on disk up-to-date etc), pointer
191  * to the functions called when a no-page or a wp-page exception occurs.
192  */
193 struct vm_operations_struct {
194 	void (*open)(struct vm_area_struct * area);
195 	void (*close)(struct vm_area_struct * area);
196 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
197 
198 	/* notification that a previously read-only page is about to become
199 	 * writable, if an error is returned it will cause a SIGBUS */
200 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
201 
202 	/* called by access_process_vm when get_user_pages() fails, typically
203 	 * for use by special VMAs that can switch between memory and hardware
204 	 */
205 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
206 		      void *buf, int len, int write);
207 #ifdef CONFIG_NUMA
208 	/*
209 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
210 	 * to hold the policy upon return.  Caller should pass NULL @new to
211 	 * remove a policy and fall back to surrounding context--i.e. do not
212 	 * install a MPOL_DEFAULT policy, nor the task or system default
213 	 * mempolicy.
214 	 */
215 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
216 
217 	/*
218 	 * get_policy() op must add reference [mpol_get()] to any policy at
219 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
220 	 * in mm/mempolicy.c will do this automatically.
221 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
222 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
223 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
224 	 * must return NULL--i.e., do not "fallback" to task or system default
225 	 * policy.
226 	 */
227 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
228 					unsigned long addr);
229 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
230 		const nodemask_t *to, unsigned long flags);
231 #endif
232 	/* called by sys_remap_file_pages() to populate non-linear mapping */
233 	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
234 			   unsigned long size, pgoff_t pgoff);
235 };
236 
237 struct mmu_gather;
238 struct inode;
239 
240 #define page_private(page)		((page)->private)
241 #define set_page_private(page, v)	((page)->private = (v))
242 
243 /* It's valid only if the page is free path or free_list */
244 static inline void set_freepage_migratetype(struct page *page, int migratetype)
245 {
246 	page->index = migratetype;
247 }
248 
249 /* It's valid only if the page is free path or free_list */
250 static inline int get_freepage_migratetype(struct page *page)
251 {
252 	return page->index;
253 }
254 
255 /*
256  * FIXME: take this include out, include page-flags.h in
257  * files which need it (119 of them)
258  */
259 #include <linux/page-flags.h>
260 #include <linux/huge_mm.h>
261 
262 /*
263  * Methods to modify the page usage count.
264  *
265  * What counts for a page usage:
266  * - cache mapping   (page->mapping)
267  * - private data    (page->private)
268  * - page mapped in a task's page tables, each mapping
269  *   is counted separately
270  *
271  * Also, many kernel routines increase the page count before a critical
272  * routine so they can be sure the page doesn't go away from under them.
273  */
274 
275 /*
276  * Drop a ref, return true if the refcount fell to zero (the page has no users)
277  */
278 static inline int put_page_testzero(struct page *page)
279 {
280 	VM_BUG_ON(atomic_read(&page->_count) == 0);
281 	return atomic_dec_and_test(&page->_count);
282 }
283 
284 /*
285  * Try to grab a ref unless the page has a refcount of zero, return false if
286  * that is the case.
287  */
288 static inline int get_page_unless_zero(struct page *page)
289 {
290 	return atomic_inc_not_zero(&page->_count);
291 }
292 
293 extern int page_is_ram(unsigned long pfn);
294 
295 /* Support for virtually mapped pages */
296 struct page *vmalloc_to_page(const void *addr);
297 unsigned long vmalloc_to_pfn(const void *addr);
298 
299 /*
300  * Determine if an address is within the vmalloc range
301  *
302  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
303  * is no special casing required.
304  */
305 static inline int is_vmalloc_addr(const void *x)
306 {
307 #ifdef CONFIG_MMU
308 	unsigned long addr = (unsigned long)x;
309 
310 	return addr >= VMALLOC_START && addr < VMALLOC_END;
311 #else
312 	return 0;
313 #endif
314 }
315 #ifdef CONFIG_MMU
316 extern int is_vmalloc_or_module_addr(const void *x);
317 #else
318 static inline int is_vmalloc_or_module_addr(const void *x)
319 {
320 	return 0;
321 }
322 #endif
323 
324 static inline void compound_lock(struct page *page)
325 {
326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
327 	VM_BUG_ON(PageSlab(page));
328 	bit_spin_lock(PG_compound_lock, &page->flags);
329 #endif
330 }
331 
332 static inline void compound_unlock(struct page *page)
333 {
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 	VM_BUG_ON(PageSlab(page));
336 	bit_spin_unlock(PG_compound_lock, &page->flags);
337 #endif
338 }
339 
340 static inline unsigned long compound_lock_irqsave(struct page *page)
341 {
342 	unsigned long uninitialized_var(flags);
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 	local_irq_save(flags);
345 	compound_lock(page);
346 #endif
347 	return flags;
348 }
349 
350 static inline void compound_unlock_irqrestore(struct page *page,
351 					      unsigned long flags)
352 {
353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
354 	compound_unlock(page);
355 	local_irq_restore(flags);
356 #endif
357 }
358 
359 static inline struct page *compound_head(struct page *page)
360 {
361 	if (unlikely(PageTail(page)))
362 		return page->first_page;
363 	return page;
364 }
365 
366 /*
367  * The atomic page->_mapcount, starts from -1: so that transitions
368  * both from it and to it can be tracked, using atomic_inc_and_test
369  * and atomic_add_negative(-1).
370  */
371 static inline void page_mapcount_reset(struct page *page)
372 {
373 	atomic_set(&(page)->_mapcount, -1);
374 }
375 
376 static inline int page_mapcount(struct page *page)
377 {
378 	return atomic_read(&(page)->_mapcount) + 1;
379 }
380 
381 static inline int page_count(struct page *page)
382 {
383 	return atomic_read(&compound_head(page)->_count);
384 }
385 
386 static inline void get_huge_page_tail(struct page *page)
387 {
388 	/*
389 	 * __split_huge_page_refcount() cannot run
390 	 * from under us.
391 	 */
392 	VM_BUG_ON(page_mapcount(page) < 0);
393 	VM_BUG_ON(atomic_read(&page->_count) != 0);
394 	atomic_inc(&page->_mapcount);
395 }
396 
397 extern bool __get_page_tail(struct page *page);
398 
399 static inline void get_page(struct page *page)
400 {
401 	if (unlikely(PageTail(page)))
402 		if (likely(__get_page_tail(page)))
403 			return;
404 	/*
405 	 * Getting a normal page or the head of a compound page
406 	 * requires to already have an elevated page->_count.
407 	 */
408 	VM_BUG_ON(atomic_read(&page->_count) <= 0);
409 	atomic_inc(&page->_count);
410 }
411 
412 static inline struct page *virt_to_head_page(const void *x)
413 {
414 	struct page *page = virt_to_page(x);
415 	return compound_head(page);
416 }
417 
418 /*
419  * Setup the page count before being freed into the page allocator for
420  * the first time (boot or memory hotplug)
421  */
422 static inline void init_page_count(struct page *page)
423 {
424 	atomic_set(&page->_count, 1);
425 }
426 
427 /*
428  * PageBuddy() indicate that the page is free and in the buddy system
429  * (see mm/page_alloc.c).
430  *
431  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
432  * -2 so that an underflow of the page_mapcount() won't be mistaken
433  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
434  * efficiently by most CPU architectures.
435  */
436 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
437 
438 static inline int PageBuddy(struct page *page)
439 {
440 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
441 }
442 
443 static inline void __SetPageBuddy(struct page *page)
444 {
445 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
446 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
447 }
448 
449 static inline void __ClearPageBuddy(struct page *page)
450 {
451 	VM_BUG_ON(!PageBuddy(page));
452 	atomic_set(&page->_mapcount, -1);
453 }
454 
455 void put_page(struct page *page);
456 void put_pages_list(struct list_head *pages);
457 
458 void split_page(struct page *page, unsigned int order);
459 int split_free_page(struct page *page);
460 
461 /*
462  * Compound pages have a destructor function.  Provide a
463  * prototype for that function and accessor functions.
464  * These are _only_ valid on the head of a PG_compound page.
465  */
466 typedef void compound_page_dtor(struct page *);
467 
468 static inline void set_compound_page_dtor(struct page *page,
469 						compound_page_dtor *dtor)
470 {
471 	page[1].lru.next = (void *)dtor;
472 }
473 
474 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
475 {
476 	return (compound_page_dtor *)page[1].lru.next;
477 }
478 
479 static inline int compound_order(struct page *page)
480 {
481 	if (!PageHead(page))
482 		return 0;
483 	return (unsigned long)page[1].lru.prev;
484 }
485 
486 static inline int compound_trans_order(struct page *page)
487 {
488 	int order;
489 	unsigned long flags;
490 
491 	if (!PageHead(page))
492 		return 0;
493 
494 	flags = compound_lock_irqsave(page);
495 	order = compound_order(page);
496 	compound_unlock_irqrestore(page, flags);
497 	return order;
498 }
499 
500 static inline void set_compound_order(struct page *page, unsigned long order)
501 {
502 	page[1].lru.prev = (void *)order;
503 }
504 
505 #ifdef CONFIG_MMU
506 /*
507  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
508  * servicing faults for write access.  In the normal case, do always want
509  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
510  * that do not have writing enabled, when used by access_process_vm.
511  */
512 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
513 {
514 	if (likely(vma->vm_flags & VM_WRITE))
515 		pte = pte_mkwrite(pte);
516 	return pte;
517 }
518 #endif
519 
520 /*
521  * Multiple processes may "see" the same page. E.g. for untouched
522  * mappings of /dev/null, all processes see the same page full of
523  * zeroes, and text pages of executables and shared libraries have
524  * only one copy in memory, at most, normally.
525  *
526  * For the non-reserved pages, page_count(page) denotes a reference count.
527  *   page_count() == 0 means the page is free. page->lru is then used for
528  *   freelist management in the buddy allocator.
529  *   page_count() > 0  means the page has been allocated.
530  *
531  * Pages are allocated by the slab allocator in order to provide memory
532  * to kmalloc and kmem_cache_alloc. In this case, the management of the
533  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
534  * unless a particular usage is carefully commented. (the responsibility of
535  * freeing the kmalloc memory is the caller's, of course).
536  *
537  * A page may be used by anyone else who does a __get_free_page().
538  * In this case, page_count still tracks the references, and should only
539  * be used through the normal accessor functions. The top bits of page->flags
540  * and page->virtual store page management information, but all other fields
541  * are unused and could be used privately, carefully. The management of this
542  * page is the responsibility of the one who allocated it, and those who have
543  * subsequently been given references to it.
544  *
545  * The other pages (we may call them "pagecache pages") are completely
546  * managed by the Linux memory manager: I/O, buffers, swapping etc.
547  * The following discussion applies only to them.
548  *
549  * A pagecache page contains an opaque `private' member, which belongs to the
550  * page's address_space. Usually, this is the address of a circular list of
551  * the page's disk buffers. PG_private must be set to tell the VM to call
552  * into the filesystem to release these pages.
553  *
554  * A page may belong to an inode's memory mapping. In this case, page->mapping
555  * is the pointer to the inode, and page->index is the file offset of the page,
556  * in units of PAGE_CACHE_SIZE.
557  *
558  * If pagecache pages are not associated with an inode, they are said to be
559  * anonymous pages. These may become associated with the swapcache, and in that
560  * case PG_swapcache is set, and page->private is an offset into the swapcache.
561  *
562  * In either case (swapcache or inode backed), the pagecache itself holds one
563  * reference to the page. Setting PG_private should also increment the
564  * refcount. The each user mapping also has a reference to the page.
565  *
566  * The pagecache pages are stored in a per-mapping radix tree, which is
567  * rooted at mapping->page_tree, and indexed by offset.
568  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
569  * lists, we instead now tag pages as dirty/writeback in the radix tree.
570  *
571  * All pagecache pages may be subject to I/O:
572  * - inode pages may need to be read from disk,
573  * - inode pages which have been modified and are MAP_SHARED may need
574  *   to be written back to the inode on disk,
575  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
576  *   modified may need to be swapped out to swap space and (later) to be read
577  *   back into memory.
578  */
579 
580 /*
581  * The zone field is never updated after free_area_init_core()
582  * sets it, so none of the operations on it need to be atomic.
583  */
584 
585 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
586 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
587 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
588 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
589 #define LAST_NID_PGOFF		(ZONES_PGOFF - LAST_NID_WIDTH)
590 
591 /*
592  * Define the bit shifts to access each section.  For non-existent
593  * sections we define the shift as 0; that plus a 0 mask ensures
594  * the compiler will optimise away reference to them.
595  */
596 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
597 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
598 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
599 #define LAST_NID_PGSHIFT	(LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
600 
601 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
602 #ifdef NODE_NOT_IN_PAGE_FLAGS
603 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
604 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
605 						SECTIONS_PGOFF : ZONES_PGOFF)
606 #else
607 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
608 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
609 						NODES_PGOFF : ZONES_PGOFF)
610 #endif
611 
612 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
613 
614 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
615 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
616 #endif
617 
618 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
619 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
620 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
621 #define LAST_NID_MASK		((1UL << LAST_NID_WIDTH) - 1)
622 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
623 
624 static inline enum zone_type page_zonenum(const struct page *page)
625 {
626 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
627 }
628 
629 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
630 #define SECTION_IN_PAGE_FLAGS
631 #endif
632 
633 /*
634  * The identification function is only used by the buddy allocator for
635  * determining if two pages could be buddies. We are not really
636  * identifying a zone since we could be using a the section number
637  * id if we have not node id available in page flags.
638  * We guarantee only that it will return the same value for two
639  * combinable pages in a zone.
640  */
641 static inline int page_zone_id(struct page *page)
642 {
643 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
644 }
645 
646 static inline int zone_to_nid(struct zone *zone)
647 {
648 #ifdef CONFIG_NUMA
649 	return zone->node;
650 #else
651 	return 0;
652 #endif
653 }
654 
655 #ifdef NODE_NOT_IN_PAGE_FLAGS
656 extern int page_to_nid(const struct page *page);
657 #else
658 static inline int page_to_nid(const struct page *page)
659 {
660 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
661 }
662 #endif
663 
664 #ifdef CONFIG_NUMA_BALANCING
665 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
666 static inline int page_nid_xchg_last(struct page *page, int nid)
667 {
668 	return xchg(&page->_last_nid, nid);
669 }
670 
671 static inline int page_nid_last(struct page *page)
672 {
673 	return page->_last_nid;
674 }
675 static inline void page_nid_reset_last(struct page *page)
676 {
677 	page->_last_nid = -1;
678 }
679 #else
680 static inline int page_nid_last(struct page *page)
681 {
682 	return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
683 }
684 
685 extern int page_nid_xchg_last(struct page *page, int nid);
686 
687 static inline void page_nid_reset_last(struct page *page)
688 {
689 	int nid = (1 << LAST_NID_SHIFT) - 1;
690 
691 	page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
692 	page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
693 }
694 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
695 #else
696 static inline int page_nid_xchg_last(struct page *page, int nid)
697 {
698 	return page_to_nid(page);
699 }
700 
701 static inline int page_nid_last(struct page *page)
702 {
703 	return page_to_nid(page);
704 }
705 
706 static inline void page_nid_reset_last(struct page *page)
707 {
708 }
709 #endif
710 
711 static inline struct zone *page_zone(const struct page *page)
712 {
713 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
714 }
715 
716 #ifdef SECTION_IN_PAGE_FLAGS
717 static inline void set_page_section(struct page *page, unsigned long section)
718 {
719 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
720 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
721 }
722 
723 static inline unsigned long page_to_section(const struct page *page)
724 {
725 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
726 }
727 #endif
728 
729 static inline void set_page_zone(struct page *page, enum zone_type zone)
730 {
731 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
732 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
733 }
734 
735 static inline void set_page_node(struct page *page, unsigned long node)
736 {
737 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
738 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
739 }
740 
741 static inline void set_page_links(struct page *page, enum zone_type zone,
742 	unsigned long node, unsigned long pfn)
743 {
744 	set_page_zone(page, zone);
745 	set_page_node(page, node);
746 #ifdef SECTION_IN_PAGE_FLAGS
747 	set_page_section(page, pfn_to_section_nr(pfn));
748 #endif
749 }
750 
751 /*
752  * Some inline functions in vmstat.h depend on page_zone()
753  */
754 #include <linux/vmstat.h>
755 
756 static __always_inline void *lowmem_page_address(const struct page *page)
757 {
758 	return __va(PFN_PHYS(page_to_pfn(page)));
759 }
760 
761 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
762 #define HASHED_PAGE_VIRTUAL
763 #endif
764 
765 #if defined(WANT_PAGE_VIRTUAL)
766 #define page_address(page) ((page)->virtual)
767 #define set_page_address(page, address)			\
768 	do {						\
769 		(page)->virtual = (address);		\
770 	} while(0)
771 #define page_address_init()  do { } while(0)
772 #endif
773 
774 #if defined(HASHED_PAGE_VIRTUAL)
775 void *page_address(const struct page *page);
776 void set_page_address(struct page *page, void *virtual);
777 void page_address_init(void);
778 #endif
779 
780 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
781 #define page_address(page) lowmem_page_address(page)
782 #define set_page_address(page, address)  do { } while(0)
783 #define page_address_init()  do { } while(0)
784 #endif
785 
786 /*
787  * On an anonymous page mapped into a user virtual memory area,
788  * page->mapping points to its anon_vma, not to a struct address_space;
789  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
790  *
791  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
792  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
793  * and then page->mapping points, not to an anon_vma, but to a private
794  * structure which KSM associates with that merged page.  See ksm.h.
795  *
796  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
797  *
798  * Please note that, confusingly, "page_mapping" refers to the inode
799  * address_space which maps the page from disk; whereas "page_mapped"
800  * refers to user virtual address space into which the page is mapped.
801  */
802 #define PAGE_MAPPING_ANON	1
803 #define PAGE_MAPPING_KSM	2
804 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
805 
806 extern struct address_space *page_mapping(struct page *page);
807 
808 /* Neutral page->mapping pointer to address_space or anon_vma or other */
809 static inline void *page_rmapping(struct page *page)
810 {
811 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
812 }
813 
814 extern struct address_space *__page_file_mapping(struct page *);
815 
816 static inline
817 struct address_space *page_file_mapping(struct page *page)
818 {
819 	if (unlikely(PageSwapCache(page)))
820 		return __page_file_mapping(page);
821 
822 	return page->mapping;
823 }
824 
825 static inline int PageAnon(struct page *page)
826 {
827 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
828 }
829 
830 /*
831  * Return the pagecache index of the passed page.  Regular pagecache pages
832  * use ->index whereas swapcache pages use ->private
833  */
834 static inline pgoff_t page_index(struct page *page)
835 {
836 	if (unlikely(PageSwapCache(page)))
837 		return page_private(page);
838 	return page->index;
839 }
840 
841 extern pgoff_t __page_file_index(struct page *page);
842 
843 /*
844  * Return the file index of the page. Regular pagecache pages use ->index
845  * whereas swapcache pages use swp_offset(->private)
846  */
847 static inline pgoff_t page_file_index(struct page *page)
848 {
849 	if (unlikely(PageSwapCache(page)))
850 		return __page_file_index(page);
851 
852 	return page->index;
853 }
854 
855 /*
856  * Return true if this page is mapped into pagetables.
857  */
858 static inline int page_mapped(struct page *page)
859 {
860 	return atomic_read(&(page)->_mapcount) >= 0;
861 }
862 
863 /*
864  * Different kinds of faults, as returned by handle_mm_fault().
865  * Used to decide whether a process gets delivered SIGBUS or
866  * just gets major/minor fault counters bumped up.
867  */
868 
869 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
870 
871 #define VM_FAULT_OOM	0x0001
872 #define VM_FAULT_SIGBUS	0x0002
873 #define VM_FAULT_MAJOR	0x0004
874 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
875 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
876 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
877 
878 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
879 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
880 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
881 
882 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
883 
884 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
885 			 VM_FAULT_HWPOISON_LARGE)
886 
887 /* Encode hstate index for a hwpoisoned large page */
888 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
889 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
890 
891 /*
892  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
893  */
894 extern void pagefault_out_of_memory(void);
895 
896 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
897 
898 /*
899  * Flags passed to show_mem() and show_free_areas() to suppress output in
900  * various contexts.
901  */
902 #define SHOW_MEM_FILTER_NODES	(0x0001u)	/* filter disallowed nodes */
903 
904 extern void show_free_areas(unsigned int flags);
905 extern bool skip_free_areas_node(unsigned int flags, int nid);
906 
907 int shmem_zero_setup(struct vm_area_struct *);
908 
909 extern int can_do_mlock(void);
910 extern int user_shm_lock(size_t, struct user_struct *);
911 extern void user_shm_unlock(size_t, struct user_struct *);
912 
913 /*
914  * Parameter block passed down to zap_pte_range in exceptional cases.
915  */
916 struct zap_details {
917 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
918 	struct address_space *check_mapping;	/* Check page->mapping if set */
919 	pgoff_t	first_index;			/* Lowest page->index to unmap */
920 	pgoff_t last_index;			/* Highest page->index to unmap */
921 };
922 
923 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
924 		pte_t pte);
925 
926 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
927 		unsigned long size);
928 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
929 		unsigned long size, struct zap_details *);
930 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
931 		unsigned long start, unsigned long end);
932 
933 /**
934  * mm_walk - callbacks for walk_page_range
935  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
936  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
937  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
938  *	       this handler is required to be able to handle
939  *	       pmd_trans_huge() pmds.  They may simply choose to
940  *	       split_huge_page() instead of handling it explicitly.
941  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
942  * @pte_hole: if set, called for each hole at all levels
943  * @hugetlb_entry: if set, called for each hugetlb entry
944  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
945  * 			      is used.
946  *
947  * (see walk_page_range for more details)
948  */
949 struct mm_walk {
950 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
951 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
952 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
953 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
954 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
955 	int (*hugetlb_entry)(pte_t *, unsigned long,
956 			     unsigned long, unsigned long, struct mm_walk *);
957 	struct mm_struct *mm;
958 	void *private;
959 };
960 
961 int walk_page_range(unsigned long addr, unsigned long end,
962 		struct mm_walk *walk);
963 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
964 		unsigned long end, unsigned long floor, unsigned long ceiling);
965 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
966 			struct vm_area_struct *vma);
967 void unmap_mapping_range(struct address_space *mapping,
968 		loff_t const holebegin, loff_t const holelen, int even_cows);
969 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
970 	unsigned long *pfn);
971 int follow_phys(struct vm_area_struct *vma, unsigned long address,
972 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
973 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
974 			void *buf, int len, int write);
975 
976 static inline void unmap_shared_mapping_range(struct address_space *mapping,
977 		loff_t const holebegin, loff_t const holelen)
978 {
979 	unmap_mapping_range(mapping, holebegin, holelen, 0);
980 }
981 
982 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
983 extern void truncate_setsize(struct inode *inode, loff_t newsize);
984 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
985 int truncate_inode_page(struct address_space *mapping, struct page *page);
986 int generic_error_remove_page(struct address_space *mapping, struct page *page);
987 int invalidate_inode_page(struct page *page);
988 
989 #ifdef CONFIG_MMU
990 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
991 			unsigned long address, unsigned int flags);
992 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
993 			    unsigned long address, unsigned int fault_flags);
994 #else
995 static inline int handle_mm_fault(struct mm_struct *mm,
996 			struct vm_area_struct *vma, unsigned long address,
997 			unsigned int flags)
998 {
999 	/* should never happen if there's no MMU */
1000 	BUG();
1001 	return VM_FAULT_SIGBUS;
1002 }
1003 static inline int fixup_user_fault(struct task_struct *tsk,
1004 		struct mm_struct *mm, unsigned long address,
1005 		unsigned int fault_flags)
1006 {
1007 	/* should never happen if there's no MMU */
1008 	BUG();
1009 	return -EFAULT;
1010 }
1011 #endif
1012 
1013 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1014 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1015 		void *buf, int len, int write);
1016 
1017 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1018 		      unsigned long start, unsigned long nr_pages,
1019 		      unsigned int foll_flags, struct page **pages,
1020 		      struct vm_area_struct **vmas, int *nonblocking);
1021 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1022 		    unsigned long start, unsigned long nr_pages,
1023 		    int write, int force, struct page **pages,
1024 		    struct vm_area_struct **vmas);
1025 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1026 			struct page **pages);
1027 struct kvec;
1028 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1029 			struct page **pages);
1030 int get_kernel_page(unsigned long start, int write, struct page **pages);
1031 struct page *get_dump_page(unsigned long addr);
1032 
1033 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1034 extern void do_invalidatepage(struct page *page, unsigned long offset);
1035 
1036 int __set_page_dirty_nobuffers(struct page *page);
1037 int __set_page_dirty_no_writeback(struct page *page);
1038 int redirty_page_for_writepage(struct writeback_control *wbc,
1039 				struct page *page);
1040 void account_page_dirtied(struct page *page, struct address_space *mapping);
1041 void account_page_writeback(struct page *page);
1042 int set_page_dirty(struct page *page);
1043 int set_page_dirty_lock(struct page *page);
1044 int clear_page_dirty_for_io(struct page *page);
1045 
1046 /* Is the vma a continuation of the stack vma above it? */
1047 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1048 {
1049 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1050 }
1051 
1052 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1053 					     unsigned long addr)
1054 {
1055 	return (vma->vm_flags & VM_GROWSDOWN) &&
1056 		(vma->vm_start == addr) &&
1057 		!vma_growsdown(vma->vm_prev, addr);
1058 }
1059 
1060 /* Is the vma a continuation of the stack vma below it? */
1061 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1062 {
1063 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1064 }
1065 
1066 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1067 					   unsigned long addr)
1068 {
1069 	return (vma->vm_flags & VM_GROWSUP) &&
1070 		(vma->vm_end == addr) &&
1071 		!vma_growsup(vma->vm_next, addr);
1072 }
1073 
1074 extern pid_t
1075 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1076 
1077 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1078 		unsigned long old_addr, struct vm_area_struct *new_vma,
1079 		unsigned long new_addr, unsigned long len,
1080 		bool need_rmap_locks);
1081 extern unsigned long do_mremap(unsigned long addr,
1082 			       unsigned long old_len, unsigned long new_len,
1083 			       unsigned long flags, unsigned long new_addr);
1084 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1085 			      unsigned long end, pgprot_t newprot,
1086 			      int dirty_accountable, int prot_numa);
1087 extern int mprotect_fixup(struct vm_area_struct *vma,
1088 			  struct vm_area_struct **pprev, unsigned long start,
1089 			  unsigned long end, unsigned long newflags);
1090 
1091 /*
1092  * doesn't attempt to fault and will return short.
1093  */
1094 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1095 			  struct page **pages);
1096 /*
1097  * per-process(per-mm_struct) statistics.
1098  */
1099 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1100 {
1101 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1102 
1103 #ifdef SPLIT_RSS_COUNTING
1104 	/*
1105 	 * counter is updated in asynchronous manner and may go to minus.
1106 	 * But it's never be expected number for users.
1107 	 */
1108 	if (val < 0)
1109 		val = 0;
1110 #endif
1111 	return (unsigned long)val;
1112 }
1113 
1114 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1115 {
1116 	atomic_long_add(value, &mm->rss_stat.count[member]);
1117 }
1118 
1119 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1120 {
1121 	atomic_long_inc(&mm->rss_stat.count[member]);
1122 }
1123 
1124 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1125 {
1126 	atomic_long_dec(&mm->rss_stat.count[member]);
1127 }
1128 
1129 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1130 {
1131 	return get_mm_counter(mm, MM_FILEPAGES) +
1132 		get_mm_counter(mm, MM_ANONPAGES);
1133 }
1134 
1135 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1136 {
1137 	return max(mm->hiwater_rss, get_mm_rss(mm));
1138 }
1139 
1140 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1141 {
1142 	return max(mm->hiwater_vm, mm->total_vm);
1143 }
1144 
1145 static inline void update_hiwater_rss(struct mm_struct *mm)
1146 {
1147 	unsigned long _rss = get_mm_rss(mm);
1148 
1149 	if ((mm)->hiwater_rss < _rss)
1150 		(mm)->hiwater_rss = _rss;
1151 }
1152 
1153 static inline void update_hiwater_vm(struct mm_struct *mm)
1154 {
1155 	if (mm->hiwater_vm < mm->total_vm)
1156 		mm->hiwater_vm = mm->total_vm;
1157 }
1158 
1159 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1160 					 struct mm_struct *mm)
1161 {
1162 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1163 
1164 	if (*maxrss < hiwater_rss)
1165 		*maxrss = hiwater_rss;
1166 }
1167 
1168 #if defined(SPLIT_RSS_COUNTING)
1169 void sync_mm_rss(struct mm_struct *mm);
1170 #else
1171 static inline void sync_mm_rss(struct mm_struct *mm)
1172 {
1173 }
1174 #endif
1175 
1176 int vma_wants_writenotify(struct vm_area_struct *vma);
1177 
1178 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1179 			       spinlock_t **ptl);
1180 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1181 				    spinlock_t **ptl)
1182 {
1183 	pte_t *ptep;
1184 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1185 	return ptep;
1186 }
1187 
1188 #ifdef __PAGETABLE_PUD_FOLDED
1189 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1190 						unsigned long address)
1191 {
1192 	return 0;
1193 }
1194 #else
1195 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1196 #endif
1197 
1198 #ifdef __PAGETABLE_PMD_FOLDED
1199 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1200 						unsigned long address)
1201 {
1202 	return 0;
1203 }
1204 #else
1205 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1206 #endif
1207 
1208 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1209 		pmd_t *pmd, unsigned long address);
1210 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1211 
1212 /*
1213  * The following ifdef needed to get the 4level-fixup.h header to work.
1214  * Remove it when 4level-fixup.h has been removed.
1215  */
1216 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1217 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1218 {
1219 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1220 		NULL: pud_offset(pgd, address);
1221 }
1222 
1223 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1224 {
1225 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1226 		NULL: pmd_offset(pud, address);
1227 }
1228 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1229 
1230 #if USE_SPLIT_PTLOCKS
1231 /*
1232  * We tuck a spinlock to guard each pagetable page into its struct page,
1233  * at page->private, with BUILD_BUG_ON to make sure that this will not
1234  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1235  * When freeing, reset page->mapping so free_pages_check won't complain.
1236  */
1237 #define __pte_lockptr(page)	&((page)->ptl)
1238 #define pte_lock_init(_page)	do {					\
1239 	spin_lock_init(__pte_lockptr(_page));				\
1240 } while (0)
1241 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1242 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1243 #else	/* !USE_SPLIT_PTLOCKS */
1244 /*
1245  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1246  */
1247 #define pte_lock_init(page)	do {} while (0)
1248 #define pte_lock_deinit(page)	do {} while (0)
1249 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1250 #endif /* USE_SPLIT_PTLOCKS */
1251 
1252 static inline void pgtable_page_ctor(struct page *page)
1253 {
1254 	pte_lock_init(page);
1255 	inc_zone_page_state(page, NR_PAGETABLE);
1256 }
1257 
1258 static inline void pgtable_page_dtor(struct page *page)
1259 {
1260 	pte_lock_deinit(page);
1261 	dec_zone_page_state(page, NR_PAGETABLE);
1262 }
1263 
1264 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1265 ({							\
1266 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1267 	pte_t *__pte = pte_offset_map(pmd, address);	\
1268 	*(ptlp) = __ptl;				\
1269 	spin_lock(__ptl);				\
1270 	__pte;						\
1271 })
1272 
1273 #define pte_unmap_unlock(pte, ptl)	do {		\
1274 	spin_unlock(ptl);				\
1275 	pte_unmap(pte);					\
1276 } while (0)
1277 
1278 #define pte_alloc_map(mm, vma, pmd, address)				\
1279 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1280 							pmd, address))?	\
1281 	 NULL: pte_offset_map(pmd, address))
1282 
1283 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1284 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1285 							pmd, address))?	\
1286 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1287 
1288 #define pte_alloc_kernel(pmd, address)			\
1289 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1290 		NULL: pte_offset_kernel(pmd, address))
1291 
1292 extern void free_area_init(unsigned long * zones_size);
1293 extern void free_area_init_node(int nid, unsigned long * zones_size,
1294 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1295 extern void free_initmem(void);
1296 
1297 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1298 /*
1299  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1300  * zones, allocate the backing mem_map and account for memory holes in a more
1301  * architecture independent manner. This is a substitute for creating the
1302  * zone_sizes[] and zholes_size[] arrays and passing them to
1303  * free_area_init_node()
1304  *
1305  * An architecture is expected to register range of page frames backed by
1306  * physical memory with memblock_add[_node]() before calling
1307  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1308  * usage, an architecture is expected to do something like
1309  *
1310  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1311  * 							 max_highmem_pfn};
1312  * for_each_valid_physical_page_range()
1313  * 	memblock_add_node(base, size, nid)
1314  * free_area_init_nodes(max_zone_pfns);
1315  *
1316  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1317  * registered physical page range.  Similarly
1318  * sparse_memory_present_with_active_regions() calls memory_present() for
1319  * each range when SPARSEMEM is enabled.
1320  *
1321  * See mm/page_alloc.c for more information on each function exposed by
1322  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1323  */
1324 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1325 unsigned long node_map_pfn_alignment(void);
1326 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1327 						unsigned long end_pfn);
1328 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1329 						unsigned long end_pfn);
1330 extern void get_pfn_range_for_nid(unsigned int nid,
1331 			unsigned long *start_pfn, unsigned long *end_pfn);
1332 extern unsigned long find_min_pfn_with_active_regions(void);
1333 extern void free_bootmem_with_active_regions(int nid,
1334 						unsigned long max_low_pfn);
1335 extern void sparse_memory_present_with_active_regions(int nid);
1336 
1337 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1338 
1339 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1340     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1341 static inline int __early_pfn_to_nid(unsigned long pfn)
1342 {
1343 	return 0;
1344 }
1345 #else
1346 /* please see mm/page_alloc.c */
1347 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1348 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1349 /* there is a per-arch backend function. */
1350 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1351 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1352 #endif
1353 
1354 extern void set_dma_reserve(unsigned long new_dma_reserve);
1355 extern void memmap_init_zone(unsigned long, int, unsigned long,
1356 				unsigned long, enum memmap_context);
1357 extern void setup_per_zone_wmarks(void);
1358 extern int __meminit init_per_zone_wmark_min(void);
1359 extern void mem_init(void);
1360 extern void __init mmap_init(void);
1361 extern void show_mem(unsigned int flags);
1362 extern void si_meminfo(struct sysinfo * val);
1363 extern void si_meminfo_node(struct sysinfo *val, int nid);
1364 
1365 extern __printf(3, 4)
1366 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1367 
1368 extern void setup_per_cpu_pageset(void);
1369 
1370 extern void zone_pcp_update(struct zone *zone);
1371 extern void zone_pcp_reset(struct zone *zone);
1372 
1373 /* page_alloc.c */
1374 extern int min_free_kbytes;
1375 
1376 /* nommu.c */
1377 extern atomic_long_t mmap_pages_allocated;
1378 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1379 
1380 /* interval_tree.c */
1381 void vma_interval_tree_insert(struct vm_area_struct *node,
1382 			      struct rb_root *root);
1383 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1384 				    struct vm_area_struct *prev,
1385 				    struct rb_root *root);
1386 void vma_interval_tree_remove(struct vm_area_struct *node,
1387 			      struct rb_root *root);
1388 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1389 				unsigned long start, unsigned long last);
1390 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1391 				unsigned long start, unsigned long last);
1392 
1393 #define vma_interval_tree_foreach(vma, root, start, last)		\
1394 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1395 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1396 
1397 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1398 					struct list_head *list)
1399 {
1400 	list_add_tail(&vma->shared.nonlinear, list);
1401 }
1402 
1403 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1404 				   struct rb_root *root);
1405 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1406 				   struct rb_root *root);
1407 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1408 	struct rb_root *root, unsigned long start, unsigned long last);
1409 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1410 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1411 #ifdef CONFIG_DEBUG_VM_RB
1412 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1413 #endif
1414 
1415 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1416 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1417 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1418 
1419 /* mmap.c */
1420 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1421 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1422 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1423 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1424 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1425 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1426 	struct mempolicy *);
1427 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1428 extern int split_vma(struct mm_struct *,
1429 	struct vm_area_struct *, unsigned long addr, int new_below);
1430 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1431 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1432 	struct rb_node **, struct rb_node *);
1433 extern void unlink_file_vma(struct vm_area_struct *);
1434 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1435 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1436 	bool *need_rmap_locks);
1437 extern void exit_mmap(struct mm_struct *);
1438 
1439 extern int mm_take_all_locks(struct mm_struct *mm);
1440 extern void mm_drop_all_locks(struct mm_struct *mm);
1441 
1442 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1443 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1444 
1445 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1446 extern int install_special_mapping(struct mm_struct *mm,
1447 				   unsigned long addr, unsigned long len,
1448 				   unsigned long flags, struct page **pages);
1449 
1450 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1451 
1452 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1453 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1454 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1455 	unsigned long len, unsigned long prot, unsigned long flags,
1456 	unsigned long pgoff, unsigned long *populate);
1457 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1458 
1459 #ifdef CONFIG_MMU
1460 extern int __mm_populate(unsigned long addr, unsigned long len,
1461 			 int ignore_errors);
1462 static inline void mm_populate(unsigned long addr, unsigned long len)
1463 {
1464 	/* Ignore errors */
1465 	(void) __mm_populate(addr, len, 1);
1466 }
1467 #else
1468 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1469 #endif
1470 
1471 /* These take the mm semaphore themselves */
1472 extern unsigned long vm_brk(unsigned long, unsigned long);
1473 extern int vm_munmap(unsigned long, size_t);
1474 extern unsigned long vm_mmap(struct file *, unsigned long,
1475         unsigned long, unsigned long,
1476         unsigned long, unsigned long);
1477 
1478 struct vm_unmapped_area_info {
1479 #define VM_UNMAPPED_AREA_TOPDOWN 1
1480 	unsigned long flags;
1481 	unsigned long length;
1482 	unsigned long low_limit;
1483 	unsigned long high_limit;
1484 	unsigned long align_mask;
1485 	unsigned long align_offset;
1486 };
1487 
1488 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1489 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1490 
1491 /*
1492  * Search for an unmapped address range.
1493  *
1494  * We are looking for a range that:
1495  * - does not intersect with any VMA;
1496  * - is contained within the [low_limit, high_limit) interval;
1497  * - is at least the desired size.
1498  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1499  */
1500 static inline unsigned long
1501 vm_unmapped_area(struct vm_unmapped_area_info *info)
1502 {
1503 	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1504 		return unmapped_area(info);
1505 	else
1506 		return unmapped_area_topdown(info);
1507 }
1508 
1509 /* truncate.c */
1510 extern void truncate_inode_pages(struct address_space *, loff_t);
1511 extern void truncate_inode_pages_range(struct address_space *,
1512 				       loff_t lstart, loff_t lend);
1513 
1514 /* generic vm_area_ops exported for stackable file systems */
1515 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1516 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1517 
1518 /* mm/page-writeback.c */
1519 int write_one_page(struct page *page, int wait);
1520 void task_dirty_inc(struct task_struct *tsk);
1521 
1522 /* readahead.c */
1523 #define VM_MAX_READAHEAD	128	/* kbytes */
1524 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1525 
1526 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1527 			pgoff_t offset, unsigned long nr_to_read);
1528 
1529 void page_cache_sync_readahead(struct address_space *mapping,
1530 			       struct file_ra_state *ra,
1531 			       struct file *filp,
1532 			       pgoff_t offset,
1533 			       unsigned long size);
1534 
1535 void page_cache_async_readahead(struct address_space *mapping,
1536 				struct file_ra_state *ra,
1537 				struct file *filp,
1538 				struct page *pg,
1539 				pgoff_t offset,
1540 				unsigned long size);
1541 
1542 unsigned long max_sane_readahead(unsigned long nr);
1543 unsigned long ra_submit(struct file_ra_state *ra,
1544 			struct address_space *mapping,
1545 			struct file *filp);
1546 
1547 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1548 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1549 
1550 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1551 extern int expand_downwards(struct vm_area_struct *vma,
1552 		unsigned long address);
1553 #if VM_GROWSUP
1554 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1555 #else
1556   #define expand_upwards(vma, address) do { } while (0)
1557 #endif
1558 
1559 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1560 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1561 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1562 					     struct vm_area_struct **pprev);
1563 
1564 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1565    NULL if none.  Assume start_addr < end_addr. */
1566 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1567 {
1568 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1569 
1570 	if (vma && end_addr <= vma->vm_start)
1571 		vma = NULL;
1572 	return vma;
1573 }
1574 
1575 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1576 {
1577 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1578 }
1579 
1580 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1581 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1582 				unsigned long vm_start, unsigned long vm_end)
1583 {
1584 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1585 
1586 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1587 		vma = NULL;
1588 
1589 	return vma;
1590 }
1591 
1592 #ifdef CONFIG_MMU
1593 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1594 #else
1595 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1596 {
1597 	return __pgprot(0);
1598 }
1599 #endif
1600 
1601 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1602 unsigned long change_prot_numa(struct vm_area_struct *vma,
1603 			unsigned long start, unsigned long end);
1604 #endif
1605 
1606 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1607 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1608 			unsigned long pfn, unsigned long size, pgprot_t);
1609 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1610 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1611 			unsigned long pfn);
1612 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1613 			unsigned long pfn);
1614 
1615 struct page *follow_page_mask(struct vm_area_struct *vma,
1616 			      unsigned long address, unsigned int foll_flags,
1617 			      unsigned int *page_mask);
1618 
1619 static inline struct page *follow_page(struct vm_area_struct *vma,
1620 		unsigned long address, unsigned int foll_flags)
1621 {
1622 	unsigned int unused_page_mask;
1623 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1624 }
1625 
1626 #define FOLL_WRITE	0x01	/* check pte is writable */
1627 #define FOLL_TOUCH	0x02	/* mark page accessed */
1628 #define FOLL_GET	0x04	/* do get_page on page */
1629 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1630 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1631 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1632 				 * and return without waiting upon it */
1633 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1634 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1635 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1636 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
1637 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
1638 
1639 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1640 			void *data);
1641 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1642 			       unsigned long size, pte_fn_t fn, void *data);
1643 
1644 #ifdef CONFIG_PROC_FS
1645 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1646 #else
1647 static inline void vm_stat_account(struct mm_struct *mm,
1648 			unsigned long flags, struct file *file, long pages)
1649 {
1650 	mm->total_vm += pages;
1651 }
1652 #endif /* CONFIG_PROC_FS */
1653 
1654 #ifdef CONFIG_DEBUG_PAGEALLOC
1655 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1656 #ifdef CONFIG_HIBERNATION
1657 extern bool kernel_page_present(struct page *page);
1658 #endif /* CONFIG_HIBERNATION */
1659 #else
1660 static inline void
1661 kernel_map_pages(struct page *page, int numpages, int enable) {}
1662 #ifdef CONFIG_HIBERNATION
1663 static inline bool kernel_page_present(struct page *page) { return true; }
1664 #endif /* CONFIG_HIBERNATION */
1665 #endif
1666 
1667 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1668 #ifdef	__HAVE_ARCH_GATE_AREA
1669 int in_gate_area_no_mm(unsigned long addr);
1670 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1671 #else
1672 int in_gate_area_no_mm(unsigned long addr);
1673 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1674 #endif	/* __HAVE_ARCH_GATE_AREA */
1675 
1676 int drop_caches_sysctl_handler(struct ctl_table *, int,
1677 					void __user *, size_t *, loff_t *);
1678 unsigned long shrink_slab(struct shrink_control *shrink,
1679 			  unsigned long nr_pages_scanned,
1680 			  unsigned long lru_pages);
1681 
1682 #ifndef CONFIG_MMU
1683 #define randomize_va_space 0
1684 #else
1685 extern int randomize_va_space;
1686 #endif
1687 
1688 const char * arch_vma_name(struct vm_area_struct *vma);
1689 void print_vma_addr(char *prefix, unsigned long rip);
1690 
1691 void sparse_mem_maps_populate_node(struct page **map_map,
1692 				   unsigned long pnum_begin,
1693 				   unsigned long pnum_end,
1694 				   unsigned long map_count,
1695 				   int nodeid);
1696 
1697 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1698 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1699 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1700 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1701 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1702 void *vmemmap_alloc_block(unsigned long size, int node);
1703 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1704 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1705 int vmemmap_populate_basepages(struct page *start_page,
1706 						unsigned long pages, int node);
1707 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1708 void vmemmap_populate_print_last(void);
1709 #ifdef CONFIG_MEMORY_HOTPLUG
1710 void vmemmap_free(struct page *memmap, unsigned long nr_pages);
1711 #endif
1712 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1713 				  unsigned long size);
1714 
1715 enum mf_flags {
1716 	MF_COUNT_INCREASED = 1 << 0,
1717 	MF_ACTION_REQUIRED = 1 << 1,
1718 	MF_MUST_KILL = 1 << 2,
1719 };
1720 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1721 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1722 extern int unpoison_memory(unsigned long pfn);
1723 extern int sysctl_memory_failure_early_kill;
1724 extern int sysctl_memory_failure_recovery;
1725 extern void shake_page(struct page *p, int access);
1726 extern atomic_long_t num_poisoned_pages;
1727 extern int soft_offline_page(struct page *page, int flags);
1728 
1729 extern void dump_page(struct page *page);
1730 
1731 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1732 extern void clear_huge_page(struct page *page,
1733 			    unsigned long addr,
1734 			    unsigned int pages_per_huge_page);
1735 extern void copy_user_huge_page(struct page *dst, struct page *src,
1736 				unsigned long addr, struct vm_area_struct *vma,
1737 				unsigned int pages_per_huge_page);
1738 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1739 
1740 #ifdef CONFIG_DEBUG_PAGEALLOC
1741 extern unsigned int _debug_guardpage_minorder;
1742 
1743 static inline unsigned int debug_guardpage_minorder(void)
1744 {
1745 	return _debug_guardpage_minorder;
1746 }
1747 
1748 static inline bool page_is_guard(struct page *page)
1749 {
1750 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1751 }
1752 #else
1753 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1754 static inline bool page_is_guard(struct page *page) { return false; }
1755 #endif /* CONFIG_DEBUG_PAGEALLOC */
1756 
1757 #endif /* __KERNEL__ */
1758 #endif /* _LINUX_MM_H */
1759