xref: /linux-6.15/include/linux/mm.h (revision 024bfd2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef DIRECT_MAP_PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107 
108 #include <asm/page.h>
109 #include <asm/processor.h>
110 
111 #ifndef __pa_symbol
112 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
113 #endif
114 
115 #ifndef page_to_virt
116 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
117 #endif
118 
119 #ifndef lm_alias
120 #define lm_alias(x)	__va(__pa_symbol(x))
121 #endif
122 
123 /*
124  * To prevent common memory management code establishing
125  * a zero page mapping on a read fault.
126  * This macro should be defined within <asm/pgtable.h>.
127  * s390 does this to prevent multiplexing of hardware bits
128  * related to the physical page in case of virtualization.
129  */
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X)	(0)
132 #endif
133 
134 /*
135  * On some architectures it is expensive to call memset() for small sizes.
136  * If an architecture decides to implement their own version of
137  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138  * define their own version of this macro in <asm/pgtable.h>
139  */
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142  * or reduces below 56. The idea that compiler optimizes out switch()
143  * statement, and only leaves move/store instructions. Also the compiler can
144  * combine write statements if they are both assignments and can be reordered,
145  * this can result in several of the writes here being dropped.
146  */
147 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148 static inline void __mm_zero_struct_page(struct page *page)
149 {
150 	unsigned long *_pp = (void *)page;
151 
152 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 	BUILD_BUG_ON(sizeof(struct page) & 7);
154 	BUILD_BUG_ON(sizeof(struct page) < 56);
155 	BUILD_BUG_ON(sizeof(struct page) > 96);
156 
157 	switch (sizeof(struct page)) {
158 	case 96:
159 		_pp[11] = 0;
160 		fallthrough;
161 	case 88:
162 		_pp[10] = 0;
163 		fallthrough;
164 	case 80:
165 		_pp[9] = 0;
166 		fallthrough;
167 	case 72:
168 		_pp[8] = 0;
169 		fallthrough;
170 	case 64:
171 		_pp[7] = 0;
172 		fallthrough;
173 	case 56:
174 		_pp[6] = 0;
175 		_pp[5] = 0;
176 		_pp[4] = 0;
177 		_pp[3] = 0;
178 		_pp[2] = 0;
179 		_pp[1] = 0;
180 		_pp[0] = 0;
181 	}
182 }
183 #else
184 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
185 #endif
186 
187 /*
188  * Default maximum number of active map areas, this limits the number of vmas
189  * per mm struct. Users can overwrite this number by sysctl but there is a
190  * problem.
191  *
192  * When a program's coredump is generated as ELF format, a section is created
193  * per a vma. In ELF, the number of sections is represented in unsigned short.
194  * This means the number of sections should be smaller than 65535 at coredump.
195  * Because the kernel adds some informative sections to a image of program at
196  * generating coredump, we need some margin. The number of extra sections is
197  * 1-3 now and depends on arch. We use "5" as safe margin, here.
198  *
199  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200  * not a hard limit any more. Although some userspace tools can be surprised by
201  * that.
202  */
203 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
204 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205 
206 extern int sysctl_max_map_count;
207 
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
210 
211 extern int sysctl_overcommit_memory;
212 extern int sysctl_overcommit_ratio;
213 extern unsigned long sysctl_overcommit_kbytes;
214 
215 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
220 		loff_t *);
221 
222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
225 #else
226 #define nth_page(page,n) ((page) + (n))
227 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
228 #endif
229 
230 /* to align the pointer to the (next) page boundary */
231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232 
233 /* to align the pointer to the (prev) page boundary */
234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235 
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238 
239 static inline struct folio *lru_to_folio(struct list_head *head)
240 {
241 	return list_entry((head)->prev, struct folio, lru);
242 }
243 
244 void setup_initial_init_mm(void *start_code, void *end_code,
245 			   void *end_data, void *brk);
246 
247 /*
248  * Linux kernel virtual memory manager primitives.
249  * The idea being to have a "virtual" mm in the same way
250  * we have a virtual fs - giving a cleaner interface to the
251  * mm details, and allowing different kinds of memory mappings
252  * (from shared memory to executable loading to arbitrary
253  * mmap() functions).
254  */
255 
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 /* Use only if VMA has no other users */
260 void __vm_area_free(struct vm_area_struct *vma);
261 
262 #ifndef CONFIG_MMU
263 extern struct rb_root nommu_region_tree;
264 extern struct rw_semaphore nommu_region_sem;
265 
266 extern unsigned int kobjsize(const void *objp);
267 #endif
268 
269 /*
270  * vm_flags in vm_area_struct, see mm_types.h.
271  * When changing, update also include/trace/events/mmflags.h
272  */
273 #define VM_NONE		0x00000000
274 
275 #define VM_READ		0x00000001	/* currently active flags */
276 #define VM_WRITE	0x00000002
277 #define VM_EXEC		0x00000004
278 #define VM_SHARED	0x00000008
279 
280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
282 #define VM_MAYWRITE	0x00000020
283 #define VM_MAYEXEC	0x00000040
284 #define VM_MAYSHARE	0x00000080
285 
286 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
287 #ifdef CONFIG_MMU
288 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
289 #else /* CONFIG_MMU */
290 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291 #define VM_UFFD_MISSING	0
292 #endif /* CONFIG_MMU */
293 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
294 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
295 
296 #define VM_LOCKED	0x00002000
297 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
298 
299 					/* Used by sys_madvise() */
300 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
301 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
302 
303 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
307 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
308 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
309 #define VM_SYNC		0x00800000	/* Synchronous page faults */
310 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
311 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
312 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
313 
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
316 #else
317 # define VM_SOFTDIRTY	0
318 #endif
319 
320 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
324 
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
338 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
339 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
340 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
341 
342 #ifdef CONFIG_ARCH_HAS_PKEYS
343 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
344 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
345 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
346 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
347 #if CONFIG_ARCH_PKEY_BITS > 3
348 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
349 #else
350 # define VM_PKEY_BIT3  0
351 #endif
352 #if CONFIG_ARCH_PKEY_BITS > 4
353 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
354 #else
355 # define VM_PKEY_BIT4  0
356 #endif
357 #endif /* CONFIG_ARCH_HAS_PKEYS */
358 
359 #ifdef CONFIG_X86_USER_SHADOW_STACK
360 /*
361  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
362  * support core mm.
363  *
364  * These VMAs will get a single end guard page. This helps userspace protect
365  * itself from attacks. A single page is enough for current shadow stack archs
366  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
367  * for more details on the guard size.
368  */
369 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
370 #endif
371 
372 #if defined(CONFIG_ARM64_GCS)
373 /*
374  * arm64's Guarded Control Stack implements similar functionality and
375  * has similar constraints to shadow stacks.
376  */
377 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
378 #endif
379 
380 #ifndef VM_SHADOW_STACK
381 # define VM_SHADOW_STACK	VM_NONE
382 #endif
383 
384 #if defined(CONFIG_X86)
385 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
386 #elif defined(CONFIG_PPC64)
387 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
388 #elif defined(CONFIG_PARISC)
389 # define VM_GROWSUP	VM_ARCH_1
390 #elif defined(CONFIG_SPARC64)
391 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
392 # define VM_ARCH_CLEAR	VM_SPARC_ADI
393 #elif defined(CONFIG_ARM64)
394 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
395 # define VM_ARCH_CLEAR	VM_ARM64_BTI
396 #elif !defined(CONFIG_MMU)
397 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
398 #endif
399 
400 #if defined(CONFIG_ARM64_MTE)
401 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
402 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
403 #else
404 # define VM_MTE		VM_NONE
405 # define VM_MTE_ALLOWED	VM_NONE
406 #endif
407 
408 #ifndef VM_GROWSUP
409 # define VM_GROWSUP	VM_NONE
410 #endif
411 
412 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
413 # define VM_UFFD_MINOR_BIT	38
414 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
415 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
416 # define VM_UFFD_MINOR		VM_NONE
417 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
418 
419 /*
420  * This flag is used to connect VFIO to arch specific KVM code. It
421  * indicates that the memory under this VMA is safe for use with any
422  * non-cachable memory type inside KVM. Some VFIO devices, on some
423  * platforms, are thought to be unsafe and can cause machine crashes
424  * if KVM does not lock down the memory type.
425  */
426 #ifdef CONFIG_64BIT
427 #define VM_ALLOW_ANY_UNCACHED_BIT	39
428 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
429 #else
430 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
431 #endif
432 
433 #ifdef CONFIG_64BIT
434 #define VM_DROPPABLE_BIT	40
435 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
436 #elif defined(CONFIG_PPC32)
437 #define VM_DROPPABLE		VM_ARCH_1
438 #else
439 #define VM_DROPPABLE		VM_NONE
440 #endif
441 
442 #ifdef CONFIG_64BIT
443 /* VM is sealed, in vm_flags */
444 #define VM_SEALED	_BITUL(63)
445 #endif
446 
447 /* Bits set in the VMA until the stack is in its final location */
448 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
449 
450 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
451 
452 /* Common data flag combinations */
453 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
454 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
455 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
456 				 VM_MAYWRITE | VM_MAYEXEC)
457 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
458 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
459 
460 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
461 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
462 #endif
463 
464 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
465 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
466 #endif
467 
468 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
469 
470 #ifdef CONFIG_STACK_GROWSUP
471 #define VM_STACK	VM_GROWSUP
472 #define VM_STACK_EARLY	VM_GROWSDOWN
473 #else
474 #define VM_STACK	VM_GROWSDOWN
475 #define VM_STACK_EARLY	0
476 #endif
477 
478 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
479 
480 /* VMA basic access permission flags */
481 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
482 
483 
484 /*
485  * Special vmas that are non-mergable, non-mlock()able.
486  */
487 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
488 
489 /* This mask prevents VMA from being scanned with khugepaged */
490 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
491 
492 /* This mask defines which mm->def_flags a process can inherit its parent */
493 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
494 
495 /* This mask represents all the VMA flag bits used by mlock */
496 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
497 
498 /* Arch-specific flags to clear when updating VM flags on protection change */
499 #ifndef VM_ARCH_CLEAR
500 # define VM_ARCH_CLEAR	VM_NONE
501 #endif
502 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
503 
504 /*
505  * mapping from the currently active vm_flags protection bits (the
506  * low four bits) to a page protection mask..
507  */
508 
509 /*
510  * The default fault flags that should be used by most of the
511  * arch-specific page fault handlers.
512  */
513 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
514 			     FAULT_FLAG_KILLABLE | \
515 			     FAULT_FLAG_INTERRUPTIBLE)
516 
517 /**
518  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
519  * @flags: Fault flags.
520  *
521  * This is mostly used for places where we want to try to avoid taking
522  * the mmap_lock for too long a time when waiting for another condition
523  * to change, in which case we can try to be polite to release the
524  * mmap_lock in the first round to avoid potential starvation of other
525  * processes that would also want the mmap_lock.
526  *
527  * Return: true if the page fault allows retry and this is the first
528  * attempt of the fault handling; false otherwise.
529  */
530 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
531 {
532 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
533 	    (!(flags & FAULT_FLAG_TRIED));
534 }
535 
536 #define FAULT_FLAG_TRACE \
537 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
538 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
539 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
540 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
541 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
542 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
543 	{ FAULT_FLAG_USER,		"USER" }, \
544 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
545 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
546 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
547 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
548 
549 /*
550  * vm_fault is filled by the pagefault handler and passed to the vma's
551  * ->fault function. The vma's ->fault is responsible for returning a bitmask
552  * of VM_FAULT_xxx flags that give details about how the fault was handled.
553  *
554  * MM layer fills up gfp_mask for page allocations but fault handler might
555  * alter it if its implementation requires a different allocation context.
556  *
557  * pgoff should be used in favour of virtual_address, if possible.
558  */
559 struct vm_fault {
560 	const struct {
561 		struct vm_area_struct *vma;	/* Target VMA */
562 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
563 		pgoff_t pgoff;			/* Logical page offset based on vma */
564 		unsigned long address;		/* Faulting virtual address - masked */
565 		unsigned long real_address;	/* Faulting virtual address - unmasked */
566 	};
567 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
568 					 * XXX: should really be 'const' */
569 	pmd_t *pmd;			/* Pointer to pmd entry matching
570 					 * the 'address' */
571 	pud_t *pud;			/* Pointer to pud entry matching
572 					 * the 'address'
573 					 */
574 	union {
575 		pte_t orig_pte;		/* Value of PTE at the time of fault */
576 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
577 					 * used by PMD fault only.
578 					 */
579 	};
580 
581 	struct page *cow_page;		/* Page handler may use for COW fault */
582 	struct page *page;		/* ->fault handlers should return a
583 					 * page here, unless VM_FAULT_NOPAGE
584 					 * is set (which is also implied by
585 					 * VM_FAULT_ERROR).
586 					 */
587 	/* These three entries are valid only while holding ptl lock */
588 	pte_t *pte;			/* Pointer to pte entry matching
589 					 * the 'address'. NULL if the page
590 					 * table hasn't been allocated.
591 					 */
592 	spinlock_t *ptl;		/* Page table lock.
593 					 * Protects pte page table if 'pte'
594 					 * is not NULL, otherwise pmd.
595 					 */
596 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
597 					 * vm_ops->map_pages() sets up a page
598 					 * table from atomic context.
599 					 * do_fault_around() pre-allocates
600 					 * page table to avoid allocation from
601 					 * atomic context.
602 					 */
603 };
604 
605 /*
606  * These are the virtual MM functions - opening of an area, closing and
607  * unmapping it (needed to keep files on disk up-to-date etc), pointer
608  * to the functions called when a no-page or a wp-page exception occurs.
609  */
610 struct vm_operations_struct {
611 	void (*open)(struct vm_area_struct * area);
612 	/**
613 	 * @close: Called when the VMA is being removed from the MM.
614 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
615 	 */
616 	void (*close)(struct vm_area_struct * area);
617 	/* Called any time before splitting to check if it's allowed */
618 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
619 	int (*mremap)(struct vm_area_struct *area);
620 	/*
621 	 * Called by mprotect() to make driver-specific permission
622 	 * checks before mprotect() is finalised.   The VMA must not
623 	 * be modified.  Returns 0 if mprotect() can proceed.
624 	 */
625 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
626 			unsigned long end, unsigned long newflags);
627 	vm_fault_t (*fault)(struct vm_fault *vmf);
628 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
629 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
630 			pgoff_t start_pgoff, pgoff_t end_pgoff);
631 	unsigned long (*pagesize)(struct vm_area_struct * area);
632 
633 	/* notification that a previously read-only page is about to become
634 	 * writable, if an error is returned it will cause a SIGBUS */
635 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
636 
637 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
638 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
639 
640 	/* called by access_process_vm when get_user_pages() fails, typically
641 	 * for use by special VMAs. See also generic_access_phys() for a generic
642 	 * implementation useful for any iomem mapping.
643 	 */
644 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
645 		      void *buf, int len, int write);
646 
647 	/* Called by the /proc/PID/maps code to ask the vma whether it
648 	 * has a special name.  Returning non-NULL will also cause this
649 	 * vma to be dumped unconditionally. */
650 	const char *(*name)(struct vm_area_struct *vma);
651 
652 #ifdef CONFIG_NUMA
653 	/*
654 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
655 	 * to hold the policy upon return.  Caller should pass NULL @new to
656 	 * remove a policy and fall back to surrounding context--i.e. do not
657 	 * install a MPOL_DEFAULT policy, nor the task or system default
658 	 * mempolicy.
659 	 */
660 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
661 
662 	/*
663 	 * get_policy() op must add reference [mpol_get()] to any policy at
664 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
665 	 * in mm/mempolicy.c will do this automatically.
666 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
667 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
668 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
669 	 * must return NULL--i.e., do not "fallback" to task or system default
670 	 * policy.
671 	 */
672 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
673 					unsigned long addr, pgoff_t *ilx);
674 #endif
675 	/*
676 	 * Called by vm_normal_page() for special PTEs to find the
677 	 * page for @addr.  This is useful if the default behavior
678 	 * (using pte_page()) would not find the correct page.
679 	 */
680 	struct page *(*find_special_page)(struct vm_area_struct *vma,
681 					  unsigned long addr);
682 };
683 
684 #ifdef CONFIG_NUMA_BALANCING
685 static inline void vma_numab_state_init(struct vm_area_struct *vma)
686 {
687 	vma->numab_state = NULL;
688 }
689 static inline void vma_numab_state_free(struct vm_area_struct *vma)
690 {
691 	kfree(vma->numab_state);
692 }
693 #else
694 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
695 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
696 #endif /* CONFIG_NUMA_BALANCING */
697 
698 #ifdef CONFIG_PER_VMA_LOCK
699 /*
700  * Try to read-lock a vma. The function is allowed to occasionally yield false
701  * locked result to avoid performance overhead, in which case we fall back to
702  * using mmap_lock. The function should never yield false unlocked result.
703  */
704 static inline bool vma_start_read(struct vm_area_struct *vma)
705 {
706 	/*
707 	 * Check before locking. A race might cause false locked result.
708 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
709 	 * ACQUIRE semantics, because this is just a lockless check whose result
710 	 * we don't rely on for anything - the mm_lock_seq read against which we
711 	 * need ordering is below.
712 	 */
713 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
714 		return false;
715 
716 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
717 		return false;
718 
719 	/*
720 	 * Overflow might produce false locked result.
721 	 * False unlocked result is impossible because we modify and check
722 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
723 	 * modification invalidates all existing locks.
724 	 *
725 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
726 	 * racing with vma_end_write_all(), we only start reading from the VMA
727 	 * after it has been unlocked.
728 	 * This pairs with RELEASE semantics in vma_end_write_all().
729 	 */
730 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
731 		up_read(&vma->vm_lock->lock);
732 		return false;
733 	}
734 	return true;
735 }
736 
737 static inline void vma_end_read(struct vm_area_struct *vma)
738 {
739 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
740 	up_read(&vma->vm_lock->lock);
741 	rcu_read_unlock();
742 }
743 
744 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
745 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
746 {
747 	mmap_assert_write_locked(vma->vm_mm);
748 
749 	/*
750 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
751 	 * mm->mm_lock_seq can't be concurrently modified.
752 	 */
753 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
754 	return (vma->vm_lock_seq == *mm_lock_seq);
755 }
756 
757 /*
758  * Begin writing to a VMA.
759  * Exclude concurrent readers under the per-VMA lock until the currently
760  * write-locked mmap_lock is dropped or downgraded.
761  */
762 static inline void vma_start_write(struct vm_area_struct *vma)
763 {
764 	int mm_lock_seq;
765 
766 	if (__is_vma_write_locked(vma, &mm_lock_seq))
767 		return;
768 
769 	down_write(&vma->vm_lock->lock);
770 	/*
771 	 * We should use WRITE_ONCE() here because we can have concurrent reads
772 	 * from the early lockless pessimistic check in vma_start_read().
773 	 * We don't really care about the correctness of that early check, but
774 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
775 	 */
776 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
777 	up_write(&vma->vm_lock->lock);
778 }
779 
780 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
781 {
782 	int mm_lock_seq;
783 
784 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
785 }
786 
787 static inline void vma_assert_locked(struct vm_area_struct *vma)
788 {
789 	if (!rwsem_is_locked(&vma->vm_lock->lock))
790 		vma_assert_write_locked(vma);
791 }
792 
793 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
794 {
795 	/* When detaching vma should be write-locked */
796 	if (detached)
797 		vma_assert_write_locked(vma);
798 	vma->detached = detached;
799 }
800 
801 static inline void release_fault_lock(struct vm_fault *vmf)
802 {
803 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
804 		vma_end_read(vmf->vma);
805 	else
806 		mmap_read_unlock(vmf->vma->vm_mm);
807 }
808 
809 static inline void assert_fault_locked(struct vm_fault *vmf)
810 {
811 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
812 		vma_assert_locked(vmf->vma);
813 	else
814 		mmap_assert_locked(vmf->vma->vm_mm);
815 }
816 
817 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
818 					  unsigned long address);
819 
820 #else /* CONFIG_PER_VMA_LOCK */
821 
822 static inline bool vma_start_read(struct vm_area_struct *vma)
823 		{ return false; }
824 static inline void vma_end_read(struct vm_area_struct *vma) {}
825 static inline void vma_start_write(struct vm_area_struct *vma) {}
826 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
827 		{ mmap_assert_write_locked(vma->vm_mm); }
828 static inline void vma_mark_detached(struct vm_area_struct *vma,
829 				     bool detached) {}
830 
831 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
832 		unsigned long address)
833 {
834 	return NULL;
835 }
836 
837 static inline void vma_assert_locked(struct vm_area_struct *vma)
838 {
839 	mmap_assert_locked(vma->vm_mm);
840 }
841 
842 static inline void release_fault_lock(struct vm_fault *vmf)
843 {
844 	mmap_read_unlock(vmf->vma->vm_mm);
845 }
846 
847 static inline void assert_fault_locked(struct vm_fault *vmf)
848 {
849 	mmap_assert_locked(vmf->vma->vm_mm);
850 }
851 
852 #endif /* CONFIG_PER_VMA_LOCK */
853 
854 extern const struct vm_operations_struct vma_dummy_vm_ops;
855 
856 /*
857  * WARNING: vma_init does not initialize vma->vm_lock.
858  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
859  */
860 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
861 {
862 	memset(vma, 0, sizeof(*vma));
863 	vma->vm_mm = mm;
864 	vma->vm_ops = &vma_dummy_vm_ops;
865 	INIT_LIST_HEAD(&vma->anon_vma_chain);
866 	vma_mark_detached(vma, false);
867 	vma_numab_state_init(vma);
868 }
869 
870 /* Use when VMA is not part of the VMA tree and needs no locking */
871 static inline void vm_flags_init(struct vm_area_struct *vma,
872 				 vm_flags_t flags)
873 {
874 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
875 }
876 
877 /*
878  * Use when VMA is part of the VMA tree and modifications need coordination
879  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
880  * it should be locked explicitly beforehand.
881  */
882 static inline void vm_flags_reset(struct vm_area_struct *vma,
883 				  vm_flags_t flags)
884 {
885 	vma_assert_write_locked(vma);
886 	vm_flags_init(vma, flags);
887 }
888 
889 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
890 				       vm_flags_t flags)
891 {
892 	vma_assert_write_locked(vma);
893 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
894 }
895 
896 static inline void vm_flags_set(struct vm_area_struct *vma,
897 				vm_flags_t flags)
898 {
899 	vma_start_write(vma);
900 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
901 }
902 
903 static inline void vm_flags_clear(struct vm_area_struct *vma,
904 				  vm_flags_t flags)
905 {
906 	vma_start_write(vma);
907 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
908 }
909 
910 /*
911  * Use only if VMA is not part of the VMA tree or has no other users and
912  * therefore needs no locking.
913  */
914 static inline void __vm_flags_mod(struct vm_area_struct *vma,
915 				  vm_flags_t set, vm_flags_t clear)
916 {
917 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
918 }
919 
920 /*
921  * Use only when the order of set/clear operations is unimportant, otherwise
922  * use vm_flags_{set|clear} explicitly.
923  */
924 static inline void vm_flags_mod(struct vm_area_struct *vma,
925 				vm_flags_t set, vm_flags_t clear)
926 {
927 	vma_start_write(vma);
928 	__vm_flags_mod(vma, set, clear);
929 }
930 
931 static inline void vma_set_anonymous(struct vm_area_struct *vma)
932 {
933 	vma->vm_ops = NULL;
934 }
935 
936 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
937 {
938 	return !vma->vm_ops;
939 }
940 
941 /*
942  * Indicate if the VMA is a heap for the given task; for
943  * /proc/PID/maps that is the heap of the main task.
944  */
945 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
946 {
947 	return vma->vm_start < vma->vm_mm->brk &&
948 		vma->vm_end > vma->vm_mm->start_brk;
949 }
950 
951 /*
952  * Indicate if the VMA is a stack for the given task; for
953  * /proc/PID/maps that is the stack of the main task.
954  */
955 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
956 {
957 	/*
958 	 * We make no effort to guess what a given thread considers to be
959 	 * its "stack".  It's not even well-defined for programs written
960 	 * languages like Go.
961 	 */
962 	return vma->vm_start <= vma->vm_mm->start_stack &&
963 		vma->vm_end >= vma->vm_mm->start_stack;
964 }
965 
966 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
967 {
968 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
969 
970 	if (!maybe_stack)
971 		return false;
972 
973 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
974 						VM_STACK_INCOMPLETE_SETUP)
975 		return true;
976 
977 	return false;
978 }
979 
980 static inline bool vma_is_foreign(struct vm_area_struct *vma)
981 {
982 	if (!current->mm)
983 		return true;
984 
985 	if (current->mm != vma->vm_mm)
986 		return true;
987 
988 	return false;
989 }
990 
991 static inline bool vma_is_accessible(struct vm_area_struct *vma)
992 {
993 	return vma->vm_flags & VM_ACCESS_FLAGS;
994 }
995 
996 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
997 {
998 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
999 		(VM_SHARED | VM_MAYWRITE);
1000 }
1001 
1002 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1003 {
1004 	return is_shared_maywrite(vma->vm_flags);
1005 }
1006 
1007 static inline
1008 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1009 {
1010 	return mas_find(&vmi->mas, max - 1);
1011 }
1012 
1013 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1014 {
1015 	/*
1016 	 * Uses mas_find() to get the first VMA when the iterator starts.
1017 	 * Calling mas_next() could skip the first entry.
1018 	 */
1019 	return mas_find(&vmi->mas, ULONG_MAX);
1020 }
1021 
1022 static inline
1023 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1024 {
1025 	return mas_next_range(&vmi->mas, ULONG_MAX);
1026 }
1027 
1028 
1029 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1030 {
1031 	return mas_prev(&vmi->mas, 0);
1032 }
1033 
1034 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1035 			unsigned long start, unsigned long end, gfp_t gfp)
1036 {
1037 	__mas_set_range(&vmi->mas, start, end - 1);
1038 	mas_store_gfp(&vmi->mas, NULL, gfp);
1039 	if (unlikely(mas_is_err(&vmi->mas)))
1040 		return -ENOMEM;
1041 
1042 	return 0;
1043 }
1044 
1045 /* Free any unused preallocations */
1046 static inline void vma_iter_free(struct vma_iterator *vmi)
1047 {
1048 	mas_destroy(&vmi->mas);
1049 }
1050 
1051 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1052 				      struct vm_area_struct *vma)
1053 {
1054 	vmi->mas.index = vma->vm_start;
1055 	vmi->mas.last = vma->vm_end - 1;
1056 	mas_store(&vmi->mas, vma);
1057 	if (unlikely(mas_is_err(&vmi->mas)))
1058 		return -ENOMEM;
1059 
1060 	return 0;
1061 }
1062 
1063 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1064 {
1065 	mas_pause(&vmi->mas);
1066 }
1067 
1068 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1069 {
1070 	mas_set(&vmi->mas, addr);
1071 }
1072 
1073 #define for_each_vma(__vmi, __vma)					\
1074 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1075 
1076 /* The MM code likes to work with exclusive end addresses */
1077 #define for_each_vma_range(__vmi, __vma, __end)				\
1078 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1079 
1080 #ifdef CONFIG_SHMEM
1081 /*
1082  * The vma_is_shmem is not inline because it is used only by slow
1083  * paths in userfault.
1084  */
1085 bool vma_is_shmem(struct vm_area_struct *vma);
1086 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1087 #else
1088 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1089 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1090 #endif
1091 
1092 int vma_is_stack_for_current(struct vm_area_struct *vma);
1093 
1094 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1095 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1096 
1097 struct mmu_gather;
1098 struct inode;
1099 
1100 /*
1101  * compound_order() can be called without holding a reference, which means
1102  * that niceties like page_folio() don't work.  These callers should be
1103  * prepared to handle wild return values.  For example, PG_head may be
1104  * set before the order is initialised, or this may be a tail page.
1105  * See compaction.c for some good examples.
1106  */
1107 static inline unsigned int compound_order(struct page *page)
1108 {
1109 	struct folio *folio = (struct folio *)page;
1110 
1111 	if (!test_bit(PG_head, &folio->flags))
1112 		return 0;
1113 	return folio->_flags_1 & 0xff;
1114 }
1115 
1116 /**
1117  * folio_order - The allocation order of a folio.
1118  * @folio: The folio.
1119  *
1120  * A folio is composed of 2^order pages.  See get_order() for the definition
1121  * of order.
1122  *
1123  * Return: The order of the folio.
1124  */
1125 static inline unsigned int folio_order(const struct folio *folio)
1126 {
1127 	if (!folio_test_large(folio))
1128 		return 0;
1129 	return folio->_flags_1 & 0xff;
1130 }
1131 
1132 #include <linux/huge_mm.h>
1133 
1134 /*
1135  * Methods to modify the page usage count.
1136  *
1137  * What counts for a page usage:
1138  * - cache mapping   (page->mapping)
1139  * - private data    (page->private)
1140  * - page mapped in a task's page tables, each mapping
1141  *   is counted separately
1142  *
1143  * Also, many kernel routines increase the page count before a critical
1144  * routine so they can be sure the page doesn't go away from under them.
1145  */
1146 
1147 /*
1148  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1149  */
1150 static inline int put_page_testzero(struct page *page)
1151 {
1152 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1153 	return page_ref_dec_and_test(page);
1154 }
1155 
1156 static inline int folio_put_testzero(struct folio *folio)
1157 {
1158 	return put_page_testzero(&folio->page);
1159 }
1160 
1161 /*
1162  * Try to grab a ref unless the page has a refcount of zero, return false if
1163  * that is the case.
1164  * This can be called when MMU is off so it must not access
1165  * any of the virtual mappings.
1166  */
1167 static inline bool get_page_unless_zero(struct page *page)
1168 {
1169 	return page_ref_add_unless(page, 1, 0);
1170 }
1171 
1172 static inline struct folio *folio_get_nontail_page(struct page *page)
1173 {
1174 	if (unlikely(!get_page_unless_zero(page)))
1175 		return NULL;
1176 	return (struct folio *)page;
1177 }
1178 
1179 extern int page_is_ram(unsigned long pfn);
1180 
1181 enum {
1182 	REGION_INTERSECTS,
1183 	REGION_DISJOINT,
1184 	REGION_MIXED,
1185 };
1186 
1187 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1188 		      unsigned long desc);
1189 
1190 /* Support for virtually mapped pages */
1191 struct page *vmalloc_to_page(const void *addr);
1192 unsigned long vmalloc_to_pfn(const void *addr);
1193 
1194 /*
1195  * Determine if an address is within the vmalloc range
1196  *
1197  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1198  * is no special casing required.
1199  */
1200 #ifdef CONFIG_MMU
1201 extern bool is_vmalloc_addr(const void *x);
1202 extern int is_vmalloc_or_module_addr(const void *x);
1203 #else
1204 static inline bool is_vmalloc_addr(const void *x)
1205 {
1206 	return false;
1207 }
1208 static inline int is_vmalloc_or_module_addr(const void *x)
1209 {
1210 	return 0;
1211 }
1212 #endif
1213 
1214 /*
1215  * How many times the entire folio is mapped as a single unit (eg by a
1216  * PMD or PUD entry).  This is probably not what you want, except for
1217  * debugging purposes or implementation of other core folio_*() primitives.
1218  */
1219 static inline int folio_entire_mapcount(const struct folio *folio)
1220 {
1221 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1222 	return atomic_read(&folio->_entire_mapcount) + 1;
1223 }
1224 
1225 static inline int folio_large_mapcount(const struct folio *folio)
1226 {
1227 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1228 	return atomic_read(&folio->_large_mapcount) + 1;
1229 }
1230 
1231 /**
1232  * folio_mapcount() - Number of mappings of this folio.
1233  * @folio: The folio.
1234  *
1235  * The folio mapcount corresponds to the number of present user page table
1236  * entries that reference any part of a folio. Each such present user page
1237  * table entry must be paired with exactly on folio reference.
1238  *
1239  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1240  * exactly once.
1241  *
1242  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1243  * references the entire folio counts exactly once, even when such special
1244  * page table entries are comprised of multiple ordinary page table entries.
1245  *
1246  * Will report 0 for pages which cannot be mapped into userspace, such as
1247  * slab, page tables and similar.
1248  *
1249  * Return: The number of times this folio is mapped.
1250  */
1251 static inline int folio_mapcount(const struct folio *folio)
1252 {
1253 	int mapcount;
1254 
1255 	if (likely(!folio_test_large(folio))) {
1256 		mapcount = atomic_read(&folio->_mapcount) + 1;
1257 		if (page_mapcount_is_type(mapcount))
1258 			mapcount = 0;
1259 		return mapcount;
1260 	}
1261 	return folio_large_mapcount(folio);
1262 }
1263 
1264 /**
1265  * folio_mapped - Is this folio mapped into userspace?
1266  * @folio: The folio.
1267  *
1268  * Return: True if any page in this folio is referenced by user page tables.
1269  */
1270 static inline bool folio_mapped(const struct folio *folio)
1271 {
1272 	return folio_mapcount(folio) >= 1;
1273 }
1274 
1275 /*
1276  * Return true if this page is mapped into pagetables.
1277  * For compound page it returns true if any sub-page of compound page is mapped,
1278  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1279  */
1280 static inline bool page_mapped(const struct page *page)
1281 {
1282 	return folio_mapped(page_folio(page));
1283 }
1284 
1285 static inline struct page *virt_to_head_page(const void *x)
1286 {
1287 	struct page *page = virt_to_page(x);
1288 
1289 	return compound_head(page);
1290 }
1291 
1292 static inline struct folio *virt_to_folio(const void *x)
1293 {
1294 	struct page *page = virt_to_page(x);
1295 
1296 	return page_folio(page);
1297 }
1298 
1299 void __folio_put(struct folio *folio);
1300 
1301 void split_page(struct page *page, unsigned int order);
1302 void folio_copy(struct folio *dst, struct folio *src);
1303 int folio_mc_copy(struct folio *dst, struct folio *src);
1304 
1305 unsigned long nr_free_buffer_pages(void);
1306 
1307 /* Returns the number of bytes in this potentially compound page. */
1308 static inline unsigned long page_size(struct page *page)
1309 {
1310 	return PAGE_SIZE << compound_order(page);
1311 }
1312 
1313 /* Returns the number of bits needed for the number of bytes in a page */
1314 static inline unsigned int page_shift(struct page *page)
1315 {
1316 	return PAGE_SHIFT + compound_order(page);
1317 }
1318 
1319 /**
1320  * thp_order - Order of a transparent huge page.
1321  * @page: Head page of a transparent huge page.
1322  */
1323 static inline unsigned int thp_order(struct page *page)
1324 {
1325 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1326 	return compound_order(page);
1327 }
1328 
1329 /**
1330  * thp_size - Size of a transparent huge page.
1331  * @page: Head page of a transparent huge page.
1332  *
1333  * Return: Number of bytes in this page.
1334  */
1335 static inline unsigned long thp_size(struct page *page)
1336 {
1337 	return PAGE_SIZE << thp_order(page);
1338 }
1339 
1340 #ifdef CONFIG_MMU
1341 /*
1342  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1343  * servicing faults for write access.  In the normal case, do always want
1344  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1345  * that do not have writing enabled, when used by access_process_vm.
1346  */
1347 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1348 {
1349 	if (likely(vma->vm_flags & VM_WRITE))
1350 		pte = pte_mkwrite(pte, vma);
1351 	return pte;
1352 }
1353 
1354 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1355 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1356 		struct page *page, unsigned int nr, unsigned long addr);
1357 
1358 vm_fault_t finish_fault(struct vm_fault *vmf);
1359 #endif
1360 
1361 /*
1362  * Multiple processes may "see" the same page. E.g. for untouched
1363  * mappings of /dev/null, all processes see the same page full of
1364  * zeroes, and text pages of executables and shared libraries have
1365  * only one copy in memory, at most, normally.
1366  *
1367  * For the non-reserved pages, page_count(page) denotes a reference count.
1368  *   page_count() == 0 means the page is free. page->lru is then used for
1369  *   freelist management in the buddy allocator.
1370  *   page_count() > 0  means the page has been allocated.
1371  *
1372  * Pages are allocated by the slab allocator in order to provide memory
1373  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1374  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1375  * unless a particular usage is carefully commented. (the responsibility of
1376  * freeing the kmalloc memory is the caller's, of course).
1377  *
1378  * A page may be used by anyone else who does a __get_free_page().
1379  * In this case, page_count still tracks the references, and should only
1380  * be used through the normal accessor functions. The top bits of page->flags
1381  * and page->virtual store page management information, but all other fields
1382  * are unused and could be used privately, carefully. The management of this
1383  * page is the responsibility of the one who allocated it, and those who have
1384  * subsequently been given references to it.
1385  *
1386  * The other pages (we may call them "pagecache pages") are completely
1387  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1388  * The following discussion applies only to them.
1389  *
1390  * A pagecache page contains an opaque `private' member, which belongs to the
1391  * page's address_space. Usually, this is the address of a circular list of
1392  * the page's disk buffers. PG_private must be set to tell the VM to call
1393  * into the filesystem to release these pages.
1394  *
1395  * A page may belong to an inode's memory mapping. In this case, page->mapping
1396  * is the pointer to the inode, and page->index is the file offset of the page,
1397  * in units of PAGE_SIZE.
1398  *
1399  * If pagecache pages are not associated with an inode, they are said to be
1400  * anonymous pages. These may become associated with the swapcache, and in that
1401  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1402  *
1403  * In either case (swapcache or inode backed), the pagecache itself holds one
1404  * reference to the page. Setting PG_private should also increment the
1405  * refcount. The each user mapping also has a reference to the page.
1406  *
1407  * The pagecache pages are stored in a per-mapping radix tree, which is
1408  * rooted at mapping->i_pages, and indexed by offset.
1409  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1410  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1411  *
1412  * All pagecache pages may be subject to I/O:
1413  * - inode pages may need to be read from disk,
1414  * - inode pages which have been modified and are MAP_SHARED may need
1415  *   to be written back to the inode on disk,
1416  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1417  *   modified may need to be swapped out to swap space and (later) to be read
1418  *   back into memory.
1419  */
1420 
1421 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1422 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1423 
1424 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1425 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1426 {
1427 	if (!static_branch_unlikely(&devmap_managed_key))
1428 		return false;
1429 	if (!folio_is_zone_device(folio))
1430 		return false;
1431 	return __put_devmap_managed_folio_refs(folio, refs);
1432 }
1433 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1434 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1435 {
1436 	return false;
1437 }
1438 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1439 
1440 /* 127: arbitrary random number, small enough to assemble well */
1441 #define folio_ref_zero_or_close_to_overflow(folio) \
1442 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1443 
1444 /**
1445  * folio_get - Increment the reference count on a folio.
1446  * @folio: The folio.
1447  *
1448  * Context: May be called in any context, as long as you know that
1449  * you have a refcount on the folio.  If you do not already have one,
1450  * folio_try_get() may be the right interface for you to use.
1451  */
1452 static inline void folio_get(struct folio *folio)
1453 {
1454 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1455 	folio_ref_inc(folio);
1456 }
1457 
1458 static inline void get_page(struct page *page)
1459 {
1460 	folio_get(page_folio(page));
1461 }
1462 
1463 static inline __must_check bool try_get_page(struct page *page)
1464 {
1465 	page = compound_head(page);
1466 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1467 		return false;
1468 	page_ref_inc(page);
1469 	return true;
1470 }
1471 
1472 /**
1473  * folio_put - Decrement the reference count on a folio.
1474  * @folio: The folio.
1475  *
1476  * If the folio's reference count reaches zero, the memory will be
1477  * released back to the page allocator and may be used by another
1478  * allocation immediately.  Do not access the memory or the struct folio
1479  * after calling folio_put() unless you can be sure that it wasn't the
1480  * last reference.
1481  *
1482  * Context: May be called in process or interrupt context, but not in NMI
1483  * context.  May be called while holding a spinlock.
1484  */
1485 static inline void folio_put(struct folio *folio)
1486 {
1487 	if (folio_put_testzero(folio))
1488 		__folio_put(folio);
1489 }
1490 
1491 /**
1492  * folio_put_refs - Reduce the reference count on a folio.
1493  * @folio: The folio.
1494  * @refs: The amount to subtract from the folio's reference count.
1495  *
1496  * If the folio's reference count reaches zero, the memory will be
1497  * released back to the page allocator and may be used by another
1498  * allocation immediately.  Do not access the memory or the struct folio
1499  * after calling folio_put_refs() unless you can be sure that these weren't
1500  * the last references.
1501  *
1502  * Context: May be called in process or interrupt context, but not in NMI
1503  * context.  May be called while holding a spinlock.
1504  */
1505 static inline void folio_put_refs(struct folio *folio, int refs)
1506 {
1507 	if (folio_ref_sub_and_test(folio, refs))
1508 		__folio_put(folio);
1509 }
1510 
1511 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1512 
1513 /*
1514  * union release_pages_arg - an array of pages or folios
1515  *
1516  * release_pages() releases a simple array of multiple pages, and
1517  * accepts various different forms of said page array: either
1518  * a regular old boring array of pages, an array of folios, or
1519  * an array of encoded page pointers.
1520  *
1521  * The transparent union syntax for this kind of "any of these
1522  * argument types" is all kinds of ugly, so look away.
1523  */
1524 typedef union {
1525 	struct page **pages;
1526 	struct folio **folios;
1527 	struct encoded_page **encoded_pages;
1528 } release_pages_arg __attribute__ ((__transparent_union__));
1529 
1530 void release_pages(release_pages_arg, int nr);
1531 
1532 /**
1533  * folios_put - Decrement the reference count on an array of folios.
1534  * @folios: The folios.
1535  *
1536  * Like folio_put(), but for a batch of folios.  This is more efficient
1537  * than writing the loop yourself as it will optimise the locks which need
1538  * to be taken if the folios are freed.  The folios batch is returned
1539  * empty and ready to be reused for another batch; there is no need to
1540  * reinitialise it.
1541  *
1542  * Context: May be called in process or interrupt context, but not in NMI
1543  * context.  May be called while holding a spinlock.
1544  */
1545 static inline void folios_put(struct folio_batch *folios)
1546 {
1547 	folios_put_refs(folios, NULL);
1548 }
1549 
1550 static inline void put_page(struct page *page)
1551 {
1552 	struct folio *folio = page_folio(page);
1553 
1554 	/*
1555 	 * For some devmap managed pages we need to catch refcount transition
1556 	 * from 2 to 1:
1557 	 */
1558 	if (put_devmap_managed_folio_refs(folio, 1))
1559 		return;
1560 	folio_put(folio);
1561 }
1562 
1563 /*
1564  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1565  * the page's refcount so that two separate items are tracked: the original page
1566  * reference count, and also a new count of how many pin_user_pages() calls were
1567  * made against the page. ("gup-pinned" is another term for the latter).
1568  *
1569  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1570  * distinct from normal pages. As such, the unpin_user_page() call (and its
1571  * variants) must be used in order to release gup-pinned pages.
1572  *
1573  * Choice of value:
1574  *
1575  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1576  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1577  * simpler, due to the fact that adding an even power of two to the page
1578  * refcount has the effect of using only the upper N bits, for the code that
1579  * counts up using the bias value. This means that the lower bits are left for
1580  * the exclusive use of the original code that increments and decrements by one
1581  * (or at least, by much smaller values than the bias value).
1582  *
1583  * Of course, once the lower bits overflow into the upper bits (and this is
1584  * OK, because subtraction recovers the original values), then visual inspection
1585  * no longer suffices to directly view the separate counts. However, for normal
1586  * applications that don't have huge page reference counts, this won't be an
1587  * issue.
1588  *
1589  * Locking: the lockless algorithm described in folio_try_get_rcu()
1590  * provides safe operation for get_user_pages(), folio_mkclean() and
1591  * other calls that race to set up page table entries.
1592  */
1593 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1594 
1595 void unpin_user_page(struct page *page);
1596 void unpin_folio(struct folio *folio);
1597 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1598 				 bool make_dirty);
1599 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1600 				      bool make_dirty);
1601 void unpin_user_pages(struct page **pages, unsigned long npages);
1602 void unpin_user_folio(struct folio *folio, unsigned long npages);
1603 void unpin_folios(struct folio **folios, unsigned long nfolios);
1604 
1605 static inline bool is_cow_mapping(vm_flags_t flags)
1606 {
1607 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1608 }
1609 
1610 #ifndef CONFIG_MMU
1611 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1612 {
1613 	/*
1614 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1615 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1616 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1617 	 * underlying memory if ptrace is active, so this is only possible if
1618 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1619 	 * write permissions later.
1620 	 */
1621 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1622 }
1623 #endif
1624 
1625 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1626 #define SECTION_IN_PAGE_FLAGS
1627 #endif
1628 
1629 /*
1630  * The identification function is mainly used by the buddy allocator for
1631  * determining if two pages could be buddies. We are not really identifying
1632  * the zone since we could be using the section number id if we do not have
1633  * node id available in page flags.
1634  * We only guarantee that it will return the same value for two combinable
1635  * pages in a zone.
1636  */
1637 static inline int page_zone_id(struct page *page)
1638 {
1639 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1640 }
1641 
1642 #ifdef NODE_NOT_IN_PAGE_FLAGS
1643 int page_to_nid(const struct page *page);
1644 #else
1645 static inline int page_to_nid(const struct page *page)
1646 {
1647 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1648 }
1649 #endif
1650 
1651 static inline int folio_nid(const struct folio *folio)
1652 {
1653 	return page_to_nid(&folio->page);
1654 }
1655 
1656 #ifdef CONFIG_NUMA_BALANCING
1657 /* page access time bits needs to hold at least 4 seconds */
1658 #define PAGE_ACCESS_TIME_MIN_BITS	12
1659 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1660 #define PAGE_ACCESS_TIME_BUCKETS				\
1661 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1662 #else
1663 #define PAGE_ACCESS_TIME_BUCKETS	0
1664 #endif
1665 
1666 #define PAGE_ACCESS_TIME_MASK				\
1667 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1668 
1669 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1670 {
1671 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1672 }
1673 
1674 static inline int cpupid_to_pid(int cpupid)
1675 {
1676 	return cpupid & LAST__PID_MASK;
1677 }
1678 
1679 static inline int cpupid_to_cpu(int cpupid)
1680 {
1681 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1682 }
1683 
1684 static inline int cpupid_to_nid(int cpupid)
1685 {
1686 	return cpu_to_node(cpupid_to_cpu(cpupid));
1687 }
1688 
1689 static inline bool cpupid_pid_unset(int cpupid)
1690 {
1691 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1692 }
1693 
1694 static inline bool cpupid_cpu_unset(int cpupid)
1695 {
1696 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1697 }
1698 
1699 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1700 {
1701 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1702 }
1703 
1704 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1705 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1706 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1707 {
1708 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1709 }
1710 
1711 static inline int folio_last_cpupid(struct folio *folio)
1712 {
1713 	return folio->_last_cpupid;
1714 }
1715 static inline void page_cpupid_reset_last(struct page *page)
1716 {
1717 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1718 }
1719 #else
1720 static inline int folio_last_cpupid(struct folio *folio)
1721 {
1722 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1723 }
1724 
1725 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1726 
1727 static inline void page_cpupid_reset_last(struct page *page)
1728 {
1729 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1730 }
1731 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1732 
1733 static inline int folio_xchg_access_time(struct folio *folio, int time)
1734 {
1735 	int last_time;
1736 
1737 	last_time = folio_xchg_last_cpupid(folio,
1738 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1739 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1740 }
1741 
1742 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1743 {
1744 	unsigned int pid_bit;
1745 
1746 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1747 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1748 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1749 	}
1750 }
1751 
1752 bool folio_use_access_time(struct folio *folio);
1753 #else /* !CONFIG_NUMA_BALANCING */
1754 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1755 {
1756 	return folio_nid(folio); /* XXX */
1757 }
1758 
1759 static inline int folio_xchg_access_time(struct folio *folio, int time)
1760 {
1761 	return 0;
1762 }
1763 
1764 static inline int folio_last_cpupid(struct folio *folio)
1765 {
1766 	return folio_nid(folio); /* XXX */
1767 }
1768 
1769 static inline int cpupid_to_nid(int cpupid)
1770 {
1771 	return -1;
1772 }
1773 
1774 static inline int cpupid_to_pid(int cpupid)
1775 {
1776 	return -1;
1777 }
1778 
1779 static inline int cpupid_to_cpu(int cpupid)
1780 {
1781 	return -1;
1782 }
1783 
1784 static inline int cpu_pid_to_cpupid(int nid, int pid)
1785 {
1786 	return -1;
1787 }
1788 
1789 static inline bool cpupid_pid_unset(int cpupid)
1790 {
1791 	return true;
1792 }
1793 
1794 static inline void page_cpupid_reset_last(struct page *page)
1795 {
1796 }
1797 
1798 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1799 {
1800 	return false;
1801 }
1802 
1803 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1804 {
1805 }
1806 static inline bool folio_use_access_time(struct folio *folio)
1807 {
1808 	return false;
1809 }
1810 #endif /* CONFIG_NUMA_BALANCING */
1811 
1812 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1813 
1814 /*
1815  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1816  * setting tags for all pages to native kernel tag value 0xff, as the default
1817  * value 0x00 maps to 0xff.
1818  */
1819 
1820 static inline u8 page_kasan_tag(const struct page *page)
1821 {
1822 	u8 tag = KASAN_TAG_KERNEL;
1823 
1824 	if (kasan_enabled()) {
1825 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1826 		tag ^= 0xff;
1827 	}
1828 
1829 	return tag;
1830 }
1831 
1832 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1833 {
1834 	unsigned long old_flags, flags;
1835 
1836 	if (!kasan_enabled())
1837 		return;
1838 
1839 	tag ^= 0xff;
1840 	old_flags = READ_ONCE(page->flags);
1841 	do {
1842 		flags = old_flags;
1843 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1844 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1845 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1846 }
1847 
1848 static inline void page_kasan_tag_reset(struct page *page)
1849 {
1850 	if (kasan_enabled())
1851 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1852 }
1853 
1854 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1855 
1856 static inline u8 page_kasan_tag(const struct page *page)
1857 {
1858 	return 0xff;
1859 }
1860 
1861 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1862 static inline void page_kasan_tag_reset(struct page *page) { }
1863 
1864 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1865 
1866 static inline struct zone *page_zone(const struct page *page)
1867 {
1868 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1869 }
1870 
1871 static inline pg_data_t *page_pgdat(const struct page *page)
1872 {
1873 	return NODE_DATA(page_to_nid(page));
1874 }
1875 
1876 static inline struct zone *folio_zone(const struct folio *folio)
1877 {
1878 	return page_zone(&folio->page);
1879 }
1880 
1881 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1882 {
1883 	return page_pgdat(&folio->page);
1884 }
1885 
1886 #ifdef SECTION_IN_PAGE_FLAGS
1887 static inline void set_page_section(struct page *page, unsigned long section)
1888 {
1889 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1890 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1891 }
1892 
1893 static inline unsigned long page_to_section(const struct page *page)
1894 {
1895 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1896 }
1897 #endif
1898 
1899 /**
1900  * folio_pfn - Return the Page Frame Number of a folio.
1901  * @folio: The folio.
1902  *
1903  * A folio may contain multiple pages.  The pages have consecutive
1904  * Page Frame Numbers.
1905  *
1906  * Return: The Page Frame Number of the first page in the folio.
1907  */
1908 static inline unsigned long folio_pfn(const struct folio *folio)
1909 {
1910 	return page_to_pfn(&folio->page);
1911 }
1912 
1913 static inline struct folio *pfn_folio(unsigned long pfn)
1914 {
1915 	return page_folio(pfn_to_page(pfn));
1916 }
1917 
1918 /**
1919  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1920  * @folio: The folio.
1921  *
1922  * This function checks if a folio has been pinned via a call to
1923  * a function in the pin_user_pages() family.
1924  *
1925  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1926  * because it means "definitely not pinned for DMA", but true means "probably
1927  * pinned for DMA, but possibly a false positive due to having at least
1928  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1929  *
1930  * False positives are OK, because: a) it's unlikely for a folio to
1931  * get that many refcounts, and b) all the callers of this routine are
1932  * expected to be able to deal gracefully with a false positive.
1933  *
1934  * For large folios, the result will be exactly correct. That's because
1935  * we have more tracking data available: the _pincount field is used
1936  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1937  *
1938  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1939  *
1940  * Return: True, if it is likely that the folio has been "dma-pinned".
1941  * False, if the folio is definitely not dma-pinned.
1942  */
1943 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1944 {
1945 	if (folio_test_large(folio))
1946 		return atomic_read(&folio->_pincount) > 0;
1947 
1948 	/*
1949 	 * folio_ref_count() is signed. If that refcount overflows, then
1950 	 * folio_ref_count() returns a negative value, and callers will avoid
1951 	 * further incrementing the refcount.
1952 	 *
1953 	 * Here, for that overflow case, use the sign bit to count a little
1954 	 * bit higher via unsigned math, and thus still get an accurate result.
1955 	 */
1956 	return ((unsigned int)folio_ref_count(folio)) >=
1957 		GUP_PIN_COUNTING_BIAS;
1958 }
1959 
1960 /*
1961  * This should most likely only be called during fork() to see whether we
1962  * should break the cow immediately for an anon page on the src mm.
1963  *
1964  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1965  */
1966 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1967 					  struct folio *folio)
1968 {
1969 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1970 
1971 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1972 		return false;
1973 
1974 	return folio_maybe_dma_pinned(folio);
1975 }
1976 
1977 /**
1978  * is_zero_page - Query if a page is a zero page
1979  * @page: The page to query
1980  *
1981  * This returns true if @page is one of the permanent zero pages.
1982  */
1983 static inline bool is_zero_page(const struct page *page)
1984 {
1985 	return is_zero_pfn(page_to_pfn(page));
1986 }
1987 
1988 /**
1989  * is_zero_folio - Query if a folio is a zero page
1990  * @folio: The folio to query
1991  *
1992  * This returns true if @folio is one of the permanent zero pages.
1993  */
1994 static inline bool is_zero_folio(const struct folio *folio)
1995 {
1996 	return is_zero_page(&folio->page);
1997 }
1998 
1999 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2000 #ifdef CONFIG_MIGRATION
2001 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2002 {
2003 #ifdef CONFIG_CMA
2004 	int mt = folio_migratetype(folio);
2005 
2006 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2007 		return false;
2008 #endif
2009 	/* The zero page can be "pinned" but gets special handling. */
2010 	if (is_zero_folio(folio))
2011 		return true;
2012 
2013 	/* Coherent device memory must always allow eviction. */
2014 	if (folio_is_device_coherent(folio))
2015 		return false;
2016 
2017 	/* Otherwise, non-movable zone folios can be pinned. */
2018 	return !folio_is_zone_movable(folio);
2019 
2020 }
2021 #else
2022 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2023 {
2024 	return true;
2025 }
2026 #endif
2027 
2028 static inline void set_page_zone(struct page *page, enum zone_type zone)
2029 {
2030 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2031 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2032 }
2033 
2034 static inline void set_page_node(struct page *page, unsigned long node)
2035 {
2036 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2037 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2038 }
2039 
2040 static inline void set_page_links(struct page *page, enum zone_type zone,
2041 	unsigned long node, unsigned long pfn)
2042 {
2043 	set_page_zone(page, zone);
2044 	set_page_node(page, node);
2045 #ifdef SECTION_IN_PAGE_FLAGS
2046 	set_page_section(page, pfn_to_section_nr(pfn));
2047 #endif
2048 }
2049 
2050 /**
2051  * folio_nr_pages - The number of pages in the folio.
2052  * @folio: The folio.
2053  *
2054  * Return: A positive power of two.
2055  */
2056 static inline long folio_nr_pages(const struct folio *folio)
2057 {
2058 	if (!folio_test_large(folio))
2059 		return 1;
2060 #ifdef CONFIG_64BIT
2061 	return folio->_folio_nr_pages;
2062 #else
2063 	return 1L << (folio->_flags_1 & 0xff);
2064 #endif
2065 }
2066 
2067 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2068 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2069 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2070 #else
2071 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2072 #endif
2073 
2074 /*
2075  * compound_nr() returns the number of pages in this potentially compound
2076  * page.  compound_nr() can be called on a tail page, and is defined to
2077  * return 1 in that case.
2078  */
2079 static inline unsigned long compound_nr(struct page *page)
2080 {
2081 	struct folio *folio = (struct folio *)page;
2082 
2083 	if (!test_bit(PG_head, &folio->flags))
2084 		return 1;
2085 #ifdef CONFIG_64BIT
2086 	return folio->_folio_nr_pages;
2087 #else
2088 	return 1L << (folio->_flags_1 & 0xff);
2089 #endif
2090 }
2091 
2092 /**
2093  * thp_nr_pages - The number of regular pages in this huge page.
2094  * @page: The head page of a huge page.
2095  */
2096 static inline int thp_nr_pages(struct page *page)
2097 {
2098 	return folio_nr_pages((struct folio *)page);
2099 }
2100 
2101 /**
2102  * folio_next - Move to the next physical folio.
2103  * @folio: The folio we're currently operating on.
2104  *
2105  * If you have physically contiguous memory which may span more than
2106  * one folio (eg a &struct bio_vec), use this function to move from one
2107  * folio to the next.  Do not use it if the memory is only virtually
2108  * contiguous as the folios are almost certainly not adjacent to each
2109  * other.  This is the folio equivalent to writing ``page++``.
2110  *
2111  * Context: We assume that the folios are refcounted and/or locked at a
2112  * higher level and do not adjust the reference counts.
2113  * Return: The next struct folio.
2114  */
2115 static inline struct folio *folio_next(struct folio *folio)
2116 {
2117 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2118 }
2119 
2120 /**
2121  * folio_shift - The size of the memory described by this folio.
2122  * @folio: The folio.
2123  *
2124  * A folio represents a number of bytes which is a power-of-two in size.
2125  * This function tells you which power-of-two the folio is.  See also
2126  * folio_size() and folio_order().
2127  *
2128  * Context: The caller should have a reference on the folio to prevent
2129  * it from being split.  It is not necessary for the folio to be locked.
2130  * Return: The base-2 logarithm of the size of this folio.
2131  */
2132 static inline unsigned int folio_shift(const struct folio *folio)
2133 {
2134 	return PAGE_SHIFT + folio_order(folio);
2135 }
2136 
2137 /**
2138  * folio_size - The number of bytes in a folio.
2139  * @folio: The folio.
2140  *
2141  * Context: The caller should have a reference on the folio to prevent
2142  * it from being split.  It is not necessary for the folio to be locked.
2143  * Return: The number of bytes in this folio.
2144  */
2145 static inline size_t folio_size(const struct folio *folio)
2146 {
2147 	return PAGE_SIZE << folio_order(folio);
2148 }
2149 
2150 /**
2151  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2152  *				tables of more than one MM
2153  * @folio: The folio.
2154  *
2155  * This function checks if the folio is currently mapped into more than one
2156  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2157  * ("mapped exclusively").
2158  *
2159  * For KSM folios, this function also returns "mapped shared" when a folio is
2160  * mapped multiple times into the same MM, because the individual page mappings
2161  * are independent.
2162  *
2163  * As precise information is not easily available for all folios, this function
2164  * estimates the number of MMs ("sharers") that are currently mapping a folio
2165  * using the number of times the first page of the folio is currently mapped
2166  * into page tables.
2167  *
2168  * For small anonymous folios and anonymous hugetlb folios, the return
2169  * value will be exactly correct: non-KSM folios can only be mapped at most once
2170  * into an MM, and they cannot be partially mapped. KSM folios are
2171  * considered shared even if mapped multiple times into the same MM.
2172  *
2173  * For other folios, the result can be fuzzy:
2174  *    #. For partially-mappable large folios (THP), the return value can wrongly
2175  *       indicate "mapped exclusively" (false negative) when the folio is
2176  *       only partially mapped into at least one MM.
2177  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2178  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2179  *       cover the same file range.
2180  *
2181  * Further, this function only considers current page table mappings that
2182  * are tracked using the folio mapcount(s).
2183  *
2184  * This function does not consider:
2185  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2186  *       pagecache, temporary unmapping for migration).
2187  *    #. If the folio is mapped differently (VM_PFNMAP).
2188  *    #. If hugetlb page table sharing applies. Callers might want to check
2189  *       hugetlb_pmd_shared().
2190  *
2191  * Return: Whether the folio is estimated to be mapped into more than one MM.
2192  */
2193 static inline bool folio_likely_mapped_shared(struct folio *folio)
2194 {
2195 	int mapcount = folio_mapcount(folio);
2196 
2197 	/* Only partially-mappable folios require more care. */
2198 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2199 		return mapcount > 1;
2200 
2201 	/* A single mapping implies "mapped exclusively". */
2202 	if (mapcount <= 1)
2203 		return false;
2204 
2205 	/* If any page is mapped more than once we treat it "mapped shared". */
2206 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2207 		return true;
2208 
2209 	/* Let's guess based on the first subpage. */
2210 	return atomic_read(&folio->_mapcount) > 0;
2211 }
2212 
2213 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2214 static inline int arch_make_folio_accessible(struct folio *folio)
2215 {
2216 	return 0;
2217 }
2218 #endif
2219 
2220 /*
2221  * Some inline functions in vmstat.h depend on page_zone()
2222  */
2223 #include <linux/vmstat.h>
2224 
2225 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2226 #define HASHED_PAGE_VIRTUAL
2227 #endif
2228 
2229 #if defined(WANT_PAGE_VIRTUAL)
2230 static inline void *page_address(const struct page *page)
2231 {
2232 	return page->virtual;
2233 }
2234 static inline void set_page_address(struct page *page, void *address)
2235 {
2236 	page->virtual = address;
2237 }
2238 #define page_address_init()  do { } while(0)
2239 #endif
2240 
2241 #if defined(HASHED_PAGE_VIRTUAL)
2242 void *page_address(const struct page *page);
2243 void set_page_address(struct page *page, void *virtual);
2244 void page_address_init(void);
2245 #endif
2246 
2247 static __always_inline void *lowmem_page_address(const struct page *page)
2248 {
2249 	return page_to_virt(page);
2250 }
2251 
2252 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2253 #define page_address(page) lowmem_page_address(page)
2254 #define set_page_address(page, address)  do { } while(0)
2255 #define page_address_init()  do { } while(0)
2256 #endif
2257 
2258 static inline void *folio_address(const struct folio *folio)
2259 {
2260 	return page_address(&folio->page);
2261 }
2262 
2263 /*
2264  * Return true only if the page has been allocated with
2265  * ALLOC_NO_WATERMARKS and the low watermark was not
2266  * met implying that the system is under some pressure.
2267  */
2268 static inline bool page_is_pfmemalloc(const struct page *page)
2269 {
2270 	/*
2271 	 * lru.next has bit 1 set if the page is allocated from the
2272 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2273 	 * they do not need to preserve that information.
2274 	 */
2275 	return (uintptr_t)page->lru.next & BIT(1);
2276 }
2277 
2278 /*
2279  * Return true only if the folio has been allocated with
2280  * ALLOC_NO_WATERMARKS and the low watermark was not
2281  * met implying that the system is under some pressure.
2282  */
2283 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2284 {
2285 	/*
2286 	 * lru.next has bit 1 set if the page is allocated from the
2287 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2288 	 * they do not need to preserve that information.
2289 	 */
2290 	return (uintptr_t)folio->lru.next & BIT(1);
2291 }
2292 
2293 /*
2294  * Only to be called by the page allocator on a freshly allocated
2295  * page.
2296  */
2297 static inline void set_page_pfmemalloc(struct page *page)
2298 {
2299 	page->lru.next = (void *)BIT(1);
2300 }
2301 
2302 static inline void clear_page_pfmemalloc(struct page *page)
2303 {
2304 	page->lru.next = NULL;
2305 }
2306 
2307 /*
2308  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2309  */
2310 extern void pagefault_out_of_memory(void);
2311 
2312 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2313 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2314 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2315 
2316 /*
2317  * Parameter block passed down to zap_pte_range in exceptional cases.
2318  */
2319 struct zap_details {
2320 	struct folio *single_folio;	/* Locked folio to be unmapped */
2321 	bool even_cows;			/* Zap COWed private pages too? */
2322 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2323 };
2324 
2325 /*
2326  * Whether to drop the pte markers, for example, the uffd-wp information for
2327  * file-backed memory.  This should only be specified when we will completely
2328  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2329  * default, the flag is not set.
2330  */
2331 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2332 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2333 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2334 
2335 #ifdef CONFIG_SCHED_MM_CID
2336 void sched_mm_cid_before_execve(struct task_struct *t);
2337 void sched_mm_cid_after_execve(struct task_struct *t);
2338 void sched_mm_cid_fork(struct task_struct *t);
2339 void sched_mm_cid_exit_signals(struct task_struct *t);
2340 static inline int task_mm_cid(struct task_struct *t)
2341 {
2342 	return t->mm_cid;
2343 }
2344 #else
2345 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2346 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2347 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2348 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2349 static inline int task_mm_cid(struct task_struct *t)
2350 {
2351 	/*
2352 	 * Use the processor id as a fall-back when the mm cid feature is
2353 	 * disabled. This provides functional per-cpu data structure accesses
2354 	 * in user-space, althrough it won't provide the memory usage benefits.
2355 	 */
2356 	return raw_smp_processor_id();
2357 }
2358 #endif
2359 
2360 #ifdef CONFIG_MMU
2361 extern bool can_do_mlock(void);
2362 #else
2363 static inline bool can_do_mlock(void) { return false; }
2364 #endif
2365 extern int user_shm_lock(size_t, struct ucounts *);
2366 extern void user_shm_unlock(size_t, struct ucounts *);
2367 
2368 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2369 			     pte_t pte);
2370 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2371 			     pte_t pte);
2372 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2373 				  unsigned long addr, pmd_t pmd);
2374 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2375 				pmd_t pmd);
2376 
2377 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2378 		  unsigned long size);
2379 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2380 			   unsigned long size, struct zap_details *details);
2381 static inline void zap_vma_pages(struct vm_area_struct *vma)
2382 {
2383 	zap_page_range_single(vma, vma->vm_start,
2384 			      vma->vm_end - vma->vm_start, NULL);
2385 }
2386 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2387 		struct vm_area_struct *start_vma, unsigned long start,
2388 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2389 
2390 struct mmu_notifier_range;
2391 
2392 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2393 		unsigned long end, unsigned long floor, unsigned long ceiling);
2394 int
2395 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2396 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2397 			void *buf, int len, int write);
2398 
2399 struct follow_pfnmap_args {
2400 	/**
2401 	 * Inputs:
2402 	 * @vma: Pointer to @vm_area_struct struct
2403 	 * @address: the virtual address to walk
2404 	 */
2405 	struct vm_area_struct *vma;
2406 	unsigned long address;
2407 	/**
2408 	 * Internals:
2409 	 *
2410 	 * The caller shouldn't touch any of these.
2411 	 */
2412 	spinlock_t *lock;
2413 	pte_t *ptep;
2414 	/**
2415 	 * Outputs:
2416 	 *
2417 	 * @pfn: the PFN of the address
2418 	 * @pgprot: the pgprot_t of the mapping
2419 	 * @writable: whether the mapping is writable
2420 	 * @special: whether the mapping is a special mapping (real PFN maps)
2421 	 */
2422 	unsigned long pfn;
2423 	pgprot_t pgprot;
2424 	bool writable;
2425 	bool special;
2426 };
2427 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2428 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2429 
2430 extern void truncate_pagecache(struct inode *inode, loff_t new);
2431 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2432 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2433 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2434 int generic_error_remove_folio(struct address_space *mapping,
2435 		struct folio *folio);
2436 
2437 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2438 		unsigned long address, struct pt_regs *regs);
2439 
2440 #ifdef CONFIG_MMU
2441 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2442 				  unsigned long address, unsigned int flags,
2443 				  struct pt_regs *regs);
2444 extern int fixup_user_fault(struct mm_struct *mm,
2445 			    unsigned long address, unsigned int fault_flags,
2446 			    bool *unlocked);
2447 void unmap_mapping_pages(struct address_space *mapping,
2448 		pgoff_t start, pgoff_t nr, bool even_cows);
2449 void unmap_mapping_range(struct address_space *mapping,
2450 		loff_t const holebegin, loff_t const holelen, int even_cows);
2451 #else
2452 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2453 					 unsigned long address, unsigned int flags,
2454 					 struct pt_regs *regs)
2455 {
2456 	/* should never happen if there's no MMU */
2457 	BUG();
2458 	return VM_FAULT_SIGBUS;
2459 }
2460 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2461 		unsigned int fault_flags, bool *unlocked)
2462 {
2463 	/* should never happen if there's no MMU */
2464 	BUG();
2465 	return -EFAULT;
2466 }
2467 static inline void unmap_mapping_pages(struct address_space *mapping,
2468 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2469 static inline void unmap_mapping_range(struct address_space *mapping,
2470 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2471 #endif
2472 
2473 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2474 		loff_t const holebegin, loff_t const holelen)
2475 {
2476 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2477 }
2478 
2479 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2480 						unsigned long addr);
2481 
2482 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2483 		void *buf, int len, unsigned int gup_flags);
2484 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2485 		void *buf, int len, unsigned int gup_flags);
2486 
2487 long get_user_pages_remote(struct mm_struct *mm,
2488 			   unsigned long start, unsigned long nr_pages,
2489 			   unsigned int gup_flags, struct page **pages,
2490 			   int *locked);
2491 long pin_user_pages_remote(struct mm_struct *mm,
2492 			   unsigned long start, unsigned long nr_pages,
2493 			   unsigned int gup_flags, struct page **pages,
2494 			   int *locked);
2495 
2496 /*
2497  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2498  */
2499 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2500 						    unsigned long addr,
2501 						    int gup_flags,
2502 						    struct vm_area_struct **vmap)
2503 {
2504 	struct page *page;
2505 	struct vm_area_struct *vma;
2506 	int got;
2507 
2508 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2509 		return ERR_PTR(-EINVAL);
2510 
2511 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2512 
2513 	if (got < 0)
2514 		return ERR_PTR(got);
2515 
2516 	vma = vma_lookup(mm, addr);
2517 	if (WARN_ON_ONCE(!vma)) {
2518 		put_page(page);
2519 		return ERR_PTR(-EINVAL);
2520 	}
2521 
2522 	*vmap = vma;
2523 	return page;
2524 }
2525 
2526 long get_user_pages(unsigned long start, unsigned long nr_pages,
2527 		    unsigned int gup_flags, struct page **pages);
2528 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2529 		    unsigned int gup_flags, struct page **pages);
2530 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2531 		    struct page **pages, unsigned int gup_flags);
2532 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2533 		    struct page **pages, unsigned int gup_flags);
2534 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2535 		      struct folio **folios, unsigned int max_folios,
2536 		      pgoff_t *offset);
2537 int folio_add_pins(struct folio *folio, unsigned int pins);
2538 
2539 int get_user_pages_fast(unsigned long start, int nr_pages,
2540 			unsigned int gup_flags, struct page **pages);
2541 int pin_user_pages_fast(unsigned long start, int nr_pages,
2542 			unsigned int gup_flags, struct page **pages);
2543 void folio_add_pin(struct folio *folio);
2544 
2545 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2546 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2547 			struct task_struct *task, bool bypass_rlim);
2548 
2549 struct kvec;
2550 struct page *get_dump_page(unsigned long addr);
2551 
2552 bool folio_mark_dirty(struct folio *folio);
2553 bool folio_mark_dirty_lock(struct folio *folio);
2554 bool set_page_dirty(struct page *page);
2555 int set_page_dirty_lock(struct page *page);
2556 
2557 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2558 
2559 /*
2560  * Flags used by change_protection().  For now we make it a bitmap so
2561  * that we can pass in multiple flags just like parameters.  However
2562  * for now all the callers are only use one of the flags at the same
2563  * time.
2564  */
2565 /*
2566  * Whether we should manually check if we can map individual PTEs writable,
2567  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2568  * PTEs automatically in a writable mapping.
2569  */
2570 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2571 /* Whether this protection change is for NUMA hints */
2572 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2573 /* Whether this change is for write protecting */
2574 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2575 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2576 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2577 					    MM_CP_UFFD_WP_RESOLVE)
2578 
2579 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2580 			     pte_t pte);
2581 extern long change_protection(struct mmu_gather *tlb,
2582 			      struct vm_area_struct *vma, unsigned long start,
2583 			      unsigned long end, unsigned long cp_flags);
2584 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2585 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2586 	  unsigned long start, unsigned long end, unsigned long newflags);
2587 
2588 /*
2589  * doesn't attempt to fault and will return short.
2590  */
2591 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2592 			     unsigned int gup_flags, struct page **pages);
2593 
2594 static inline bool get_user_page_fast_only(unsigned long addr,
2595 			unsigned int gup_flags, struct page **pagep)
2596 {
2597 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2598 }
2599 /*
2600  * per-process(per-mm_struct) statistics.
2601  */
2602 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2603 {
2604 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2605 }
2606 
2607 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2608 
2609 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2610 {
2611 	percpu_counter_add(&mm->rss_stat[member], value);
2612 
2613 	mm_trace_rss_stat(mm, member);
2614 }
2615 
2616 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2617 {
2618 	percpu_counter_inc(&mm->rss_stat[member]);
2619 
2620 	mm_trace_rss_stat(mm, member);
2621 }
2622 
2623 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2624 {
2625 	percpu_counter_dec(&mm->rss_stat[member]);
2626 
2627 	mm_trace_rss_stat(mm, member);
2628 }
2629 
2630 /* Optimized variant when folio is already known not to be anon */
2631 static inline int mm_counter_file(struct folio *folio)
2632 {
2633 	if (folio_test_swapbacked(folio))
2634 		return MM_SHMEMPAGES;
2635 	return MM_FILEPAGES;
2636 }
2637 
2638 static inline int mm_counter(struct folio *folio)
2639 {
2640 	if (folio_test_anon(folio))
2641 		return MM_ANONPAGES;
2642 	return mm_counter_file(folio);
2643 }
2644 
2645 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2646 {
2647 	return get_mm_counter(mm, MM_FILEPAGES) +
2648 		get_mm_counter(mm, MM_ANONPAGES) +
2649 		get_mm_counter(mm, MM_SHMEMPAGES);
2650 }
2651 
2652 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2653 {
2654 	return max(mm->hiwater_rss, get_mm_rss(mm));
2655 }
2656 
2657 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2658 {
2659 	return max(mm->hiwater_vm, mm->total_vm);
2660 }
2661 
2662 static inline void update_hiwater_rss(struct mm_struct *mm)
2663 {
2664 	unsigned long _rss = get_mm_rss(mm);
2665 
2666 	if ((mm)->hiwater_rss < _rss)
2667 		(mm)->hiwater_rss = _rss;
2668 }
2669 
2670 static inline void update_hiwater_vm(struct mm_struct *mm)
2671 {
2672 	if (mm->hiwater_vm < mm->total_vm)
2673 		mm->hiwater_vm = mm->total_vm;
2674 }
2675 
2676 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2677 {
2678 	mm->hiwater_rss = get_mm_rss(mm);
2679 }
2680 
2681 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2682 					 struct mm_struct *mm)
2683 {
2684 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2685 
2686 	if (*maxrss < hiwater_rss)
2687 		*maxrss = hiwater_rss;
2688 }
2689 
2690 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2691 static inline int pte_special(pte_t pte)
2692 {
2693 	return 0;
2694 }
2695 
2696 static inline pte_t pte_mkspecial(pte_t pte)
2697 {
2698 	return pte;
2699 }
2700 #endif
2701 
2702 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2703 static inline bool pmd_special(pmd_t pmd)
2704 {
2705 	return false;
2706 }
2707 
2708 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2709 {
2710 	return pmd;
2711 }
2712 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2713 
2714 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2715 static inline bool pud_special(pud_t pud)
2716 {
2717 	return false;
2718 }
2719 
2720 static inline pud_t pud_mkspecial(pud_t pud)
2721 {
2722 	return pud;
2723 }
2724 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2725 
2726 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2727 static inline int pte_devmap(pte_t pte)
2728 {
2729 	return 0;
2730 }
2731 #endif
2732 
2733 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2734 			       spinlock_t **ptl);
2735 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2736 				    spinlock_t **ptl)
2737 {
2738 	pte_t *ptep;
2739 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2740 	return ptep;
2741 }
2742 
2743 #ifdef __PAGETABLE_P4D_FOLDED
2744 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2745 						unsigned long address)
2746 {
2747 	return 0;
2748 }
2749 #else
2750 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2751 #endif
2752 
2753 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2754 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2755 						unsigned long address)
2756 {
2757 	return 0;
2758 }
2759 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2760 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2761 
2762 #else
2763 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2764 
2765 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2766 {
2767 	if (mm_pud_folded(mm))
2768 		return;
2769 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2770 }
2771 
2772 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2773 {
2774 	if (mm_pud_folded(mm))
2775 		return;
2776 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2777 }
2778 #endif
2779 
2780 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2781 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2782 						unsigned long address)
2783 {
2784 	return 0;
2785 }
2786 
2787 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2788 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2789 
2790 #else
2791 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2792 
2793 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2794 {
2795 	if (mm_pmd_folded(mm))
2796 		return;
2797 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2798 }
2799 
2800 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2801 {
2802 	if (mm_pmd_folded(mm))
2803 		return;
2804 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2805 }
2806 #endif
2807 
2808 #ifdef CONFIG_MMU
2809 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2810 {
2811 	atomic_long_set(&mm->pgtables_bytes, 0);
2812 }
2813 
2814 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2815 {
2816 	return atomic_long_read(&mm->pgtables_bytes);
2817 }
2818 
2819 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2820 {
2821 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2822 }
2823 
2824 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2825 {
2826 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2827 }
2828 #else
2829 
2830 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2831 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2832 {
2833 	return 0;
2834 }
2835 
2836 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2837 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2838 #endif
2839 
2840 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2841 int __pte_alloc_kernel(pmd_t *pmd);
2842 
2843 #if defined(CONFIG_MMU)
2844 
2845 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2846 		unsigned long address)
2847 {
2848 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2849 		NULL : p4d_offset(pgd, address);
2850 }
2851 
2852 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2853 		unsigned long address)
2854 {
2855 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2856 		NULL : pud_offset(p4d, address);
2857 }
2858 
2859 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2860 {
2861 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2862 		NULL: pmd_offset(pud, address);
2863 }
2864 #endif /* CONFIG_MMU */
2865 
2866 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2867 {
2868 	return page_ptdesc(virt_to_page(x));
2869 }
2870 
2871 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2872 {
2873 	return page_to_virt(ptdesc_page(pt));
2874 }
2875 
2876 static inline void *ptdesc_address(const struct ptdesc *pt)
2877 {
2878 	return folio_address(ptdesc_folio(pt));
2879 }
2880 
2881 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2882 {
2883 	return folio_test_reserved(ptdesc_folio(pt));
2884 }
2885 
2886 /**
2887  * pagetable_alloc - Allocate pagetables
2888  * @gfp:    GFP flags
2889  * @order:  desired pagetable order
2890  *
2891  * pagetable_alloc allocates memory for page tables as well as a page table
2892  * descriptor to describe that memory.
2893  *
2894  * Return: The ptdesc describing the allocated page tables.
2895  */
2896 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2897 {
2898 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2899 
2900 	return page_ptdesc(page);
2901 }
2902 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2903 
2904 /**
2905  * pagetable_free - Free pagetables
2906  * @pt:	The page table descriptor
2907  *
2908  * pagetable_free frees the memory of all page tables described by a page
2909  * table descriptor and the memory for the descriptor itself.
2910  */
2911 static inline void pagetable_free(struct ptdesc *pt)
2912 {
2913 	struct page *page = ptdesc_page(pt);
2914 
2915 	__free_pages(page, compound_order(page));
2916 }
2917 
2918 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2919 #if ALLOC_SPLIT_PTLOCKS
2920 void __init ptlock_cache_init(void);
2921 bool ptlock_alloc(struct ptdesc *ptdesc);
2922 void ptlock_free(struct ptdesc *ptdesc);
2923 
2924 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2925 {
2926 	return ptdesc->ptl;
2927 }
2928 #else /* ALLOC_SPLIT_PTLOCKS */
2929 static inline void ptlock_cache_init(void)
2930 {
2931 }
2932 
2933 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2934 {
2935 	return true;
2936 }
2937 
2938 static inline void ptlock_free(struct ptdesc *ptdesc)
2939 {
2940 }
2941 
2942 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2943 {
2944 	return &ptdesc->ptl;
2945 }
2946 #endif /* ALLOC_SPLIT_PTLOCKS */
2947 
2948 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2949 {
2950 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2951 }
2952 
2953 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2954 {
2955 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2956 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2957 	return ptlock_ptr(virt_to_ptdesc(pte));
2958 }
2959 
2960 static inline bool ptlock_init(struct ptdesc *ptdesc)
2961 {
2962 	/*
2963 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2964 	 * with 0. Make sure nobody took it in use in between.
2965 	 *
2966 	 * It can happen if arch try to use slab for page table allocation:
2967 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2968 	 */
2969 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2970 	if (!ptlock_alloc(ptdesc))
2971 		return false;
2972 	spin_lock_init(ptlock_ptr(ptdesc));
2973 	return true;
2974 }
2975 
2976 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2977 /*
2978  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2979  */
2980 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2981 {
2982 	return &mm->page_table_lock;
2983 }
2984 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2985 {
2986 	return &mm->page_table_lock;
2987 }
2988 static inline void ptlock_cache_init(void) {}
2989 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2990 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2991 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2992 
2993 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2994 {
2995 	struct folio *folio = ptdesc_folio(ptdesc);
2996 
2997 	if (!ptlock_init(ptdesc))
2998 		return false;
2999 	__folio_set_pgtable(folio);
3000 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3001 	return true;
3002 }
3003 
3004 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
3005 {
3006 	struct folio *folio = ptdesc_folio(ptdesc);
3007 
3008 	ptlock_free(ptdesc);
3009 	__folio_clear_pgtable(folio);
3010 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3011 }
3012 
3013 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3014 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3015 {
3016 	return __pte_offset_map(pmd, addr, NULL);
3017 }
3018 
3019 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3020 			unsigned long addr, spinlock_t **ptlp);
3021 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3022 			unsigned long addr, spinlock_t **ptlp)
3023 {
3024 	pte_t *pte;
3025 
3026 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3027 	return pte;
3028 }
3029 
3030 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3031 				unsigned long addr, spinlock_t **ptlp);
3032 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3033 				unsigned long addr, pmd_t *pmdvalp,
3034 				spinlock_t **ptlp);
3035 
3036 #define pte_unmap_unlock(pte, ptl)	do {		\
3037 	spin_unlock(ptl);				\
3038 	pte_unmap(pte);					\
3039 } while (0)
3040 
3041 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3042 
3043 #define pte_alloc_map(mm, pmd, address)			\
3044 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3045 
3046 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3047 	(pte_alloc(mm, pmd) ?			\
3048 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3049 
3050 #define pte_alloc_kernel(pmd, address)			\
3051 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3052 		NULL: pte_offset_kernel(pmd, address))
3053 
3054 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3055 
3056 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3057 {
3058 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3059 	return virt_to_page((void *)((unsigned long) pmd & mask));
3060 }
3061 
3062 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3063 {
3064 	return page_ptdesc(pmd_pgtable_page(pmd));
3065 }
3066 
3067 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3068 {
3069 	return ptlock_ptr(pmd_ptdesc(pmd));
3070 }
3071 
3072 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3073 {
3074 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3075 	ptdesc->pmd_huge_pte = NULL;
3076 #endif
3077 	return ptlock_init(ptdesc);
3078 }
3079 
3080 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3081 {
3082 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3083 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3084 #endif
3085 	ptlock_free(ptdesc);
3086 }
3087 
3088 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3089 
3090 #else
3091 
3092 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3093 {
3094 	return &mm->page_table_lock;
3095 }
3096 
3097 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3098 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3099 
3100 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3101 
3102 #endif
3103 
3104 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3105 {
3106 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3107 	spin_lock(ptl);
3108 	return ptl;
3109 }
3110 
3111 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3112 {
3113 	struct folio *folio = ptdesc_folio(ptdesc);
3114 
3115 	if (!pmd_ptlock_init(ptdesc))
3116 		return false;
3117 	__folio_set_pgtable(folio);
3118 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3119 	return true;
3120 }
3121 
3122 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3123 {
3124 	struct folio *folio = ptdesc_folio(ptdesc);
3125 
3126 	pmd_ptlock_free(ptdesc);
3127 	__folio_clear_pgtable(folio);
3128 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3129 }
3130 
3131 /*
3132  * No scalability reason to split PUD locks yet, but follow the same pattern
3133  * as the PMD locks to make it easier if we decide to.  The VM should not be
3134  * considered ready to switch to split PUD locks yet; there may be places
3135  * which need to be converted from page_table_lock.
3136  */
3137 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3138 {
3139 	return &mm->page_table_lock;
3140 }
3141 
3142 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3143 {
3144 	spinlock_t *ptl = pud_lockptr(mm, pud);
3145 
3146 	spin_lock(ptl);
3147 	return ptl;
3148 }
3149 
3150 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3151 {
3152 	struct folio *folio = ptdesc_folio(ptdesc);
3153 
3154 	__folio_set_pgtable(folio);
3155 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3156 }
3157 
3158 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3159 {
3160 	struct folio *folio = ptdesc_folio(ptdesc);
3161 
3162 	__folio_clear_pgtable(folio);
3163 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3164 }
3165 
3166 extern void __init pagecache_init(void);
3167 extern void free_initmem(void);
3168 
3169 /*
3170  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3171  * into the buddy system. The freed pages will be poisoned with pattern
3172  * "poison" if it's within range [0, UCHAR_MAX].
3173  * Return pages freed into the buddy system.
3174  */
3175 extern unsigned long free_reserved_area(void *start, void *end,
3176 					int poison, const char *s);
3177 
3178 extern void adjust_managed_page_count(struct page *page, long count);
3179 
3180 extern void reserve_bootmem_region(phys_addr_t start,
3181 				   phys_addr_t end, int nid);
3182 
3183 /* Free the reserved page into the buddy system, so it gets managed. */
3184 void free_reserved_page(struct page *page);
3185 #define free_highmem_page(page) free_reserved_page(page)
3186 
3187 static inline void mark_page_reserved(struct page *page)
3188 {
3189 	SetPageReserved(page);
3190 	adjust_managed_page_count(page, -1);
3191 }
3192 
3193 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3194 {
3195 	free_reserved_page(ptdesc_page(pt));
3196 }
3197 
3198 /*
3199  * Default method to free all the __init memory into the buddy system.
3200  * The freed pages will be poisoned with pattern "poison" if it's within
3201  * range [0, UCHAR_MAX].
3202  * Return pages freed into the buddy system.
3203  */
3204 static inline unsigned long free_initmem_default(int poison)
3205 {
3206 	extern char __init_begin[], __init_end[];
3207 
3208 	return free_reserved_area(&__init_begin, &__init_end,
3209 				  poison, "unused kernel image (initmem)");
3210 }
3211 
3212 static inline unsigned long get_num_physpages(void)
3213 {
3214 	int nid;
3215 	unsigned long phys_pages = 0;
3216 
3217 	for_each_online_node(nid)
3218 		phys_pages += node_present_pages(nid);
3219 
3220 	return phys_pages;
3221 }
3222 
3223 /*
3224  * Using memblock node mappings, an architecture may initialise its
3225  * zones, allocate the backing mem_map and account for memory holes in an
3226  * architecture independent manner.
3227  *
3228  * An architecture is expected to register range of page frames backed by
3229  * physical memory with memblock_add[_node]() before calling
3230  * free_area_init() passing in the PFN each zone ends at. At a basic
3231  * usage, an architecture is expected to do something like
3232  *
3233  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3234  * 							 max_highmem_pfn};
3235  * for_each_valid_physical_page_range()
3236  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3237  * free_area_init(max_zone_pfns);
3238  */
3239 void free_area_init(unsigned long *max_zone_pfn);
3240 unsigned long node_map_pfn_alignment(void);
3241 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3242 						unsigned long end_pfn);
3243 extern void get_pfn_range_for_nid(unsigned int nid,
3244 			unsigned long *start_pfn, unsigned long *end_pfn);
3245 
3246 #ifndef CONFIG_NUMA
3247 static inline int early_pfn_to_nid(unsigned long pfn)
3248 {
3249 	return 0;
3250 }
3251 #else
3252 /* please see mm/page_alloc.c */
3253 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3254 #endif
3255 
3256 extern void mem_init(void);
3257 extern void __init mmap_init(void);
3258 
3259 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3260 static inline void show_mem(void)
3261 {
3262 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3263 }
3264 extern long si_mem_available(void);
3265 extern void si_meminfo(struct sysinfo * val);
3266 extern void si_meminfo_node(struct sysinfo *val, int nid);
3267 
3268 extern __printf(3, 4)
3269 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3270 
3271 extern void setup_per_cpu_pageset(void);
3272 
3273 /* nommu.c */
3274 extern atomic_long_t mmap_pages_allocated;
3275 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3276 
3277 /* interval_tree.c */
3278 void vma_interval_tree_insert(struct vm_area_struct *node,
3279 			      struct rb_root_cached *root);
3280 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3281 				    struct vm_area_struct *prev,
3282 				    struct rb_root_cached *root);
3283 void vma_interval_tree_remove(struct vm_area_struct *node,
3284 			      struct rb_root_cached *root);
3285 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3286 				unsigned long start, unsigned long last);
3287 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3288 				unsigned long start, unsigned long last);
3289 
3290 #define vma_interval_tree_foreach(vma, root, start, last)		\
3291 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3292 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3293 
3294 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3295 				   struct rb_root_cached *root);
3296 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3297 				   struct rb_root_cached *root);
3298 struct anon_vma_chain *
3299 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3300 				  unsigned long start, unsigned long last);
3301 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3302 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3303 #ifdef CONFIG_DEBUG_VM_RB
3304 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3305 #endif
3306 
3307 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3308 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3309 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3310 
3311 /* mmap.c */
3312 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3313 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3314 extern void exit_mmap(struct mm_struct *);
3315 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3316 
3317 static inline int check_data_rlimit(unsigned long rlim,
3318 				    unsigned long new,
3319 				    unsigned long start,
3320 				    unsigned long end_data,
3321 				    unsigned long start_data)
3322 {
3323 	if (rlim < RLIM_INFINITY) {
3324 		if (((new - start) + (end_data - start_data)) > rlim)
3325 			return -ENOSPC;
3326 	}
3327 
3328 	return 0;
3329 }
3330 
3331 extern int mm_take_all_locks(struct mm_struct *mm);
3332 extern void mm_drop_all_locks(struct mm_struct *mm);
3333 
3334 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3335 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3336 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3337 extern struct file *get_task_exe_file(struct task_struct *task);
3338 
3339 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3340 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3341 
3342 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3343 				   const struct vm_special_mapping *sm);
3344 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3345 				   unsigned long addr, unsigned long len,
3346 				   unsigned long flags,
3347 				   const struct vm_special_mapping *spec);
3348 
3349 unsigned long randomize_stack_top(unsigned long stack_top);
3350 unsigned long randomize_page(unsigned long start, unsigned long range);
3351 
3352 unsigned long
3353 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3354 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3355 
3356 static inline unsigned long
3357 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3358 		  unsigned long pgoff, unsigned long flags)
3359 {
3360 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3361 }
3362 
3363 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3364 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3365 	struct list_head *uf);
3366 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3367 	unsigned long len, unsigned long prot, unsigned long flags,
3368 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3369 	struct list_head *uf);
3370 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3371 			 unsigned long start, size_t len, struct list_head *uf,
3372 			 bool unlock);
3373 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3374 		    struct mm_struct *mm, unsigned long start,
3375 		    unsigned long end, struct list_head *uf, bool unlock);
3376 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3377 		     struct list_head *uf);
3378 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3379 
3380 #ifdef CONFIG_MMU
3381 extern int __mm_populate(unsigned long addr, unsigned long len,
3382 			 int ignore_errors);
3383 static inline void mm_populate(unsigned long addr, unsigned long len)
3384 {
3385 	/* Ignore errors */
3386 	(void) __mm_populate(addr, len, 1);
3387 }
3388 #else
3389 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3390 #endif
3391 
3392 /* This takes the mm semaphore itself */
3393 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3394 extern int vm_munmap(unsigned long, size_t);
3395 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3396         unsigned long, unsigned long,
3397         unsigned long, unsigned long);
3398 
3399 struct vm_unmapped_area_info {
3400 #define VM_UNMAPPED_AREA_TOPDOWN 1
3401 	unsigned long flags;
3402 	unsigned long length;
3403 	unsigned long low_limit;
3404 	unsigned long high_limit;
3405 	unsigned long align_mask;
3406 	unsigned long align_offset;
3407 	unsigned long start_gap;
3408 };
3409 
3410 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3411 
3412 /* truncate.c */
3413 extern void truncate_inode_pages(struct address_space *, loff_t);
3414 extern void truncate_inode_pages_range(struct address_space *,
3415 				       loff_t lstart, loff_t lend);
3416 extern void truncate_inode_pages_final(struct address_space *);
3417 
3418 /* generic vm_area_ops exported for stackable file systems */
3419 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3420 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3421 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3422 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3423 
3424 extern unsigned long stack_guard_gap;
3425 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3426 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3427 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3428 
3429 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3430 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3431 
3432 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3433 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3434 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3435 					     struct vm_area_struct **pprev);
3436 
3437 /*
3438  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3439  * NULL if none.  Assume start_addr < end_addr.
3440  */
3441 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3442 			unsigned long start_addr, unsigned long end_addr);
3443 
3444 /**
3445  * vma_lookup() - Find a VMA at a specific address
3446  * @mm: The process address space.
3447  * @addr: The user address.
3448  *
3449  * Return: The vm_area_struct at the given address, %NULL otherwise.
3450  */
3451 static inline
3452 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3453 {
3454 	return mtree_load(&mm->mm_mt, addr);
3455 }
3456 
3457 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3458 {
3459 	if (vma->vm_flags & VM_GROWSDOWN)
3460 		return stack_guard_gap;
3461 
3462 	/* See reasoning around the VM_SHADOW_STACK definition */
3463 	if (vma->vm_flags & VM_SHADOW_STACK)
3464 		return PAGE_SIZE;
3465 
3466 	return 0;
3467 }
3468 
3469 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3470 {
3471 	unsigned long gap = stack_guard_start_gap(vma);
3472 	unsigned long vm_start = vma->vm_start;
3473 
3474 	vm_start -= gap;
3475 	if (vm_start > vma->vm_start)
3476 		vm_start = 0;
3477 	return vm_start;
3478 }
3479 
3480 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3481 {
3482 	unsigned long vm_end = vma->vm_end;
3483 
3484 	if (vma->vm_flags & VM_GROWSUP) {
3485 		vm_end += stack_guard_gap;
3486 		if (vm_end < vma->vm_end)
3487 			vm_end = -PAGE_SIZE;
3488 	}
3489 	return vm_end;
3490 }
3491 
3492 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3493 {
3494 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3495 }
3496 
3497 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3498 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3499 				unsigned long vm_start, unsigned long vm_end)
3500 {
3501 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3502 
3503 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3504 		vma = NULL;
3505 
3506 	return vma;
3507 }
3508 
3509 static inline bool range_in_vma(struct vm_area_struct *vma,
3510 				unsigned long start, unsigned long end)
3511 {
3512 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3513 }
3514 
3515 #ifdef CONFIG_MMU
3516 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3517 void vma_set_page_prot(struct vm_area_struct *vma);
3518 #else
3519 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3520 {
3521 	return __pgprot(0);
3522 }
3523 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3524 {
3525 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3526 }
3527 #endif
3528 
3529 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3530 
3531 #ifdef CONFIG_NUMA_BALANCING
3532 unsigned long change_prot_numa(struct vm_area_struct *vma,
3533 			unsigned long start, unsigned long end);
3534 #endif
3535 
3536 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3537 		unsigned long addr);
3538 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3539 			unsigned long pfn, unsigned long size, pgprot_t);
3540 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3541 		unsigned long pfn, unsigned long size, pgprot_t prot);
3542 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3543 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3544 			struct page **pages, unsigned long *num);
3545 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3546 				unsigned long num);
3547 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3548 				unsigned long num);
3549 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3550 			unsigned long pfn);
3551 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3552 			unsigned long pfn, pgprot_t pgprot);
3553 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3554 			pfn_t pfn);
3555 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3556 		unsigned long addr, pfn_t pfn);
3557 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3558 
3559 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3560 				unsigned long addr, struct page *page)
3561 {
3562 	int err = vm_insert_page(vma, addr, page);
3563 
3564 	if (err == -ENOMEM)
3565 		return VM_FAULT_OOM;
3566 	if (err < 0 && err != -EBUSY)
3567 		return VM_FAULT_SIGBUS;
3568 
3569 	return VM_FAULT_NOPAGE;
3570 }
3571 
3572 #ifndef io_remap_pfn_range
3573 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3574 				     unsigned long addr, unsigned long pfn,
3575 				     unsigned long size, pgprot_t prot)
3576 {
3577 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3578 }
3579 #endif
3580 
3581 static inline vm_fault_t vmf_error(int err)
3582 {
3583 	if (err == -ENOMEM)
3584 		return VM_FAULT_OOM;
3585 	else if (err == -EHWPOISON)
3586 		return VM_FAULT_HWPOISON;
3587 	return VM_FAULT_SIGBUS;
3588 }
3589 
3590 /*
3591  * Convert errno to return value for ->page_mkwrite() calls.
3592  *
3593  * This should eventually be merged with vmf_error() above, but will need a
3594  * careful audit of all vmf_error() callers.
3595  */
3596 static inline vm_fault_t vmf_fs_error(int err)
3597 {
3598 	if (err == 0)
3599 		return VM_FAULT_LOCKED;
3600 	if (err == -EFAULT || err == -EAGAIN)
3601 		return VM_FAULT_NOPAGE;
3602 	if (err == -ENOMEM)
3603 		return VM_FAULT_OOM;
3604 	/* -ENOSPC, -EDQUOT, -EIO ... */
3605 	return VM_FAULT_SIGBUS;
3606 }
3607 
3608 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3609 {
3610 	if (vm_fault & VM_FAULT_OOM)
3611 		return -ENOMEM;
3612 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3613 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3614 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3615 		return -EFAULT;
3616 	return 0;
3617 }
3618 
3619 /*
3620  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3621  * a (NUMA hinting) fault is required.
3622  */
3623 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3624 					   unsigned int flags)
3625 {
3626 	/*
3627 	 * If callers don't want to honor NUMA hinting faults, no need to
3628 	 * determine if we would actually have to trigger a NUMA hinting fault.
3629 	 */
3630 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3631 		return true;
3632 
3633 	/*
3634 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3635 	 *
3636 	 * Requiring a fault here even for inaccessible VMAs would mean that
3637 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3638 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3639 	 */
3640 	return !vma_is_accessible(vma);
3641 }
3642 
3643 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3644 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3645 			       unsigned long size, pte_fn_t fn, void *data);
3646 extern int apply_to_existing_page_range(struct mm_struct *mm,
3647 				   unsigned long address, unsigned long size,
3648 				   pte_fn_t fn, void *data);
3649 
3650 #ifdef CONFIG_PAGE_POISONING
3651 extern void __kernel_poison_pages(struct page *page, int numpages);
3652 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3653 extern bool _page_poisoning_enabled_early;
3654 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3655 static inline bool page_poisoning_enabled(void)
3656 {
3657 	return _page_poisoning_enabled_early;
3658 }
3659 /*
3660  * For use in fast paths after init_mem_debugging() has run, or when a
3661  * false negative result is not harmful when called too early.
3662  */
3663 static inline bool page_poisoning_enabled_static(void)
3664 {
3665 	return static_branch_unlikely(&_page_poisoning_enabled);
3666 }
3667 static inline void kernel_poison_pages(struct page *page, int numpages)
3668 {
3669 	if (page_poisoning_enabled_static())
3670 		__kernel_poison_pages(page, numpages);
3671 }
3672 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3673 {
3674 	if (page_poisoning_enabled_static())
3675 		__kernel_unpoison_pages(page, numpages);
3676 }
3677 #else
3678 static inline bool page_poisoning_enabled(void) { return false; }
3679 static inline bool page_poisoning_enabled_static(void) { return false; }
3680 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3681 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3682 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3683 #endif
3684 
3685 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3686 static inline bool want_init_on_alloc(gfp_t flags)
3687 {
3688 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3689 				&init_on_alloc))
3690 		return true;
3691 	return flags & __GFP_ZERO;
3692 }
3693 
3694 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3695 static inline bool want_init_on_free(void)
3696 {
3697 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3698 				   &init_on_free);
3699 }
3700 
3701 extern bool _debug_pagealloc_enabled_early;
3702 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3703 
3704 static inline bool debug_pagealloc_enabled(void)
3705 {
3706 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3707 		_debug_pagealloc_enabled_early;
3708 }
3709 
3710 /*
3711  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3712  * or when a false negative result is not harmful when called too early.
3713  */
3714 static inline bool debug_pagealloc_enabled_static(void)
3715 {
3716 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3717 		return false;
3718 
3719 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3720 }
3721 
3722 /*
3723  * To support DEBUG_PAGEALLOC architecture must ensure that
3724  * __kernel_map_pages() never fails
3725  */
3726 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3727 #ifdef CONFIG_DEBUG_PAGEALLOC
3728 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3729 {
3730 	if (debug_pagealloc_enabled_static())
3731 		__kernel_map_pages(page, numpages, 1);
3732 }
3733 
3734 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3735 {
3736 	if (debug_pagealloc_enabled_static())
3737 		__kernel_map_pages(page, numpages, 0);
3738 }
3739 
3740 extern unsigned int _debug_guardpage_minorder;
3741 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3742 
3743 static inline unsigned int debug_guardpage_minorder(void)
3744 {
3745 	return _debug_guardpage_minorder;
3746 }
3747 
3748 static inline bool debug_guardpage_enabled(void)
3749 {
3750 	return static_branch_unlikely(&_debug_guardpage_enabled);
3751 }
3752 
3753 static inline bool page_is_guard(struct page *page)
3754 {
3755 	if (!debug_guardpage_enabled())
3756 		return false;
3757 
3758 	return PageGuard(page);
3759 }
3760 
3761 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3762 static inline bool set_page_guard(struct zone *zone, struct page *page,
3763 				  unsigned int order)
3764 {
3765 	if (!debug_guardpage_enabled())
3766 		return false;
3767 	return __set_page_guard(zone, page, order);
3768 }
3769 
3770 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3771 static inline void clear_page_guard(struct zone *zone, struct page *page,
3772 				    unsigned int order)
3773 {
3774 	if (!debug_guardpage_enabled())
3775 		return;
3776 	__clear_page_guard(zone, page, order);
3777 }
3778 
3779 #else	/* CONFIG_DEBUG_PAGEALLOC */
3780 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3781 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3782 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3783 static inline bool debug_guardpage_enabled(void) { return false; }
3784 static inline bool page_is_guard(struct page *page) { return false; }
3785 static inline bool set_page_guard(struct zone *zone, struct page *page,
3786 			unsigned int order) { return false; }
3787 static inline void clear_page_guard(struct zone *zone, struct page *page,
3788 				unsigned int order) {}
3789 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3790 
3791 #ifdef __HAVE_ARCH_GATE_AREA
3792 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3793 extern int in_gate_area_no_mm(unsigned long addr);
3794 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3795 #else
3796 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3797 {
3798 	return NULL;
3799 }
3800 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3801 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3802 {
3803 	return 0;
3804 }
3805 #endif	/* __HAVE_ARCH_GATE_AREA */
3806 
3807 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3808 
3809 #ifdef CONFIG_SYSCTL
3810 extern int sysctl_drop_caches;
3811 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3812 		loff_t *);
3813 #endif
3814 
3815 void drop_slab(void);
3816 
3817 #ifndef CONFIG_MMU
3818 #define randomize_va_space 0
3819 #else
3820 extern int randomize_va_space;
3821 #endif
3822 
3823 const char * arch_vma_name(struct vm_area_struct *vma);
3824 #ifdef CONFIG_MMU
3825 void print_vma_addr(char *prefix, unsigned long rip);
3826 #else
3827 static inline void print_vma_addr(char *prefix, unsigned long rip)
3828 {
3829 }
3830 #endif
3831 
3832 void *sparse_buffer_alloc(unsigned long size);
3833 struct page * __populate_section_memmap(unsigned long pfn,
3834 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3835 		struct dev_pagemap *pgmap);
3836 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3837 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3838 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3839 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3840 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3841 			    struct vmem_altmap *altmap, struct page *reuse);
3842 void *vmemmap_alloc_block(unsigned long size, int node);
3843 struct vmem_altmap;
3844 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3845 			      struct vmem_altmap *altmap);
3846 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3847 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3848 		     unsigned long addr, unsigned long next);
3849 int vmemmap_check_pmd(pmd_t *pmd, int node,
3850 		      unsigned long addr, unsigned long next);
3851 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3852 			       int node, struct vmem_altmap *altmap);
3853 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3854 			       int node, struct vmem_altmap *altmap);
3855 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3856 		struct vmem_altmap *altmap);
3857 void vmemmap_populate_print_last(void);
3858 #ifdef CONFIG_MEMORY_HOTPLUG
3859 void vmemmap_free(unsigned long start, unsigned long end,
3860 		struct vmem_altmap *altmap);
3861 #endif
3862 
3863 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3864 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3865 {
3866 	/* number of pfns from base where pfn_to_page() is valid */
3867 	if (altmap)
3868 		return altmap->reserve + altmap->free;
3869 	return 0;
3870 }
3871 
3872 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3873 				    unsigned long nr_pfns)
3874 {
3875 	altmap->alloc -= nr_pfns;
3876 }
3877 #else
3878 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3879 {
3880 	return 0;
3881 }
3882 
3883 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3884 				    unsigned long nr_pfns)
3885 {
3886 }
3887 #endif
3888 
3889 #define VMEMMAP_RESERVE_NR	2
3890 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3891 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3892 					  struct dev_pagemap *pgmap)
3893 {
3894 	unsigned long nr_pages;
3895 	unsigned long nr_vmemmap_pages;
3896 
3897 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3898 		return false;
3899 
3900 	nr_pages = pgmap_vmemmap_nr(pgmap);
3901 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3902 	/*
3903 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3904 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3905 	 */
3906 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3907 }
3908 /*
3909  * If we don't have an architecture override, use the generic rule
3910  */
3911 #ifndef vmemmap_can_optimize
3912 #define vmemmap_can_optimize __vmemmap_can_optimize
3913 #endif
3914 
3915 #else
3916 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3917 					   struct dev_pagemap *pgmap)
3918 {
3919 	return false;
3920 }
3921 #endif
3922 
3923 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3924 				  unsigned long nr_pages);
3925 
3926 enum mf_flags {
3927 	MF_COUNT_INCREASED = 1 << 0,
3928 	MF_ACTION_REQUIRED = 1 << 1,
3929 	MF_MUST_KILL = 1 << 2,
3930 	MF_SOFT_OFFLINE = 1 << 3,
3931 	MF_UNPOISON = 1 << 4,
3932 	MF_SW_SIMULATED = 1 << 5,
3933 	MF_NO_RETRY = 1 << 6,
3934 	MF_MEM_PRE_REMOVE = 1 << 7,
3935 };
3936 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3937 		      unsigned long count, int mf_flags);
3938 extern int memory_failure(unsigned long pfn, int flags);
3939 extern void memory_failure_queue_kick(int cpu);
3940 extern int unpoison_memory(unsigned long pfn);
3941 extern atomic_long_t num_poisoned_pages __read_mostly;
3942 extern int soft_offline_page(unsigned long pfn, int flags);
3943 #ifdef CONFIG_MEMORY_FAILURE
3944 /*
3945  * Sysfs entries for memory failure handling statistics.
3946  */
3947 extern const struct attribute_group memory_failure_attr_group;
3948 extern void memory_failure_queue(unsigned long pfn, int flags);
3949 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3950 					bool *migratable_cleared);
3951 void num_poisoned_pages_inc(unsigned long pfn);
3952 void num_poisoned_pages_sub(unsigned long pfn, long i);
3953 #else
3954 static inline void memory_failure_queue(unsigned long pfn, int flags)
3955 {
3956 }
3957 
3958 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3959 					bool *migratable_cleared)
3960 {
3961 	return 0;
3962 }
3963 
3964 static inline void num_poisoned_pages_inc(unsigned long pfn)
3965 {
3966 }
3967 
3968 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3969 {
3970 }
3971 #endif
3972 
3973 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3974 extern void memblk_nr_poison_inc(unsigned long pfn);
3975 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3976 #else
3977 static inline void memblk_nr_poison_inc(unsigned long pfn)
3978 {
3979 }
3980 
3981 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3982 {
3983 }
3984 #endif
3985 
3986 #ifndef arch_memory_failure
3987 static inline int arch_memory_failure(unsigned long pfn, int flags)
3988 {
3989 	return -ENXIO;
3990 }
3991 #endif
3992 
3993 #ifndef arch_is_platform_page
3994 static inline bool arch_is_platform_page(u64 paddr)
3995 {
3996 	return false;
3997 }
3998 #endif
3999 
4000 /*
4001  * Error handlers for various types of pages.
4002  */
4003 enum mf_result {
4004 	MF_IGNORED,	/* Error: cannot be handled */
4005 	MF_FAILED,	/* Error: handling failed */
4006 	MF_DELAYED,	/* Will be handled later */
4007 	MF_RECOVERED,	/* Successfully recovered */
4008 };
4009 
4010 enum mf_action_page_type {
4011 	MF_MSG_KERNEL,
4012 	MF_MSG_KERNEL_HIGH_ORDER,
4013 	MF_MSG_DIFFERENT_COMPOUND,
4014 	MF_MSG_HUGE,
4015 	MF_MSG_FREE_HUGE,
4016 	MF_MSG_GET_HWPOISON,
4017 	MF_MSG_UNMAP_FAILED,
4018 	MF_MSG_DIRTY_SWAPCACHE,
4019 	MF_MSG_CLEAN_SWAPCACHE,
4020 	MF_MSG_DIRTY_MLOCKED_LRU,
4021 	MF_MSG_CLEAN_MLOCKED_LRU,
4022 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4023 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4024 	MF_MSG_DIRTY_LRU,
4025 	MF_MSG_CLEAN_LRU,
4026 	MF_MSG_TRUNCATED_LRU,
4027 	MF_MSG_BUDDY,
4028 	MF_MSG_DAX,
4029 	MF_MSG_UNSPLIT_THP,
4030 	MF_MSG_ALREADY_POISONED,
4031 	MF_MSG_UNKNOWN,
4032 };
4033 
4034 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4035 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4036 int copy_user_large_folio(struct folio *dst, struct folio *src,
4037 			  unsigned long addr_hint,
4038 			  struct vm_area_struct *vma);
4039 long copy_folio_from_user(struct folio *dst_folio,
4040 			   const void __user *usr_src,
4041 			   bool allow_pagefault);
4042 
4043 /**
4044  * vma_is_special_huge - Are transhuge page-table entries considered special?
4045  * @vma: Pointer to the struct vm_area_struct to consider
4046  *
4047  * Whether transhuge page-table entries are considered "special" following
4048  * the definition in vm_normal_page().
4049  *
4050  * Return: true if transhuge page-table entries should be considered special,
4051  * false otherwise.
4052  */
4053 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4054 {
4055 	return vma_is_dax(vma) || (vma->vm_file &&
4056 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4057 }
4058 
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4060 
4061 #if MAX_NUMNODES > 1
4062 void __init setup_nr_node_ids(void);
4063 #else
4064 static inline void setup_nr_node_ids(void) {}
4065 #endif
4066 
4067 extern int memcmp_pages(struct page *page1, struct page *page2);
4068 
4069 static inline int pages_identical(struct page *page1, struct page *page2)
4070 {
4071 	return !memcmp_pages(page1, page2);
4072 }
4073 
4074 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4075 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4076 						pgoff_t first_index, pgoff_t nr,
4077 						pgoff_t bitmap_pgoff,
4078 						unsigned long *bitmap,
4079 						pgoff_t *start,
4080 						pgoff_t *end);
4081 
4082 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4083 				      pgoff_t first_index, pgoff_t nr);
4084 #endif
4085 
4086 extern int sysctl_nr_trim_pages;
4087 
4088 #ifdef CONFIG_PRINTK
4089 void mem_dump_obj(void *object);
4090 #else
4091 static inline void mem_dump_obj(void *object) {}
4092 #endif
4093 
4094 /**
4095  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4096  *                    handle them.
4097  * @seals: the seals to check
4098  * @vma: the vma to operate on
4099  *
4100  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4101  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4102  */
4103 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4104 {
4105 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4106 		/*
4107 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4108 		 * write seals are active.
4109 		 */
4110 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4111 			return -EPERM;
4112 
4113 		/*
4114 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4115 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4116 		 * revert protections on such mappings. Do this only for shared
4117 		 * mappings. For private mappings, don't need to mask
4118 		 * VM_MAYWRITE as we still want them to be COW-writable.
4119 		 */
4120 		if (vma->vm_flags & VM_SHARED)
4121 			vm_flags_clear(vma, VM_MAYWRITE);
4122 	}
4123 
4124 	return 0;
4125 }
4126 
4127 #ifdef CONFIG_ANON_VMA_NAME
4128 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4129 			  unsigned long len_in,
4130 			  struct anon_vma_name *anon_name);
4131 #else
4132 static inline int
4133 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4134 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4135 	return 0;
4136 }
4137 #endif
4138 
4139 #ifdef CONFIG_UNACCEPTED_MEMORY
4140 
4141 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4142 void accept_memory(phys_addr_t start, unsigned long size);
4143 
4144 #else
4145 
4146 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4147 						    unsigned long size)
4148 {
4149 	return false;
4150 }
4151 
4152 static inline void accept_memory(phys_addr_t start, unsigned long size)
4153 {
4154 }
4155 
4156 #endif
4157 
4158 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4159 {
4160 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4161 }
4162 
4163 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4164 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4165 
4166 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4167 
4168 #ifdef CONFIG_64BIT
4169 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4170 #else
4171 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4172 {
4173 	/* noop on 32 bit */
4174 	return 0;
4175 }
4176 #endif
4177 
4178 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4179 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4180 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4181 
4182 #endif /* _LINUX_MM_H */
4183