1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct file_ra_state; 39 struct user_struct; 40 struct writeback_control; 41 struct bdi_writeback; 42 struct pt_regs; 43 44 extern int sysctl_page_lock_unfairness; 45 46 void init_mm_internals(void); 47 48 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 49 extern unsigned long max_mapnr; 50 51 static inline void set_max_mapnr(unsigned long limit) 52 { 53 max_mapnr = limit; 54 } 55 #else 56 static inline void set_max_mapnr(unsigned long limit) { } 57 #endif 58 59 extern atomic_long_t _totalram_pages; 60 static inline unsigned long totalram_pages(void) 61 { 62 return (unsigned long)atomic_long_read(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_inc(void) 66 { 67 atomic_long_inc(&_totalram_pages); 68 } 69 70 static inline void totalram_pages_dec(void) 71 { 72 atomic_long_dec(&_totalram_pages); 73 } 74 75 static inline void totalram_pages_add(long count) 76 { 77 atomic_long_add(count, &_totalram_pages); 78 } 79 80 extern void * high_memory; 81 extern int page_cluster; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern const int mmap_rnd_bits_max; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 /* 104 * Architectures that support memory tagging (assigning tags to memory regions, 105 * embedding these tags into addresses that point to these memory regions, and 106 * checking that the memory and the pointer tags match on memory accesses) 107 * redefine this macro to strip tags from pointers. 108 * It's defined as noop for arcitectures that don't support memory tagging. 109 */ 110 #ifndef untagged_addr 111 #define untagged_addr(addr) (addr) 112 #endif 113 114 #ifndef __pa_symbol 115 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 116 #endif 117 118 #ifndef page_to_virt 119 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 120 #endif 121 122 #ifndef lm_alias 123 #define lm_alias(x) __va(__pa_symbol(x)) 124 #endif 125 126 /* 127 * To prevent common memory management code establishing 128 * a zero page mapping on a read fault. 129 * This macro should be defined within <asm/pgtable.h>. 130 * s390 does this to prevent multiplexing of hardware bits 131 * related to the physical page in case of virtualization. 132 */ 133 #ifndef mm_forbids_zeropage 134 #define mm_forbids_zeropage(X) (0) 135 #endif 136 137 /* 138 * On some architectures it is expensive to call memset() for small sizes. 139 * If an architecture decides to implement their own version of 140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 141 * define their own version of this macro in <asm/pgtable.h> 142 */ 143 #if BITS_PER_LONG == 64 144 /* This function must be updated when the size of struct page grows above 80 145 * or reduces below 56. The idea that compiler optimizes out switch() 146 * statement, and only leaves move/store instructions. Also the compiler can 147 * combine write statments if they are both assignments and can be reordered, 148 * this can result in several of the writes here being dropped. 149 */ 150 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 151 static inline void __mm_zero_struct_page(struct page *page) 152 { 153 unsigned long *_pp = (void *)page; 154 155 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 156 BUILD_BUG_ON(sizeof(struct page) & 7); 157 BUILD_BUG_ON(sizeof(struct page) < 56); 158 BUILD_BUG_ON(sizeof(struct page) > 80); 159 160 switch (sizeof(struct page)) { 161 case 80: 162 _pp[9] = 0; 163 fallthrough; 164 case 72: 165 _pp[8] = 0; 166 fallthrough; 167 case 64: 168 _pp[7] = 0; 169 fallthrough; 170 case 56: 171 _pp[6] = 0; 172 _pp[5] = 0; 173 _pp[4] = 0; 174 _pp[3] = 0; 175 _pp[2] = 0; 176 _pp[1] = 0; 177 _pp[0] = 0; 178 } 179 } 180 #else 181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 182 #endif 183 184 /* 185 * Default maximum number of active map areas, this limits the number of vmas 186 * per mm struct. Users can overwrite this number by sysctl but there is a 187 * problem. 188 * 189 * When a program's coredump is generated as ELF format, a section is created 190 * per a vma. In ELF, the number of sections is represented in unsigned short. 191 * This means the number of sections should be smaller than 65535 at coredump. 192 * Because the kernel adds some informative sections to a image of program at 193 * generating coredump, we need some margin. The number of extra sections is 194 * 1-3 now and depends on arch. We use "5" as safe margin, here. 195 * 196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 197 * not a hard limit any more. Although some userspace tools can be surprised by 198 * that. 199 */ 200 #define MAPCOUNT_ELF_CORE_MARGIN (5) 201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 202 203 extern int sysctl_max_map_count; 204 205 extern unsigned long sysctl_user_reserve_kbytes; 206 extern unsigned long sysctl_admin_reserve_kbytes; 207 208 extern int sysctl_overcommit_memory; 209 extern int sysctl_overcommit_ratio; 210 extern unsigned long sysctl_overcommit_kbytes; 211 212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218 219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 220 221 /* to align the pointer to the (next) page boundary */ 222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228 229 /* 230 * Linux kernel virtual memory manager primitives. 231 * The idea being to have a "virtual" mm in the same way 232 * we have a virtual fs - giving a cleaner interface to the 233 * mm details, and allowing different kinds of memory mappings 234 * (from shared memory to executable loading to arbitrary 235 * mmap() functions). 236 */ 237 238 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 240 void vm_area_free(struct vm_area_struct *); 241 242 #ifndef CONFIG_MMU 243 extern struct rb_root nommu_region_tree; 244 extern struct rw_semaphore nommu_region_sem; 245 246 extern unsigned int kobjsize(const void *objp); 247 #endif 248 249 /* 250 * vm_flags in vm_area_struct, see mm_types.h. 251 * When changing, update also include/trace/events/mmflags.h 252 */ 253 #define VM_NONE 0x00000000 254 255 #define VM_READ 0x00000001 /* currently active flags */ 256 #define VM_WRITE 0x00000002 257 #define VM_EXEC 0x00000004 258 #define VM_SHARED 0x00000008 259 260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 261 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 262 #define VM_MAYWRITE 0x00000020 263 #define VM_MAYEXEC 0x00000040 264 #define VM_MAYSHARE 0x00000080 265 266 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 267 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 269 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 271 272 #define VM_LOCKED 0x00002000 273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 274 275 /* Used by sys_madvise() */ 276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 278 279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 285 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 289 290 #ifdef CONFIG_MEM_SOFT_DIRTY 291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 292 #else 293 # define VM_SOFTDIRTY 0 294 #endif 295 296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 300 301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 308 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 309 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 310 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 311 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 313 314 #ifdef CONFIG_ARCH_HAS_PKEYS 315 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 316 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 317 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 318 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 319 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 320 #ifdef CONFIG_PPC 321 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 322 #else 323 # define VM_PKEY_BIT4 0 324 #endif 325 #endif /* CONFIG_ARCH_HAS_PKEYS */ 326 327 #if defined(CONFIG_X86) 328 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 329 #elif defined(CONFIG_PPC) 330 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 331 #elif defined(CONFIG_PARISC) 332 # define VM_GROWSUP VM_ARCH_1 333 #elif defined(CONFIG_IA64) 334 # define VM_GROWSUP VM_ARCH_1 335 #elif defined(CONFIG_SPARC64) 336 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 337 # define VM_ARCH_CLEAR VM_SPARC_ADI 338 #elif defined(CONFIG_ARM64) 339 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 340 # define VM_ARCH_CLEAR VM_ARM64_BTI 341 #elif !defined(CONFIG_MMU) 342 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 343 #endif 344 345 #ifndef VM_GROWSUP 346 # define VM_GROWSUP VM_NONE 347 #endif 348 349 /* Bits set in the VMA until the stack is in its final location */ 350 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 351 352 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 353 354 /* Common data flag combinations */ 355 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 356 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 357 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 358 VM_MAYWRITE | VM_MAYEXEC) 359 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 360 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 361 362 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 363 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 364 #endif 365 366 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 367 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 368 #endif 369 370 #ifdef CONFIG_STACK_GROWSUP 371 #define VM_STACK VM_GROWSUP 372 #else 373 #define VM_STACK VM_GROWSDOWN 374 #endif 375 376 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 377 378 /* VMA basic access permission flags */ 379 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 380 381 382 /* 383 * Special vmas that are non-mergable, non-mlock()able. 384 */ 385 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 386 387 /* This mask prevents VMA from being scanned with khugepaged */ 388 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 389 390 /* This mask defines which mm->def_flags a process can inherit its parent */ 391 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 392 393 /* This mask is used to clear all the VMA flags used by mlock */ 394 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 395 396 /* Arch-specific flags to clear when updating VM flags on protection change */ 397 #ifndef VM_ARCH_CLEAR 398 # define VM_ARCH_CLEAR VM_NONE 399 #endif 400 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 401 402 /* 403 * mapping from the currently active vm_flags protection bits (the 404 * low four bits) to a page protection mask.. 405 */ 406 extern pgprot_t protection_map[16]; 407 408 /** 409 * Fault flag definitions. 410 * 411 * @FAULT_FLAG_WRITE: Fault was a write fault. 412 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 413 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 414 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 415 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 416 * @FAULT_FLAG_TRIED: The fault has been tried once. 417 * @FAULT_FLAG_USER: The fault originated in userspace. 418 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 419 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 420 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 421 * 422 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 423 * whether we would allow page faults to retry by specifying these two 424 * fault flags correctly. Currently there can be three legal combinations: 425 * 426 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 427 * this is the first try 428 * 429 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 430 * we've already tried at least once 431 * 432 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 433 * 434 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 435 * be used. Note that page faults can be allowed to retry for multiple times, 436 * in which case we'll have an initial fault with flags (a) then later on 437 * continuous faults with flags (b). We should always try to detect pending 438 * signals before a retry to make sure the continuous page faults can still be 439 * interrupted if necessary. 440 */ 441 #define FAULT_FLAG_WRITE 0x01 442 #define FAULT_FLAG_MKWRITE 0x02 443 #define FAULT_FLAG_ALLOW_RETRY 0x04 444 #define FAULT_FLAG_RETRY_NOWAIT 0x08 445 #define FAULT_FLAG_KILLABLE 0x10 446 #define FAULT_FLAG_TRIED 0x20 447 #define FAULT_FLAG_USER 0x40 448 #define FAULT_FLAG_REMOTE 0x80 449 #define FAULT_FLAG_INSTRUCTION 0x100 450 #define FAULT_FLAG_INTERRUPTIBLE 0x200 451 452 /* 453 * The default fault flags that should be used by most of the 454 * arch-specific page fault handlers. 455 */ 456 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 457 FAULT_FLAG_KILLABLE | \ 458 FAULT_FLAG_INTERRUPTIBLE) 459 460 /** 461 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 462 * 463 * This is mostly used for places where we want to try to avoid taking 464 * the mmap_lock for too long a time when waiting for another condition 465 * to change, in which case we can try to be polite to release the 466 * mmap_lock in the first round to avoid potential starvation of other 467 * processes that would also want the mmap_lock. 468 * 469 * Return: true if the page fault allows retry and this is the first 470 * attempt of the fault handling; false otherwise. 471 */ 472 static inline bool fault_flag_allow_retry_first(unsigned int flags) 473 { 474 return (flags & FAULT_FLAG_ALLOW_RETRY) && 475 (!(flags & FAULT_FLAG_TRIED)); 476 } 477 478 #define FAULT_FLAG_TRACE \ 479 { FAULT_FLAG_WRITE, "WRITE" }, \ 480 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 481 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 482 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 483 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 484 { FAULT_FLAG_TRIED, "TRIED" }, \ 485 { FAULT_FLAG_USER, "USER" }, \ 486 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 487 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 488 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 489 490 /* 491 * vm_fault is filled by the pagefault handler and passed to the vma's 492 * ->fault function. The vma's ->fault is responsible for returning a bitmask 493 * of VM_FAULT_xxx flags that give details about how the fault was handled. 494 * 495 * MM layer fills up gfp_mask for page allocations but fault handler might 496 * alter it if its implementation requires a different allocation context. 497 * 498 * pgoff should be used in favour of virtual_address, if possible. 499 */ 500 struct vm_fault { 501 struct vm_area_struct *vma; /* Target VMA */ 502 unsigned int flags; /* FAULT_FLAG_xxx flags */ 503 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 504 pgoff_t pgoff; /* Logical page offset based on vma */ 505 unsigned long address; /* Faulting virtual address */ 506 pmd_t *pmd; /* Pointer to pmd entry matching 507 * the 'address' */ 508 pud_t *pud; /* Pointer to pud entry matching 509 * the 'address' 510 */ 511 pte_t orig_pte; /* Value of PTE at the time of fault */ 512 513 struct page *cow_page; /* Page handler may use for COW fault */ 514 struct page *page; /* ->fault handlers should return a 515 * page here, unless VM_FAULT_NOPAGE 516 * is set (which is also implied by 517 * VM_FAULT_ERROR). 518 */ 519 /* These three entries are valid only while holding ptl lock */ 520 pte_t *pte; /* Pointer to pte entry matching 521 * the 'address'. NULL if the page 522 * table hasn't been allocated. 523 */ 524 spinlock_t *ptl; /* Page table lock. 525 * Protects pte page table if 'pte' 526 * is not NULL, otherwise pmd. 527 */ 528 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 529 * vm_ops->map_pages() calls 530 * alloc_set_pte() from atomic context. 531 * do_fault_around() pre-allocates 532 * page table to avoid allocation from 533 * atomic context. 534 */ 535 }; 536 537 /* page entry size for vm->huge_fault() */ 538 enum page_entry_size { 539 PE_SIZE_PTE = 0, 540 PE_SIZE_PMD, 541 PE_SIZE_PUD, 542 }; 543 544 /* 545 * These are the virtual MM functions - opening of an area, closing and 546 * unmapping it (needed to keep files on disk up-to-date etc), pointer 547 * to the functions called when a no-page or a wp-page exception occurs. 548 */ 549 struct vm_operations_struct { 550 void (*open)(struct vm_area_struct * area); 551 void (*close)(struct vm_area_struct * area); 552 int (*split)(struct vm_area_struct * area, unsigned long addr); 553 int (*mremap)(struct vm_area_struct * area); 554 vm_fault_t (*fault)(struct vm_fault *vmf); 555 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 556 enum page_entry_size pe_size); 557 void (*map_pages)(struct vm_fault *vmf, 558 pgoff_t start_pgoff, pgoff_t end_pgoff); 559 unsigned long (*pagesize)(struct vm_area_struct * area); 560 561 /* notification that a previously read-only page is about to become 562 * writable, if an error is returned it will cause a SIGBUS */ 563 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 564 565 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 566 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 567 568 /* called by access_process_vm when get_user_pages() fails, typically 569 * for use by special VMAs that can switch between memory and hardware 570 */ 571 int (*access)(struct vm_area_struct *vma, unsigned long addr, 572 void *buf, int len, int write); 573 574 /* Called by the /proc/PID/maps code to ask the vma whether it 575 * has a special name. Returning non-NULL will also cause this 576 * vma to be dumped unconditionally. */ 577 const char *(*name)(struct vm_area_struct *vma); 578 579 #ifdef CONFIG_NUMA 580 /* 581 * set_policy() op must add a reference to any non-NULL @new mempolicy 582 * to hold the policy upon return. Caller should pass NULL @new to 583 * remove a policy and fall back to surrounding context--i.e. do not 584 * install a MPOL_DEFAULT policy, nor the task or system default 585 * mempolicy. 586 */ 587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 588 589 /* 590 * get_policy() op must add reference [mpol_get()] to any policy at 591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 592 * in mm/mempolicy.c will do this automatically. 593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 596 * must return NULL--i.e., do not "fallback" to task or system default 597 * policy. 598 */ 599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 600 unsigned long addr); 601 #endif 602 /* 603 * Called by vm_normal_page() for special PTEs to find the 604 * page for @addr. This is useful if the default behavior 605 * (using pte_page()) would not find the correct page. 606 */ 607 struct page *(*find_special_page)(struct vm_area_struct *vma, 608 unsigned long addr); 609 }; 610 611 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 612 { 613 static const struct vm_operations_struct dummy_vm_ops = {}; 614 615 memset(vma, 0, sizeof(*vma)); 616 vma->vm_mm = mm; 617 vma->vm_ops = &dummy_vm_ops; 618 INIT_LIST_HEAD(&vma->anon_vma_chain); 619 } 620 621 static inline void vma_set_anonymous(struct vm_area_struct *vma) 622 { 623 vma->vm_ops = NULL; 624 } 625 626 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 627 { 628 return !vma->vm_ops; 629 } 630 631 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 632 { 633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 634 635 if (!maybe_stack) 636 return false; 637 638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 639 VM_STACK_INCOMPLETE_SETUP) 640 return true; 641 642 return false; 643 } 644 645 static inline bool vma_is_foreign(struct vm_area_struct *vma) 646 { 647 if (!current->mm) 648 return true; 649 650 if (current->mm != vma->vm_mm) 651 return true; 652 653 return false; 654 } 655 656 static inline bool vma_is_accessible(struct vm_area_struct *vma) 657 { 658 return vma->vm_flags & VM_ACCESS_FLAGS; 659 } 660 661 #ifdef CONFIG_SHMEM 662 /* 663 * The vma_is_shmem is not inline because it is used only by slow 664 * paths in userfault. 665 */ 666 bool vma_is_shmem(struct vm_area_struct *vma); 667 #else 668 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 669 #endif 670 671 int vma_is_stack_for_current(struct vm_area_struct *vma); 672 673 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 674 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 675 676 struct mmu_gather; 677 struct inode; 678 679 #include <linux/huge_mm.h> 680 681 /* 682 * Methods to modify the page usage count. 683 * 684 * What counts for a page usage: 685 * - cache mapping (page->mapping) 686 * - private data (page->private) 687 * - page mapped in a task's page tables, each mapping 688 * is counted separately 689 * 690 * Also, many kernel routines increase the page count before a critical 691 * routine so they can be sure the page doesn't go away from under them. 692 */ 693 694 /* 695 * Drop a ref, return true if the refcount fell to zero (the page has no users) 696 */ 697 static inline int put_page_testzero(struct page *page) 698 { 699 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 700 return page_ref_dec_and_test(page); 701 } 702 703 /* 704 * Try to grab a ref unless the page has a refcount of zero, return false if 705 * that is the case. 706 * This can be called when MMU is off so it must not access 707 * any of the virtual mappings. 708 */ 709 static inline int get_page_unless_zero(struct page *page) 710 { 711 return page_ref_add_unless(page, 1, 0); 712 } 713 714 extern int page_is_ram(unsigned long pfn); 715 716 enum { 717 REGION_INTERSECTS, 718 REGION_DISJOINT, 719 REGION_MIXED, 720 }; 721 722 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 723 unsigned long desc); 724 725 /* Support for virtually mapped pages */ 726 struct page *vmalloc_to_page(const void *addr); 727 unsigned long vmalloc_to_pfn(const void *addr); 728 729 /* 730 * Determine if an address is within the vmalloc range 731 * 732 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 733 * is no special casing required. 734 */ 735 736 #ifndef is_ioremap_addr 737 #define is_ioremap_addr(x) is_vmalloc_addr(x) 738 #endif 739 740 #ifdef CONFIG_MMU 741 extern bool is_vmalloc_addr(const void *x); 742 extern int is_vmalloc_or_module_addr(const void *x); 743 #else 744 static inline bool is_vmalloc_addr(const void *x) 745 { 746 return false; 747 } 748 static inline int is_vmalloc_or_module_addr(const void *x) 749 { 750 return 0; 751 } 752 #endif 753 754 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 755 static inline void *kvmalloc(size_t size, gfp_t flags) 756 { 757 return kvmalloc_node(size, flags, NUMA_NO_NODE); 758 } 759 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 760 { 761 return kvmalloc_node(size, flags | __GFP_ZERO, node); 762 } 763 static inline void *kvzalloc(size_t size, gfp_t flags) 764 { 765 return kvmalloc(size, flags | __GFP_ZERO); 766 } 767 768 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 769 { 770 size_t bytes; 771 772 if (unlikely(check_mul_overflow(n, size, &bytes))) 773 return NULL; 774 775 return kvmalloc(bytes, flags); 776 } 777 778 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 779 { 780 return kvmalloc_array(n, size, flags | __GFP_ZERO); 781 } 782 783 extern void kvfree(const void *addr); 784 extern void kvfree_sensitive(const void *addr, size_t len); 785 786 static inline int head_mapcount(struct page *head) 787 { 788 return atomic_read(compound_mapcount_ptr(head)) + 1; 789 } 790 791 /* 792 * Mapcount of compound page as a whole, does not include mapped sub-pages. 793 * 794 * Must be called only for compound pages or any their tail sub-pages. 795 */ 796 static inline int compound_mapcount(struct page *page) 797 { 798 VM_BUG_ON_PAGE(!PageCompound(page), page); 799 page = compound_head(page); 800 return head_mapcount(page); 801 } 802 803 /* 804 * The atomic page->_mapcount, starts from -1: so that transitions 805 * both from it and to it can be tracked, using atomic_inc_and_test 806 * and atomic_add_negative(-1). 807 */ 808 static inline void page_mapcount_reset(struct page *page) 809 { 810 atomic_set(&(page)->_mapcount, -1); 811 } 812 813 int __page_mapcount(struct page *page); 814 815 /* 816 * Mapcount of 0-order page; when compound sub-page, includes 817 * compound_mapcount(). 818 * 819 * Result is undefined for pages which cannot be mapped into userspace. 820 * For example SLAB or special types of pages. See function page_has_type(). 821 * They use this place in struct page differently. 822 */ 823 static inline int page_mapcount(struct page *page) 824 { 825 if (unlikely(PageCompound(page))) 826 return __page_mapcount(page); 827 return atomic_read(&page->_mapcount) + 1; 828 } 829 830 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 831 int total_mapcount(struct page *page); 832 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 833 #else 834 static inline int total_mapcount(struct page *page) 835 { 836 return page_mapcount(page); 837 } 838 static inline int page_trans_huge_mapcount(struct page *page, 839 int *total_mapcount) 840 { 841 int mapcount = page_mapcount(page); 842 if (total_mapcount) 843 *total_mapcount = mapcount; 844 return mapcount; 845 } 846 #endif 847 848 static inline struct page *virt_to_head_page(const void *x) 849 { 850 struct page *page = virt_to_page(x); 851 852 return compound_head(page); 853 } 854 855 void __put_page(struct page *page); 856 857 void put_pages_list(struct list_head *pages); 858 859 void split_page(struct page *page, unsigned int order); 860 861 /* 862 * Compound pages have a destructor function. Provide a 863 * prototype for that function and accessor functions. 864 * These are _only_ valid on the head of a compound page. 865 */ 866 typedef void compound_page_dtor(struct page *); 867 868 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 869 enum compound_dtor_id { 870 NULL_COMPOUND_DTOR, 871 COMPOUND_PAGE_DTOR, 872 #ifdef CONFIG_HUGETLB_PAGE 873 HUGETLB_PAGE_DTOR, 874 #endif 875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 876 TRANSHUGE_PAGE_DTOR, 877 #endif 878 NR_COMPOUND_DTORS, 879 }; 880 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 881 882 static inline void set_compound_page_dtor(struct page *page, 883 enum compound_dtor_id compound_dtor) 884 { 885 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 886 page[1].compound_dtor = compound_dtor; 887 } 888 889 static inline void destroy_compound_page(struct page *page) 890 { 891 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 892 compound_page_dtors[page[1].compound_dtor](page); 893 } 894 895 static inline unsigned int compound_order(struct page *page) 896 { 897 if (!PageHead(page)) 898 return 0; 899 return page[1].compound_order; 900 } 901 902 static inline bool hpage_pincount_available(struct page *page) 903 { 904 /* 905 * Can the page->hpage_pinned_refcount field be used? That field is in 906 * the 3rd page of the compound page, so the smallest (2-page) compound 907 * pages cannot support it. 908 */ 909 page = compound_head(page); 910 return PageCompound(page) && compound_order(page) > 1; 911 } 912 913 static inline int head_pincount(struct page *head) 914 { 915 return atomic_read(compound_pincount_ptr(head)); 916 } 917 918 static inline int compound_pincount(struct page *page) 919 { 920 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 921 page = compound_head(page); 922 return head_pincount(page); 923 } 924 925 static inline void set_compound_order(struct page *page, unsigned int order) 926 { 927 page[1].compound_order = order; 928 page[1].compound_nr = 1U << order; 929 } 930 931 /* Returns the number of pages in this potentially compound page. */ 932 static inline unsigned long compound_nr(struct page *page) 933 { 934 if (!PageHead(page)) 935 return 1; 936 return page[1].compound_nr; 937 } 938 939 /* Returns the number of bytes in this potentially compound page. */ 940 static inline unsigned long page_size(struct page *page) 941 { 942 return PAGE_SIZE << compound_order(page); 943 } 944 945 /* Returns the number of bits needed for the number of bytes in a page */ 946 static inline unsigned int page_shift(struct page *page) 947 { 948 return PAGE_SHIFT + compound_order(page); 949 } 950 951 void free_compound_page(struct page *page); 952 953 #ifdef CONFIG_MMU 954 /* 955 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 956 * servicing faults for write access. In the normal case, do always want 957 * pte_mkwrite. But get_user_pages can cause write faults for mappings 958 * that do not have writing enabled, when used by access_process_vm. 959 */ 960 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 961 { 962 if (likely(vma->vm_flags & VM_WRITE)) 963 pte = pte_mkwrite(pte); 964 return pte; 965 } 966 967 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 968 vm_fault_t finish_fault(struct vm_fault *vmf); 969 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 970 #endif 971 972 /* 973 * Multiple processes may "see" the same page. E.g. for untouched 974 * mappings of /dev/null, all processes see the same page full of 975 * zeroes, and text pages of executables and shared libraries have 976 * only one copy in memory, at most, normally. 977 * 978 * For the non-reserved pages, page_count(page) denotes a reference count. 979 * page_count() == 0 means the page is free. page->lru is then used for 980 * freelist management in the buddy allocator. 981 * page_count() > 0 means the page has been allocated. 982 * 983 * Pages are allocated by the slab allocator in order to provide memory 984 * to kmalloc and kmem_cache_alloc. In this case, the management of the 985 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 986 * unless a particular usage is carefully commented. (the responsibility of 987 * freeing the kmalloc memory is the caller's, of course). 988 * 989 * A page may be used by anyone else who does a __get_free_page(). 990 * In this case, page_count still tracks the references, and should only 991 * be used through the normal accessor functions. The top bits of page->flags 992 * and page->virtual store page management information, but all other fields 993 * are unused and could be used privately, carefully. The management of this 994 * page is the responsibility of the one who allocated it, and those who have 995 * subsequently been given references to it. 996 * 997 * The other pages (we may call them "pagecache pages") are completely 998 * managed by the Linux memory manager: I/O, buffers, swapping etc. 999 * The following discussion applies only to them. 1000 * 1001 * A pagecache page contains an opaque `private' member, which belongs to the 1002 * page's address_space. Usually, this is the address of a circular list of 1003 * the page's disk buffers. PG_private must be set to tell the VM to call 1004 * into the filesystem to release these pages. 1005 * 1006 * A page may belong to an inode's memory mapping. In this case, page->mapping 1007 * is the pointer to the inode, and page->index is the file offset of the page, 1008 * in units of PAGE_SIZE. 1009 * 1010 * If pagecache pages are not associated with an inode, they are said to be 1011 * anonymous pages. These may become associated with the swapcache, and in that 1012 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1013 * 1014 * In either case (swapcache or inode backed), the pagecache itself holds one 1015 * reference to the page. Setting PG_private should also increment the 1016 * refcount. The each user mapping also has a reference to the page. 1017 * 1018 * The pagecache pages are stored in a per-mapping radix tree, which is 1019 * rooted at mapping->i_pages, and indexed by offset. 1020 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1021 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1022 * 1023 * All pagecache pages may be subject to I/O: 1024 * - inode pages may need to be read from disk, 1025 * - inode pages which have been modified and are MAP_SHARED may need 1026 * to be written back to the inode on disk, 1027 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1028 * modified may need to be swapped out to swap space and (later) to be read 1029 * back into memory. 1030 */ 1031 1032 /* 1033 * The zone field is never updated after free_area_init_core() 1034 * sets it, so none of the operations on it need to be atomic. 1035 */ 1036 1037 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1038 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1039 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1040 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1041 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1042 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1043 1044 /* 1045 * Define the bit shifts to access each section. For non-existent 1046 * sections we define the shift as 0; that plus a 0 mask ensures 1047 * the compiler will optimise away reference to them. 1048 */ 1049 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1050 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1051 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1052 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1053 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1054 1055 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1056 #ifdef NODE_NOT_IN_PAGE_FLAGS 1057 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1058 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1059 SECTIONS_PGOFF : ZONES_PGOFF) 1060 #else 1061 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1062 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1063 NODES_PGOFF : ZONES_PGOFF) 1064 #endif 1065 1066 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1067 1068 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1069 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1070 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1071 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1072 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1073 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1074 1075 static inline enum zone_type page_zonenum(const struct page *page) 1076 { 1077 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1078 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1079 } 1080 1081 #ifdef CONFIG_ZONE_DEVICE 1082 static inline bool is_zone_device_page(const struct page *page) 1083 { 1084 return page_zonenum(page) == ZONE_DEVICE; 1085 } 1086 extern void memmap_init_zone_device(struct zone *, unsigned long, 1087 unsigned long, struct dev_pagemap *); 1088 #else 1089 static inline bool is_zone_device_page(const struct page *page) 1090 { 1091 return false; 1092 } 1093 #endif 1094 1095 #ifdef CONFIG_DEV_PAGEMAP_OPS 1096 void free_devmap_managed_page(struct page *page); 1097 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1098 1099 static inline bool page_is_devmap_managed(struct page *page) 1100 { 1101 if (!static_branch_unlikely(&devmap_managed_key)) 1102 return false; 1103 if (!is_zone_device_page(page)) 1104 return false; 1105 switch (page->pgmap->type) { 1106 case MEMORY_DEVICE_PRIVATE: 1107 case MEMORY_DEVICE_FS_DAX: 1108 return true; 1109 default: 1110 break; 1111 } 1112 return false; 1113 } 1114 1115 void put_devmap_managed_page(struct page *page); 1116 1117 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1118 static inline bool page_is_devmap_managed(struct page *page) 1119 { 1120 return false; 1121 } 1122 1123 static inline void put_devmap_managed_page(struct page *page) 1124 { 1125 } 1126 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1127 1128 static inline bool is_device_private_page(const struct page *page) 1129 { 1130 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1131 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1132 is_zone_device_page(page) && 1133 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1134 } 1135 1136 static inline bool is_pci_p2pdma_page(const struct page *page) 1137 { 1138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1139 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1140 is_zone_device_page(page) && 1141 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1142 } 1143 1144 /* 127: arbitrary random number, small enough to assemble well */ 1145 #define page_ref_zero_or_close_to_overflow(page) \ 1146 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1147 1148 static inline void get_page(struct page *page) 1149 { 1150 page = compound_head(page); 1151 /* 1152 * Getting a normal page or the head of a compound page 1153 * requires to already have an elevated page->_refcount. 1154 */ 1155 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1156 page_ref_inc(page); 1157 } 1158 1159 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1160 1161 static inline __must_check bool try_get_page(struct page *page) 1162 { 1163 page = compound_head(page); 1164 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1165 return false; 1166 page_ref_inc(page); 1167 return true; 1168 } 1169 1170 static inline void put_page(struct page *page) 1171 { 1172 page = compound_head(page); 1173 1174 /* 1175 * For devmap managed pages we need to catch refcount transition from 1176 * 2 to 1, when refcount reach one it means the page is free and we 1177 * need to inform the device driver through callback. See 1178 * include/linux/memremap.h and HMM for details. 1179 */ 1180 if (page_is_devmap_managed(page)) { 1181 put_devmap_managed_page(page); 1182 return; 1183 } 1184 1185 if (put_page_testzero(page)) 1186 __put_page(page); 1187 } 1188 1189 /* 1190 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1191 * the page's refcount so that two separate items are tracked: the original page 1192 * reference count, and also a new count of how many pin_user_pages() calls were 1193 * made against the page. ("gup-pinned" is another term for the latter). 1194 * 1195 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1196 * distinct from normal pages. As such, the unpin_user_page() call (and its 1197 * variants) must be used in order to release gup-pinned pages. 1198 * 1199 * Choice of value: 1200 * 1201 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1202 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1203 * simpler, due to the fact that adding an even power of two to the page 1204 * refcount has the effect of using only the upper N bits, for the code that 1205 * counts up using the bias value. This means that the lower bits are left for 1206 * the exclusive use of the original code that increments and decrements by one 1207 * (or at least, by much smaller values than the bias value). 1208 * 1209 * Of course, once the lower bits overflow into the upper bits (and this is 1210 * OK, because subtraction recovers the original values), then visual inspection 1211 * no longer suffices to directly view the separate counts. However, for normal 1212 * applications that don't have huge page reference counts, this won't be an 1213 * issue. 1214 * 1215 * Locking: the lockless algorithm described in page_cache_get_speculative() 1216 * and page_cache_gup_pin_speculative() provides safe operation for 1217 * get_user_pages and page_mkclean and other calls that race to set up page 1218 * table entries. 1219 */ 1220 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1221 1222 void unpin_user_page(struct page *page); 1223 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1224 bool make_dirty); 1225 void unpin_user_pages(struct page **pages, unsigned long npages); 1226 1227 /** 1228 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1229 * 1230 * This function checks if a page has been pinned via a call to 1231 * pin_user_pages*(). 1232 * 1233 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1234 * because it means "definitely not pinned for DMA", but true means "probably 1235 * pinned for DMA, but possibly a false positive due to having at least 1236 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1237 * 1238 * False positives are OK, because: a) it's unlikely for a page to get that many 1239 * refcounts, and b) all the callers of this routine are expected to be able to 1240 * deal gracefully with a false positive. 1241 * 1242 * For huge pages, the result will be exactly correct. That's because we have 1243 * more tracking data available: the 3rd struct page in the compound page is 1244 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1245 * scheme). 1246 * 1247 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1248 * 1249 * @page: pointer to page to be queried. 1250 * @Return: True, if it is likely that the page has been "dma-pinned". 1251 * False, if the page is definitely not dma-pinned. 1252 */ 1253 static inline bool page_maybe_dma_pinned(struct page *page) 1254 { 1255 if (hpage_pincount_available(page)) 1256 return compound_pincount(page) > 0; 1257 1258 /* 1259 * page_ref_count() is signed. If that refcount overflows, then 1260 * page_ref_count() returns a negative value, and callers will avoid 1261 * further incrementing the refcount. 1262 * 1263 * Here, for that overflow case, use the signed bit to count a little 1264 * bit higher via unsigned math, and thus still get an accurate result. 1265 */ 1266 return ((unsigned int)page_ref_count(compound_head(page))) >= 1267 GUP_PIN_COUNTING_BIAS; 1268 } 1269 1270 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1271 #define SECTION_IN_PAGE_FLAGS 1272 #endif 1273 1274 /* 1275 * The identification function is mainly used by the buddy allocator for 1276 * determining if two pages could be buddies. We are not really identifying 1277 * the zone since we could be using the section number id if we do not have 1278 * node id available in page flags. 1279 * We only guarantee that it will return the same value for two combinable 1280 * pages in a zone. 1281 */ 1282 static inline int page_zone_id(struct page *page) 1283 { 1284 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1285 } 1286 1287 #ifdef NODE_NOT_IN_PAGE_FLAGS 1288 extern int page_to_nid(const struct page *page); 1289 #else 1290 static inline int page_to_nid(const struct page *page) 1291 { 1292 struct page *p = (struct page *)page; 1293 1294 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1295 } 1296 #endif 1297 1298 #ifdef CONFIG_NUMA_BALANCING 1299 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1300 { 1301 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1302 } 1303 1304 static inline int cpupid_to_pid(int cpupid) 1305 { 1306 return cpupid & LAST__PID_MASK; 1307 } 1308 1309 static inline int cpupid_to_cpu(int cpupid) 1310 { 1311 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1312 } 1313 1314 static inline int cpupid_to_nid(int cpupid) 1315 { 1316 return cpu_to_node(cpupid_to_cpu(cpupid)); 1317 } 1318 1319 static inline bool cpupid_pid_unset(int cpupid) 1320 { 1321 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1322 } 1323 1324 static inline bool cpupid_cpu_unset(int cpupid) 1325 { 1326 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1327 } 1328 1329 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1330 { 1331 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1332 } 1333 1334 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1335 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1336 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1337 { 1338 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1339 } 1340 1341 static inline int page_cpupid_last(struct page *page) 1342 { 1343 return page->_last_cpupid; 1344 } 1345 static inline void page_cpupid_reset_last(struct page *page) 1346 { 1347 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1348 } 1349 #else 1350 static inline int page_cpupid_last(struct page *page) 1351 { 1352 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1353 } 1354 1355 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1356 1357 static inline void page_cpupid_reset_last(struct page *page) 1358 { 1359 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1360 } 1361 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1362 #else /* !CONFIG_NUMA_BALANCING */ 1363 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1364 { 1365 return page_to_nid(page); /* XXX */ 1366 } 1367 1368 static inline int page_cpupid_last(struct page *page) 1369 { 1370 return page_to_nid(page); /* XXX */ 1371 } 1372 1373 static inline int cpupid_to_nid(int cpupid) 1374 { 1375 return -1; 1376 } 1377 1378 static inline int cpupid_to_pid(int cpupid) 1379 { 1380 return -1; 1381 } 1382 1383 static inline int cpupid_to_cpu(int cpupid) 1384 { 1385 return -1; 1386 } 1387 1388 static inline int cpu_pid_to_cpupid(int nid, int pid) 1389 { 1390 return -1; 1391 } 1392 1393 static inline bool cpupid_pid_unset(int cpupid) 1394 { 1395 return true; 1396 } 1397 1398 static inline void page_cpupid_reset_last(struct page *page) 1399 { 1400 } 1401 1402 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1403 { 1404 return false; 1405 } 1406 #endif /* CONFIG_NUMA_BALANCING */ 1407 1408 #ifdef CONFIG_KASAN_SW_TAGS 1409 static inline u8 page_kasan_tag(const struct page *page) 1410 { 1411 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1412 } 1413 1414 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1415 { 1416 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1417 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1418 } 1419 1420 static inline void page_kasan_tag_reset(struct page *page) 1421 { 1422 page_kasan_tag_set(page, 0xff); 1423 } 1424 #else 1425 static inline u8 page_kasan_tag(const struct page *page) 1426 { 1427 return 0xff; 1428 } 1429 1430 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1431 static inline void page_kasan_tag_reset(struct page *page) { } 1432 #endif 1433 1434 static inline struct zone *page_zone(const struct page *page) 1435 { 1436 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1437 } 1438 1439 static inline pg_data_t *page_pgdat(const struct page *page) 1440 { 1441 return NODE_DATA(page_to_nid(page)); 1442 } 1443 1444 #ifdef SECTION_IN_PAGE_FLAGS 1445 static inline void set_page_section(struct page *page, unsigned long section) 1446 { 1447 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1448 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1449 } 1450 1451 static inline unsigned long page_to_section(const struct page *page) 1452 { 1453 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1454 } 1455 #endif 1456 1457 static inline void set_page_zone(struct page *page, enum zone_type zone) 1458 { 1459 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1460 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1461 } 1462 1463 static inline void set_page_node(struct page *page, unsigned long node) 1464 { 1465 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1466 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1467 } 1468 1469 static inline void set_page_links(struct page *page, enum zone_type zone, 1470 unsigned long node, unsigned long pfn) 1471 { 1472 set_page_zone(page, zone); 1473 set_page_node(page, node); 1474 #ifdef SECTION_IN_PAGE_FLAGS 1475 set_page_section(page, pfn_to_section_nr(pfn)); 1476 #endif 1477 } 1478 1479 #ifdef CONFIG_MEMCG 1480 static inline struct mem_cgroup *page_memcg(struct page *page) 1481 { 1482 return page->mem_cgroup; 1483 } 1484 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1485 { 1486 WARN_ON_ONCE(!rcu_read_lock_held()); 1487 return READ_ONCE(page->mem_cgroup); 1488 } 1489 #else 1490 static inline struct mem_cgroup *page_memcg(struct page *page) 1491 { 1492 return NULL; 1493 } 1494 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1495 { 1496 WARN_ON_ONCE(!rcu_read_lock_held()); 1497 return NULL; 1498 } 1499 #endif 1500 1501 /* 1502 * Some inline functions in vmstat.h depend on page_zone() 1503 */ 1504 #include <linux/vmstat.h> 1505 1506 static __always_inline void *lowmem_page_address(const struct page *page) 1507 { 1508 return page_to_virt(page); 1509 } 1510 1511 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1512 #define HASHED_PAGE_VIRTUAL 1513 #endif 1514 1515 #if defined(WANT_PAGE_VIRTUAL) 1516 static inline void *page_address(const struct page *page) 1517 { 1518 return page->virtual; 1519 } 1520 static inline void set_page_address(struct page *page, void *address) 1521 { 1522 page->virtual = address; 1523 } 1524 #define page_address_init() do { } while(0) 1525 #endif 1526 1527 #if defined(HASHED_PAGE_VIRTUAL) 1528 void *page_address(const struct page *page); 1529 void set_page_address(struct page *page, void *virtual); 1530 void page_address_init(void); 1531 #endif 1532 1533 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1534 #define page_address(page) lowmem_page_address(page) 1535 #define set_page_address(page, address) do { } while(0) 1536 #define page_address_init() do { } while(0) 1537 #endif 1538 1539 extern void *page_rmapping(struct page *page); 1540 extern struct anon_vma *page_anon_vma(struct page *page); 1541 extern struct address_space *page_mapping(struct page *page); 1542 1543 extern struct address_space *__page_file_mapping(struct page *); 1544 1545 static inline 1546 struct address_space *page_file_mapping(struct page *page) 1547 { 1548 if (unlikely(PageSwapCache(page))) 1549 return __page_file_mapping(page); 1550 1551 return page->mapping; 1552 } 1553 1554 extern pgoff_t __page_file_index(struct page *page); 1555 1556 /* 1557 * Return the pagecache index of the passed page. Regular pagecache pages 1558 * use ->index whereas swapcache pages use swp_offset(->private) 1559 */ 1560 static inline pgoff_t page_index(struct page *page) 1561 { 1562 if (unlikely(PageSwapCache(page))) 1563 return __page_file_index(page); 1564 return page->index; 1565 } 1566 1567 bool page_mapped(struct page *page); 1568 struct address_space *page_mapping(struct page *page); 1569 struct address_space *page_mapping_file(struct page *page); 1570 1571 /* 1572 * Return true only if the page has been allocated with 1573 * ALLOC_NO_WATERMARKS and the low watermark was not 1574 * met implying that the system is under some pressure. 1575 */ 1576 static inline bool page_is_pfmemalloc(struct page *page) 1577 { 1578 /* 1579 * Page index cannot be this large so this must be 1580 * a pfmemalloc page. 1581 */ 1582 return page->index == -1UL; 1583 } 1584 1585 /* 1586 * Only to be called by the page allocator on a freshly allocated 1587 * page. 1588 */ 1589 static inline void set_page_pfmemalloc(struct page *page) 1590 { 1591 page->index = -1UL; 1592 } 1593 1594 static inline void clear_page_pfmemalloc(struct page *page) 1595 { 1596 page->index = 0; 1597 } 1598 1599 /* 1600 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1601 */ 1602 extern void pagefault_out_of_memory(void); 1603 1604 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1605 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1606 1607 /* 1608 * Flags passed to show_mem() and show_free_areas() to suppress output in 1609 * various contexts. 1610 */ 1611 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1612 1613 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1614 1615 #ifdef CONFIG_MMU 1616 extern bool can_do_mlock(void); 1617 #else 1618 static inline bool can_do_mlock(void) { return false; } 1619 #endif 1620 extern int user_shm_lock(size_t, struct user_struct *); 1621 extern void user_shm_unlock(size_t, struct user_struct *); 1622 1623 /* 1624 * Parameter block passed down to zap_pte_range in exceptional cases. 1625 */ 1626 struct zap_details { 1627 struct address_space *check_mapping; /* Check page->mapping if set */ 1628 pgoff_t first_index; /* Lowest page->index to unmap */ 1629 pgoff_t last_index; /* Highest page->index to unmap */ 1630 }; 1631 1632 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1633 pte_t pte); 1634 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1635 pmd_t pmd); 1636 1637 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1638 unsigned long size); 1639 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1640 unsigned long size); 1641 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1642 unsigned long start, unsigned long end); 1643 1644 struct mmu_notifier_range; 1645 1646 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1647 unsigned long end, unsigned long floor, unsigned long ceiling); 1648 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1649 struct vm_area_struct *vma, struct vm_area_struct *new); 1650 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1651 struct mmu_notifier_range *range, 1652 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1653 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1654 unsigned long *pfn); 1655 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1656 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1657 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1658 void *buf, int len, int write); 1659 1660 extern void truncate_pagecache(struct inode *inode, loff_t new); 1661 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1662 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1663 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1664 int truncate_inode_page(struct address_space *mapping, struct page *page); 1665 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1666 int invalidate_inode_page(struct page *page); 1667 1668 #ifdef CONFIG_MMU 1669 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1670 unsigned long address, unsigned int flags, 1671 struct pt_regs *regs); 1672 extern int fixup_user_fault(struct mm_struct *mm, 1673 unsigned long address, unsigned int fault_flags, 1674 bool *unlocked); 1675 void unmap_mapping_pages(struct address_space *mapping, 1676 pgoff_t start, pgoff_t nr, bool even_cows); 1677 void unmap_mapping_range(struct address_space *mapping, 1678 loff_t const holebegin, loff_t const holelen, int even_cows); 1679 #else 1680 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1681 unsigned long address, unsigned int flags, 1682 struct pt_regs *regs) 1683 { 1684 /* should never happen if there's no MMU */ 1685 BUG(); 1686 return VM_FAULT_SIGBUS; 1687 } 1688 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1689 unsigned int fault_flags, bool *unlocked) 1690 { 1691 /* should never happen if there's no MMU */ 1692 BUG(); 1693 return -EFAULT; 1694 } 1695 static inline void unmap_mapping_pages(struct address_space *mapping, 1696 pgoff_t start, pgoff_t nr, bool even_cows) { } 1697 static inline void unmap_mapping_range(struct address_space *mapping, 1698 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1699 #endif 1700 1701 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1702 loff_t const holebegin, loff_t const holelen) 1703 { 1704 unmap_mapping_range(mapping, holebegin, holelen, 0); 1705 } 1706 1707 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1708 void *buf, int len, unsigned int gup_flags); 1709 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1710 void *buf, int len, unsigned int gup_flags); 1711 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1712 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1713 1714 long get_user_pages_remote(struct mm_struct *mm, 1715 unsigned long start, unsigned long nr_pages, 1716 unsigned int gup_flags, struct page **pages, 1717 struct vm_area_struct **vmas, int *locked); 1718 long pin_user_pages_remote(struct mm_struct *mm, 1719 unsigned long start, unsigned long nr_pages, 1720 unsigned int gup_flags, struct page **pages, 1721 struct vm_area_struct **vmas, int *locked); 1722 long get_user_pages(unsigned long start, unsigned long nr_pages, 1723 unsigned int gup_flags, struct page **pages, 1724 struct vm_area_struct **vmas); 1725 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1726 unsigned int gup_flags, struct page **pages, 1727 struct vm_area_struct **vmas); 1728 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1729 unsigned int gup_flags, struct page **pages, int *locked); 1730 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1731 unsigned int gup_flags, struct page **pages, int *locked); 1732 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1733 struct page **pages, unsigned int gup_flags); 1734 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1735 struct page **pages, unsigned int gup_flags); 1736 1737 int get_user_pages_fast(unsigned long start, int nr_pages, 1738 unsigned int gup_flags, struct page **pages); 1739 int pin_user_pages_fast(unsigned long start, int nr_pages, 1740 unsigned int gup_flags, struct page **pages); 1741 1742 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1743 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1744 struct task_struct *task, bool bypass_rlim); 1745 1746 /* Container for pinned pfns / pages */ 1747 struct frame_vector { 1748 unsigned int nr_allocated; /* Number of frames we have space for */ 1749 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1750 bool got_ref; /* Did we pin pages by getting page ref? */ 1751 bool is_pfns; /* Does array contain pages or pfns? */ 1752 void *ptrs[]; /* Array of pinned pfns / pages. Use 1753 * pfns_vector_pages() or pfns_vector_pfns() 1754 * for access */ 1755 }; 1756 1757 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1758 void frame_vector_destroy(struct frame_vector *vec); 1759 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1760 unsigned int gup_flags, struct frame_vector *vec); 1761 void put_vaddr_frames(struct frame_vector *vec); 1762 int frame_vector_to_pages(struct frame_vector *vec); 1763 void frame_vector_to_pfns(struct frame_vector *vec); 1764 1765 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1766 { 1767 return vec->nr_frames; 1768 } 1769 1770 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1771 { 1772 if (vec->is_pfns) { 1773 int err = frame_vector_to_pages(vec); 1774 1775 if (err) 1776 return ERR_PTR(err); 1777 } 1778 return (struct page **)(vec->ptrs); 1779 } 1780 1781 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1782 { 1783 if (!vec->is_pfns) 1784 frame_vector_to_pfns(vec); 1785 return (unsigned long *)(vec->ptrs); 1786 } 1787 1788 struct kvec; 1789 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1790 struct page **pages); 1791 int get_kernel_page(unsigned long start, int write, struct page **pages); 1792 struct page *get_dump_page(unsigned long addr); 1793 1794 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1795 extern void do_invalidatepage(struct page *page, unsigned int offset, 1796 unsigned int length); 1797 1798 void __set_page_dirty(struct page *, struct address_space *, int warn); 1799 int __set_page_dirty_nobuffers(struct page *page); 1800 int __set_page_dirty_no_writeback(struct page *page); 1801 int redirty_page_for_writepage(struct writeback_control *wbc, 1802 struct page *page); 1803 void account_page_dirtied(struct page *page, struct address_space *mapping); 1804 void account_page_cleaned(struct page *page, struct address_space *mapping, 1805 struct bdi_writeback *wb); 1806 int set_page_dirty(struct page *page); 1807 int set_page_dirty_lock(struct page *page); 1808 void __cancel_dirty_page(struct page *page); 1809 static inline void cancel_dirty_page(struct page *page) 1810 { 1811 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1812 if (PageDirty(page)) 1813 __cancel_dirty_page(page); 1814 } 1815 int clear_page_dirty_for_io(struct page *page); 1816 1817 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1818 1819 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1820 unsigned long old_addr, struct vm_area_struct *new_vma, 1821 unsigned long new_addr, unsigned long len, 1822 bool need_rmap_locks); 1823 1824 /* 1825 * Flags used by change_protection(). For now we make it a bitmap so 1826 * that we can pass in multiple flags just like parameters. However 1827 * for now all the callers are only use one of the flags at the same 1828 * time. 1829 */ 1830 /* Whether we should allow dirty bit accounting */ 1831 #define MM_CP_DIRTY_ACCT (1UL << 0) 1832 /* Whether this protection change is for NUMA hints */ 1833 #define MM_CP_PROT_NUMA (1UL << 1) 1834 /* Whether this change is for write protecting */ 1835 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1836 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1837 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1838 MM_CP_UFFD_WP_RESOLVE) 1839 1840 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1841 unsigned long end, pgprot_t newprot, 1842 unsigned long cp_flags); 1843 extern int mprotect_fixup(struct vm_area_struct *vma, 1844 struct vm_area_struct **pprev, unsigned long start, 1845 unsigned long end, unsigned long newflags); 1846 1847 /* 1848 * doesn't attempt to fault and will return short. 1849 */ 1850 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1851 unsigned int gup_flags, struct page **pages); 1852 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1853 unsigned int gup_flags, struct page **pages); 1854 1855 static inline bool get_user_page_fast_only(unsigned long addr, 1856 unsigned int gup_flags, struct page **pagep) 1857 { 1858 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1859 } 1860 /* 1861 * per-process(per-mm_struct) statistics. 1862 */ 1863 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1864 { 1865 long val = atomic_long_read(&mm->rss_stat.count[member]); 1866 1867 #ifdef SPLIT_RSS_COUNTING 1868 /* 1869 * counter is updated in asynchronous manner and may go to minus. 1870 * But it's never be expected number for users. 1871 */ 1872 if (val < 0) 1873 val = 0; 1874 #endif 1875 return (unsigned long)val; 1876 } 1877 1878 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1879 1880 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1881 { 1882 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1883 1884 mm_trace_rss_stat(mm, member, count); 1885 } 1886 1887 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1888 { 1889 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1890 1891 mm_trace_rss_stat(mm, member, count); 1892 } 1893 1894 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1895 { 1896 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1897 1898 mm_trace_rss_stat(mm, member, count); 1899 } 1900 1901 /* Optimized variant when page is already known not to be PageAnon */ 1902 static inline int mm_counter_file(struct page *page) 1903 { 1904 if (PageSwapBacked(page)) 1905 return MM_SHMEMPAGES; 1906 return MM_FILEPAGES; 1907 } 1908 1909 static inline int mm_counter(struct page *page) 1910 { 1911 if (PageAnon(page)) 1912 return MM_ANONPAGES; 1913 return mm_counter_file(page); 1914 } 1915 1916 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1917 { 1918 return get_mm_counter(mm, MM_FILEPAGES) + 1919 get_mm_counter(mm, MM_ANONPAGES) + 1920 get_mm_counter(mm, MM_SHMEMPAGES); 1921 } 1922 1923 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1924 { 1925 return max(mm->hiwater_rss, get_mm_rss(mm)); 1926 } 1927 1928 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1929 { 1930 return max(mm->hiwater_vm, mm->total_vm); 1931 } 1932 1933 static inline void update_hiwater_rss(struct mm_struct *mm) 1934 { 1935 unsigned long _rss = get_mm_rss(mm); 1936 1937 if ((mm)->hiwater_rss < _rss) 1938 (mm)->hiwater_rss = _rss; 1939 } 1940 1941 static inline void update_hiwater_vm(struct mm_struct *mm) 1942 { 1943 if (mm->hiwater_vm < mm->total_vm) 1944 mm->hiwater_vm = mm->total_vm; 1945 } 1946 1947 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1948 { 1949 mm->hiwater_rss = get_mm_rss(mm); 1950 } 1951 1952 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1953 struct mm_struct *mm) 1954 { 1955 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1956 1957 if (*maxrss < hiwater_rss) 1958 *maxrss = hiwater_rss; 1959 } 1960 1961 #if defined(SPLIT_RSS_COUNTING) 1962 void sync_mm_rss(struct mm_struct *mm); 1963 #else 1964 static inline void sync_mm_rss(struct mm_struct *mm) 1965 { 1966 } 1967 #endif 1968 1969 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1970 static inline int pte_special(pte_t pte) 1971 { 1972 return 0; 1973 } 1974 1975 static inline pte_t pte_mkspecial(pte_t pte) 1976 { 1977 return pte; 1978 } 1979 #endif 1980 1981 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1982 static inline int pte_devmap(pte_t pte) 1983 { 1984 return 0; 1985 } 1986 #endif 1987 1988 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1989 1990 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1991 spinlock_t **ptl); 1992 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1993 spinlock_t **ptl) 1994 { 1995 pte_t *ptep; 1996 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1997 return ptep; 1998 } 1999 2000 #ifdef __PAGETABLE_P4D_FOLDED 2001 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2002 unsigned long address) 2003 { 2004 return 0; 2005 } 2006 #else 2007 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2008 #endif 2009 2010 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2011 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2012 unsigned long address) 2013 { 2014 return 0; 2015 } 2016 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2017 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2018 2019 #else 2020 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2021 2022 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2023 { 2024 if (mm_pud_folded(mm)) 2025 return; 2026 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2027 } 2028 2029 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2030 { 2031 if (mm_pud_folded(mm)) 2032 return; 2033 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2034 } 2035 #endif 2036 2037 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2038 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2039 unsigned long address) 2040 { 2041 return 0; 2042 } 2043 2044 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2045 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2046 2047 #else 2048 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2049 2050 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2051 { 2052 if (mm_pmd_folded(mm)) 2053 return; 2054 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2055 } 2056 2057 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2058 { 2059 if (mm_pmd_folded(mm)) 2060 return; 2061 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2062 } 2063 #endif 2064 2065 #ifdef CONFIG_MMU 2066 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2067 { 2068 atomic_long_set(&mm->pgtables_bytes, 0); 2069 } 2070 2071 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2072 { 2073 return atomic_long_read(&mm->pgtables_bytes); 2074 } 2075 2076 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2077 { 2078 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2079 } 2080 2081 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2082 { 2083 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2084 } 2085 #else 2086 2087 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2088 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2089 { 2090 return 0; 2091 } 2092 2093 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2094 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2095 #endif 2096 2097 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2098 int __pte_alloc_kernel(pmd_t *pmd); 2099 2100 #if defined(CONFIG_MMU) 2101 2102 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2103 unsigned long address) 2104 { 2105 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2106 NULL : p4d_offset(pgd, address); 2107 } 2108 2109 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2110 unsigned long address) 2111 { 2112 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2113 NULL : pud_offset(p4d, address); 2114 } 2115 2116 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2117 { 2118 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2119 NULL: pmd_offset(pud, address); 2120 } 2121 #endif /* CONFIG_MMU */ 2122 2123 #if USE_SPLIT_PTE_PTLOCKS 2124 #if ALLOC_SPLIT_PTLOCKS 2125 void __init ptlock_cache_init(void); 2126 extern bool ptlock_alloc(struct page *page); 2127 extern void ptlock_free(struct page *page); 2128 2129 static inline spinlock_t *ptlock_ptr(struct page *page) 2130 { 2131 return page->ptl; 2132 } 2133 #else /* ALLOC_SPLIT_PTLOCKS */ 2134 static inline void ptlock_cache_init(void) 2135 { 2136 } 2137 2138 static inline bool ptlock_alloc(struct page *page) 2139 { 2140 return true; 2141 } 2142 2143 static inline void ptlock_free(struct page *page) 2144 { 2145 } 2146 2147 static inline spinlock_t *ptlock_ptr(struct page *page) 2148 { 2149 return &page->ptl; 2150 } 2151 #endif /* ALLOC_SPLIT_PTLOCKS */ 2152 2153 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2154 { 2155 return ptlock_ptr(pmd_page(*pmd)); 2156 } 2157 2158 static inline bool ptlock_init(struct page *page) 2159 { 2160 /* 2161 * prep_new_page() initialize page->private (and therefore page->ptl) 2162 * with 0. Make sure nobody took it in use in between. 2163 * 2164 * It can happen if arch try to use slab for page table allocation: 2165 * slab code uses page->slab_cache, which share storage with page->ptl. 2166 */ 2167 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2168 if (!ptlock_alloc(page)) 2169 return false; 2170 spin_lock_init(ptlock_ptr(page)); 2171 return true; 2172 } 2173 2174 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2175 /* 2176 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2177 */ 2178 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2179 { 2180 return &mm->page_table_lock; 2181 } 2182 static inline void ptlock_cache_init(void) {} 2183 static inline bool ptlock_init(struct page *page) { return true; } 2184 static inline void ptlock_free(struct page *page) {} 2185 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2186 2187 static inline void pgtable_init(void) 2188 { 2189 ptlock_cache_init(); 2190 pgtable_cache_init(); 2191 } 2192 2193 static inline bool pgtable_pte_page_ctor(struct page *page) 2194 { 2195 if (!ptlock_init(page)) 2196 return false; 2197 __SetPageTable(page); 2198 inc_zone_page_state(page, NR_PAGETABLE); 2199 return true; 2200 } 2201 2202 static inline void pgtable_pte_page_dtor(struct page *page) 2203 { 2204 ptlock_free(page); 2205 __ClearPageTable(page); 2206 dec_zone_page_state(page, NR_PAGETABLE); 2207 } 2208 2209 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2210 ({ \ 2211 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2212 pte_t *__pte = pte_offset_map(pmd, address); \ 2213 *(ptlp) = __ptl; \ 2214 spin_lock(__ptl); \ 2215 __pte; \ 2216 }) 2217 2218 #define pte_unmap_unlock(pte, ptl) do { \ 2219 spin_unlock(ptl); \ 2220 pte_unmap(pte); \ 2221 } while (0) 2222 2223 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2224 2225 #define pte_alloc_map(mm, pmd, address) \ 2226 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2227 2228 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2229 (pte_alloc(mm, pmd) ? \ 2230 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2231 2232 #define pte_alloc_kernel(pmd, address) \ 2233 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2234 NULL: pte_offset_kernel(pmd, address)) 2235 2236 #if USE_SPLIT_PMD_PTLOCKS 2237 2238 static struct page *pmd_to_page(pmd_t *pmd) 2239 { 2240 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2241 return virt_to_page((void *)((unsigned long) pmd & mask)); 2242 } 2243 2244 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2245 { 2246 return ptlock_ptr(pmd_to_page(pmd)); 2247 } 2248 2249 static inline bool pgtable_pmd_page_ctor(struct page *page) 2250 { 2251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2252 page->pmd_huge_pte = NULL; 2253 #endif 2254 return ptlock_init(page); 2255 } 2256 2257 static inline void pgtable_pmd_page_dtor(struct page *page) 2258 { 2259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2260 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2261 #endif 2262 ptlock_free(page); 2263 } 2264 2265 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2266 2267 #else 2268 2269 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2270 { 2271 return &mm->page_table_lock; 2272 } 2273 2274 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2275 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2276 2277 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2278 2279 #endif 2280 2281 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2282 { 2283 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2284 spin_lock(ptl); 2285 return ptl; 2286 } 2287 2288 /* 2289 * No scalability reason to split PUD locks yet, but follow the same pattern 2290 * as the PMD locks to make it easier if we decide to. The VM should not be 2291 * considered ready to switch to split PUD locks yet; there may be places 2292 * which need to be converted from page_table_lock. 2293 */ 2294 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2295 { 2296 return &mm->page_table_lock; 2297 } 2298 2299 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2300 { 2301 spinlock_t *ptl = pud_lockptr(mm, pud); 2302 2303 spin_lock(ptl); 2304 return ptl; 2305 } 2306 2307 extern void __init pagecache_init(void); 2308 extern void __init free_area_init_memoryless_node(int nid); 2309 extern void free_initmem(void); 2310 2311 /* 2312 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2313 * into the buddy system. The freed pages will be poisoned with pattern 2314 * "poison" if it's within range [0, UCHAR_MAX]. 2315 * Return pages freed into the buddy system. 2316 */ 2317 extern unsigned long free_reserved_area(void *start, void *end, 2318 int poison, const char *s); 2319 2320 #ifdef CONFIG_HIGHMEM 2321 /* 2322 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2323 * and totalram_pages. 2324 */ 2325 extern void free_highmem_page(struct page *page); 2326 #endif 2327 2328 extern void adjust_managed_page_count(struct page *page, long count); 2329 extern void mem_init_print_info(const char *str); 2330 2331 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2332 2333 /* Free the reserved page into the buddy system, so it gets managed. */ 2334 static inline void __free_reserved_page(struct page *page) 2335 { 2336 ClearPageReserved(page); 2337 init_page_count(page); 2338 __free_page(page); 2339 } 2340 2341 static inline void free_reserved_page(struct page *page) 2342 { 2343 __free_reserved_page(page); 2344 adjust_managed_page_count(page, 1); 2345 } 2346 2347 static inline void mark_page_reserved(struct page *page) 2348 { 2349 SetPageReserved(page); 2350 adjust_managed_page_count(page, -1); 2351 } 2352 2353 /* 2354 * Default method to free all the __init memory into the buddy system. 2355 * The freed pages will be poisoned with pattern "poison" if it's within 2356 * range [0, UCHAR_MAX]. 2357 * Return pages freed into the buddy system. 2358 */ 2359 static inline unsigned long free_initmem_default(int poison) 2360 { 2361 extern char __init_begin[], __init_end[]; 2362 2363 return free_reserved_area(&__init_begin, &__init_end, 2364 poison, "unused kernel"); 2365 } 2366 2367 static inline unsigned long get_num_physpages(void) 2368 { 2369 int nid; 2370 unsigned long phys_pages = 0; 2371 2372 for_each_online_node(nid) 2373 phys_pages += node_present_pages(nid); 2374 2375 return phys_pages; 2376 } 2377 2378 /* 2379 * Using memblock node mappings, an architecture may initialise its 2380 * zones, allocate the backing mem_map and account for memory holes in an 2381 * architecture independent manner. 2382 * 2383 * An architecture is expected to register range of page frames backed by 2384 * physical memory with memblock_add[_node]() before calling 2385 * free_area_init() passing in the PFN each zone ends at. At a basic 2386 * usage, an architecture is expected to do something like 2387 * 2388 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2389 * max_highmem_pfn}; 2390 * for_each_valid_physical_page_range() 2391 * memblock_add_node(base, size, nid) 2392 * free_area_init(max_zone_pfns); 2393 */ 2394 void free_area_init(unsigned long *max_zone_pfn); 2395 unsigned long node_map_pfn_alignment(void); 2396 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2397 unsigned long end_pfn); 2398 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2399 unsigned long end_pfn); 2400 extern void get_pfn_range_for_nid(unsigned int nid, 2401 unsigned long *start_pfn, unsigned long *end_pfn); 2402 extern unsigned long find_min_pfn_with_active_regions(void); 2403 2404 #ifndef CONFIG_NEED_MULTIPLE_NODES 2405 static inline int early_pfn_to_nid(unsigned long pfn) 2406 { 2407 return 0; 2408 } 2409 #else 2410 /* please see mm/page_alloc.c */ 2411 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2412 /* there is a per-arch backend function. */ 2413 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2414 struct mminit_pfnnid_cache *state); 2415 #endif 2416 2417 extern void set_dma_reserve(unsigned long new_dma_reserve); 2418 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2419 enum meminit_context, struct vmem_altmap *); 2420 extern void setup_per_zone_wmarks(void); 2421 extern int __meminit init_per_zone_wmark_min(void); 2422 extern void mem_init(void); 2423 extern void __init mmap_init(void); 2424 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2425 extern long si_mem_available(void); 2426 extern void si_meminfo(struct sysinfo * val); 2427 extern void si_meminfo_node(struct sysinfo *val, int nid); 2428 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2429 extern unsigned long arch_reserved_kernel_pages(void); 2430 #endif 2431 2432 extern __printf(3, 4) 2433 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2434 2435 extern void setup_per_cpu_pageset(void); 2436 2437 /* page_alloc.c */ 2438 extern int min_free_kbytes; 2439 extern int watermark_boost_factor; 2440 extern int watermark_scale_factor; 2441 extern bool arch_has_descending_max_zone_pfns(void); 2442 2443 /* nommu.c */ 2444 extern atomic_long_t mmap_pages_allocated; 2445 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2446 2447 /* interval_tree.c */ 2448 void vma_interval_tree_insert(struct vm_area_struct *node, 2449 struct rb_root_cached *root); 2450 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2451 struct vm_area_struct *prev, 2452 struct rb_root_cached *root); 2453 void vma_interval_tree_remove(struct vm_area_struct *node, 2454 struct rb_root_cached *root); 2455 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2456 unsigned long start, unsigned long last); 2457 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2458 unsigned long start, unsigned long last); 2459 2460 #define vma_interval_tree_foreach(vma, root, start, last) \ 2461 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2462 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2463 2464 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2465 struct rb_root_cached *root); 2466 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2467 struct rb_root_cached *root); 2468 struct anon_vma_chain * 2469 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2470 unsigned long start, unsigned long last); 2471 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2472 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2473 #ifdef CONFIG_DEBUG_VM_RB 2474 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2475 #endif 2476 2477 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2478 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2479 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2480 2481 /* mmap.c */ 2482 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2483 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2484 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2485 struct vm_area_struct *expand); 2486 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2487 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2488 { 2489 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2490 } 2491 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2492 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2493 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2494 struct mempolicy *, struct vm_userfaultfd_ctx); 2495 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2496 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2497 unsigned long addr, int new_below); 2498 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2499 unsigned long addr, int new_below); 2500 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2501 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2502 struct rb_node **, struct rb_node *); 2503 extern void unlink_file_vma(struct vm_area_struct *); 2504 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2505 unsigned long addr, unsigned long len, pgoff_t pgoff, 2506 bool *need_rmap_locks); 2507 extern void exit_mmap(struct mm_struct *); 2508 2509 static inline int check_data_rlimit(unsigned long rlim, 2510 unsigned long new, 2511 unsigned long start, 2512 unsigned long end_data, 2513 unsigned long start_data) 2514 { 2515 if (rlim < RLIM_INFINITY) { 2516 if (((new - start) + (end_data - start_data)) > rlim) 2517 return -ENOSPC; 2518 } 2519 2520 return 0; 2521 } 2522 2523 extern int mm_take_all_locks(struct mm_struct *mm); 2524 extern void mm_drop_all_locks(struct mm_struct *mm); 2525 2526 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2527 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2528 extern struct file *get_task_exe_file(struct task_struct *task); 2529 2530 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2531 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2532 2533 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2534 const struct vm_special_mapping *sm); 2535 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2536 unsigned long addr, unsigned long len, 2537 unsigned long flags, 2538 const struct vm_special_mapping *spec); 2539 /* This is an obsolete alternative to _install_special_mapping. */ 2540 extern int install_special_mapping(struct mm_struct *mm, 2541 unsigned long addr, unsigned long len, 2542 unsigned long flags, struct page **pages); 2543 2544 unsigned long randomize_stack_top(unsigned long stack_top); 2545 2546 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2547 2548 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2549 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2550 struct list_head *uf); 2551 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2552 unsigned long len, unsigned long prot, unsigned long flags, 2553 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2554 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2555 struct list_head *uf, bool downgrade); 2556 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2557 struct list_head *uf); 2558 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2559 2560 #ifdef CONFIG_MMU 2561 extern int __mm_populate(unsigned long addr, unsigned long len, 2562 int ignore_errors); 2563 static inline void mm_populate(unsigned long addr, unsigned long len) 2564 { 2565 /* Ignore errors */ 2566 (void) __mm_populate(addr, len, 1); 2567 } 2568 #else 2569 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2570 #endif 2571 2572 /* These take the mm semaphore themselves */ 2573 extern int __must_check vm_brk(unsigned long, unsigned long); 2574 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2575 extern int vm_munmap(unsigned long, size_t); 2576 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2577 unsigned long, unsigned long, 2578 unsigned long, unsigned long); 2579 2580 struct vm_unmapped_area_info { 2581 #define VM_UNMAPPED_AREA_TOPDOWN 1 2582 unsigned long flags; 2583 unsigned long length; 2584 unsigned long low_limit; 2585 unsigned long high_limit; 2586 unsigned long align_mask; 2587 unsigned long align_offset; 2588 }; 2589 2590 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2591 2592 /* truncate.c */ 2593 extern void truncate_inode_pages(struct address_space *, loff_t); 2594 extern void truncate_inode_pages_range(struct address_space *, 2595 loff_t lstart, loff_t lend); 2596 extern void truncate_inode_pages_final(struct address_space *); 2597 2598 /* generic vm_area_ops exported for stackable file systems */ 2599 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2600 extern void filemap_map_pages(struct vm_fault *vmf, 2601 pgoff_t start_pgoff, pgoff_t end_pgoff); 2602 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2603 2604 /* mm/page-writeback.c */ 2605 int __must_check write_one_page(struct page *page); 2606 void task_dirty_inc(struct task_struct *tsk); 2607 2608 extern unsigned long stack_guard_gap; 2609 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2610 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2611 2612 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2613 extern int expand_downwards(struct vm_area_struct *vma, 2614 unsigned long address); 2615 #if VM_GROWSUP 2616 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2617 #else 2618 #define expand_upwards(vma, address) (0) 2619 #endif 2620 2621 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2622 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2623 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2624 struct vm_area_struct **pprev); 2625 2626 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2627 NULL if none. Assume start_addr < end_addr. */ 2628 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2629 { 2630 struct vm_area_struct * vma = find_vma(mm,start_addr); 2631 2632 if (vma && end_addr <= vma->vm_start) 2633 vma = NULL; 2634 return vma; 2635 } 2636 2637 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2638 { 2639 unsigned long vm_start = vma->vm_start; 2640 2641 if (vma->vm_flags & VM_GROWSDOWN) { 2642 vm_start -= stack_guard_gap; 2643 if (vm_start > vma->vm_start) 2644 vm_start = 0; 2645 } 2646 return vm_start; 2647 } 2648 2649 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2650 { 2651 unsigned long vm_end = vma->vm_end; 2652 2653 if (vma->vm_flags & VM_GROWSUP) { 2654 vm_end += stack_guard_gap; 2655 if (vm_end < vma->vm_end) 2656 vm_end = -PAGE_SIZE; 2657 } 2658 return vm_end; 2659 } 2660 2661 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2662 { 2663 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2664 } 2665 2666 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2667 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2668 unsigned long vm_start, unsigned long vm_end) 2669 { 2670 struct vm_area_struct *vma = find_vma(mm, vm_start); 2671 2672 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2673 vma = NULL; 2674 2675 return vma; 2676 } 2677 2678 static inline bool range_in_vma(struct vm_area_struct *vma, 2679 unsigned long start, unsigned long end) 2680 { 2681 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2682 } 2683 2684 #ifdef CONFIG_MMU 2685 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2686 void vma_set_page_prot(struct vm_area_struct *vma); 2687 #else 2688 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2689 { 2690 return __pgprot(0); 2691 } 2692 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2693 { 2694 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2695 } 2696 #endif 2697 2698 #ifdef CONFIG_NUMA_BALANCING 2699 unsigned long change_prot_numa(struct vm_area_struct *vma, 2700 unsigned long start, unsigned long end); 2701 #endif 2702 2703 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2704 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2705 unsigned long pfn, unsigned long size, pgprot_t); 2706 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2707 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2708 struct page **pages, unsigned long *num); 2709 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2710 unsigned long num); 2711 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2712 unsigned long num); 2713 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2714 unsigned long pfn); 2715 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2716 unsigned long pfn, pgprot_t pgprot); 2717 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2718 pfn_t pfn); 2719 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2720 pfn_t pfn, pgprot_t pgprot); 2721 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2722 unsigned long addr, pfn_t pfn); 2723 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2724 2725 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2726 unsigned long addr, struct page *page) 2727 { 2728 int err = vm_insert_page(vma, addr, page); 2729 2730 if (err == -ENOMEM) 2731 return VM_FAULT_OOM; 2732 if (err < 0 && err != -EBUSY) 2733 return VM_FAULT_SIGBUS; 2734 2735 return VM_FAULT_NOPAGE; 2736 } 2737 2738 static inline vm_fault_t vmf_error(int err) 2739 { 2740 if (err == -ENOMEM) 2741 return VM_FAULT_OOM; 2742 return VM_FAULT_SIGBUS; 2743 } 2744 2745 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2746 unsigned int foll_flags); 2747 2748 #define FOLL_WRITE 0x01 /* check pte is writable */ 2749 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2750 #define FOLL_GET 0x04 /* do get_page on page */ 2751 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2752 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2753 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2754 * and return without waiting upon it */ 2755 #define FOLL_POPULATE 0x40 /* fault in page */ 2756 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2757 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2758 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2759 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2760 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2761 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2762 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2763 #define FOLL_COW 0x4000 /* internal GUP flag */ 2764 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2765 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2766 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2767 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2768 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2769 2770 /* 2771 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2772 * other. Here is what they mean, and how to use them: 2773 * 2774 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2775 * period _often_ under userspace control. This is in contrast to 2776 * iov_iter_get_pages(), whose usages are transient. 2777 * 2778 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2779 * lifetime enforced by the filesystem and we need guarantees that longterm 2780 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2781 * the filesystem. Ideas for this coordination include revoking the longterm 2782 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2783 * added after the problem with filesystems was found FS DAX VMAs are 2784 * specifically failed. Filesystem pages are still subject to bugs and use of 2785 * FOLL_LONGTERM should be avoided on those pages. 2786 * 2787 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2788 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2789 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2790 * is due to an incompatibility with the FS DAX check and 2791 * FAULT_FLAG_ALLOW_RETRY. 2792 * 2793 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2794 * that region. And so, CMA attempts to migrate the page before pinning, when 2795 * FOLL_LONGTERM is specified. 2796 * 2797 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2798 * but an additional pin counting system) will be invoked. This is intended for 2799 * anything that gets a page reference and then touches page data (for example, 2800 * Direct IO). This lets the filesystem know that some non-file-system entity is 2801 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2802 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2803 * a call to unpin_user_page(). 2804 * 2805 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2806 * and separate refcounting mechanisms, however, and that means that each has 2807 * its own acquire and release mechanisms: 2808 * 2809 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2810 * 2811 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2812 * 2813 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2814 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2815 * calls applied to them, and that's perfectly OK. This is a constraint on the 2816 * callers, not on the pages.) 2817 * 2818 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2819 * directly by the caller. That's in order to help avoid mismatches when 2820 * releasing pages: get_user_pages*() pages must be released via put_page(), 2821 * while pin_user_pages*() pages must be released via unpin_user_page(). 2822 * 2823 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2824 */ 2825 2826 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2827 { 2828 if (vm_fault & VM_FAULT_OOM) 2829 return -ENOMEM; 2830 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2831 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2832 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2833 return -EFAULT; 2834 return 0; 2835 } 2836 2837 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2838 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2839 unsigned long size, pte_fn_t fn, void *data); 2840 extern int apply_to_existing_page_range(struct mm_struct *mm, 2841 unsigned long address, unsigned long size, 2842 pte_fn_t fn, void *data); 2843 2844 #ifdef CONFIG_PAGE_POISONING 2845 extern bool page_poisoning_enabled(void); 2846 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2847 #else 2848 static inline bool page_poisoning_enabled(void) { return false; } 2849 static inline void kernel_poison_pages(struct page *page, int numpages, 2850 int enable) { } 2851 #endif 2852 2853 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2854 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2855 #else 2856 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2857 #endif 2858 static inline bool want_init_on_alloc(gfp_t flags) 2859 { 2860 if (static_branch_unlikely(&init_on_alloc) && 2861 !page_poisoning_enabled()) 2862 return true; 2863 return flags & __GFP_ZERO; 2864 } 2865 2866 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2867 DECLARE_STATIC_KEY_TRUE(init_on_free); 2868 #else 2869 DECLARE_STATIC_KEY_FALSE(init_on_free); 2870 #endif 2871 static inline bool want_init_on_free(void) 2872 { 2873 return static_branch_unlikely(&init_on_free) && 2874 !page_poisoning_enabled(); 2875 } 2876 2877 #ifdef CONFIG_DEBUG_PAGEALLOC 2878 extern void init_debug_pagealloc(void); 2879 #else 2880 static inline void init_debug_pagealloc(void) {} 2881 #endif 2882 extern bool _debug_pagealloc_enabled_early; 2883 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2884 2885 static inline bool debug_pagealloc_enabled(void) 2886 { 2887 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2888 _debug_pagealloc_enabled_early; 2889 } 2890 2891 /* 2892 * For use in fast paths after init_debug_pagealloc() has run, or when a 2893 * false negative result is not harmful when called too early. 2894 */ 2895 static inline bool debug_pagealloc_enabled_static(void) 2896 { 2897 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2898 return false; 2899 2900 return static_branch_unlikely(&_debug_pagealloc_enabled); 2901 } 2902 2903 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2904 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2905 2906 /* 2907 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2908 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2909 */ 2910 static inline void 2911 kernel_map_pages(struct page *page, int numpages, int enable) 2912 { 2913 __kernel_map_pages(page, numpages, enable); 2914 } 2915 #ifdef CONFIG_HIBERNATION 2916 extern bool kernel_page_present(struct page *page); 2917 #endif /* CONFIG_HIBERNATION */ 2918 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2919 static inline void 2920 kernel_map_pages(struct page *page, int numpages, int enable) {} 2921 #ifdef CONFIG_HIBERNATION 2922 static inline bool kernel_page_present(struct page *page) { return true; } 2923 #endif /* CONFIG_HIBERNATION */ 2924 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2925 2926 #ifdef __HAVE_ARCH_GATE_AREA 2927 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2928 extern int in_gate_area_no_mm(unsigned long addr); 2929 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2930 #else 2931 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2932 { 2933 return NULL; 2934 } 2935 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2936 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2937 { 2938 return 0; 2939 } 2940 #endif /* __HAVE_ARCH_GATE_AREA */ 2941 2942 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2943 2944 #ifdef CONFIG_SYSCTL 2945 extern int sysctl_drop_caches; 2946 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2947 loff_t *); 2948 #endif 2949 2950 void drop_slab(void); 2951 void drop_slab_node(int nid); 2952 2953 #ifndef CONFIG_MMU 2954 #define randomize_va_space 0 2955 #else 2956 extern int randomize_va_space; 2957 #endif 2958 2959 const char * arch_vma_name(struct vm_area_struct *vma); 2960 #ifdef CONFIG_MMU 2961 void print_vma_addr(char *prefix, unsigned long rip); 2962 #else 2963 static inline void print_vma_addr(char *prefix, unsigned long rip) 2964 { 2965 } 2966 #endif 2967 2968 void *sparse_buffer_alloc(unsigned long size); 2969 struct page * __populate_section_memmap(unsigned long pfn, 2970 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2971 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2972 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2973 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2974 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2975 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 2976 struct vmem_altmap *altmap); 2977 void *vmemmap_alloc_block(unsigned long size, int node); 2978 struct vmem_altmap; 2979 void *vmemmap_alloc_block_buf(unsigned long size, int node, 2980 struct vmem_altmap *altmap); 2981 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2982 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2983 int node, struct vmem_altmap *altmap); 2984 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2985 struct vmem_altmap *altmap); 2986 void vmemmap_populate_print_last(void); 2987 #ifdef CONFIG_MEMORY_HOTPLUG 2988 void vmemmap_free(unsigned long start, unsigned long end, 2989 struct vmem_altmap *altmap); 2990 #endif 2991 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2992 unsigned long nr_pages); 2993 2994 enum mf_flags { 2995 MF_COUNT_INCREASED = 1 << 0, 2996 MF_ACTION_REQUIRED = 1 << 1, 2997 MF_MUST_KILL = 1 << 2, 2998 MF_SOFT_OFFLINE = 1 << 3, 2999 }; 3000 extern int memory_failure(unsigned long pfn, int flags); 3001 extern void memory_failure_queue(unsigned long pfn, int flags); 3002 extern void memory_failure_queue_kick(int cpu); 3003 extern int unpoison_memory(unsigned long pfn); 3004 extern int get_hwpoison_page(struct page *page); 3005 #define put_hwpoison_page(page) put_page(page) 3006 extern int sysctl_memory_failure_early_kill; 3007 extern int sysctl_memory_failure_recovery; 3008 extern void shake_page(struct page *p, int access); 3009 extern atomic_long_t num_poisoned_pages __read_mostly; 3010 extern int soft_offline_page(unsigned long pfn, int flags); 3011 3012 3013 /* 3014 * Error handlers for various types of pages. 3015 */ 3016 enum mf_result { 3017 MF_IGNORED, /* Error: cannot be handled */ 3018 MF_FAILED, /* Error: handling failed */ 3019 MF_DELAYED, /* Will be handled later */ 3020 MF_RECOVERED, /* Successfully recovered */ 3021 }; 3022 3023 enum mf_action_page_type { 3024 MF_MSG_KERNEL, 3025 MF_MSG_KERNEL_HIGH_ORDER, 3026 MF_MSG_SLAB, 3027 MF_MSG_DIFFERENT_COMPOUND, 3028 MF_MSG_POISONED_HUGE, 3029 MF_MSG_HUGE, 3030 MF_MSG_FREE_HUGE, 3031 MF_MSG_NON_PMD_HUGE, 3032 MF_MSG_UNMAP_FAILED, 3033 MF_MSG_DIRTY_SWAPCACHE, 3034 MF_MSG_CLEAN_SWAPCACHE, 3035 MF_MSG_DIRTY_MLOCKED_LRU, 3036 MF_MSG_CLEAN_MLOCKED_LRU, 3037 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3038 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3039 MF_MSG_DIRTY_LRU, 3040 MF_MSG_CLEAN_LRU, 3041 MF_MSG_TRUNCATED_LRU, 3042 MF_MSG_BUDDY, 3043 MF_MSG_BUDDY_2ND, 3044 MF_MSG_DAX, 3045 MF_MSG_UNKNOWN, 3046 }; 3047 3048 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3049 extern void clear_huge_page(struct page *page, 3050 unsigned long addr_hint, 3051 unsigned int pages_per_huge_page); 3052 extern void copy_user_huge_page(struct page *dst, struct page *src, 3053 unsigned long addr_hint, 3054 struct vm_area_struct *vma, 3055 unsigned int pages_per_huge_page); 3056 extern long copy_huge_page_from_user(struct page *dst_page, 3057 const void __user *usr_src, 3058 unsigned int pages_per_huge_page, 3059 bool allow_pagefault); 3060 3061 /** 3062 * vma_is_special_huge - Are transhuge page-table entries considered special? 3063 * @vma: Pointer to the struct vm_area_struct to consider 3064 * 3065 * Whether transhuge page-table entries are considered "special" following 3066 * the definition in vm_normal_page(). 3067 * 3068 * Return: true if transhuge page-table entries should be considered special, 3069 * false otherwise. 3070 */ 3071 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3072 { 3073 return vma_is_dax(vma) || (vma->vm_file && 3074 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3075 } 3076 3077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3078 3079 #ifdef CONFIG_DEBUG_PAGEALLOC 3080 extern unsigned int _debug_guardpage_minorder; 3081 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3082 3083 static inline unsigned int debug_guardpage_minorder(void) 3084 { 3085 return _debug_guardpage_minorder; 3086 } 3087 3088 static inline bool debug_guardpage_enabled(void) 3089 { 3090 return static_branch_unlikely(&_debug_guardpage_enabled); 3091 } 3092 3093 static inline bool page_is_guard(struct page *page) 3094 { 3095 if (!debug_guardpage_enabled()) 3096 return false; 3097 3098 return PageGuard(page); 3099 } 3100 #else 3101 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3102 static inline bool debug_guardpage_enabled(void) { return false; } 3103 static inline bool page_is_guard(struct page *page) { return false; } 3104 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3105 3106 #if MAX_NUMNODES > 1 3107 void __init setup_nr_node_ids(void); 3108 #else 3109 static inline void setup_nr_node_ids(void) {} 3110 #endif 3111 3112 extern int memcmp_pages(struct page *page1, struct page *page2); 3113 3114 static inline int pages_identical(struct page *page1, struct page *page2) 3115 { 3116 return !memcmp_pages(page1, page2); 3117 } 3118 3119 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3120 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3121 pgoff_t first_index, pgoff_t nr, 3122 pgoff_t bitmap_pgoff, 3123 unsigned long *bitmap, 3124 pgoff_t *start, 3125 pgoff_t *end); 3126 3127 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3128 pgoff_t first_index, pgoff_t nr); 3129 #endif 3130 3131 extern int sysctl_nr_trim_pages; 3132 3133 #endif /* __KERNEL__ */ 3134 #endif /* _LINUX_MM_H */ 3135