xref: /linux-6.15/include/linux/mm.h (revision 02bdbf7d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct file_ra_state;
39 struct user_struct;
40 struct writeback_control;
41 struct bdi_writeback;
42 struct pt_regs;
43 
44 extern int sysctl_page_lock_unfairness;
45 
46 void init_mm_internals(void);
47 
48 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
50 
51 static inline void set_max_mapnr(unsigned long limit)
52 {
53 	max_mapnr = limit;
54 }
55 #else
56 static inline void set_max_mapnr(unsigned long limit) { }
57 #endif
58 
59 extern atomic_long_t _totalram_pages;
60 static inline unsigned long totalram_pages(void)
61 {
62 	return (unsigned long)atomic_long_read(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_inc(void)
66 {
67 	atomic_long_inc(&_totalram_pages);
68 }
69 
70 static inline void totalram_pages_dec(void)
71 {
72 	atomic_long_dec(&_totalram_pages);
73 }
74 
75 static inline void totalram_pages_add(long count)
76 {
77 	atomic_long_add(count, &_totalram_pages);
78 }
79 
80 extern void * high_memory;
81 extern int page_cluster;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern const int mmap_rnd_bits_max;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 /*
104  * Architectures that support memory tagging (assigning tags to memory regions,
105  * embedding these tags into addresses that point to these memory regions, and
106  * checking that the memory and the pointer tags match on memory accesses)
107  * redefine this macro to strip tags from pointers.
108  * It's defined as noop for arcitectures that don't support memory tagging.
109  */
110 #ifndef untagged_addr
111 #define untagged_addr(addr) (addr)
112 #endif
113 
114 #ifndef __pa_symbol
115 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
116 #endif
117 
118 #ifndef page_to_virt
119 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
120 #endif
121 
122 #ifndef lm_alias
123 #define lm_alias(x)	__va(__pa_symbol(x))
124 #endif
125 
126 /*
127  * To prevent common memory management code establishing
128  * a zero page mapping on a read fault.
129  * This macro should be defined within <asm/pgtable.h>.
130  * s390 does this to prevent multiplexing of hardware bits
131  * related to the physical page in case of virtualization.
132  */
133 #ifndef mm_forbids_zeropage
134 #define mm_forbids_zeropage(X)	(0)
135 #endif
136 
137 /*
138  * On some architectures it is expensive to call memset() for small sizes.
139  * If an architecture decides to implement their own version of
140  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141  * define their own version of this macro in <asm/pgtable.h>
142  */
143 #if BITS_PER_LONG == 64
144 /* This function must be updated when the size of struct page grows above 80
145  * or reduces below 56. The idea that compiler optimizes out switch()
146  * statement, and only leaves move/store instructions. Also the compiler can
147  * combine write statments if they are both assignments and can be reordered,
148  * this can result in several of the writes here being dropped.
149  */
150 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151 static inline void __mm_zero_struct_page(struct page *page)
152 {
153 	unsigned long *_pp = (void *)page;
154 
155 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 	BUILD_BUG_ON(sizeof(struct page) & 7);
157 	BUILD_BUG_ON(sizeof(struct page) < 56);
158 	BUILD_BUG_ON(sizeof(struct page) > 80);
159 
160 	switch (sizeof(struct page)) {
161 	case 80:
162 		_pp[9] = 0;
163 		fallthrough;
164 	case 72:
165 		_pp[8] = 0;
166 		fallthrough;
167 	case 64:
168 		_pp[7] = 0;
169 		fallthrough;
170 	case 56:
171 		_pp[6] = 0;
172 		_pp[5] = 0;
173 		_pp[4] = 0;
174 		_pp[3] = 0;
175 		_pp[2] = 0;
176 		_pp[1] = 0;
177 		_pp[0] = 0;
178 	}
179 }
180 #else
181 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
182 #endif
183 
184 /*
185  * Default maximum number of active map areas, this limits the number of vmas
186  * per mm struct. Users can overwrite this number by sysctl but there is a
187  * problem.
188  *
189  * When a program's coredump is generated as ELF format, a section is created
190  * per a vma. In ELF, the number of sections is represented in unsigned short.
191  * This means the number of sections should be smaller than 65535 at coredump.
192  * Because the kernel adds some informative sections to a image of program at
193  * generating coredump, we need some margin. The number of extra sections is
194  * 1-3 now and depends on arch. We use "5" as safe margin, here.
195  *
196  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197  * not a hard limit any more. Although some userspace tools can be surprised by
198  * that.
199  */
200 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
201 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202 
203 extern int sysctl_max_map_count;
204 
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
207 
208 extern int sysctl_overcommit_memory;
209 extern int sysctl_overcommit_ratio;
210 extern unsigned long sysctl_overcommit_kbytes;
211 
212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
213 		loff_t *);
214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
215 		loff_t *);
216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 		loff_t *);
218 
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226 
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228 
229 /*
230  * Linux kernel virtual memory manager primitives.
231  * The idea being to have a "virtual" mm in the same way
232  * we have a virtual fs - giving a cleaner interface to the
233  * mm details, and allowing different kinds of memory mappings
234  * (from shared memory to executable loading to arbitrary
235  * mmap() functions).
236  */
237 
238 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240 void vm_area_free(struct vm_area_struct *);
241 
242 #ifndef CONFIG_MMU
243 extern struct rb_root nommu_region_tree;
244 extern struct rw_semaphore nommu_region_sem;
245 
246 extern unsigned int kobjsize(const void *objp);
247 #endif
248 
249 /*
250  * vm_flags in vm_area_struct, see mm_types.h.
251  * When changing, update also include/trace/events/mmflags.h
252  */
253 #define VM_NONE		0x00000000
254 
255 #define VM_READ		0x00000001	/* currently active flags */
256 #define VM_WRITE	0x00000002
257 #define VM_EXEC		0x00000004
258 #define VM_SHARED	0x00000008
259 
260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
261 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
262 #define VM_MAYWRITE	0x00000020
263 #define VM_MAYEXEC	0x00000040
264 #define VM_MAYSHARE	0x00000080
265 
266 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
267 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
268 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
270 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
271 
272 #define VM_LOCKED	0x00002000
273 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
274 
275 					/* Used by sys_madvise() */
276 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
277 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
278 
279 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
283 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
284 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
285 #define VM_SYNC		0x00800000	/* Synchronous page faults */
286 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
287 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
288 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY	0
294 #endif
295 
296 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
300 
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
308 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
309 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
310 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
311 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
313 
314 #ifdef CONFIG_ARCH_HAS_PKEYS
315 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
316 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
317 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
318 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
319 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
320 #ifdef CONFIG_PPC
321 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
322 #else
323 # define VM_PKEY_BIT4  0
324 #endif
325 #endif /* CONFIG_ARCH_HAS_PKEYS */
326 
327 #if defined(CONFIG_X86)
328 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
329 #elif defined(CONFIG_PPC)
330 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
331 #elif defined(CONFIG_PARISC)
332 # define VM_GROWSUP	VM_ARCH_1
333 #elif defined(CONFIG_IA64)
334 # define VM_GROWSUP	VM_ARCH_1
335 #elif defined(CONFIG_SPARC64)
336 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
337 # define VM_ARCH_CLEAR	VM_SPARC_ADI
338 #elif defined(CONFIG_ARM64)
339 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
340 # define VM_ARCH_CLEAR	VM_ARM64_BTI
341 #elif !defined(CONFIG_MMU)
342 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
343 #endif
344 
345 #ifndef VM_GROWSUP
346 # define VM_GROWSUP	VM_NONE
347 #endif
348 
349 /* Bits set in the VMA until the stack is in its final location */
350 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
351 
352 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
353 
354 /* Common data flag combinations */
355 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
356 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
357 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
358 				 VM_MAYWRITE | VM_MAYEXEC)
359 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
360 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
361 
362 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
363 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
364 #endif
365 
366 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
367 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
368 #endif
369 
370 #ifdef CONFIG_STACK_GROWSUP
371 #define VM_STACK	VM_GROWSUP
372 #else
373 #define VM_STACK	VM_GROWSDOWN
374 #endif
375 
376 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
377 
378 /* VMA basic access permission flags */
379 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
380 
381 
382 /*
383  * Special vmas that are non-mergable, non-mlock()able.
384  */
385 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
386 
387 /* This mask prevents VMA from being scanned with khugepaged */
388 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
389 
390 /* This mask defines which mm->def_flags a process can inherit its parent */
391 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
392 
393 /* This mask is used to clear all the VMA flags used by mlock */
394 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
395 
396 /* Arch-specific flags to clear when updating VM flags on protection change */
397 #ifndef VM_ARCH_CLEAR
398 # define VM_ARCH_CLEAR	VM_NONE
399 #endif
400 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
401 
402 /*
403  * mapping from the currently active vm_flags protection bits (the
404  * low four bits) to a page protection mask..
405  */
406 extern pgprot_t protection_map[16];
407 
408 /**
409  * Fault flag definitions.
410  *
411  * @FAULT_FLAG_WRITE: Fault was a write fault.
412  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
413  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
414  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
415  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
416  * @FAULT_FLAG_TRIED: The fault has been tried once.
417  * @FAULT_FLAG_USER: The fault originated in userspace.
418  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
419  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
420  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
421  *
422  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
423  * whether we would allow page faults to retry by specifying these two
424  * fault flags correctly.  Currently there can be three legal combinations:
425  *
426  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
427  *                              this is the first try
428  *
429  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
430  *                              we've already tried at least once
431  *
432  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
433  *
434  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
435  * be used.  Note that page faults can be allowed to retry for multiple times,
436  * in which case we'll have an initial fault with flags (a) then later on
437  * continuous faults with flags (b).  We should always try to detect pending
438  * signals before a retry to make sure the continuous page faults can still be
439  * interrupted if necessary.
440  */
441 #define FAULT_FLAG_WRITE			0x01
442 #define FAULT_FLAG_MKWRITE			0x02
443 #define FAULT_FLAG_ALLOW_RETRY			0x04
444 #define FAULT_FLAG_RETRY_NOWAIT			0x08
445 #define FAULT_FLAG_KILLABLE			0x10
446 #define FAULT_FLAG_TRIED			0x20
447 #define FAULT_FLAG_USER				0x40
448 #define FAULT_FLAG_REMOTE			0x80
449 #define FAULT_FLAG_INSTRUCTION  		0x100
450 #define FAULT_FLAG_INTERRUPTIBLE		0x200
451 
452 /*
453  * The default fault flags that should be used by most of the
454  * arch-specific page fault handlers.
455  */
456 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
457 			     FAULT_FLAG_KILLABLE | \
458 			     FAULT_FLAG_INTERRUPTIBLE)
459 
460 /**
461  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
462  *
463  * This is mostly used for places where we want to try to avoid taking
464  * the mmap_lock for too long a time when waiting for another condition
465  * to change, in which case we can try to be polite to release the
466  * mmap_lock in the first round to avoid potential starvation of other
467  * processes that would also want the mmap_lock.
468  *
469  * Return: true if the page fault allows retry and this is the first
470  * attempt of the fault handling; false otherwise.
471  */
472 static inline bool fault_flag_allow_retry_first(unsigned int flags)
473 {
474 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
475 	    (!(flags & FAULT_FLAG_TRIED));
476 }
477 
478 #define FAULT_FLAG_TRACE \
479 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
480 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
481 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
482 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
483 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
484 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
485 	{ FAULT_FLAG_USER,		"USER" }, \
486 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
487 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
488 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
489 
490 /*
491  * vm_fault is filled by the pagefault handler and passed to the vma's
492  * ->fault function. The vma's ->fault is responsible for returning a bitmask
493  * of VM_FAULT_xxx flags that give details about how the fault was handled.
494  *
495  * MM layer fills up gfp_mask for page allocations but fault handler might
496  * alter it if its implementation requires a different allocation context.
497  *
498  * pgoff should be used in favour of virtual_address, if possible.
499  */
500 struct vm_fault {
501 	struct vm_area_struct *vma;	/* Target VMA */
502 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
503 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
504 	pgoff_t pgoff;			/* Logical page offset based on vma */
505 	unsigned long address;		/* Faulting virtual address */
506 	pmd_t *pmd;			/* Pointer to pmd entry matching
507 					 * the 'address' */
508 	pud_t *pud;			/* Pointer to pud entry matching
509 					 * the 'address'
510 					 */
511 	pte_t orig_pte;			/* Value of PTE at the time of fault */
512 
513 	struct page *cow_page;		/* Page handler may use for COW fault */
514 	struct page *page;		/* ->fault handlers should return a
515 					 * page here, unless VM_FAULT_NOPAGE
516 					 * is set (which is also implied by
517 					 * VM_FAULT_ERROR).
518 					 */
519 	/* These three entries are valid only while holding ptl lock */
520 	pte_t *pte;			/* Pointer to pte entry matching
521 					 * the 'address'. NULL if the page
522 					 * table hasn't been allocated.
523 					 */
524 	spinlock_t *ptl;		/* Page table lock.
525 					 * Protects pte page table if 'pte'
526 					 * is not NULL, otherwise pmd.
527 					 */
528 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
529 					 * vm_ops->map_pages() calls
530 					 * alloc_set_pte() from atomic context.
531 					 * do_fault_around() pre-allocates
532 					 * page table to avoid allocation from
533 					 * atomic context.
534 					 */
535 };
536 
537 /* page entry size for vm->huge_fault() */
538 enum page_entry_size {
539 	PE_SIZE_PTE = 0,
540 	PE_SIZE_PMD,
541 	PE_SIZE_PUD,
542 };
543 
544 /*
545  * These are the virtual MM functions - opening of an area, closing and
546  * unmapping it (needed to keep files on disk up-to-date etc), pointer
547  * to the functions called when a no-page or a wp-page exception occurs.
548  */
549 struct vm_operations_struct {
550 	void (*open)(struct vm_area_struct * area);
551 	void (*close)(struct vm_area_struct * area);
552 	int (*split)(struct vm_area_struct * area, unsigned long addr);
553 	int (*mremap)(struct vm_area_struct * area);
554 	vm_fault_t (*fault)(struct vm_fault *vmf);
555 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
556 			enum page_entry_size pe_size);
557 	void (*map_pages)(struct vm_fault *vmf,
558 			pgoff_t start_pgoff, pgoff_t end_pgoff);
559 	unsigned long (*pagesize)(struct vm_area_struct * area);
560 
561 	/* notification that a previously read-only page is about to become
562 	 * writable, if an error is returned it will cause a SIGBUS */
563 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
564 
565 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
566 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
567 
568 	/* called by access_process_vm when get_user_pages() fails, typically
569 	 * for use by special VMAs that can switch between memory and hardware
570 	 */
571 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
572 		      void *buf, int len, int write);
573 
574 	/* Called by the /proc/PID/maps code to ask the vma whether it
575 	 * has a special name.  Returning non-NULL will also cause this
576 	 * vma to be dumped unconditionally. */
577 	const char *(*name)(struct vm_area_struct *vma);
578 
579 #ifdef CONFIG_NUMA
580 	/*
581 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
582 	 * to hold the policy upon return.  Caller should pass NULL @new to
583 	 * remove a policy and fall back to surrounding context--i.e. do not
584 	 * install a MPOL_DEFAULT policy, nor the task or system default
585 	 * mempolicy.
586 	 */
587 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
588 
589 	/*
590 	 * get_policy() op must add reference [mpol_get()] to any policy at
591 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
592 	 * in mm/mempolicy.c will do this automatically.
593 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
594 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
595 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
596 	 * must return NULL--i.e., do not "fallback" to task or system default
597 	 * policy.
598 	 */
599 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
600 					unsigned long addr);
601 #endif
602 	/*
603 	 * Called by vm_normal_page() for special PTEs to find the
604 	 * page for @addr.  This is useful if the default behavior
605 	 * (using pte_page()) would not find the correct page.
606 	 */
607 	struct page *(*find_special_page)(struct vm_area_struct *vma,
608 					  unsigned long addr);
609 };
610 
611 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
612 {
613 	static const struct vm_operations_struct dummy_vm_ops = {};
614 
615 	memset(vma, 0, sizeof(*vma));
616 	vma->vm_mm = mm;
617 	vma->vm_ops = &dummy_vm_ops;
618 	INIT_LIST_HEAD(&vma->anon_vma_chain);
619 }
620 
621 static inline void vma_set_anonymous(struct vm_area_struct *vma)
622 {
623 	vma->vm_ops = NULL;
624 }
625 
626 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
627 {
628 	return !vma->vm_ops;
629 }
630 
631 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
632 {
633 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
634 
635 	if (!maybe_stack)
636 		return false;
637 
638 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
639 						VM_STACK_INCOMPLETE_SETUP)
640 		return true;
641 
642 	return false;
643 }
644 
645 static inline bool vma_is_foreign(struct vm_area_struct *vma)
646 {
647 	if (!current->mm)
648 		return true;
649 
650 	if (current->mm != vma->vm_mm)
651 		return true;
652 
653 	return false;
654 }
655 
656 static inline bool vma_is_accessible(struct vm_area_struct *vma)
657 {
658 	return vma->vm_flags & VM_ACCESS_FLAGS;
659 }
660 
661 #ifdef CONFIG_SHMEM
662 /*
663  * The vma_is_shmem is not inline because it is used only by slow
664  * paths in userfault.
665  */
666 bool vma_is_shmem(struct vm_area_struct *vma);
667 #else
668 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
669 #endif
670 
671 int vma_is_stack_for_current(struct vm_area_struct *vma);
672 
673 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
674 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
675 
676 struct mmu_gather;
677 struct inode;
678 
679 #include <linux/huge_mm.h>
680 
681 /*
682  * Methods to modify the page usage count.
683  *
684  * What counts for a page usage:
685  * - cache mapping   (page->mapping)
686  * - private data    (page->private)
687  * - page mapped in a task's page tables, each mapping
688  *   is counted separately
689  *
690  * Also, many kernel routines increase the page count before a critical
691  * routine so they can be sure the page doesn't go away from under them.
692  */
693 
694 /*
695  * Drop a ref, return true if the refcount fell to zero (the page has no users)
696  */
697 static inline int put_page_testzero(struct page *page)
698 {
699 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
700 	return page_ref_dec_and_test(page);
701 }
702 
703 /*
704  * Try to grab a ref unless the page has a refcount of zero, return false if
705  * that is the case.
706  * This can be called when MMU is off so it must not access
707  * any of the virtual mappings.
708  */
709 static inline int get_page_unless_zero(struct page *page)
710 {
711 	return page_ref_add_unless(page, 1, 0);
712 }
713 
714 extern int page_is_ram(unsigned long pfn);
715 
716 enum {
717 	REGION_INTERSECTS,
718 	REGION_DISJOINT,
719 	REGION_MIXED,
720 };
721 
722 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
723 		      unsigned long desc);
724 
725 /* Support for virtually mapped pages */
726 struct page *vmalloc_to_page(const void *addr);
727 unsigned long vmalloc_to_pfn(const void *addr);
728 
729 /*
730  * Determine if an address is within the vmalloc range
731  *
732  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
733  * is no special casing required.
734  */
735 
736 #ifndef is_ioremap_addr
737 #define is_ioremap_addr(x) is_vmalloc_addr(x)
738 #endif
739 
740 #ifdef CONFIG_MMU
741 extern bool is_vmalloc_addr(const void *x);
742 extern int is_vmalloc_or_module_addr(const void *x);
743 #else
744 static inline bool is_vmalloc_addr(const void *x)
745 {
746 	return false;
747 }
748 static inline int is_vmalloc_or_module_addr(const void *x)
749 {
750 	return 0;
751 }
752 #endif
753 
754 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
755 static inline void *kvmalloc(size_t size, gfp_t flags)
756 {
757 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
758 }
759 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
760 {
761 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
762 }
763 static inline void *kvzalloc(size_t size, gfp_t flags)
764 {
765 	return kvmalloc(size, flags | __GFP_ZERO);
766 }
767 
768 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
769 {
770 	size_t bytes;
771 
772 	if (unlikely(check_mul_overflow(n, size, &bytes)))
773 		return NULL;
774 
775 	return kvmalloc(bytes, flags);
776 }
777 
778 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
779 {
780 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
781 }
782 
783 extern void kvfree(const void *addr);
784 extern void kvfree_sensitive(const void *addr, size_t len);
785 
786 static inline int head_mapcount(struct page *head)
787 {
788 	return atomic_read(compound_mapcount_ptr(head)) + 1;
789 }
790 
791 /*
792  * Mapcount of compound page as a whole, does not include mapped sub-pages.
793  *
794  * Must be called only for compound pages or any their tail sub-pages.
795  */
796 static inline int compound_mapcount(struct page *page)
797 {
798 	VM_BUG_ON_PAGE(!PageCompound(page), page);
799 	page = compound_head(page);
800 	return head_mapcount(page);
801 }
802 
803 /*
804  * The atomic page->_mapcount, starts from -1: so that transitions
805  * both from it and to it can be tracked, using atomic_inc_and_test
806  * and atomic_add_negative(-1).
807  */
808 static inline void page_mapcount_reset(struct page *page)
809 {
810 	atomic_set(&(page)->_mapcount, -1);
811 }
812 
813 int __page_mapcount(struct page *page);
814 
815 /*
816  * Mapcount of 0-order page; when compound sub-page, includes
817  * compound_mapcount().
818  *
819  * Result is undefined for pages which cannot be mapped into userspace.
820  * For example SLAB or special types of pages. See function page_has_type().
821  * They use this place in struct page differently.
822  */
823 static inline int page_mapcount(struct page *page)
824 {
825 	if (unlikely(PageCompound(page)))
826 		return __page_mapcount(page);
827 	return atomic_read(&page->_mapcount) + 1;
828 }
829 
830 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
831 int total_mapcount(struct page *page);
832 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
833 #else
834 static inline int total_mapcount(struct page *page)
835 {
836 	return page_mapcount(page);
837 }
838 static inline int page_trans_huge_mapcount(struct page *page,
839 					   int *total_mapcount)
840 {
841 	int mapcount = page_mapcount(page);
842 	if (total_mapcount)
843 		*total_mapcount = mapcount;
844 	return mapcount;
845 }
846 #endif
847 
848 static inline struct page *virt_to_head_page(const void *x)
849 {
850 	struct page *page = virt_to_page(x);
851 
852 	return compound_head(page);
853 }
854 
855 void __put_page(struct page *page);
856 
857 void put_pages_list(struct list_head *pages);
858 
859 void split_page(struct page *page, unsigned int order);
860 
861 /*
862  * Compound pages have a destructor function.  Provide a
863  * prototype for that function and accessor functions.
864  * These are _only_ valid on the head of a compound page.
865  */
866 typedef void compound_page_dtor(struct page *);
867 
868 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
869 enum compound_dtor_id {
870 	NULL_COMPOUND_DTOR,
871 	COMPOUND_PAGE_DTOR,
872 #ifdef CONFIG_HUGETLB_PAGE
873 	HUGETLB_PAGE_DTOR,
874 #endif
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 	TRANSHUGE_PAGE_DTOR,
877 #endif
878 	NR_COMPOUND_DTORS,
879 };
880 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
881 
882 static inline void set_compound_page_dtor(struct page *page,
883 		enum compound_dtor_id compound_dtor)
884 {
885 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
886 	page[1].compound_dtor = compound_dtor;
887 }
888 
889 static inline void destroy_compound_page(struct page *page)
890 {
891 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
892 	compound_page_dtors[page[1].compound_dtor](page);
893 }
894 
895 static inline unsigned int compound_order(struct page *page)
896 {
897 	if (!PageHead(page))
898 		return 0;
899 	return page[1].compound_order;
900 }
901 
902 static inline bool hpage_pincount_available(struct page *page)
903 {
904 	/*
905 	 * Can the page->hpage_pinned_refcount field be used? That field is in
906 	 * the 3rd page of the compound page, so the smallest (2-page) compound
907 	 * pages cannot support it.
908 	 */
909 	page = compound_head(page);
910 	return PageCompound(page) && compound_order(page) > 1;
911 }
912 
913 static inline int head_pincount(struct page *head)
914 {
915 	return atomic_read(compound_pincount_ptr(head));
916 }
917 
918 static inline int compound_pincount(struct page *page)
919 {
920 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
921 	page = compound_head(page);
922 	return head_pincount(page);
923 }
924 
925 static inline void set_compound_order(struct page *page, unsigned int order)
926 {
927 	page[1].compound_order = order;
928 	page[1].compound_nr = 1U << order;
929 }
930 
931 /* Returns the number of pages in this potentially compound page. */
932 static inline unsigned long compound_nr(struct page *page)
933 {
934 	if (!PageHead(page))
935 		return 1;
936 	return page[1].compound_nr;
937 }
938 
939 /* Returns the number of bytes in this potentially compound page. */
940 static inline unsigned long page_size(struct page *page)
941 {
942 	return PAGE_SIZE << compound_order(page);
943 }
944 
945 /* Returns the number of bits needed for the number of bytes in a page */
946 static inline unsigned int page_shift(struct page *page)
947 {
948 	return PAGE_SHIFT + compound_order(page);
949 }
950 
951 void free_compound_page(struct page *page);
952 
953 #ifdef CONFIG_MMU
954 /*
955  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
956  * servicing faults for write access.  In the normal case, do always want
957  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
958  * that do not have writing enabled, when used by access_process_vm.
959  */
960 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
961 {
962 	if (likely(vma->vm_flags & VM_WRITE))
963 		pte = pte_mkwrite(pte);
964 	return pte;
965 }
966 
967 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
968 vm_fault_t finish_fault(struct vm_fault *vmf);
969 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
970 #endif
971 
972 /*
973  * Multiple processes may "see" the same page. E.g. for untouched
974  * mappings of /dev/null, all processes see the same page full of
975  * zeroes, and text pages of executables and shared libraries have
976  * only one copy in memory, at most, normally.
977  *
978  * For the non-reserved pages, page_count(page) denotes a reference count.
979  *   page_count() == 0 means the page is free. page->lru is then used for
980  *   freelist management in the buddy allocator.
981  *   page_count() > 0  means the page has been allocated.
982  *
983  * Pages are allocated by the slab allocator in order to provide memory
984  * to kmalloc and kmem_cache_alloc. In this case, the management of the
985  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
986  * unless a particular usage is carefully commented. (the responsibility of
987  * freeing the kmalloc memory is the caller's, of course).
988  *
989  * A page may be used by anyone else who does a __get_free_page().
990  * In this case, page_count still tracks the references, and should only
991  * be used through the normal accessor functions. The top bits of page->flags
992  * and page->virtual store page management information, but all other fields
993  * are unused and could be used privately, carefully. The management of this
994  * page is the responsibility of the one who allocated it, and those who have
995  * subsequently been given references to it.
996  *
997  * The other pages (we may call them "pagecache pages") are completely
998  * managed by the Linux memory manager: I/O, buffers, swapping etc.
999  * The following discussion applies only to them.
1000  *
1001  * A pagecache page contains an opaque `private' member, which belongs to the
1002  * page's address_space. Usually, this is the address of a circular list of
1003  * the page's disk buffers. PG_private must be set to tell the VM to call
1004  * into the filesystem to release these pages.
1005  *
1006  * A page may belong to an inode's memory mapping. In this case, page->mapping
1007  * is the pointer to the inode, and page->index is the file offset of the page,
1008  * in units of PAGE_SIZE.
1009  *
1010  * If pagecache pages are not associated with an inode, they are said to be
1011  * anonymous pages. These may become associated with the swapcache, and in that
1012  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1013  *
1014  * In either case (swapcache or inode backed), the pagecache itself holds one
1015  * reference to the page. Setting PG_private should also increment the
1016  * refcount. The each user mapping also has a reference to the page.
1017  *
1018  * The pagecache pages are stored in a per-mapping radix tree, which is
1019  * rooted at mapping->i_pages, and indexed by offset.
1020  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1021  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1022  *
1023  * All pagecache pages may be subject to I/O:
1024  * - inode pages may need to be read from disk,
1025  * - inode pages which have been modified and are MAP_SHARED may need
1026  *   to be written back to the inode on disk,
1027  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1028  *   modified may need to be swapped out to swap space and (later) to be read
1029  *   back into memory.
1030  */
1031 
1032 /*
1033  * The zone field is never updated after free_area_init_core()
1034  * sets it, so none of the operations on it need to be atomic.
1035  */
1036 
1037 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1038 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1039 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1040 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1041 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1042 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1043 
1044 /*
1045  * Define the bit shifts to access each section.  For non-existent
1046  * sections we define the shift as 0; that plus a 0 mask ensures
1047  * the compiler will optimise away reference to them.
1048  */
1049 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1050 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1051 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1052 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1053 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1054 
1055 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1056 #ifdef NODE_NOT_IN_PAGE_FLAGS
1057 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1058 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1059 						SECTIONS_PGOFF : ZONES_PGOFF)
1060 #else
1061 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1062 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1063 						NODES_PGOFF : ZONES_PGOFF)
1064 #endif
1065 
1066 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1067 
1068 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1069 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1070 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1071 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1072 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1073 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1074 
1075 static inline enum zone_type page_zonenum(const struct page *page)
1076 {
1077 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1078 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1079 }
1080 
1081 #ifdef CONFIG_ZONE_DEVICE
1082 static inline bool is_zone_device_page(const struct page *page)
1083 {
1084 	return page_zonenum(page) == ZONE_DEVICE;
1085 }
1086 extern void memmap_init_zone_device(struct zone *, unsigned long,
1087 				    unsigned long, struct dev_pagemap *);
1088 #else
1089 static inline bool is_zone_device_page(const struct page *page)
1090 {
1091 	return false;
1092 }
1093 #endif
1094 
1095 #ifdef CONFIG_DEV_PAGEMAP_OPS
1096 void free_devmap_managed_page(struct page *page);
1097 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1098 
1099 static inline bool page_is_devmap_managed(struct page *page)
1100 {
1101 	if (!static_branch_unlikely(&devmap_managed_key))
1102 		return false;
1103 	if (!is_zone_device_page(page))
1104 		return false;
1105 	switch (page->pgmap->type) {
1106 	case MEMORY_DEVICE_PRIVATE:
1107 	case MEMORY_DEVICE_FS_DAX:
1108 		return true;
1109 	default:
1110 		break;
1111 	}
1112 	return false;
1113 }
1114 
1115 void put_devmap_managed_page(struct page *page);
1116 
1117 #else /* CONFIG_DEV_PAGEMAP_OPS */
1118 static inline bool page_is_devmap_managed(struct page *page)
1119 {
1120 	return false;
1121 }
1122 
1123 static inline void put_devmap_managed_page(struct page *page)
1124 {
1125 }
1126 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1127 
1128 static inline bool is_device_private_page(const struct page *page)
1129 {
1130 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1131 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1132 		is_zone_device_page(page) &&
1133 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1134 }
1135 
1136 static inline bool is_pci_p2pdma_page(const struct page *page)
1137 {
1138 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1140 		is_zone_device_page(page) &&
1141 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1142 }
1143 
1144 /* 127: arbitrary random number, small enough to assemble well */
1145 #define page_ref_zero_or_close_to_overflow(page) \
1146 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1147 
1148 static inline void get_page(struct page *page)
1149 {
1150 	page = compound_head(page);
1151 	/*
1152 	 * Getting a normal page or the head of a compound page
1153 	 * requires to already have an elevated page->_refcount.
1154 	 */
1155 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1156 	page_ref_inc(page);
1157 }
1158 
1159 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1160 
1161 static inline __must_check bool try_get_page(struct page *page)
1162 {
1163 	page = compound_head(page);
1164 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1165 		return false;
1166 	page_ref_inc(page);
1167 	return true;
1168 }
1169 
1170 static inline void put_page(struct page *page)
1171 {
1172 	page = compound_head(page);
1173 
1174 	/*
1175 	 * For devmap managed pages we need to catch refcount transition from
1176 	 * 2 to 1, when refcount reach one it means the page is free and we
1177 	 * need to inform the device driver through callback. See
1178 	 * include/linux/memremap.h and HMM for details.
1179 	 */
1180 	if (page_is_devmap_managed(page)) {
1181 		put_devmap_managed_page(page);
1182 		return;
1183 	}
1184 
1185 	if (put_page_testzero(page))
1186 		__put_page(page);
1187 }
1188 
1189 /*
1190  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1191  * the page's refcount so that two separate items are tracked: the original page
1192  * reference count, and also a new count of how many pin_user_pages() calls were
1193  * made against the page. ("gup-pinned" is another term for the latter).
1194  *
1195  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1196  * distinct from normal pages. As such, the unpin_user_page() call (and its
1197  * variants) must be used in order to release gup-pinned pages.
1198  *
1199  * Choice of value:
1200  *
1201  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1202  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1203  * simpler, due to the fact that adding an even power of two to the page
1204  * refcount has the effect of using only the upper N bits, for the code that
1205  * counts up using the bias value. This means that the lower bits are left for
1206  * the exclusive use of the original code that increments and decrements by one
1207  * (or at least, by much smaller values than the bias value).
1208  *
1209  * Of course, once the lower bits overflow into the upper bits (and this is
1210  * OK, because subtraction recovers the original values), then visual inspection
1211  * no longer suffices to directly view the separate counts. However, for normal
1212  * applications that don't have huge page reference counts, this won't be an
1213  * issue.
1214  *
1215  * Locking: the lockless algorithm described in page_cache_get_speculative()
1216  * and page_cache_gup_pin_speculative() provides safe operation for
1217  * get_user_pages and page_mkclean and other calls that race to set up page
1218  * table entries.
1219  */
1220 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1221 
1222 void unpin_user_page(struct page *page);
1223 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1224 				 bool make_dirty);
1225 void unpin_user_pages(struct page **pages, unsigned long npages);
1226 
1227 /**
1228  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1229  *
1230  * This function checks if a page has been pinned via a call to
1231  * pin_user_pages*().
1232  *
1233  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1234  * because it means "definitely not pinned for DMA", but true means "probably
1235  * pinned for DMA, but possibly a false positive due to having at least
1236  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1237  *
1238  * False positives are OK, because: a) it's unlikely for a page to get that many
1239  * refcounts, and b) all the callers of this routine are expected to be able to
1240  * deal gracefully with a false positive.
1241  *
1242  * For huge pages, the result will be exactly correct. That's because we have
1243  * more tracking data available: the 3rd struct page in the compound page is
1244  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1245  * scheme).
1246  *
1247  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1248  *
1249  * @page:	pointer to page to be queried.
1250  * @Return:	True, if it is likely that the page has been "dma-pinned".
1251  *		False, if the page is definitely not dma-pinned.
1252  */
1253 static inline bool page_maybe_dma_pinned(struct page *page)
1254 {
1255 	if (hpage_pincount_available(page))
1256 		return compound_pincount(page) > 0;
1257 
1258 	/*
1259 	 * page_ref_count() is signed. If that refcount overflows, then
1260 	 * page_ref_count() returns a negative value, and callers will avoid
1261 	 * further incrementing the refcount.
1262 	 *
1263 	 * Here, for that overflow case, use the signed bit to count a little
1264 	 * bit higher via unsigned math, and thus still get an accurate result.
1265 	 */
1266 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1267 		GUP_PIN_COUNTING_BIAS;
1268 }
1269 
1270 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1271 #define SECTION_IN_PAGE_FLAGS
1272 #endif
1273 
1274 /*
1275  * The identification function is mainly used by the buddy allocator for
1276  * determining if two pages could be buddies. We are not really identifying
1277  * the zone since we could be using the section number id if we do not have
1278  * node id available in page flags.
1279  * We only guarantee that it will return the same value for two combinable
1280  * pages in a zone.
1281  */
1282 static inline int page_zone_id(struct page *page)
1283 {
1284 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1285 }
1286 
1287 #ifdef NODE_NOT_IN_PAGE_FLAGS
1288 extern int page_to_nid(const struct page *page);
1289 #else
1290 static inline int page_to_nid(const struct page *page)
1291 {
1292 	struct page *p = (struct page *)page;
1293 
1294 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1295 }
1296 #endif
1297 
1298 #ifdef CONFIG_NUMA_BALANCING
1299 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1300 {
1301 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1302 }
1303 
1304 static inline int cpupid_to_pid(int cpupid)
1305 {
1306 	return cpupid & LAST__PID_MASK;
1307 }
1308 
1309 static inline int cpupid_to_cpu(int cpupid)
1310 {
1311 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1312 }
1313 
1314 static inline int cpupid_to_nid(int cpupid)
1315 {
1316 	return cpu_to_node(cpupid_to_cpu(cpupid));
1317 }
1318 
1319 static inline bool cpupid_pid_unset(int cpupid)
1320 {
1321 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1322 }
1323 
1324 static inline bool cpupid_cpu_unset(int cpupid)
1325 {
1326 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1327 }
1328 
1329 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1330 {
1331 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1332 }
1333 
1334 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1335 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1336 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1337 {
1338 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1339 }
1340 
1341 static inline int page_cpupid_last(struct page *page)
1342 {
1343 	return page->_last_cpupid;
1344 }
1345 static inline void page_cpupid_reset_last(struct page *page)
1346 {
1347 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1348 }
1349 #else
1350 static inline int page_cpupid_last(struct page *page)
1351 {
1352 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1353 }
1354 
1355 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1356 
1357 static inline void page_cpupid_reset_last(struct page *page)
1358 {
1359 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1360 }
1361 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1362 #else /* !CONFIG_NUMA_BALANCING */
1363 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1364 {
1365 	return page_to_nid(page); /* XXX */
1366 }
1367 
1368 static inline int page_cpupid_last(struct page *page)
1369 {
1370 	return page_to_nid(page); /* XXX */
1371 }
1372 
1373 static inline int cpupid_to_nid(int cpupid)
1374 {
1375 	return -1;
1376 }
1377 
1378 static inline int cpupid_to_pid(int cpupid)
1379 {
1380 	return -1;
1381 }
1382 
1383 static inline int cpupid_to_cpu(int cpupid)
1384 {
1385 	return -1;
1386 }
1387 
1388 static inline int cpu_pid_to_cpupid(int nid, int pid)
1389 {
1390 	return -1;
1391 }
1392 
1393 static inline bool cpupid_pid_unset(int cpupid)
1394 {
1395 	return true;
1396 }
1397 
1398 static inline void page_cpupid_reset_last(struct page *page)
1399 {
1400 }
1401 
1402 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1403 {
1404 	return false;
1405 }
1406 #endif /* CONFIG_NUMA_BALANCING */
1407 
1408 #ifdef CONFIG_KASAN_SW_TAGS
1409 static inline u8 page_kasan_tag(const struct page *page)
1410 {
1411 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1412 }
1413 
1414 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1415 {
1416 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1417 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1418 }
1419 
1420 static inline void page_kasan_tag_reset(struct page *page)
1421 {
1422 	page_kasan_tag_set(page, 0xff);
1423 }
1424 #else
1425 static inline u8 page_kasan_tag(const struct page *page)
1426 {
1427 	return 0xff;
1428 }
1429 
1430 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1431 static inline void page_kasan_tag_reset(struct page *page) { }
1432 #endif
1433 
1434 static inline struct zone *page_zone(const struct page *page)
1435 {
1436 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1437 }
1438 
1439 static inline pg_data_t *page_pgdat(const struct page *page)
1440 {
1441 	return NODE_DATA(page_to_nid(page));
1442 }
1443 
1444 #ifdef SECTION_IN_PAGE_FLAGS
1445 static inline void set_page_section(struct page *page, unsigned long section)
1446 {
1447 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1448 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1449 }
1450 
1451 static inline unsigned long page_to_section(const struct page *page)
1452 {
1453 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1454 }
1455 #endif
1456 
1457 static inline void set_page_zone(struct page *page, enum zone_type zone)
1458 {
1459 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1460 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1461 }
1462 
1463 static inline void set_page_node(struct page *page, unsigned long node)
1464 {
1465 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1466 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1467 }
1468 
1469 static inline void set_page_links(struct page *page, enum zone_type zone,
1470 	unsigned long node, unsigned long pfn)
1471 {
1472 	set_page_zone(page, zone);
1473 	set_page_node(page, node);
1474 #ifdef SECTION_IN_PAGE_FLAGS
1475 	set_page_section(page, pfn_to_section_nr(pfn));
1476 #endif
1477 }
1478 
1479 #ifdef CONFIG_MEMCG
1480 static inline struct mem_cgroup *page_memcg(struct page *page)
1481 {
1482 	return page->mem_cgroup;
1483 }
1484 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1485 {
1486 	WARN_ON_ONCE(!rcu_read_lock_held());
1487 	return READ_ONCE(page->mem_cgroup);
1488 }
1489 #else
1490 static inline struct mem_cgroup *page_memcg(struct page *page)
1491 {
1492 	return NULL;
1493 }
1494 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1495 {
1496 	WARN_ON_ONCE(!rcu_read_lock_held());
1497 	return NULL;
1498 }
1499 #endif
1500 
1501 /*
1502  * Some inline functions in vmstat.h depend on page_zone()
1503  */
1504 #include <linux/vmstat.h>
1505 
1506 static __always_inline void *lowmem_page_address(const struct page *page)
1507 {
1508 	return page_to_virt(page);
1509 }
1510 
1511 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1512 #define HASHED_PAGE_VIRTUAL
1513 #endif
1514 
1515 #if defined(WANT_PAGE_VIRTUAL)
1516 static inline void *page_address(const struct page *page)
1517 {
1518 	return page->virtual;
1519 }
1520 static inline void set_page_address(struct page *page, void *address)
1521 {
1522 	page->virtual = address;
1523 }
1524 #define page_address_init()  do { } while(0)
1525 #endif
1526 
1527 #if defined(HASHED_PAGE_VIRTUAL)
1528 void *page_address(const struct page *page);
1529 void set_page_address(struct page *page, void *virtual);
1530 void page_address_init(void);
1531 #endif
1532 
1533 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1534 #define page_address(page) lowmem_page_address(page)
1535 #define set_page_address(page, address)  do { } while(0)
1536 #define page_address_init()  do { } while(0)
1537 #endif
1538 
1539 extern void *page_rmapping(struct page *page);
1540 extern struct anon_vma *page_anon_vma(struct page *page);
1541 extern struct address_space *page_mapping(struct page *page);
1542 
1543 extern struct address_space *__page_file_mapping(struct page *);
1544 
1545 static inline
1546 struct address_space *page_file_mapping(struct page *page)
1547 {
1548 	if (unlikely(PageSwapCache(page)))
1549 		return __page_file_mapping(page);
1550 
1551 	return page->mapping;
1552 }
1553 
1554 extern pgoff_t __page_file_index(struct page *page);
1555 
1556 /*
1557  * Return the pagecache index of the passed page.  Regular pagecache pages
1558  * use ->index whereas swapcache pages use swp_offset(->private)
1559  */
1560 static inline pgoff_t page_index(struct page *page)
1561 {
1562 	if (unlikely(PageSwapCache(page)))
1563 		return __page_file_index(page);
1564 	return page->index;
1565 }
1566 
1567 bool page_mapped(struct page *page);
1568 struct address_space *page_mapping(struct page *page);
1569 struct address_space *page_mapping_file(struct page *page);
1570 
1571 /*
1572  * Return true only if the page has been allocated with
1573  * ALLOC_NO_WATERMARKS and the low watermark was not
1574  * met implying that the system is under some pressure.
1575  */
1576 static inline bool page_is_pfmemalloc(struct page *page)
1577 {
1578 	/*
1579 	 * Page index cannot be this large so this must be
1580 	 * a pfmemalloc page.
1581 	 */
1582 	return page->index == -1UL;
1583 }
1584 
1585 /*
1586  * Only to be called by the page allocator on a freshly allocated
1587  * page.
1588  */
1589 static inline void set_page_pfmemalloc(struct page *page)
1590 {
1591 	page->index = -1UL;
1592 }
1593 
1594 static inline void clear_page_pfmemalloc(struct page *page)
1595 {
1596 	page->index = 0;
1597 }
1598 
1599 /*
1600  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1601  */
1602 extern void pagefault_out_of_memory(void);
1603 
1604 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1605 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1606 
1607 /*
1608  * Flags passed to show_mem() and show_free_areas() to suppress output in
1609  * various contexts.
1610  */
1611 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1612 
1613 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1614 
1615 #ifdef CONFIG_MMU
1616 extern bool can_do_mlock(void);
1617 #else
1618 static inline bool can_do_mlock(void) { return false; }
1619 #endif
1620 extern int user_shm_lock(size_t, struct user_struct *);
1621 extern void user_shm_unlock(size_t, struct user_struct *);
1622 
1623 /*
1624  * Parameter block passed down to zap_pte_range in exceptional cases.
1625  */
1626 struct zap_details {
1627 	struct address_space *check_mapping;	/* Check page->mapping if set */
1628 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1629 	pgoff_t last_index;			/* Highest page->index to unmap */
1630 };
1631 
1632 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1633 			     pte_t pte);
1634 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1635 				pmd_t pmd);
1636 
1637 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1638 		  unsigned long size);
1639 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1640 		    unsigned long size);
1641 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1642 		unsigned long start, unsigned long end);
1643 
1644 struct mmu_notifier_range;
1645 
1646 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1647 		unsigned long end, unsigned long floor, unsigned long ceiling);
1648 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1649 		    struct vm_area_struct *vma, struct vm_area_struct *new);
1650 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1651 		   struct mmu_notifier_range *range,
1652 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1653 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1654 	unsigned long *pfn);
1655 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1656 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1657 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1658 			void *buf, int len, int write);
1659 
1660 extern void truncate_pagecache(struct inode *inode, loff_t new);
1661 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1662 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1663 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1664 int truncate_inode_page(struct address_space *mapping, struct page *page);
1665 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1666 int invalidate_inode_page(struct page *page);
1667 
1668 #ifdef CONFIG_MMU
1669 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1670 				  unsigned long address, unsigned int flags,
1671 				  struct pt_regs *regs);
1672 extern int fixup_user_fault(struct mm_struct *mm,
1673 			    unsigned long address, unsigned int fault_flags,
1674 			    bool *unlocked);
1675 void unmap_mapping_pages(struct address_space *mapping,
1676 		pgoff_t start, pgoff_t nr, bool even_cows);
1677 void unmap_mapping_range(struct address_space *mapping,
1678 		loff_t const holebegin, loff_t const holelen, int even_cows);
1679 #else
1680 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1681 					 unsigned long address, unsigned int flags,
1682 					 struct pt_regs *regs)
1683 {
1684 	/* should never happen if there's no MMU */
1685 	BUG();
1686 	return VM_FAULT_SIGBUS;
1687 }
1688 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1689 		unsigned int fault_flags, bool *unlocked)
1690 {
1691 	/* should never happen if there's no MMU */
1692 	BUG();
1693 	return -EFAULT;
1694 }
1695 static inline void unmap_mapping_pages(struct address_space *mapping,
1696 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1697 static inline void unmap_mapping_range(struct address_space *mapping,
1698 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1699 #endif
1700 
1701 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1702 		loff_t const holebegin, loff_t const holelen)
1703 {
1704 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1705 }
1706 
1707 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1708 		void *buf, int len, unsigned int gup_flags);
1709 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1710 		void *buf, int len, unsigned int gup_flags);
1711 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1712 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1713 
1714 long get_user_pages_remote(struct mm_struct *mm,
1715 			    unsigned long start, unsigned long nr_pages,
1716 			    unsigned int gup_flags, struct page **pages,
1717 			    struct vm_area_struct **vmas, int *locked);
1718 long pin_user_pages_remote(struct mm_struct *mm,
1719 			   unsigned long start, unsigned long nr_pages,
1720 			   unsigned int gup_flags, struct page **pages,
1721 			   struct vm_area_struct **vmas, int *locked);
1722 long get_user_pages(unsigned long start, unsigned long nr_pages,
1723 			    unsigned int gup_flags, struct page **pages,
1724 			    struct vm_area_struct **vmas);
1725 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1726 		    unsigned int gup_flags, struct page **pages,
1727 		    struct vm_area_struct **vmas);
1728 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1729 		    unsigned int gup_flags, struct page **pages, int *locked);
1730 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1731 		    unsigned int gup_flags, struct page **pages, int *locked);
1732 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1733 		    struct page **pages, unsigned int gup_flags);
1734 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1735 		    struct page **pages, unsigned int gup_flags);
1736 
1737 int get_user_pages_fast(unsigned long start, int nr_pages,
1738 			unsigned int gup_flags, struct page **pages);
1739 int pin_user_pages_fast(unsigned long start, int nr_pages,
1740 			unsigned int gup_flags, struct page **pages);
1741 
1742 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1743 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1744 			struct task_struct *task, bool bypass_rlim);
1745 
1746 /* Container for pinned pfns / pages */
1747 struct frame_vector {
1748 	unsigned int nr_allocated;	/* Number of frames we have space for */
1749 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1750 	bool got_ref;		/* Did we pin pages by getting page ref? */
1751 	bool is_pfns;		/* Does array contain pages or pfns? */
1752 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1753 				 * pfns_vector_pages() or pfns_vector_pfns()
1754 				 * for access */
1755 };
1756 
1757 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1758 void frame_vector_destroy(struct frame_vector *vec);
1759 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1760 		     unsigned int gup_flags, struct frame_vector *vec);
1761 void put_vaddr_frames(struct frame_vector *vec);
1762 int frame_vector_to_pages(struct frame_vector *vec);
1763 void frame_vector_to_pfns(struct frame_vector *vec);
1764 
1765 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1766 {
1767 	return vec->nr_frames;
1768 }
1769 
1770 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1771 {
1772 	if (vec->is_pfns) {
1773 		int err = frame_vector_to_pages(vec);
1774 
1775 		if (err)
1776 			return ERR_PTR(err);
1777 	}
1778 	return (struct page **)(vec->ptrs);
1779 }
1780 
1781 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1782 {
1783 	if (!vec->is_pfns)
1784 		frame_vector_to_pfns(vec);
1785 	return (unsigned long *)(vec->ptrs);
1786 }
1787 
1788 struct kvec;
1789 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1790 			struct page **pages);
1791 int get_kernel_page(unsigned long start, int write, struct page **pages);
1792 struct page *get_dump_page(unsigned long addr);
1793 
1794 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1795 extern void do_invalidatepage(struct page *page, unsigned int offset,
1796 			      unsigned int length);
1797 
1798 void __set_page_dirty(struct page *, struct address_space *, int warn);
1799 int __set_page_dirty_nobuffers(struct page *page);
1800 int __set_page_dirty_no_writeback(struct page *page);
1801 int redirty_page_for_writepage(struct writeback_control *wbc,
1802 				struct page *page);
1803 void account_page_dirtied(struct page *page, struct address_space *mapping);
1804 void account_page_cleaned(struct page *page, struct address_space *mapping,
1805 			  struct bdi_writeback *wb);
1806 int set_page_dirty(struct page *page);
1807 int set_page_dirty_lock(struct page *page);
1808 void __cancel_dirty_page(struct page *page);
1809 static inline void cancel_dirty_page(struct page *page)
1810 {
1811 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1812 	if (PageDirty(page))
1813 		__cancel_dirty_page(page);
1814 }
1815 int clear_page_dirty_for_io(struct page *page);
1816 
1817 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1818 
1819 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1820 		unsigned long old_addr, struct vm_area_struct *new_vma,
1821 		unsigned long new_addr, unsigned long len,
1822 		bool need_rmap_locks);
1823 
1824 /*
1825  * Flags used by change_protection().  For now we make it a bitmap so
1826  * that we can pass in multiple flags just like parameters.  However
1827  * for now all the callers are only use one of the flags at the same
1828  * time.
1829  */
1830 /* Whether we should allow dirty bit accounting */
1831 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1832 /* Whether this protection change is for NUMA hints */
1833 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1834 /* Whether this change is for write protecting */
1835 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1836 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1837 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1838 					    MM_CP_UFFD_WP_RESOLVE)
1839 
1840 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1841 			      unsigned long end, pgprot_t newprot,
1842 			      unsigned long cp_flags);
1843 extern int mprotect_fixup(struct vm_area_struct *vma,
1844 			  struct vm_area_struct **pprev, unsigned long start,
1845 			  unsigned long end, unsigned long newflags);
1846 
1847 /*
1848  * doesn't attempt to fault and will return short.
1849  */
1850 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1851 			     unsigned int gup_flags, struct page **pages);
1852 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1853 			     unsigned int gup_flags, struct page **pages);
1854 
1855 static inline bool get_user_page_fast_only(unsigned long addr,
1856 			unsigned int gup_flags, struct page **pagep)
1857 {
1858 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1859 }
1860 /*
1861  * per-process(per-mm_struct) statistics.
1862  */
1863 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1864 {
1865 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1866 
1867 #ifdef SPLIT_RSS_COUNTING
1868 	/*
1869 	 * counter is updated in asynchronous manner and may go to minus.
1870 	 * But it's never be expected number for users.
1871 	 */
1872 	if (val < 0)
1873 		val = 0;
1874 #endif
1875 	return (unsigned long)val;
1876 }
1877 
1878 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1879 
1880 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1881 {
1882 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1883 
1884 	mm_trace_rss_stat(mm, member, count);
1885 }
1886 
1887 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1888 {
1889 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1890 
1891 	mm_trace_rss_stat(mm, member, count);
1892 }
1893 
1894 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1895 {
1896 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1897 
1898 	mm_trace_rss_stat(mm, member, count);
1899 }
1900 
1901 /* Optimized variant when page is already known not to be PageAnon */
1902 static inline int mm_counter_file(struct page *page)
1903 {
1904 	if (PageSwapBacked(page))
1905 		return MM_SHMEMPAGES;
1906 	return MM_FILEPAGES;
1907 }
1908 
1909 static inline int mm_counter(struct page *page)
1910 {
1911 	if (PageAnon(page))
1912 		return MM_ANONPAGES;
1913 	return mm_counter_file(page);
1914 }
1915 
1916 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1917 {
1918 	return get_mm_counter(mm, MM_FILEPAGES) +
1919 		get_mm_counter(mm, MM_ANONPAGES) +
1920 		get_mm_counter(mm, MM_SHMEMPAGES);
1921 }
1922 
1923 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1924 {
1925 	return max(mm->hiwater_rss, get_mm_rss(mm));
1926 }
1927 
1928 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1929 {
1930 	return max(mm->hiwater_vm, mm->total_vm);
1931 }
1932 
1933 static inline void update_hiwater_rss(struct mm_struct *mm)
1934 {
1935 	unsigned long _rss = get_mm_rss(mm);
1936 
1937 	if ((mm)->hiwater_rss < _rss)
1938 		(mm)->hiwater_rss = _rss;
1939 }
1940 
1941 static inline void update_hiwater_vm(struct mm_struct *mm)
1942 {
1943 	if (mm->hiwater_vm < mm->total_vm)
1944 		mm->hiwater_vm = mm->total_vm;
1945 }
1946 
1947 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1948 {
1949 	mm->hiwater_rss = get_mm_rss(mm);
1950 }
1951 
1952 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1953 					 struct mm_struct *mm)
1954 {
1955 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1956 
1957 	if (*maxrss < hiwater_rss)
1958 		*maxrss = hiwater_rss;
1959 }
1960 
1961 #if defined(SPLIT_RSS_COUNTING)
1962 void sync_mm_rss(struct mm_struct *mm);
1963 #else
1964 static inline void sync_mm_rss(struct mm_struct *mm)
1965 {
1966 }
1967 #endif
1968 
1969 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1970 static inline int pte_special(pte_t pte)
1971 {
1972 	return 0;
1973 }
1974 
1975 static inline pte_t pte_mkspecial(pte_t pte)
1976 {
1977 	return pte;
1978 }
1979 #endif
1980 
1981 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1982 static inline int pte_devmap(pte_t pte)
1983 {
1984 	return 0;
1985 }
1986 #endif
1987 
1988 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1989 
1990 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1991 			       spinlock_t **ptl);
1992 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1993 				    spinlock_t **ptl)
1994 {
1995 	pte_t *ptep;
1996 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1997 	return ptep;
1998 }
1999 
2000 #ifdef __PAGETABLE_P4D_FOLDED
2001 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2002 						unsigned long address)
2003 {
2004 	return 0;
2005 }
2006 #else
2007 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2008 #endif
2009 
2010 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2011 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2012 						unsigned long address)
2013 {
2014 	return 0;
2015 }
2016 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2017 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2018 
2019 #else
2020 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2021 
2022 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2023 {
2024 	if (mm_pud_folded(mm))
2025 		return;
2026 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2027 }
2028 
2029 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2030 {
2031 	if (mm_pud_folded(mm))
2032 		return;
2033 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2034 }
2035 #endif
2036 
2037 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2038 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2039 						unsigned long address)
2040 {
2041 	return 0;
2042 }
2043 
2044 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2045 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2046 
2047 #else
2048 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2049 
2050 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2051 {
2052 	if (mm_pmd_folded(mm))
2053 		return;
2054 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2055 }
2056 
2057 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2058 {
2059 	if (mm_pmd_folded(mm))
2060 		return;
2061 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2062 }
2063 #endif
2064 
2065 #ifdef CONFIG_MMU
2066 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2067 {
2068 	atomic_long_set(&mm->pgtables_bytes, 0);
2069 }
2070 
2071 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2072 {
2073 	return atomic_long_read(&mm->pgtables_bytes);
2074 }
2075 
2076 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2077 {
2078 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2079 }
2080 
2081 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2082 {
2083 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2084 }
2085 #else
2086 
2087 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2088 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2089 {
2090 	return 0;
2091 }
2092 
2093 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2094 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2095 #endif
2096 
2097 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2098 int __pte_alloc_kernel(pmd_t *pmd);
2099 
2100 #if defined(CONFIG_MMU)
2101 
2102 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2103 		unsigned long address)
2104 {
2105 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2106 		NULL : p4d_offset(pgd, address);
2107 }
2108 
2109 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2110 		unsigned long address)
2111 {
2112 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2113 		NULL : pud_offset(p4d, address);
2114 }
2115 
2116 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2117 {
2118 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2119 		NULL: pmd_offset(pud, address);
2120 }
2121 #endif /* CONFIG_MMU */
2122 
2123 #if USE_SPLIT_PTE_PTLOCKS
2124 #if ALLOC_SPLIT_PTLOCKS
2125 void __init ptlock_cache_init(void);
2126 extern bool ptlock_alloc(struct page *page);
2127 extern void ptlock_free(struct page *page);
2128 
2129 static inline spinlock_t *ptlock_ptr(struct page *page)
2130 {
2131 	return page->ptl;
2132 }
2133 #else /* ALLOC_SPLIT_PTLOCKS */
2134 static inline void ptlock_cache_init(void)
2135 {
2136 }
2137 
2138 static inline bool ptlock_alloc(struct page *page)
2139 {
2140 	return true;
2141 }
2142 
2143 static inline void ptlock_free(struct page *page)
2144 {
2145 }
2146 
2147 static inline spinlock_t *ptlock_ptr(struct page *page)
2148 {
2149 	return &page->ptl;
2150 }
2151 #endif /* ALLOC_SPLIT_PTLOCKS */
2152 
2153 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2154 {
2155 	return ptlock_ptr(pmd_page(*pmd));
2156 }
2157 
2158 static inline bool ptlock_init(struct page *page)
2159 {
2160 	/*
2161 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2162 	 * with 0. Make sure nobody took it in use in between.
2163 	 *
2164 	 * It can happen if arch try to use slab for page table allocation:
2165 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2166 	 */
2167 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2168 	if (!ptlock_alloc(page))
2169 		return false;
2170 	spin_lock_init(ptlock_ptr(page));
2171 	return true;
2172 }
2173 
2174 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2175 /*
2176  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2177  */
2178 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2179 {
2180 	return &mm->page_table_lock;
2181 }
2182 static inline void ptlock_cache_init(void) {}
2183 static inline bool ptlock_init(struct page *page) { return true; }
2184 static inline void ptlock_free(struct page *page) {}
2185 #endif /* USE_SPLIT_PTE_PTLOCKS */
2186 
2187 static inline void pgtable_init(void)
2188 {
2189 	ptlock_cache_init();
2190 	pgtable_cache_init();
2191 }
2192 
2193 static inline bool pgtable_pte_page_ctor(struct page *page)
2194 {
2195 	if (!ptlock_init(page))
2196 		return false;
2197 	__SetPageTable(page);
2198 	inc_zone_page_state(page, NR_PAGETABLE);
2199 	return true;
2200 }
2201 
2202 static inline void pgtable_pte_page_dtor(struct page *page)
2203 {
2204 	ptlock_free(page);
2205 	__ClearPageTable(page);
2206 	dec_zone_page_state(page, NR_PAGETABLE);
2207 }
2208 
2209 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2210 ({							\
2211 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2212 	pte_t *__pte = pte_offset_map(pmd, address);	\
2213 	*(ptlp) = __ptl;				\
2214 	spin_lock(__ptl);				\
2215 	__pte;						\
2216 })
2217 
2218 #define pte_unmap_unlock(pte, ptl)	do {		\
2219 	spin_unlock(ptl);				\
2220 	pte_unmap(pte);					\
2221 } while (0)
2222 
2223 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2224 
2225 #define pte_alloc_map(mm, pmd, address)			\
2226 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2227 
2228 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2229 	(pte_alloc(mm, pmd) ?			\
2230 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2231 
2232 #define pte_alloc_kernel(pmd, address)			\
2233 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2234 		NULL: pte_offset_kernel(pmd, address))
2235 
2236 #if USE_SPLIT_PMD_PTLOCKS
2237 
2238 static struct page *pmd_to_page(pmd_t *pmd)
2239 {
2240 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2241 	return virt_to_page((void *)((unsigned long) pmd & mask));
2242 }
2243 
2244 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2245 {
2246 	return ptlock_ptr(pmd_to_page(pmd));
2247 }
2248 
2249 static inline bool pgtable_pmd_page_ctor(struct page *page)
2250 {
2251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2252 	page->pmd_huge_pte = NULL;
2253 #endif
2254 	return ptlock_init(page);
2255 }
2256 
2257 static inline void pgtable_pmd_page_dtor(struct page *page)
2258 {
2259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2260 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2261 #endif
2262 	ptlock_free(page);
2263 }
2264 
2265 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2266 
2267 #else
2268 
2269 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2270 {
2271 	return &mm->page_table_lock;
2272 }
2273 
2274 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2275 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2276 
2277 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2278 
2279 #endif
2280 
2281 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2282 {
2283 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2284 	spin_lock(ptl);
2285 	return ptl;
2286 }
2287 
2288 /*
2289  * No scalability reason to split PUD locks yet, but follow the same pattern
2290  * as the PMD locks to make it easier if we decide to.  The VM should not be
2291  * considered ready to switch to split PUD locks yet; there may be places
2292  * which need to be converted from page_table_lock.
2293  */
2294 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2295 {
2296 	return &mm->page_table_lock;
2297 }
2298 
2299 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2300 {
2301 	spinlock_t *ptl = pud_lockptr(mm, pud);
2302 
2303 	spin_lock(ptl);
2304 	return ptl;
2305 }
2306 
2307 extern void __init pagecache_init(void);
2308 extern void __init free_area_init_memoryless_node(int nid);
2309 extern void free_initmem(void);
2310 
2311 /*
2312  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2313  * into the buddy system. The freed pages will be poisoned with pattern
2314  * "poison" if it's within range [0, UCHAR_MAX].
2315  * Return pages freed into the buddy system.
2316  */
2317 extern unsigned long free_reserved_area(void *start, void *end,
2318 					int poison, const char *s);
2319 
2320 #ifdef	CONFIG_HIGHMEM
2321 /*
2322  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2323  * and totalram_pages.
2324  */
2325 extern void free_highmem_page(struct page *page);
2326 #endif
2327 
2328 extern void adjust_managed_page_count(struct page *page, long count);
2329 extern void mem_init_print_info(const char *str);
2330 
2331 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2332 
2333 /* Free the reserved page into the buddy system, so it gets managed. */
2334 static inline void __free_reserved_page(struct page *page)
2335 {
2336 	ClearPageReserved(page);
2337 	init_page_count(page);
2338 	__free_page(page);
2339 }
2340 
2341 static inline void free_reserved_page(struct page *page)
2342 {
2343 	__free_reserved_page(page);
2344 	adjust_managed_page_count(page, 1);
2345 }
2346 
2347 static inline void mark_page_reserved(struct page *page)
2348 {
2349 	SetPageReserved(page);
2350 	adjust_managed_page_count(page, -1);
2351 }
2352 
2353 /*
2354  * Default method to free all the __init memory into the buddy system.
2355  * The freed pages will be poisoned with pattern "poison" if it's within
2356  * range [0, UCHAR_MAX].
2357  * Return pages freed into the buddy system.
2358  */
2359 static inline unsigned long free_initmem_default(int poison)
2360 {
2361 	extern char __init_begin[], __init_end[];
2362 
2363 	return free_reserved_area(&__init_begin, &__init_end,
2364 				  poison, "unused kernel");
2365 }
2366 
2367 static inline unsigned long get_num_physpages(void)
2368 {
2369 	int nid;
2370 	unsigned long phys_pages = 0;
2371 
2372 	for_each_online_node(nid)
2373 		phys_pages += node_present_pages(nid);
2374 
2375 	return phys_pages;
2376 }
2377 
2378 /*
2379  * Using memblock node mappings, an architecture may initialise its
2380  * zones, allocate the backing mem_map and account for memory holes in an
2381  * architecture independent manner.
2382  *
2383  * An architecture is expected to register range of page frames backed by
2384  * physical memory with memblock_add[_node]() before calling
2385  * free_area_init() passing in the PFN each zone ends at. At a basic
2386  * usage, an architecture is expected to do something like
2387  *
2388  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2389  * 							 max_highmem_pfn};
2390  * for_each_valid_physical_page_range()
2391  * 	memblock_add_node(base, size, nid)
2392  * free_area_init(max_zone_pfns);
2393  */
2394 void free_area_init(unsigned long *max_zone_pfn);
2395 unsigned long node_map_pfn_alignment(void);
2396 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2397 						unsigned long end_pfn);
2398 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2399 						unsigned long end_pfn);
2400 extern void get_pfn_range_for_nid(unsigned int nid,
2401 			unsigned long *start_pfn, unsigned long *end_pfn);
2402 extern unsigned long find_min_pfn_with_active_regions(void);
2403 
2404 #ifndef CONFIG_NEED_MULTIPLE_NODES
2405 static inline int early_pfn_to_nid(unsigned long pfn)
2406 {
2407 	return 0;
2408 }
2409 #else
2410 /* please see mm/page_alloc.c */
2411 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2412 /* there is a per-arch backend function. */
2413 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2414 					struct mminit_pfnnid_cache *state);
2415 #endif
2416 
2417 extern void set_dma_reserve(unsigned long new_dma_reserve);
2418 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2419 		enum meminit_context, struct vmem_altmap *);
2420 extern void setup_per_zone_wmarks(void);
2421 extern int __meminit init_per_zone_wmark_min(void);
2422 extern void mem_init(void);
2423 extern void __init mmap_init(void);
2424 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2425 extern long si_mem_available(void);
2426 extern void si_meminfo(struct sysinfo * val);
2427 extern void si_meminfo_node(struct sysinfo *val, int nid);
2428 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2429 extern unsigned long arch_reserved_kernel_pages(void);
2430 #endif
2431 
2432 extern __printf(3, 4)
2433 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2434 
2435 extern void setup_per_cpu_pageset(void);
2436 
2437 /* page_alloc.c */
2438 extern int min_free_kbytes;
2439 extern int watermark_boost_factor;
2440 extern int watermark_scale_factor;
2441 extern bool arch_has_descending_max_zone_pfns(void);
2442 
2443 /* nommu.c */
2444 extern atomic_long_t mmap_pages_allocated;
2445 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2446 
2447 /* interval_tree.c */
2448 void vma_interval_tree_insert(struct vm_area_struct *node,
2449 			      struct rb_root_cached *root);
2450 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2451 				    struct vm_area_struct *prev,
2452 				    struct rb_root_cached *root);
2453 void vma_interval_tree_remove(struct vm_area_struct *node,
2454 			      struct rb_root_cached *root);
2455 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2456 				unsigned long start, unsigned long last);
2457 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2458 				unsigned long start, unsigned long last);
2459 
2460 #define vma_interval_tree_foreach(vma, root, start, last)		\
2461 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2462 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2463 
2464 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2465 				   struct rb_root_cached *root);
2466 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2467 				   struct rb_root_cached *root);
2468 struct anon_vma_chain *
2469 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2470 				  unsigned long start, unsigned long last);
2471 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2472 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2473 #ifdef CONFIG_DEBUG_VM_RB
2474 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2475 #endif
2476 
2477 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2478 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2479 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2480 
2481 /* mmap.c */
2482 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2483 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2484 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2485 	struct vm_area_struct *expand);
2486 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2487 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2488 {
2489 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2490 }
2491 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2492 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2493 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2494 	struct mempolicy *, struct vm_userfaultfd_ctx);
2495 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2496 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2497 	unsigned long addr, int new_below);
2498 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2499 	unsigned long addr, int new_below);
2500 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2501 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2502 	struct rb_node **, struct rb_node *);
2503 extern void unlink_file_vma(struct vm_area_struct *);
2504 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2505 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2506 	bool *need_rmap_locks);
2507 extern void exit_mmap(struct mm_struct *);
2508 
2509 static inline int check_data_rlimit(unsigned long rlim,
2510 				    unsigned long new,
2511 				    unsigned long start,
2512 				    unsigned long end_data,
2513 				    unsigned long start_data)
2514 {
2515 	if (rlim < RLIM_INFINITY) {
2516 		if (((new - start) + (end_data - start_data)) > rlim)
2517 			return -ENOSPC;
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 extern int mm_take_all_locks(struct mm_struct *mm);
2524 extern void mm_drop_all_locks(struct mm_struct *mm);
2525 
2526 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2527 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2528 extern struct file *get_task_exe_file(struct task_struct *task);
2529 
2530 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2531 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2532 
2533 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2534 				   const struct vm_special_mapping *sm);
2535 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2536 				   unsigned long addr, unsigned long len,
2537 				   unsigned long flags,
2538 				   const struct vm_special_mapping *spec);
2539 /* This is an obsolete alternative to _install_special_mapping. */
2540 extern int install_special_mapping(struct mm_struct *mm,
2541 				   unsigned long addr, unsigned long len,
2542 				   unsigned long flags, struct page **pages);
2543 
2544 unsigned long randomize_stack_top(unsigned long stack_top);
2545 
2546 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2547 
2548 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2549 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2550 	struct list_head *uf);
2551 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2552 	unsigned long len, unsigned long prot, unsigned long flags,
2553 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2554 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2555 		       struct list_head *uf, bool downgrade);
2556 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2557 		     struct list_head *uf);
2558 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2559 
2560 #ifdef CONFIG_MMU
2561 extern int __mm_populate(unsigned long addr, unsigned long len,
2562 			 int ignore_errors);
2563 static inline void mm_populate(unsigned long addr, unsigned long len)
2564 {
2565 	/* Ignore errors */
2566 	(void) __mm_populate(addr, len, 1);
2567 }
2568 #else
2569 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2570 #endif
2571 
2572 /* These take the mm semaphore themselves */
2573 extern int __must_check vm_brk(unsigned long, unsigned long);
2574 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2575 extern int vm_munmap(unsigned long, size_t);
2576 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2577         unsigned long, unsigned long,
2578         unsigned long, unsigned long);
2579 
2580 struct vm_unmapped_area_info {
2581 #define VM_UNMAPPED_AREA_TOPDOWN 1
2582 	unsigned long flags;
2583 	unsigned long length;
2584 	unsigned long low_limit;
2585 	unsigned long high_limit;
2586 	unsigned long align_mask;
2587 	unsigned long align_offset;
2588 };
2589 
2590 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2591 
2592 /* truncate.c */
2593 extern void truncate_inode_pages(struct address_space *, loff_t);
2594 extern void truncate_inode_pages_range(struct address_space *,
2595 				       loff_t lstart, loff_t lend);
2596 extern void truncate_inode_pages_final(struct address_space *);
2597 
2598 /* generic vm_area_ops exported for stackable file systems */
2599 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2600 extern void filemap_map_pages(struct vm_fault *vmf,
2601 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2602 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2603 
2604 /* mm/page-writeback.c */
2605 int __must_check write_one_page(struct page *page);
2606 void task_dirty_inc(struct task_struct *tsk);
2607 
2608 extern unsigned long stack_guard_gap;
2609 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2610 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2611 
2612 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2613 extern int expand_downwards(struct vm_area_struct *vma,
2614 		unsigned long address);
2615 #if VM_GROWSUP
2616 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2617 #else
2618   #define expand_upwards(vma, address) (0)
2619 #endif
2620 
2621 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2622 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2623 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2624 					     struct vm_area_struct **pprev);
2625 
2626 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2627    NULL if none.  Assume start_addr < end_addr. */
2628 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2629 {
2630 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2631 
2632 	if (vma && end_addr <= vma->vm_start)
2633 		vma = NULL;
2634 	return vma;
2635 }
2636 
2637 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2638 {
2639 	unsigned long vm_start = vma->vm_start;
2640 
2641 	if (vma->vm_flags & VM_GROWSDOWN) {
2642 		vm_start -= stack_guard_gap;
2643 		if (vm_start > vma->vm_start)
2644 			vm_start = 0;
2645 	}
2646 	return vm_start;
2647 }
2648 
2649 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2650 {
2651 	unsigned long vm_end = vma->vm_end;
2652 
2653 	if (vma->vm_flags & VM_GROWSUP) {
2654 		vm_end += stack_guard_gap;
2655 		if (vm_end < vma->vm_end)
2656 			vm_end = -PAGE_SIZE;
2657 	}
2658 	return vm_end;
2659 }
2660 
2661 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2662 {
2663 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2664 }
2665 
2666 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2667 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2668 				unsigned long vm_start, unsigned long vm_end)
2669 {
2670 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2671 
2672 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2673 		vma = NULL;
2674 
2675 	return vma;
2676 }
2677 
2678 static inline bool range_in_vma(struct vm_area_struct *vma,
2679 				unsigned long start, unsigned long end)
2680 {
2681 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2682 }
2683 
2684 #ifdef CONFIG_MMU
2685 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2686 void vma_set_page_prot(struct vm_area_struct *vma);
2687 #else
2688 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2689 {
2690 	return __pgprot(0);
2691 }
2692 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2693 {
2694 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2695 }
2696 #endif
2697 
2698 #ifdef CONFIG_NUMA_BALANCING
2699 unsigned long change_prot_numa(struct vm_area_struct *vma,
2700 			unsigned long start, unsigned long end);
2701 #endif
2702 
2703 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2704 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2705 			unsigned long pfn, unsigned long size, pgprot_t);
2706 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2707 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2708 			struct page **pages, unsigned long *num);
2709 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2710 				unsigned long num);
2711 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2712 				unsigned long num);
2713 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2714 			unsigned long pfn);
2715 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2716 			unsigned long pfn, pgprot_t pgprot);
2717 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2718 			pfn_t pfn);
2719 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2720 			pfn_t pfn, pgprot_t pgprot);
2721 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2722 		unsigned long addr, pfn_t pfn);
2723 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2724 
2725 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2726 				unsigned long addr, struct page *page)
2727 {
2728 	int err = vm_insert_page(vma, addr, page);
2729 
2730 	if (err == -ENOMEM)
2731 		return VM_FAULT_OOM;
2732 	if (err < 0 && err != -EBUSY)
2733 		return VM_FAULT_SIGBUS;
2734 
2735 	return VM_FAULT_NOPAGE;
2736 }
2737 
2738 static inline vm_fault_t vmf_error(int err)
2739 {
2740 	if (err == -ENOMEM)
2741 		return VM_FAULT_OOM;
2742 	return VM_FAULT_SIGBUS;
2743 }
2744 
2745 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2746 			 unsigned int foll_flags);
2747 
2748 #define FOLL_WRITE	0x01	/* check pte is writable */
2749 #define FOLL_TOUCH	0x02	/* mark page accessed */
2750 #define FOLL_GET	0x04	/* do get_page on page */
2751 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2752 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2753 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2754 				 * and return without waiting upon it */
2755 #define FOLL_POPULATE	0x40	/* fault in page */
2756 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2757 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2758 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2759 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2760 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2761 #define FOLL_MLOCK	0x1000	/* lock present pages */
2762 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2763 #define FOLL_COW	0x4000	/* internal GUP flag */
2764 #define FOLL_ANON	0x8000	/* don't do file mappings */
2765 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2766 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2767 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2768 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2769 
2770 /*
2771  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2772  * other. Here is what they mean, and how to use them:
2773  *
2774  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2775  * period _often_ under userspace control.  This is in contrast to
2776  * iov_iter_get_pages(), whose usages are transient.
2777  *
2778  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2779  * lifetime enforced by the filesystem and we need guarantees that longterm
2780  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2781  * the filesystem.  Ideas for this coordination include revoking the longterm
2782  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2783  * added after the problem with filesystems was found FS DAX VMAs are
2784  * specifically failed.  Filesystem pages are still subject to bugs and use of
2785  * FOLL_LONGTERM should be avoided on those pages.
2786  *
2787  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2788  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2789  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2790  * is due to an incompatibility with the FS DAX check and
2791  * FAULT_FLAG_ALLOW_RETRY.
2792  *
2793  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2794  * that region.  And so, CMA attempts to migrate the page before pinning, when
2795  * FOLL_LONGTERM is specified.
2796  *
2797  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2798  * but an additional pin counting system) will be invoked. This is intended for
2799  * anything that gets a page reference and then touches page data (for example,
2800  * Direct IO). This lets the filesystem know that some non-file-system entity is
2801  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2802  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2803  * a call to unpin_user_page().
2804  *
2805  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2806  * and separate refcounting mechanisms, however, and that means that each has
2807  * its own acquire and release mechanisms:
2808  *
2809  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2810  *
2811  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2812  *
2813  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2814  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2815  * calls applied to them, and that's perfectly OK. This is a constraint on the
2816  * callers, not on the pages.)
2817  *
2818  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2819  * directly by the caller. That's in order to help avoid mismatches when
2820  * releasing pages: get_user_pages*() pages must be released via put_page(),
2821  * while pin_user_pages*() pages must be released via unpin_user_page().
2822  *
2823  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2824  */
2825 
2826 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2827 {
2828 	if (vm_fault & VM_FAULT_OOM)
2829 		return -ENOMEM;
2830 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2831 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2832 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2833 		return -EFAULT;
2834 	return 0;
2835 }
2836 
2837 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2838 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2839 			       unsigned long size, pte_fn_t fn, void *data);
2840 extern int apply_to_existing_page_range(struct mm_struct *mm,
2841 				   unsigned long address, unsigned long size,
2842 				   pte_fn_t fn, void *data);
2843 
2844 #ifdef CONFIG_PAGE_POISONING
2845 extern bool page_poisoning_enabled(void);
2846 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2847 #else
2848 static inline bool page_poisoning_enabled(void) { return false; }
2849 static inline void kernel_poison_pages(struct page *page, int numpages,
2850 					int enable) { }
2851 #endif
2852 
2853 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2854 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2855 #else
2856 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2857 #endif
2858 static inline bool want_init_on_alloc(gfp_t flags)
2859 {
2860 	if (static_branch_unlikely(&init_on_alloc) &&
2861 	    !page_poisoning_enabled())
2862 		return true;
2863 	return flags & __GFP_ZERO;
2864 }
2865 
2866 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2867 DECLARE_STATIC_KEY_TRUE(init_on_free);
2868 #else
2869 DECLARE_STATIC_KEY_FALSE(init_on_free);
2870 #endif
2871 static inline bool want_init_on_free(void)
2872 {
2873 	return static_branch_unlikely(&init_on_free) &&
2874 	       !page_poisoning_enabled();
2875 }
2876 
2877 #ifdef CONFIG_DEBUG_PAGEALLOC
2878 extern void init_debug_pagealloc(void);
2879 #else
2880 static inline void init_debug_pagealloc(void) {}
2881 #endif
2882 extern bool _debug_pagealloc_enabled_early;
2883 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2884 
2885 static inline bool debug_pagealloc_enabled(void)
2886 {
2887 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2888 		_debug_pagealloc_enabled_early;
2889 }
2890 
2891 /*
2892  * For use in fast paths after init_debug_pagealloc() has run, or when a
2893  * false negative result is not harmful when called too early.
2894  */
2895 static inline bool debug_pagealloc_enabled_static(void)
2896 {
2897 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2898 		return false;
2899 
2900 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2901 }
2902 
2903 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2904 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2905 
2906 /*
2907  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2908  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2909  */
2910 static inline void
2911 kernel_map_pages(struct page *page, int numpages, int enable)
2912 {
2913 	__kernel_map_pages(page, numpages, enable);
2914 }
2915 #ifdef CONFIG_HIBERNATION
2916 extern bool kernel_page_present(struct page *page);
2917 #endif	/* CONFIG_HIBERNATION */
2918 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2919 static inline void
2920 kernel_map_pages(struct page *page, int numpages, int enable) {}
2921 #ifdef CONFIG_HIBERNATION
2922 static inline bool kernel_page_present(struct page *page) { return true; }
2923 #endif	/* CONFIG_HIBERNATION */
2924 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2925 
2926 #ifdef __HAVE_ARCH_GATE_AREA
2927 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2928 extern int in_gate_area_no_mm(unsigned long addr);
2929 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2930 #else
2931 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2932 {
2933 	return NULL;
2934 }
2935 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2936 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2937 {
2938 	return 0;
2939 }
2940 #endif	/* __HAVE_ARCH_GATE_AREA */
2941 
2942 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2943 
2944 #ifdef CONFIG_SYSCTL
2945 extern int sysctl_drop_caches;
2946 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2947 		loff_t *);
2948 #endif
2949 
2950 void drop_slab(void);
2951 void drop_slab_node(int nid);
2952 
2953 #ifndef CONFIG_MMU
2954 #define randomize_va_space 0
2955 #else
2956 extern int randomize_va_space;
2957 #endif
2958 
2959 const char * arch_vma_name(struct vm_area_struct *vma);
2960 #ifdef CONFIG_MMU
2961 void print_vma_addr(char *prefix, unsigned long rip);
2962 #else
2963 static inline void print_vma_addr(char *prefix, unsigned long rip)
2964 {
2965 }
2966 #endif
2967 
2968 void *sparse_buffer_alloc(unsigned long size);
2969 struct page * __populate_section_memmap(unsigned long pfn,
2970 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2971 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2972 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2973 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2974 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2975 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2976 			    struct vmem_altmap *altmap);
2977 void *vmemmap_alloc_block(unsigned long size, int node);
2978 struct vmem_altmap;
2979 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2980 			      struct vmem_altmap *altmap);
2981 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2982 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2983 			       int node, struct vmem_altmap *altmap);
2984 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2985 		struct vmem_altmap *altmap);
2986 void vmemmap_populate_print_last(void);
2987 #ifdef CONFIG_MEMORY_HOTPLUG
2988 void vmemmap_free(unsigned long start, unsigned long end,
2989 		struct vmem_altmap *altmap);
2990 #endif
2991 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2992 				  unsigned long nr_pages);
2993 
2994 enum mf_flags {
2995 	MF_COUNT_INCREASED = 1 << 0,
2996 	MF_ACTION_REQUIRED = 1 << 1,
2997 	MF_MUST_KILL = 1 << 2,
2998 	MF_SOFT_OFFLINE = 1 << 3,
2999 };
3000 extern int memory_failure(unsigned long pfn, int flags);
3001 extern void memory_failure_queue(unsigned long pfn, int flags);
3002 extern void memory_failure_queue_kick(int cpu);
3003 extern int unpoison_memory(unsigned long pfn);
3004 extern int get_hwpoison_page(struct page *page);
3005 #define put_hwpoison_page(page)	put_page(page)
3006 extern int sysctl_memory_failure_early_kill;
3007 extern int sysctl_memory_failure_recovery;
3008 extern void shake_page(struct page *p, int access);
3009 extern atomic_long_t num_poisoned_pages __read_mostly;
3010 extern int soft_offline_page(unsigned long pfn, int flags);
3011 
3012 
3013 /*
3014  * Error handlers for various types of pages.
3015  */
3016 enum mf_result {
3017 	MF_IGNORED,	/* Error: cannot be handled */
3018 	MF_FAILED,	/* Error: handling failed */
3019 	MF_DELAYED,	/* Will be handled later */
3020 	MF_RECOVERED,	/* Successfully recovered */
3021 };
3022 
3023 enum mf_action_page_type {
3024 	MF_MSG_KERNEL,
3025 	MF_MSG_KERNEL_HIGH_ORDER,
3026 	MF_MSG_SLAB,
3027 	MF_MSG_DIFFERENT_COMPOUND,
3028 	MF_MSG_POISONED_HUGE,
3029 	MF_MSG_HUGE,
3030 	MF_MSG_FREE_HUGE,
3031 	MF_MSG_NON_PMD_HUGE,
3032 	MF_MSG_UNMAP_FAILED,
3033 	MF_MSG_DIRTY_SWAPCACHE,
3034 	MF_MSG_CLEAN_SWAPCACHE,
3035 	MF_MSG_DIRTY_MLOCKED_LRU,
3036 	MF_MSG_CLEAN_MLOCKED_LRU,
3037 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3038 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3039 	MF_MSG_DIRTY_LRU,
3040 	MF_MSG_CLEAN_LRU,
3041 	MF_MSG_TRUNCATED_LRU,
3042 	MF_MSG_BUDDY,
3043 	MF_MSG_BUDDY_2ND,
3044 	MF_MSG_DAX,
3045 	MF_MSG_UNKNOWN,
3046 };
3047 
3048 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3049 extern void clear_huge_page(struct page *page,
3050 			    unsigned long addr_hint,
3051 			    unsigned int pages_per_huge_page);
3052 extern void copy_user_huge_page(struct page *dst, struct page *src,
3053 				unsigned long addr_hint,
3054 				struct vm_area_struct *vma,
3055 				unsigned int pages_per_huge_page);
3056 extern long copy_huge_page_from_user(struct page *dst_page,
3057 				const void __user *usr_src,
3058 				unsigned int pages_per_huge_page,
3059 				bool allow_pagefault);
3060 
3061 /**
3062  * vma_is_special_huge - Are transhuge page-table entries considered special?
3063  * @vma: Pointer to the struct vm_area_struct to consider
3064  *
3065  * Whether transhuge page-table entries are considered "special" following
3066  * the definition in vm_normal_page().
3067  *
3068  * Return: true if transhuge page-table entries should be considered special,
3069  * false otherwise.
3070  */
3071 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3072 {
3073 	return vma_is_dax(vma) || (vma->vm_file &&
3074 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3075 }
3076 
3077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3078 
3079 #ifdef CONFIG_DEBUG_PAGEALLOC
3080 extern unsigned int _debug_guardpage_minorder;
3081 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3082 
3083 static inline unsigned int debug_guardpage_minorder(void)
3084 {
3085 	return _debug_guardpage_minorder;
3086 }
3087 
3088 static inline bool debug_guardpage_enabled(void)
3089 {
3090 	return static_branch_unlikely(&_debug_guardpage_enabled);
3091 }
3092 
3093 static inline bool page_is_guard(struct page *page)
3094 {
3095 	if (!debug_guardpage_enabled())
3096 		return false;
3097 
3098 	return PageGuard(page);
3099 }
3100 #else
3101 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3102 static inline bool debug_guardpage_enabled(void) { return false; }
3103 static inline bool page_is_guard(struct page *page) { return false; }
3104 #endif /* CONFIG_DEBUG_PAGEALLOC */
3105 
3106 #if MAX_NUMNODES > 1
3107 void __init setup_nr_node_ids(void);
3108 #else
3109 static inline void setup_nr_node_ids(void) {}
3110 #endif
3111 
3112 extern int memcmp_pages(struct page *page1, struct page *page2);
3113 
3114 static inline int pages_identical(struct page *page1, struct page *page2)
3115 {
3116 	return !memcmp_pages(page1, page2);
3117 }
3118 
3119 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3120 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3121 						pgoff_t first_index, pgoff_t nr,
3122 						pgoff_t bitmap_pgoff,
3123 						unsigned long *bitmap,
3124 						pgoff_t *start,
3125 						pgoff_t *end);
3126 
3127 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3128 				      pgoff_t first_index, pgoff_t nr);
3129 #endif
3130 
3131 extern int sysctl_nr_trim_pages;
3132 
3133 #endif /* __KERNEL__ */
3134 #endif /* _LINUX_MM_H */
3135