xref: /linux-6.15/include/linux/mm.h (revision 01eadc8d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for arcitectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * To prevent common memory management code establishing
129  * a zero page mapping on a read fault.
130  * This macro should be defined within <asm/pgtable.h>.
131  * s390 does this to prevent multiplexing of hardware bits
132  * related to the physical page in case of virtualization.
133  */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X)	(0)
136 #endif
137 
138 /*
139  * On some architectures it is expensive to call memset() for small sizes.
140  * If an architecture decides to implement their own version of
141  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142  * define their own version of this macro in <asm/pgtable.h>
143  */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146  * or reduces below 56. The idea that compiler optimizes out switch()
147  * statement, and only leaves move/store instructions. Also the compiler can
148  * combine write statments if they are both assignments and can be reordered,
149  * this can result in several of the writes here being dropped.
150  */
151 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 	unsigned long *_pp = (void *)page;
155 
156 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 	BUILD_BUG_ON(sizeof(struct page) & 7);
158 	BUILD_BUG_ON(sizeof(struct page) < 56);
159 	BUILD_BUG_ON(sizeof(struct page) > 80);
160 
161 	switch (sizeof(struct page)) {
162 	case 80:
163 		_pp[9] = 0;
164 		fallthrough;
165 	case 72:
166 		_pp[8] = 0;
167 		fallthrough;
168 	case 64:
169 		_pp[7] = 0;
170 		fallthrough;
171 	case 56:
172 		_pp[6] = 0;
173 		_pp[5] = 0;
174 		_pp[4] = 0;
175 		_pp[3] = 0;
176 		_pp[2] = 0;
177 		_pp[1] = 0;
178 		_pp[0] = 0;
179 	}
180 }
181 #else
182 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184 
185 /*
186  * Default maximum number of active map areas, this limits the number of vmas
187  * per mm struct. Users can overwrite this number by sysctl but there is a
188  * problem.
189  *
190  * When a program's coredump is generated as ELF format, a section is created
191  * per a vma. In ELF, the number of sections is represented in unsigned short.
192  * This means the number of sections should be smaller than 65535 at coredump.
193  * Because the kernel adds some informative sections to a image of program at
194  * generating coredump, we need some margin. The number of extra sections is
195  * 1-3 now and depends on arch. We use "5" as safe margin, here.
196  *
197  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198  * not a hard limit any more. Although some userspace tools can be surprised by
199  * that.
200  */
201 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
202 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 
204 extern int sysctl_max_map_count;
205 
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208 
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212 
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 /*
220  * Any attempt to mark this function as static leads to build failure
221  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222  * is referred to by BPF code. This must be visible for error injection.
223  */
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 		pgoff_t index, gfp_t gfp, void **shadowp);
226 
227 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228 
229 /* to align the pointer to the (next) page boundary */
230 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231 
232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234 
235 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236 
237 /*
238  * Linux kernel virtual memory manager primitives.
239  * The idea being to have a "virtual" mm in the same way
240  * we have a virtual fs - giving a cleaner interface to the
241  * mm details, and allowing different kinds of memory mappings
242  * (from shared memory to executable loading to arbitrary
243  * mmap() functions).
244  */
245 
246 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
247 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248 void vm_area_free(struct vm_area_struct *);
249 
250 #ifndef CONFIG_MMU
251 extern struct rb_root nommu_region_tree;
252 extern struct rw_semaphore nommu_region_sem;
253 
254 extern unsigned int kobjsize(const void *objp);
255 #endif
256 
257 /*
258  * vm_flags in vm_area_struct, see mm_types.h.
259  * When changing, update also include/trace/events/mmflags.h
260  */
261 #define VM_NONE		0x00000000
262 
263 #define VM_READ		0x00000001	/* currently active flags */
264 #define VM_WRITE	0x00000002
265 #define VM_EXEC		0x00000004
266 #define VM_SHARED	0x00000008
267 
268 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
269 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
270 #define VM_MAYWRITE	0x00000020
271 #define VM_MAYEXEC	0x00000040
272 #define VM_MAYSHARE	0x00000080
273 
274 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
275 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
276 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
277 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
278 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
279 
280 #define VM_LOCKED	0x00002000
281 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
282 
283 					/* Used by sys_madvise() */
284 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
285 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
286 
287 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
288 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
289 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
290 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
291 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
292 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
293 #define VM_SYNC		0x00800000	/* Synchronous page faults */
294 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
295 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
296 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
297 
298 #ifdef CONFIG_MEM_SOFT_DIRTY
299 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
300 #else
301 # define VM_SOFTDIRTY	0
302 #endif
303 
304 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
305 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
306 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
307 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
308 
309 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
312 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
316 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
317 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
318 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
319 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
320 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321 
322 #ifdef CONFIG_ARCH_HAS_PKEYS
323 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
324 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
325 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
326 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
327 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
328 #ifdef CONFIG_PPC
329 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4  0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334 
335 #if defined(CONFIG_X86)
336 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
337 #elif defined(CONFIG_PPC)
338 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
339 #elif defined(CONFIG_PARISC)
340 # define VM_GROWSUP	VM_ARCH_1
341 #elif defined(CONFIG_IA64)
342 # define VM_GROWSUP	VM_ARCH_1
343 #elif defined(CONFIG_SPARC64)
344 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
345 # define VM_ARCH_CLEAR	VM_SPARC_ADI
346 #elif defined(CONFIG_ARM64)
347 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
348 # define VM_ARCH_CLEAR	VM_ARM64_BTI
349 #elif !defined(CONFIG_MMU)
350 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
351 #endif
352 
353 #if defined(CONFIG_ARM64_MTE)
354 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
355 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
356 #else
357 # define VM_MTE		VM_NONE
358 # define VM_MTE_ALLOWED	VM_NONE
359 #endif
360 
361 #ifndef VM_GROWSUP
362 # define VM_GROWSUP	VM_NONE
363 #endif
364 
365 /* Bits set in the VMA until the stack is in its final location */
366 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
367 
368 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369 
370 /* Common data flag combinations */
371 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
372 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
374 				 VM_MAYWRITE | VM_MAYEXEC)
375 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
376 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377 
378 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
379 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
380 #endif
381 
382 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
383 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384 #endif
385 
386 #ifdef CONFIG_STACK_GROWSUP
387 #define VM_STACK	VM_GROWSUP
388 #else
389 #define VM_STACK	VM_GROWSDOWN
390 #endif
391 
392 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393 
394 /* VMA basic access permission flags */
395 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396 
397 
398 /*
399  * Special vmas that are non-mergable, non-mlock()able.
400  */
401 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
402 
403 /* This mask prevents VMA from being scanned with khugepaged */
404 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405 
406 /* This mask defines which mm->def_flags a process can inherit its parent */
407 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
408 
409 /* This mask is used to clear all the VMA flags used by mlock */
410 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
411 
412 /* Arch-specific flags to clear when updating VM flags on protection change */
413 #ifndef VM_ARCH_CLEAR
414 # define VM_ARCH_CLEAR	VM_NONE
415 #endif
416 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417 
418 /*
419  * mapping from the currently active vm_flags protection bits (the
420  * low four bits) to a page protection mask..
421  */
422 extern pgprot_t protection_map[16];
423 
424 /**
425  * Fault flag definitions.
426  *
427  * @FAULT_FLAG_WRITE: Fault was a write fault.
428  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
430  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
431  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432  * @FAULT_FLAG_TRIED: The fault has been tried once.
433  * @FAULT_FLAG_USER: The fault originated in userspace.
434  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
437  *
438  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439  * whether we would allow page faults to retry by specifying these two
440  * fault flags correctly.  Currently there can be three legal combinations:
441  *
442  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
443  *                              this is the first try
444  *
445  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
446  *                              we've already tried at least once
447  *
448  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449  *
450  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451  * be used.  Note that page faults can be allowed to retry for multiple times,
452  * in which case we'll have an initial fault with flags (a) then later on
453  * continuous faults with flags (b).  We should always try to detect pending
454  * signals before a retry to make sure the continuous page faults can still be
455  * interrupted if necessary.
456  */
457 #define FAULT_FLAG_WRITE			0x01
458 #define FAULT_FLAG_MKWRITE			0x02
459 #define FAULT_FLAG_ALLOW_RETRY			0x04
460 #define FAULT_FLAG_RETRY_NOWAIT			0x08
461 #define FAULT_FLAG_KILLABLE			0x10
462 #define FAULT_FLAG_TRIED			0x20
463 #define FAULT_FLAG_USER				0x40
464 #define FAULT_FLAG_REMOTE			0x80
465 #define FAULT_FLAG_INSTRUCTION  		0x100
466 #define FAULT_FLAG_INTERRUPTIBLE		0x200
467 
468 /*
469  * The default fault flags that should be used by most of the
470  * arch-specific page fault handlers.
471  */
472 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
473 			     FAULT_FLAG_KILLABLE | \
474 			     FAULT_FLAG_INTERRUPTIBLE)
475 
476 /**
477  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478  *
479  * This is mostly used for places where we want to try to avoid taking
480  * the mmap_lock for too long a time when waiting for another condition
481  * to change, in which case we can try to be polite to release the
482  * mmap_lock in the first round to avoid potential starvation of other
483  * processes that would also want the mmap_lock.
484  *
485  * Return: true if the page fault allows retry and this is the first
486  * attempt of the fault handling; false otherwise.
487  */
488 static inline bool fault_flag_allow_retry_first(unsigned int flags)
489 {
490 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 	    (!(flags & FAULT_FLAG_TRIED));
492 }
493 
494 #define FAULT_FLAG_TRACE \
495 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
496 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
497 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
498 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
499 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
500 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
501 	{ FAULT_FLAG_USER,		"USER" }, \
502 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
503 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
504 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
505 
506 /*
507  * vm_fault is filled by the pagefault handler and passed to the vma's
508  * ->fault function. The vma's ->fault is responsible for returning a bitmask
509  * of VM_FAULT_xxx flags that give details about how the fault was handled.
510  *
511  * MM layer fills up gfp_mask for page allocations but fault handler might
512  * alter it if its implementation requires a different allocation context.
513  *
514  * pgoff should be used in favour of virtual_address, if possible.
515  */
516 struct vm_fault {
517 	struct vm_area_struct *vma;	/* Target VMA */
518 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
519 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
520 	pgoff_t pgoff;			/* Logical page offset based on vma */
521 	unsigned long address;		/* Faulting virtual address */
522 	pmd_t *pmd;			/* Pointer to pmd entry matching
523 					 * the 'address' */
524 	pud_t *pud;			/* Pointer to pud entry matching
525 					 * the 'address'
526 					 */
527 	pte_t orig_pte;			/* Value of PTE at the time of fault */
528 
529 	struct page *cow_page;		/* Page handler may use for COW fault */
530 	struct page *page;		/* ->fault handlers should return a
531 					 * page here, unless VM_FAULT_NOPAGE
532 					 * is set (which is also implied by
533 					 * VM_FAULT_ERROR).
534 					 */
535 	/* These three entries are valid only while holding ptl lock */
536 	pte_t *pte;			/* Pointer to pte entry matching
537 					 * the 'address'. NULL if the page
538 					 * table hasn't been allocated.
539 					 */
540 	spinlock_t *ptl;		/* Page table lock.
541 					 * Protects pte page table if 'pte'
542 					 * is not NULL, otherwise pmd.
543 					 */
544 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
545 					 * vm_ops->map_pages() calls
546 					 * alloc_set_pte() from atomic context.
547 					 * do_fault_around() pre-allocates
548 					 * page table to avoid allocation from
549 					 * atomic context.
550 					 */
551 };
552 
553 /* page entry size for vm->huge_fault() */
554 enum page_entry_size {
555 	PE_SIZE_PTE = 0,
556 	PE_SIZE_PMD,
557 	PE_SIZE_PUD,
558 };
559 
560 /*
561  * These are the virtual MM functions - opening of an area, closing and
562  * unmapping it (needed to keep files on disk up-to-date etc), pointer
563  * to the functions called when a no-page or a wp-page exception occurs.
564  */
565 struct vm_operations_struct {
566 	void (*open)(struct vm_area_struct * area);
567 	void (*close)(struct vm_area_struct * area);
568 	/* Called any time before splitting to check if it's allowed */
569 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
570 	int (*mremap)(struct vm_area_struct *area, unsigned long flags);
571 	/*
572 	 * Called by mprotect() to make driver-specific permission
573 	 * checks before mprotect() is finalised.   The VMA must not
574 	 * be modified.  Returns 0 if eprotect() can proceed.
575 	 */
576 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
577 			unsigned long end, unsigned long newflags);
578 	vm_fault_t (*fault)(struct vm_fault *vmf);
579 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
580 			enum page_entry_size pe_size);
581 	void (*map_pages)(struct vm_fault *vmf,
582 			pgoff_t start_pgoff, pgoff_t end_pgoff);
583 	unsigned long (*pagesize)(struct vm_area_struct * area);
584 
585 	/* notification that a previously read-only page is about to become
586 	 * writable, if an error is returned it will cause a SIGBUS */
587 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
588 
589 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
590 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
591 
592 	/* called by access_process_vm when get_user_pages() fails, typically
593 	 * for use by special VMAs that can switch between memory and hardware
594 	 */
595 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
596 		      void *buf, int len, int write);
597 
598 	/* Called by the /proc/PID/maps code to ask the vma whether it
599 	 * has a special name.  Returning non-NULL will also cause this
600 	 * vma to be dumped unconditionally. */
601 	const char *(*name)(struct vm_area_struct *vma);
602 
603 #ifdef CONFIG_NUMA
604 	/*
605 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
606 	 * to hold the policy upon return.  Caller should pass NULL @new to
607 	 * remove a policy and fall back to surrounding context--i.e. do not
608 	 * install a MPOL_DEFAULT policy, nor the task or system default
609 	 * mempolicy.
610 	 */
611 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
612 
613 	/*
614 	 * get_policy() op must add reference [mpol_get()] to any policy at
615 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
616 	 * in mm/mempolicy.c will do this automatically.
617 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
618 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
619 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
620 	 * must return NULL--i.e., do not "fallback" to task or system default
621 	 * policy.
622 	 */
623 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
624 					unsigned long addr);
625 #endif
626 	/*
627 	 * Called by vm_normal_page() for special PTEs to find the
628 	 * page for @addr.  This is useful if the default behavior
629 	 * (using pte_page()) would not find the correct page.
630 	 */
631 	struct page *(*find_special_page)(struct vm_area_struct *vma,
632 					  unsigned long addr);
633 };
634 
635 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
636 {
637 	static const struct vm_operations_struct dummy_vm_ops = {};
638 
639 	memset(vma, 0, sizeof(*vma));
640 	vma->vm_mm = mm;
641 	vma->vm_ops = &dummy_vm_ops;
642 	INIT_LIST_HEAD(&vma->anon_vma_chain);
643 }
644 
645 static inline void vma_set_anonymous(struct vm_area_struct *vma)
646 {
647 	vma->vm_ops = NULL;
648 }
649 
650 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
651 {
652 	return !vma->vm_ops;
653 }
654 
655 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
656 {
657 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
658 
659 	if (!maybe_stack)
660 		return false;
661 
662 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
663 						VM_STACK_INCOMPLETE_SETUP)
664 		return true;
665 
666 	return false;
667 }
668 
669 static inline bool vma_is_foreign(struct vm_area_struct *vma)
670 {
671 	if (!current->mm)
672 		return true;
673 
674 	if (current->mm != vma->vm_mm)
675 		return true;
676 
677 	return false;
678 }
679 
680 static inline bool vma_is_accessible(struct vm_area_struct *vma)
681 {
682 	return vma->vm_flags & VM_ACCESS_FLAGS;
683 }
684 
685 #ifdef CONFIG_SHMEM
686 /*
687  * The vma_is_shmem is not inline because it is used only by slow
688  * paths in userfault.
689  */
690 bool vma_is_shmem(struct vm_area_struct *vma);
691 #else
692 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
693 #endif
694 
695 int vma_is_stack_for_current(struct vm_area_struct *vma);
696 
697 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
698 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
699 
700 struct mmu_gather;
701 struct inode;
702 
703 #include <linux/huge_mm.h>
704 
705 /*
706  * Methods to modify the page usage count.
707  *
708  * What counts for a page usage:
709  * - cache mapping   (page->mapping)
710  * - private data    (page->private)
711  * - page mapped in a task's page tables, each mapping
712  *   is counted separately
713  *
714  * Also, many kernel routines increase the page count before a critical
715  * routine so they can be sure the page doesn't go away from under them.
716  */
717 
718 /*
719  * Drop a ref, return true if the refcount fell to zero (the page has no users)
720  */
721 static inline int put_page_testzero(struct page *page)
722 {
723 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
724 	return page_ref_dec_and_test(page);
725 }
726 
727 /*
728  * Try to grab a ref unless the page has a refcount of zero, return false if
729  * that is the case.
730  * This can be called when MMU is off so it must not access
731  * any of the virtual mappings.
732  */
733 static inline int get_page_unless_zero(struct page *page)
734 {
735 	return page_ref_add_unless(page, 1, 0);
736 }
737 
738 extern int page_is_ram(unsigned long pfn);
739 
740 enum {
741 	REGION_INTERSECTS,
742 	REGION_DISJOINT,
743 	REGION_MIXED,
744 };
745 
746 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
747 		      unsigned long desc);
748 
749 /* Support for virtually mapped pages */
750 struct page *vmalloc_to_page(const void *addr);
751 unsigned long vmalloc_to_pfn(const void *addr);
752 
753 /*
754  * Determine if an address is within the vmalloc range
755  *
756  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
757  * is no special casing required.
758  */
759 
760 #ifndef is_ioremap_addr
761 #define is_ioremap_addr(x) is_vmalloc_addr(x)
762 #endif
763 
764 #ifdef CONFIG_MMU
765 extern bool is_vmalloc_addr(const void *x);
766 extern int is_vmalloc_or_module_addr(const void *x);
767 #else
768 static inline bool is_vmalloc_addr(const void *x)
769 {
770 	return false;
771 }
772 static inline int is_vmalloc_or_module_addr(const void *x)
773 {
774 	return 0;
775 }
776 #endif
777 
778 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
779 static inline void *kvmalloc(size_t size, gfp_t flags)
780 {
781 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
782 }
783 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
784 {
785 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
786 }
787 static inline void *kvzalloc(size_t size, gfp_t flags)
788 {
789 	return kvmalloc(size, flags | __GFP_ZERO);
790 }
791 
792 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
793 {
794 	size_t bytes;
795 
796 	if (unlikely(check_mul_overflow(n, size, &bytes)))
797 		return NULL;
798 
799 	return kvmalloc(bytes, flags);
800 }
801 
802 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
803 {
804 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
805 }
806 
807 extern void kvfree(const void *addr);
808 extern void kvfree_sensitive(const void *addr, size_t len);
809 
810 static inline int head_compound_mapcount(struct page *head)
811 {
812 	return atomic_read(compound_mapcount_ptr(head)) + 1;
813 }
814 
815 /*
816  * Mapcount of compound page as a whole, does not include mapped sub-pages.
817  *
818  * Must be called only for compound pages or any their tail sub-pages.
819  */
820 static inline int compound_mapcount(struct page *page)
821 {
822 	VM_BUG_ON_PAGE(!PageCompound(page), page);
823 	page = compound_head(page);
824 	return head_compound_mapcount(page);
825 }
826 
827 /*
828  * The atomic page->_mapcount, starts from -1: so that transitions
829  * both from it and to it can be tracked, using atomic_inc_and_test
830  * and atomic_add_negative(-1).
831  */
832 static inline void page_mapcount_reset(struct page *page)
833 {
834 	atomic_set(&(page)->_mapcount, -1);
835 }
836 
837 int __page_mapcount(struct page *page);
838 
839 /*
840  * Mapcount of 0-order page; when compound sub-page, includes
841  * compound_mapcount().
842  *
843  * Result is undefined for pages which cannot be mapped into userspace.
844  * For example SLAB or special types of pages. See function page_has_type().
845  * They use this place in struct page differently.
846  */
847 static inline int page_mapcount(struct page *page)
848 {
849 	if (unlikely(PageCompound(page)))
850 		return __page_mapcount(page);
851 	return atomic_read(&page->_mapcount) + 1;
852 }
853 
854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
855 int total_mapcount(struct page *page);
856 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
857 #else
858 static inline int total_mapcount(struct page *page)
859 {
860 	return page_mapcount(page);
861 }
862 static inline int page_trans_huge_mapcount(struct page *page,
863 					   int *total_mapcount)
864 {
865 	int mapcount = page_mapcount(page);
866 	if (total_mapcount)
867 		*total_mapcount = mapcount;
868 	return mapcount;
869 }
870 #endif
871 
872 static inline struct page *virt_to_head_page(const void *x)
873 {
874 	struct page *page = virt_to_page(x);
875 
876 	return compound_head(page);
877 }
878 
879 void __put_page(struct page *page);
880 
881 void put_pages_list(struct list_head *pages);
882 
883 void split_page(struct page *page, unsigned int order);
884 
885 /*
886  * Compound pages have a destructor function.  Provide a
887  * prototype for that function and accessor functions.
888  * These are _only_ valid on the head of a compound page.
889  */
890 typedef void compound_page_dtor(struct page *);
891 
892 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
893 enum compound_dtor_id {
894 	NULL_COMPOUND_DTOR,
895 	COMPOUND_PAGE_DTOR,
896 #ifdef CONFIG_HUGETLB_PAGE
897 	HUGETLB_PAGE_DTOR,
898 #endif
899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
900 	TRANSHUGE_PAGE_DTOR,
901 #endif
902 	NR_COMPOUND_DTORS,
903 };
904 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
905 
906 static inline void set_compound_page_dtor(struct page *page,
907 		enum compound_dtor_id compound_dtor)
908 {
909 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
910 	page[1].compound_dtor = compound_dtor;
911 }
912 
913 static inline void destroy_compound_page(struct page *page)
914 {
915 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
916 	compound_page_dtors[page[1].compound_dtor](page);
917 }
918 
919 static inline unsigned int compound_order(struct page *page)
920 {
921 	if (!PageHead(page))
922 		return 0;
923 	return page[1].compound_order;
924 }
925 
926 static inline bool hpage_pincount_available(struct page *page)
927 {
928 	/*
929 	 * Can the page->hpage_pinned_refcount field be used? That field is in
930 	 * the 3rd page of the compound page, so the smallest (2-page) compound
931 	 * pages cannot support it.
932 	 */
933 	page = compound_head(page);
934 	return PageCompound(page) && compound_order(page) > 1;
935 }
936 
937 static inline int head_compound_pincount(struct page *head)
938 {
939 	return atomic_read(compound_pincount_ptr(head));
940 }
941 
942 static inline int compound_pincount(struct page *page)
943 {
944 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
945 	page = compound_head(page);
946 	return head_compound_pincount(page);
947 }
948 
949 static inline void set_compound_order(struct page *page, unsigned int order)
950 {
951 	page[1].compound_order = order;
952 	page[1].compound_nr = 1U << order;
953 }
954 
955 /* Returns the number of pages in this potentially compound page. */
956 static inline unsigned long compound_nr(struct page *page)
957 {
958 	if (!PageHead(page))
959 		return 1;
960 	return page[1].compound_nr;
961 }
962 
963 /* Returns the number of bytes in this potentially compound page. */
964 static inline unsigned long page_size(struct page *page)
965 {
966 	return PAGE_SIZE << compound_order(page);
967 }
968 
969 /* Returns the number of bits needed for the number of bytes in a page */
970 static inline unsigned int page_shift(struct page *page)
971 {
972 	return PAGE_SHIFT + compound_order(page);
973 }
974 
975 void free_compound_page(struct page *page);
976 
977 #ifdef CONFIG_MMU
978 /*
979  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
980  * servicing faults for write access.  In the normal case, do always want
981  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
982  * that do not have writing enabled, when used by access_process_vm.
983  */
984 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
985 {
986 	if (likely(vma->vm_flags & VM_WRITE))
987 		pte = pte_mkwrite(pte);
988 	return pte;
989 }
990 
991 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
992 vm_fault_t finish_fault(struct vm_fault *vmf);
993 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
994 #endif
995 
996 /*
997  * Multiple processes may "see" the same page. E.g. for untouched
998  * mappings of /dev/null, all processes see the same page full of
999  * zeroes, and text pages of executables and shared libraries have
1000  * only one copy in memory, at most, normally.
1001  *
1002  * For the non-reserved pages, page_count(page) denotes a reference count.
1003  *   page_count() == 0 means the page is free. page->lru is then used for
1004  *   freelist management in the buddy allocator.
1005  *   page_count() > 0  means the page has been allocated.
1006  *
1007  * Pages are allocated by the slab allocator in order to provide memory
1008  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1009  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1010  * unless a particular usage is carefully commented. (the responsibility of
1011  * freeing the kmalloc memory is the caller's, of course).
1012  *
1013  * A page may be used by anyone else who does a __get_free_page().
1014  * In this case, page_count still tracks the references, and should only
1015  * be used through the normal accessor functions. The top bits of page->flags
1016  * and page->virtual store page management information, but all other fields
1017  * are unused and could be used privately, carefully. The management of this
1018  * page is the responsibility of the one who allocated it, and those who have
1019  * subsequently been given references to it.
1020  *
1021  * The other pages (we may call them "pagecache pages") are completely
1022  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1023  * The following discussion applies only to them.
1024  *
1025  * A pagecache page contains an opaque `private' member, which belongs to the
1026  * page's address_space. Usually, this is the address of a circular list of
1027  * the page's disk buffers. PG_private must be set to tell the VM to call
1028  * into the filesystem to release these pages.
1029  *
1030  * A page may belong to an inode's memory mapping. In this case, page->mapping
1031  * is the pointer to the inode, and page->index is the file offset of the page,
1032  * in units of PAGE_SIZE.
1033  *
1034  * If pagecache pages are not associated with an inode, they are said to be
1035  * anonymous pages. These may become associated with the swapcache, and in that
1036  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1037  *
1038  * In either case (swapcache or inode backed), the pagecache itself holds one
1039  * reference to the page. Setting PG_private should also increment the
1040  * refcount. The each user mapping also has a reference to the page.
1041  *
1042  * The pagecache pages are stored in a per-mapping radix tree, which is
1043  * rooted at mapping->i_pages, and indexed by offset.
1044  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1045  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1046  *
1047  * All pagecache pages may be subject to I/O:
1048  * - inode pages may need to be read from disk,
1049  * - inode pages which have been modified and are MAP_SHARED may need
1050  *   to be written back to the inode on disk,
1051  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1052  *   modified may need to be swapped out to swap space and (later) to be read
1053  *   back into memory.
1054  */
1055 
1056 /*
1057  * The zone field is never updated after free_area_init_core()
1058  * sets it, so none of the operations on it need to be atomic.
1059  */
1060 
1061 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1062 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1063 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1064 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1065 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1066 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1067 
1068 /*
1069  * Define the bit shifts to access each section.  For non-existent
1070  * sections we define the shift as 0; that plus a 0 mask ensures
1071  * the compiler will optimise away reference to them.
1072  */
1073 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1074 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1075 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1076 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1077 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1078 
1079 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1080 #ifdef NODE_NOT_IN_PAGE_FLAGS
1081 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1082 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1083 						SECTIONS_PGOFF : ZONES_PGOFF)
1084 #else
1085 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1086 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1087 						NODES_PGOFF : ZONES_PGOFF)
1088 #endif
1089 
1090 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1091 
1092 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1093 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1094 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1095 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1096 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1097 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1098 
1099 static inline enum zone_type page_zonenum(const struct page *page)
1100 {
1101 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1102 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1103 }
1104 
1105 #ifdef CONFIG_ZONE_DEVICE
1106 static inline bool is_zone_device_page(const struct page *page)
1107 {
1108 	return page_zonenum(page) == ZONE_DEVICE;
1109 }
1110 extern void memmap_init_zone_device(struct zone *, unsigned long,
1111 				    unsigned long, struct dev_pagemap *);
1112 #else
1113 static inline bool is_zone_device_page(const struct page *page)
1114 {
1115 	return false;
1116 }
1117 #endif
1118 
1119 #ifdef CONFIG_DEV_PAGEMAP_OPS
1120 void free_devmap_managed_page(struct page *page);
1121 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1122 
1123 static inline bool page_is_devmap_managed(struct page *page)
1124 {
1125 	if (!static_branch_unlikely(&devmap_managed_key))
1126 		return false;
1127 	if (!is_zone_device_page(page))
1128 		return false;
1129 	switch (page->pgmap->type) {
1130 	case MEMORY_DEVICE_PRIVATE:
1131 	case MEMORY_DEVICE_FS_DAX:
1132 		return true;
1133 	default:
1134 		break;
1135 	}
1136 	return false;
1137 }
1138 
1139 void put_devmap_managed_page(struct page *page);
1140 
1141 #else /* CONFIG_DEV_PAGEMAP_OPS */
1142 static inline bool page_is_devmap_managed(struct page *page)
1143 {
1144 	return false;
1145 }
1146 
1147 static inline void put_devmap_managed_page(struct page *page)
1148 {
1149 }
1150 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1151 
1152 static inline bool is_device_private_page(const struct page *page)
1153 {
1154 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1155 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1156 		is_zone_device_page(page) &&
1157 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1158 }
1159 
1160 static inline bool is_pci_p2pdma_page(const struct page *page)
1161 {
1162 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1163 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1164 		is_zone_device_page(page) &&
1165 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1166 }
1167 
1168 /* 127: arbitrary random number, small enough to assemble well */
1169 #define page_ref_zero_or_close_to_overflow(page) \
1170 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1171 
1172 static inline void get_page(struct page *page)
1173 {
1174 	page = compound_head(page);
1175 	/*
1176 	 * Getting a normal page or the head of a compound page
1177 	 * requires to already have an elevated page->_refcount.
1178 	 */
1179 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1180 	page_ref_inc(page);
1181 }
1182 
1183 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1184 
1185 static inline __must_check bool try_get_page(struct page *page)
1186 {
1187 	page = compound_head(page);
1188 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1189 		return false;
1190 	page_ref_inc(page);
1191 	return true;
1192 }
1193 
1194 static inline void put_page(struct page *page)
1195 {
1196 	page = compound_head(page);
1197 
1198 	/*
1199 	 * For devmap managed pages we need to catch refcount transition from
1200 	 * 2 to 1, when refcount reach one it means the page is free and we
1201 	 * need to inform the device driver through callback. See
1202 	 * include/linux/memremap.h and HMM for details.
1203 	 */
1204 	if (page_is_devmap_managed(page)) {
1205 		put_devmap_managed_page(page);
1206 		return;
1207 	}
1208 
1209 	if (put_page_testzero(page))
1210 		__put_page(page);
1211 }
1212 
1213 /*
1214  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1215  * the page's refcount so that two separate items are tracked: the original page
1216  * reference count, and also a new count of how many pin_user_pages() calls were
1217  * made against the page. ("gup-pinned" is another term for the latter).
1218  *
1219  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1220  * distinct from normal pages. As such, the unpin_user_page() call (and its
1221  * variants) must be used in order to release gup-pinned pages.
1222  *
1223  * Choice of value:
1224  *
1225  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1226  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1227  * simpler, due to the fact that adding an even power of two to the page
1228  * refcount has the effect of using only the upper N bits, for the code that
1229  * counts up using the bias value. This means that the lower bits are left for
1230  * the exclusive use of the original code that increments and decrements by one
1231  * (or at least, by much smaller values than the bias value).
1232  *
1233  * Of course, once the lower bits overflow into the upper bits (and this is
1234  * OK, because subtraction recovers the original values), then visual inspection
1235  * no longer suffices to directly view the separate counts. However, for normal
1236  * applications that don't have huge page reference counts, this won't be an
1237  * issue.
1238  *
1239  * Locking: the lockless algorithm described in page_cache_get_speculative()
1240  * and page_cache_gup_pin_speculative() provides safe operation for
1241  * get_user_pages and page_mkclean and other calls that race to set up page
1242  * table entries.
1243  */
1244 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1245 
1246 void unpin_user_page(struct page *page);
1247 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1248 				 bool make_dirty);
1249 void unpin_user_pages(struct page **pages, unsigned long npages);
1250 
1251 /**
1252  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1253  *
1254  * This function checks if a page has been pinned via a call to
1255  * pin_user_pages*().
1256  *
1257  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1258  * because it means "definitely not pinned for DMA", but true means "probably
1259  * pinned for DMA, but possibly a false positive due to having at least
1260  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1261  *
1262  * False positives are OK, because: a) it's unlikely for a page to get that many
1263  * refcounts, and b) all the callers of this routine are expected to be able to
1264  * deal gracefully with a false positive.
1265  *
1266  * For huge pages, the result will be exactly correct. That's because we have
1267  * more tracking data available: the 3rd struct page in the compound page is
1268  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1269  * scheme).
1270  *
1271  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1272  *
1273  * @page:	pointer to page to be queried.
1274  * @Return:	True, if it is likely that the page has been "dma-pinned".
1275  *		False, if the page is definitely not dma-pinned.
1276  */
1277 static inline bool page_maybe_dma_pinned(struct page *page)
1278 {
1279 	if (hpage_pincount_available(page))
1280 		return compound_pincount(page) > 0;
1281 
1282 	/*
1283 	 * page_ref_count() is signed. If that refcount overflows, then
1284 	 * page_ref_count() returns a negative value, and callers will avoid
1285 	 * further incrementing the refcount.
1286 	 *
1287 	 * Here, for that overflow case, use the signed bit to count a little
1288 	 * bit higher via unsigned math, and thus still get an accurate result.
1289 	 */
1290 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1291 		GUP_PIN_COUNTING_BIAS;
1292 }
1293 
1294 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1295 #define SECTION_IN_PAGE_FLAGS
1296 #endif
1297 
1298 /*
1299  * The identification function is mainly used by the buddy allocator for
1300  * determining if two pages could be buddies. We are not really identifying
1301  * the zone since we could be using the section number id if we do not have
1302  * node id available in page flags.
1303  * We only guarantee that it will return the same value for two combinable
1304  * pages in a zone.
1305  */
1306 static inline int page_zone_id(struct page *page)
1307 {
1308 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1309 }
1310 
1311 #ifdef NODE_NOT_IN_PAGE_FLAGS
1312 extern int page_to_nid(const struct page *page);
1313 #else
1314 static inline int page_to_nid(const struct page *page)
1315 {
1316 	struct page *p = (struct page *)page;
1317 
1318 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1319 }
1320 #endif
1321 
1322 #ifdef CONFIG_NUMA_BALANCING
1323 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1324 {
1325 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1326 }
1327 
1328 static inline int cpupid_to_pid(int cpupid)
1329 {
1330 	return cpupid & LAST__PID_MASK;
1331 }
1332 
1333 static inline int cpupid_to_cpu(int cpupid)
1334 {
1335 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1336 }
1337 
1338 static inline int cpupid_to_nid(int cpupid)
1339 {
1340 	return cpu_to_node(cpupid_to_cpu(cpupid));
1341 }
1342 
1343 static inline bool cpupid_pid_unset(int cpupid)
1344 {
1345 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1346 }
1347 
1348 static inline bool cpupid_cpu_unset(int cpupid)
1349 {
1350 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1351 }
1352 
1353 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1354 {
1355 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1356 }
1357 
1358 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1359 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1360 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1361 {
1362 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1363 }
1364 
1365 static inline int page_cpupid_last(struct page *page)
1366 {
1367 	return page->_last_cpupid;
1368 }
1369 static inline void page_cpupid_reset_last(struct page *page)
1370 {
1371 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1372 }
1373 #else
1374 static inline int page_cpupid_last(struct page *page)
1375 {
1376 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1377 }
1378 
1379 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1380 
1381 static inline void page_cpupid_reset_last(struct page *page)
1382 {
1383 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1384 }
1385 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1386 #else /* !CONFIG_NUMA_BALANCING */
1387 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1388 {
1389 	return page_to_nid(page); /* XXX */
1390 }
1391 
1392 static inline int page_cpupid_last(struct page *page)
1393 {
1394 	return page_to_nid(page); /* XXX */
1395 }
1396 
1397 static inline int cpupid_to_nid(int cpupid)
1398 {
1399 	return -1;
1400 }
1401 
1402 static inline int cpupid_to_pid(int cpupid)
1403 {
1404 	return -1;
1405 }
1406 
1407 static inline int cpupid_to_cpu(int cpupid)
1408 {
1409 	return -1;
1410 }
1411 
1412 static inline int cpu_pid_to_cpupid(int nid, int pid)
1413 {
1414 	return -1;
1415 }
1416 
1417 static inline bool cpupid_pid_unset(int cpupid)
1418 {
1419 	return true;
1420 }
1421 
1422 static inline void page_cpupid_reset_last(struct page *page)
1423 {
1424 }
1425 
1426 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1427 {
1428 	return false;
1429 }
1430 #endif /* CONFIG_NUMA_BALANCING */
1431 
1432 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1433 
1434 static inline u8 page_kasan_tag(const struct page *page)
1435 {
1436 	if (kasan_enabled())
1437 		return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1438 	return 0xff;
1439 }
1440 
1441 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1442 {
1443 	if (kasan_enabled()) {
1444 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1445 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1446 	}
1447 }
1448 
1449 static inline void page_kasan_tag_reset(struct page *page)
1450 {
1451 	if (kasan_enabled())
1452 		page_kasan_tag_set(page, 0xff);
1453 }
1454 
1455 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1456 
1457 static inline u8 page_kasan_tag(const struct page *page)
1458 {
1459 	return 0xff;
1460 }
1461 
1462 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1463 static inline void page_kasan_tag_reset(struct page *page) { }
1464 
1465 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1466 
1467 static inline struct zone *page_zone(const struct page *page)
1468 {
1469 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1470 }
1471 
1472 static inline pg_data_t *page_pgdat(const struct page *page)
1473 {
1474 	return NODE_DATA(page_to_nid(page));
1475 }
1476 
1477 #ifdef SECTION_IN_PAGE_FLAGS
1478 static inline void set_page_section(struct page *page, unsigned long section)
1479 {
1480 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1481 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1482 }
1483 
1484 static inline unsigned long page_to_section(const struct page *page)
1485 {
1486 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1487 }
1488 #endif
1489 
1490 static inline void set_page_zone(struct page *page, enum zone_type zone)
1491 {
1492 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1493 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1494 }
1495 
1496 static inline void set_page_node(struct page *page, unsigned long node)
1497 {
1498 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1499 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1500 }
1501 
1502 static inline void set_page_links(struct page *page, enum zone_type zone,
1503 	unsigned long node, unsigned long pfn)
1504 {
1505 	set_page_zone(page, zone);
1506 	set_page_node(page, node);
1507 #ifdef SECTION_IN_PAGE_FLAGS
1508 	set_page_section(page, pfn_to_section_nr(pfn));
1509 #endif
1510 }
1511 
1512 /*
1513  * Some inline functions in vmstat.h depend on page_zone()
1514  */
1515 #include <linux/vmstat.h>
1516 
1517 static __always_inline void *lowmem_page_address(const struct page *page)
1518 {
1519 	return page_to_virt(page);
1520 }
1521 
1522 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1523 #define HASHED_PAGE_VIRTUAL
1524 #endif
1525 
1526 #if defined(WANT_PAGE_VIRTUAL)
1527 static inline void *page_address(const struct page *page)
1528 {
1529 	return page->virtual;
1530 }
1531 static inline void set_page_address(struct page *page, void *address)
1532 {
1533 	page->virtual = address;
1534 }
1535 #define page_address_init()  do { } while(0)
1536 #endif
1537 
1538 #if defined(HASHED_PAGE_VIRTUAL)
1539 void *page_address(const struct page *page);
1540 void set_page_address(struct page *page, void *virtual);
1541 void page_address_init(void);
1542 #endif
1543 
1544 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1545 #define page_address(page) lowmem_page_address(page)
1546 #define set_page_address(page, address)  do { } while(0)
1547 #define page_address_init()  do { } while(0)
1548 #endif
1549 
1550 extern void *page_rmapping(struct page *page);
1551 extern struct anon_vma *page_anon_vma(struct page *page);
1552 extern struct address_space *page_mapping(struct page *page);
1553 
1554 extern struct address_space *__page_file_mapping(struct page *);
1555 
1556 static inline
1557 struct address_space *page_file_mapping(struct page *page)
1558 {
1559 	if (unlikely(PageSwapCache(page)))
1560 		return __page_file_mapping(page);
1561 
1562 	return page->mapping;
1563 }
1564 
1565 extern pgoff_t __page_file_index(struct page *page);
1566 
1567 /*
1568  * Return the pagecache index of the passed page.  Regular pagecache pages
1569  * use ->index whereas swapcache pages use swp_offset(->private)
1570  */
1571 static inline pgoff_t page_index(struct page *page)
1572 {
1573 	if (unlikely(PageSwapCache(page)))
1574 		return __page_file_index(page);
1575 	return page->index;
1576 }
1577 
1578 bool page_mapped(struct page *page);
1579 struct address_space *page_mapping(struct page *page);
1580 struct address_space *page_mapping_file(struct page *page);
1581 
1582 /*
1583  * Return true only if the page has been allocated with
1584  * ALLOC_NO_WATERMARKS and the low watermark was not
1585  * met implying that the system is under some pressure.
1586  */
1587 static inline bool page_is_pfmemalloc(struct page *page)
1588 {
1589 	/*
1590 	 * Page index cannot be this large so this must be
1591 	 * a pfmemalloc page.
1592 	 */
1593 	return page->index == -1UL;
1594 }
1595 
1596 /*
1597  * Only to be called by the page allocator on a freshly allocated
1598  * page.
1599  */
1600 static inline void set_page_pfmemalloc(struct page *page)
1601 {
1602 	page->index = -1UL;
1603 }
1604 
1605 static inline void clear_page_pfmemalloc(struct page *page)
1606 {
1607 	page->index = 0;
1608 }
1609 
1610 /*
1611  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1612  */
1613 extern void pagefault_out_of_memory(void);
1614 
1615 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1616 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1617 
1618 /*
1619  * Flags passed to show_mem() and show_free_areas() to suppress output in
1620  * various contexts.
1621  */
1622 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1623 
1624 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1625 
1626 #ifdef CONFIG_MMU
1627 extern bool can_do_mlock(void);
1628 #else
1629 static inline bool can_do_mlock(void) { return false; }
1630 #endif
1631 extern int user_shm_lock(size_t, struct user_struct *);
1632 extern void user_shm_unlock(size_t, struct user_struct *);
1633 
1634 /*
1635  * Parameter block passed down to zap_pte_range in exceptional cases.
1636  */
1637 struct zap_details {
1638 	struct address_space *check_mapping;	/* Check page->mapping if set */
1639 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1640 	pgoff_t last_index;			/* Highest page->index to unmap */
1641 };
1642 
1643 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1644 			     pte_t pte);
1645 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1646 				pmd_t pmd);
1647 
1648 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1649 		  unsigned long size);
1650 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1651 		    unsigned long size);
1652 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1653 		unsigned long start, unsigned long end);
1654 
1655 struct mmu_notifier_range;
1656 
1657 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1658 		unsigned long end, unsigned long floor, unsigned long ceiling);
1659 int
1660 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1661 int follow_pte(struct mm_struct *mm, unsigned long address,
1662 		struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
1663 		spinlock_t **ptlp);
1664 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1665 	unsigned long *pfn);
1666 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1667 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1668 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1669 			void *buf, int len, int write);
1670 
1671 extern void truncate_pagecache(struct inode *inode, loff_t new);
1672 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1673 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1674 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1675 int truncate_inode_page(struct address_space *mapping, struct page *page);
1676 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1677 int invalidate_inode_page(struct page *page);
1678 
1679 #ifdef CONFIG_MMU
1680 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1681 				  unsigned long address, unsigned int flags,
1682 				  struct pt_regs *regs);
1683 extern int fixup_user_fault(struct mm_struct *mm,
1684 			    unsigned long address, unsigned int fault_flags,
1685 			    bool *unlocked);
1686 void unmap_mapping_pages(struct address_space *mapping,
1687 		pgoff_t start, pgoff_t nr, bool even_cows);
1688 void unmap_mapping_range(struct address_space *mapping,
1689 		loff_t const holebegin, loff_t const holelen, int even_cows);
1690 #else
1691 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1692 					 unsigned long address, unsigned int flags,
1693 					 struct pt_regs *regs)
1694 {
1695 	/* should never happen if there's no MMU */
1696 	BUG();
1697 	return VM_FAULT_SIGBUS;
1698 }
1699 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1700 		unsigned int fault_flags, bool *unlocked)
1701 {
1702 	/* should never happen if there's no MMU */
1703 	BUG();
1704 	return -EFAULT;
1705 }
1706 static inline void unmap_mapping_pages(struct address_space *mapping,
1707 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1708 static inline void unmap_mapping_range(struct address_space *mapping,
1709 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1710 #endif
1711 
1712 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1713 		loff_t const holebegin, loff_t const holelen)
1714 {
1715 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1716 }
1717 
1718 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1719 		void *buf, int len, unsigned int gup_flags);
1720 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1721 		void *buf, int len, unsigned int gup_flags);
1722 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1723 			      void *buf, int len, unsigned int gup_flags);
1724 
1725 long get_user_pages_remote(struct mm_struct *mm,
1726 			    unsigned long start, unsigned long nr_pages,
1727 			    unsigned int gup_flags, struct page **pages,
1728 			    struct vm_area_struct **vmas, int *locked);
1729 long pin_user_pages_remote(struct mm_struct *mm,
1730 			   unsigned long start, unsigned long nr_pages,
1731 			   unsigned int gup_flags, struct page **pages,
1732 			   struct vm_area_struct **vmas, int *locked);
1733 long get_user_pages(unsigned long start, unsigned long nr_pages,
1734 			    unsigned int gup_flags, struct page **pages,
1735 			    struct vm_area_struct **vmas);
1736 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1737 		    unsigned int gup_flags, struct page **pages,
1738 		    struct vm_area_struct **vmas);
1739 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1740 		    unsigned int gup_flags, struct page **pages, int *locked);
1741 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1742 		    unsigned int gup_flags, struct page **pages, int *locked);
1743 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1744 		    struct page **pages, unsigned int gup_flags);
1745 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1746 		    struct page **pages, unsigned int gup_flags);
1747 
1748 int get_user_pages_fast(unsigned long start, int nr_pages,
1749 			unsigned int gup_flags, struct page **pages);
1750 int pin_user_pages_fast(unsigned long start, int nr_pages,
1751 			unsigned int gup_flags, struct page **pages);
1752 
1753 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1754 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1755 			struct task_struct *task, bool bypass_rlim);
1756 
1757 /* Container for pinned pfns / pages */
1758 struct frame_vector {
1759 	unsigned int nr_allocated;	/* Number of frames we have space for */
1760 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1761 	bool got_ref;		/* Did we pin pages by getting page ref? */
1762 	bool is_pfns;		/* Does array contain pages or pfns? */
1763 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1764 				 * pfns_vector_pages() or pfns_vector_pfns()
1765 				 * for access */
1766 };
1767 
1768 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1769 void frame_vector_destroy(struct frame_vector *vec);
1770 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1771 		     unsigned int gup_flags, struct frame_vector *vec);
1772 void put_vaddr_frames(struct frame_vector *vec);
1773 int frame_vector_to_pages(struct frame_vector *vec);
1774 void frame_vector_to_pfns(struct frame_vector *vec);
1775 
1776 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1777 {
1778 	return vec->nr_frames;
1779 }
1780 
1781 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1782 {
1783 	if (vec->is_pfns) {
1784 		int err = frame_vector_to_pages(vec);
1785 
1786 		if (err)
1787 			return ERR_PTR(err);
1788 	}
1789 	return (struct page **)(vec->ptrs);
1790 }
1791 
1792 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1793 {
1794 	if (!vec->is_pfns)
1795 		frame_vector_to_pfns(vec);
1796 	return (unsigned long *)(vec->ptrs);
1797 }
1798 
1799 struct kvec;
1800 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1801 			struct page **pages);
1802 int get_kernel_page(unsigned long start, int write, struct page **pages);
1803 struct page *get_dump_page(unsigned long addr);
1804 
1805 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1806 extern void do_invalidatepage(struct page *page, unsigned int offset,
1807 			      unsigned int length);
1808 
1809 void __set_page_dirty(struct page *, struct address_space *, int warn);
1810 int __set_page_dirty_nobuffers(struct page *page);
1811 int __set_page_dirty_no_writeback(struct page *page);
1812 int redirty_page_for_writepage(struct writeback_control *wbc,
1813 				struct page *page);
1814 void account_page_dirtied(struct page *page, struct address_space *mapping);
1815 void account_page_cleaned(struct page *page, struct address_space *mapping,
1816 			  struct bdi_writeback *wb);
1817 int set_page_dirty(struct page *page);
1818 int set_page_dirty_lock(struct page *page);
1819 void __cancel_dirty_page(struct page *page);
1820 static inline void cancel_dirty_page(struct page *page)
1821 {
1822 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1823 	if (PageDirty(page))
1824 		__cancel_dirty_page(page);
1825 }
1826 int clear_page_dirty_for_io(struct page *page);
1827 
1828 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1829 
1830 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1831 		unsigned long old_addr, struct vm_area_struct *new_vma,
1832 		unsigned long new_addr, unsigned long len,
1833 		bool need_rmap_locks);
1834 
1835 /*
1836  * Flags used by change_protection().  For now we make it a bitmap so
1837  * that we can pass in multiple flags just like parameters.  However
1838  * for now all the callers are only use one of the flags at the same
1839  * time.
1840  */
1841 /* Whether we should allow dirty bit accounting */
1842 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1843 /* Whether this protection change is for NUMA hints */
1844 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1845 /* Whether this change is for write protecting */
1846 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1847 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1848 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1849 					    MM_CP_UFFD_WP_RESOLVE)
1850 
1851 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1852 			      unsigned long end, pgprot_t newprot,
1853 			      unsigned long cp_flags);
1854 extern int mprotect_fixup(struct vm_area_struct *vma,
1855 			  struct vm_area_struct **pprev, unsigned long start,
1856 			  unsigned long end, unsigned long newflags);
1857 
1858 /*
1859  * doesn't attempt to fault and will return short.
1860  */
1861 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1862 			     unsigned int gup_flags, struct page **pages);
1863 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1864 			     unsigned int gup_flags, struct page **pages);
1865 
1866 static inline bool get_user_page_fast_only(unsigned long addr,
1867 			unsigned int gup_flags, struct page **pagep)
1868 {
1869 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1870 }
1871 /*
1872  * per-process(per-mm_struct) statistics.
1873  */
1874 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1875 {
1876 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1877 
1878 #ifdef SPLIT_RSS_COUNTING
1879 	/*
1880 	 * counter is updated in asynchronous manner and may go to minus.
1881 	 * But it's never be expected number for users.
1882 	 */
1883 	if (val < 0)
1884 		val = 0;
1885 #endif
1886 	return (unsigned long)val;
1887 }
1888 
1889 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1890 
1891 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1892 {
1893 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1894 
1895 	mm_trace_rss_stat(mm, member, count);
1896 }
1897 
1898 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1899 {
1900 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1901 
1902 	mm_trace_rss_stat(mm, member, count);
1903 }
1904 
1905 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1906 {
1907 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1908 
1909 	mm_trace_rss_stat(mm, member, count);
1910 }
1911 
1912 /* Optimized variant when page is already known not to be PageAnon */
1913 static inline int mm_counter_file(struct page *page)
1914 {
1915 	if (PageSwapBacked(page))
1916 		return MM_SHMEMPAGES;
1917 	return MM_FILEPAGES;
1918 }
1919 
1920 static inline int mm_counter(struct page *page)
1921 {
1922 	if (PageAnon(page))
1923 		return MM_ANONPAGES;
1924 	return mm_counter_file(page);
1925 }
1926 
1927 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1928 {
1929 	return get_mm_counter(mm, MM_FILEPAGES) +
1930 		get_mm_counter(mm, MM_ANONPAGES) +
1931 		get_mm_counter(mm, MM_SHMEMPAGES);
1932 }
1933 
1934 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1935 {
1936 	return max(mm->hiwater_rss, get_mm_rss(mm));
1937 }
1938 
1939 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1940 {
1941 	return max(mm->hiwater_vm, mm->total_vm);
1942 }
1943 
1944 static inline void update_hiwater_rss(struct mm_struct *mm)
1945 {
1946 	unsigned long _rss = get_mm_rss(mm);
1947 
1948 	if ((mm)->hiwater_rss < _rss)
1949 		(mm)->hiwater_rss = _rss;
1950 }
1951 
1952 static inline void update_hiwater_vm(struct mm_struct *mm)
1953 {
1954 	if (mm->hiwater_vm < mm->total_vm)
1955 		mm->hiwater_vm = mm->total_vm;
1956 }
1957 
1958 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1959 {
1960 	mm->hiwater_rss = get_mm_rss(mm);
1961 }
1962 
1963 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1964 					 struct mm_struct *mm)
1965 {
1966 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1967 
1968 	if (*maxrss < hiwater_rss)
1969 		*maxrss = hiwater_rss;
1970 }
1971 
1972 #if defined(SPLIT_RSS_COUNTING)
1973 void sync_mm_rss(struct mm_struct *mm);
1974 #else
1975 static inline void sync_mm_rss(struct mm_struct *mm)
1976 {
1977 }
1978 #endif
1979 
1980 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1981 static inline int pte_special(pte_t pte)
1982 {
1983 	return 0;
1984 }
1985 
1986 static inline pte_t pte_mkspecial(pte_t pte)
1987 {
1988 	return pte;
1989 }
1990 #endif
1991 
1992 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1993 static inline int pte_devmap(pte_t pte)
1994 {
1995 	return 0;
1996 }
1997 #endif
1998 
1999 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2000 
2001 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2002 			       spinlock_t **ptl);
2003 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2004 				    spinlock_t **ptl)
2005 {
2006 	pte_t *ptep;
2007 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2008 	return ptep;
2009 }
2010 
2011 #ifdef __PAGETABLE_P4D_FOLDED
2012 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2013 						unsigned long address)
2014 {
2015 	return 0;
2016 }
2017 #else
2018 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2019 #endif
2020 
2021 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2022 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2023 						unsigned long address)
2024 {
2025 	return 0;
2026 }
2027 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2028 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2029 
2030 #else
2031 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2032 
2033 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2034 {
2035 	if (mm_pud_folded(mm))
2036 		return;
2037 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2038 }
2039 
2040 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2041 {
2042 	if (mm_pud_folded(mm))
2043 		return;
2044 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2045 }
2046 #endif
2047 
2048 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2049 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2050 						unsigned long address)
2051 {
2052 	return 0;
2053 }
2054 
2055 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2056 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2057 
2058 #else
2059 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2060 
2061 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2062 {
2063 	if (mm_pmd_folded(mm))
2064 		return;
2065 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2066 }
2067 
2068 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2069 {
2070 	if (mm_pmd_folded(mm))
2071 		return;
2072 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2073 }
2074 #endif
2075 
2076 #ifdef CONFIG_MMU
2077 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2078 {
2079 	atomic_long_set(&mm->pgtables_bytes, 0);
2080 }
2081 
2082 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2083 {
2084 	return atomic_long_read(&mm->pgtables_bytes);
2085 }
2086 
2087 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2088 {
2089 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2090 }
2091 
2092 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2093 {
2094 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2095 }
2096 #else
2097 
2098 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2099 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2100 {
2101 	return 0;
2102 }
2103 
2104 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2105 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2106 #endif
2107 
2108 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2109 int __pte_alloc_kernel(pmd_t *pmd);
2110 
2111 #if defined(CONFIG_MMU)
2112 
2113 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2114 		unsigned long address)
2115 {
2116 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2117 		NULL : p4d_offset(pgd, address);
2118 }
2119 
2120 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2121 		unsigned long address)
2122 {
2123 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2124 		NULL : pud_offset(p4d, address);
2125 }
2126 
2127 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2128 {
2129 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2130 		NULL: pmd_offset(pud, address);
2131 }
2132 #endif /* CONFIG_MMU */
2133 
2134 #if USE_SPLIT_PTE_PTLOCKS
2135 #if ALLOC_SPLIT_PTLOCKS
2136 void __init ptlock_cache_init(void);
2137 extern bool ptlock_alloc(struct page *page);
2138 extern void ptlock_free(struct page *page);
2139 
2140 static inline spinlock_t *ptlock_ptr(struct page *page)
2141 {
2142 	return page->ptl;
2143 }
2144 #else /* ALLOC_SPLIT_PTLOCKS */
2145 static inline void ptlock_cache_init(void)
2146 {
2147 }
2148 
2149 static inline bool ptlock_alloc(struct page *page)
2150 {
2151 	return true;
2152 }
2153 
2154 static inline void ptlock_free(struct page *page)
2155 {
2156 }
2157 
2158 static inline spinlock_t *ptlock_ptr(struct page *page)
2159 {
2160 	return &page->ptl;
2161 }
2162 #endif /* ALLOC_SPLIT_PTLOCKS */
2163 
2164 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2165 {
2166 	return ptlock_ptr(pmd_page(*pmd));
2167 }
2168 
2169 static inline bool ptlock_init(struct page *page)
2170 {
2171 	/*
2172 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2173 	 * with 0. Make sure nobody took it in use in between.
2174 	 *
2175 	 * It can happen if arch try to use slab for page table allocation:
2176 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2177 	 */
2178 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2179 	if (!ptlock_alloc(page))
2180 		return false;
2181 	spin_lock_init(ptlock_ptr(page));
2182 	return true;
2183 }
2184 
2185 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2186 /*
2187  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2188  */
2189 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2190 {
2191 	return &mm->page_table_lock;
2192 }
2193 static inline void ptlock_cache_init(void) {}
2194 static inline bool ptlock_init(struct page *page) { return true; }
2195 static inline void ptlock_free(struct page *page) {}
2196 #endif /* USE_SPLIT_PTE_PTLOCKS */
2197 
2198 static inline void pgtable_init(void)
2199 {
2200 	ptlock_cache_init();
2201 	pgtable_cache_init();
2202 }
2203 
2204 static inline bool pgtable_pte_page_ctor(struct page *page)
2205 {
2206 	if (!ptlock_init(page))
2207 		return false;
2208 	__SetPageTable(page);
2209 	inc_lruvec_page_state(page, NR_PAGETABLE);
2210 	return true;
2211 }
2212 
2213 static inline void pgtable_pte_page_dtor(struct page *page)
2214 {
2215 	ptlock_free(page);
2216 	__ClearPageTable(page);
2217 	dec_lruvec_page_state(page, NR_PAGETABLE);
2218 }
2219 
2220 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2221 ({							\
2222 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2223 	pte_t *__pte = pte_offset_map(pmd, address);	\
2224 	*(ptlp) = __ptl;				\
2225 	spin_lock(__ptl);				\
2226 	__pte;						\
2227 })
2228 
2229 #define pte_unmap_unlock(pte, ptl)	do {		\
2230 	spin_unlock(ptl);				\
2231 	pte_unmap(pte);					\
2232 } while (0)
2233 
2234 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2235 
2236 #define pte_alloc_map(mm, pmd, address)			\
2237 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2238 
2239 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2240 	(pte_alloc(mm, pmd) ?			\
2241 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2242 
2243 #define pte_alloc_kernel(pmd, address)			\
2244 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2245 		NULL: pte_offset_kernel(pmd, address))
2246 
2247 #if USE_SPLIT_PMD_PTLOCKS
2248 
2249 static struct page *pmd_to_page(pmd_t *pmd)
2250 {
2251 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2252 	return virt_to_page((void *)((unsigned long) pmd & mask));
2253 }
2254 
2255 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2256 {
2257 	return ptlock_ptr(pmd_to_page(pmd));
2258 }
2259 
2260 static inline bool pmd_ptlock_init(struct page *page)
2261 {
2262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2263 	page->pmd_huge_pte = NULL;
2264 #endif
2265 	return ptlock_init(page);
2266 }
2267 
2268 static inline void pmd_ptlock_free(struct page *page)
2269 {
2270 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2271 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2272 #endif
2273 	ptlock_free(page);
2274 }
2275 
2276 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2277 
2278 #else
2279 
2280 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2281 {
2282 	return &mm->page_table_lock;
2283 }
2284 
2285 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2286 static inline void pmd_ptlock_free(struct page *page) {}
2287 
2288 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2289 
2290 #endif
2291 
2292 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2293 {
2294 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2295 	spin_lock(ptl);
2296 	return ptl;
2297 }
2298 
2299 static inline bool pgtable_pmd_page_ctor(struct page *page)
2300 {
2301 	if (!pmd_ptlock_init(page))
2302 		return false;
2303 	__SetPageTable(page);
2304 	inc_lruvec_page_state(page, NR_PAGETABLE);
2305 	return true;
2306 }
2307 
2308 static inline void pgtable_pmd_page_dtor(struct page *page)
2309 {
2310 	pmd_ptlock_free(page);
2311 	__ClearPageTable(page);
2312 	dec_lruvec_page_state(page, NR_PAGETABLE);
2313 }
2314 
2315 /*
2316  * No scalability reason to split PUD locks yet, but follow the same pattern
2317  * as the PMD locks to make it easier if we decide to.  The VM should not be
2318  * considered ready to switch to split PUD locks yet; there may be places
2319  * which need to be converted from page_table_lock.
2320  */
2321 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2322 {
2323 	return &mm->page_table_lock;
2324 }
2325 
2326 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2327 {
2328 	spinlock_t *ptl = pud_lockptr(mm, pud);
2329 
2330 	spin_lock(ptl);
2331 	return ptl;
2332 }
2333 
2334 extern void __init pagecache_init(void);
2335 extern void __init free_area_init_memoryless_node(int nid);
2336 extern void free_initmem(void);
2337 
2338 /*
2339  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2340  * into the buddy system. The freed pages will be poisoned with pattern
2341  * "poison" if it's within range [0, UCHAR_MAX].
2342  * Return pages freed into the buddy system.
2343  */
2344 extern unsigned long free_reserved_area(void *start, void *end,
2345 					int poison, const char *s);
2346 
2347 #ifdef	CONFIG_HIGHMEM
2348 /*
2349  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2350  * and totalram_pages.
2351  */
2352 extern void free_highmem_page(struct page *page);
2353 #endif
2354 
2355 extern void adjust_managed_page_count(struct page *page, long count);
2356 extern void mem_init_print_info(const char *str);
2357 
2358 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2359 
2360 /* Free the reserved page into the buddy system, so it gets managed. */
2361 static inline void __free_reserved_page(struct page *page)
2362 {
2363 	ClearPageReserved(page);
2364 	init_page_count(page);
2365 	__free_page(page);
2366 }
2367 
2368 static inline void free_reserved_page(struct page *page)
2369 {
2370 	__free_reserved_page(page);
2371 	adjust_managed_page_count(page, 1);
2372 }
2373 
2374 static inline void mark_page_reserved(struct page *page)
2375 {
2376 	SetPageReserved(page);
2377 	adjust_managed_page_count(page, -1);
2378 }
2379 
2380 /*
2381  * Default method to free all the __init memory into the buddy system.
2382  * The freed pages will be poisoned with pattern "poison" if it's within
2383  * range [0, UCHAR_MAX].
2384  * Return pages freed into the buddy system.
2385  */
2386 static inline unsigned long free_initmem_default(int poison)
2387 {
2388 	extern char __init_begin[], __init_end[];
2389 
2390 	return free_reserved_area(&__init_begin, &__init_end,
2391 				  poison, "unused kernel");
2392 }
2393 
2394 static inline unsigned long get_num_physpages(void)
2395 {
2396 	int nid;
2397 	unsigned long phys_pages = 0;
2398 
2399 	for_each_online_node(nid)
2400 		phys_pages += node_present_pages(nid);
2401 
2402 	return phys_pages;
2403 }
2404 
2405 /*
2406  * Using memblock node mappings, an architecture may initialise its
2407  * zones, allocate the backing mem_map and account for memory holes in an
2408  * architecture independent manner.
2409  *
2410  * An architecture is expected to register range of page frames backed by
2411  * physical memory with memblock_add[_node]() before calling
2412  * free_area_init() passing in the PFN each zone ends at. At a basic
2413  * usage, an architecture is expected to do something like
2414  *
2415  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2416  * 							 max_highmem_pfn};
2417  * for_each_valid_physical_page_range()
2418  * 	memblock_add_node(base, size, nid)
2419  * free_area_init(max_zone_pfns);
2420  */
2421 void free_area_init(unsigned long *max_zone_pfn);
2422 unsigned long node_map_pfn_alignment(void);
2423 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2424 						unsigned long end_pfn);
2425 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2426 						unsigned long end_pfn);
2427 extern void get_pfn_range_for_nid(unsigned int nid,
2428 			unsigned long *start_pfn, unsigned long *end_pfn);
2429 extern unsigned long find_min_pfn_with_active_regions(void);
2430 
2431 #ifndef CONFIG_NEED_MULTIPLE_NODES
2432 static inline int early_pfn_to_nid(unsigned long pfn)
2433 {
2434 	return 0;
2435 }
2436 #else
2437 /* please see mm/page_alloc.c */
2438 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2439 #endif
2440 
2441 extern void set_dma_reserve(unsigned long new_dma_reserve);
2442 extern void memmap_init_zone(unsigned long, int, unsigned long,
2443 		unsigned long, unsigned long, enum meminit_context,
2444 		struct vmem_altmap *, int migratetype);
2445 extern void setup_per_zone_wmarks(void);
2446 extern int __meminit init_per_zone_wmark_min(void);
2447 extern void mem_init(void);
2448 extern void __init mmap_init(void);
2449 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2450 extern long si_mem_available(void);
2451 extern void si_meminfo(struct sysinfo * val);
2452 extern void si_meminfo_node(struct sysinfo *val, int nid);
2453 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2454 extern unsigned long arch_reserved_kernel_pages(void);
2455 #endif
2456 
2457 extern __printf(3, 4)
2458 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2459 
2460 extern void setup_per_cpu_pageset(void);
2461 
2462 /* page_alloc.c */
2463 extern int min_free_kbytes;
2464 extern int watermark_boost_factor;
2465 extern int watermark_scale_factor;
2466 extern bool arch_has_descending_max_zone_pfns(void);
2467 
2468 /* nommu.c */
2469 extern atomic_long_t mmap_pages_allocated;
2470 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2471 
2472 /* interval_tree.c */
2473 void vma_interval_tree_insert(struct vm_area_struct *node,
2474 			      struct rb_root_cached *root);
2475 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2476 				    struct vm_area_struct *prev,
2477 				    struct rb_root_cached *root);
2478 void vma_interval_tree_remove(struct vm_area_struct *node,
2479 			      struct rb_root_cached *root);
2480 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2481 				unsigned long start, unsigned long last);
2482 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2483 				unsigned long start, unsigned long last);
2484 
2485 #define vma_interval_tree_foreach(vma, root, start, last)		\
2486 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2487 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2488 
2489 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2490 				   struct rb_root_cached *root);
2491 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2492 				   struct rb_root_cached *root);
2493 struct anon_vma_chain *
2494 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2495 				  unsigned long start, unsigned long last);
2496 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2497 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2498 #ifdef CONFIG_DEBUG_VM_RB
2499 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2500 #endif
2501 
2502 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2503 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2504 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2505 
2506 /* mmap.c */
2507 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2508 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2509 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2510 	struct vm_area_struct *expand);
2511 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2512 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2513 {
2514 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2515 }
2516 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2517 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2518 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2519 	struct mempolicy *, struct vm_userfaultfd_ctx);
2520 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2521 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2522 	unsigned long addr, int new_below);
2523 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2524 	unsigned long addr, int new_below);
2525 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2526 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2527 	struct rb_node **, struct rb_node *);
2528 extern void unlink_file_vma(struct vm_area_struct *);
2529 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2530 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2531 	bool *need_rmap_locks);
2532 extern void exit_mmap(struct mm_struct *);
2533 
2534 static inline int check_data_rlimit(unsigned long rlim,
2535 				    unsigned long new,
2536 				    unsigned long start,
2537 				    unsigned long end_data,
2538 				    unsigned long start_data)
2539 {
2540 	if (rlim < RLIM_INFINITY) {
2541 		if (((new - start) + (end_data - start_data)) > rlim)
2542 			return -ENOSPC;
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 extern int mm_take_all_locks(struct mm_struct *mm);
2549 extern void mm_drop_all_locks(struct mm_struct *mm);
2550 
2551 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2552 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2553 extern struct file *get_task_exe_file(struct task_struct *task);
2554 
2555 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2556 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2557 
2558 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2559 				   const struct vm_special_mapping *sm);
2560 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2561 				   unsigned long addr, unsigned long len,
2562 				   unsigned long flags,
2563 				   const struct vm_special_mapping *spec);
2564 /* This is an obsolete alternative to _install_special_mapping. */
2565 extern int install_special_mapping(struct mm_struct *mm,
2566 				   unsigned long addr, unsigned long len,
2567 				   unsigned long flags, struct page **pages);
2568 
2569 unsigned long randomize_stack_top(unsigned long stack_top);
2570 
2571 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2572 
2573 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2574 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2575 	struct list_head *uf);
2576 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2577 	unsigned long len, unsigned long prot, unsigned long flags,
2578 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2579 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2580 		       struct list_head *uf, bool downgrade);
2581 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2582 		     struct list_head *uf);
2583 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2584 
2585 #ifdef CONFIG_MMU
2586 extern int __mm_populate(unsigned long addr, unsigned long len,
2587 			 int ignore_errors);
2588 static inline void mm_populate(unsigned long addr, unsigned long len)
2589 {
2590 	/* Ignore errors */
2591 	(void) __mm_populate(addr, len, 1);
2592 }
2593 #else
2594 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2595 #endif
2596 
2597 /* These take the mm semaphore themselves */
2598 extern int __must_check vm_brk(unsigned long, unsigned long);
2599 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2600 extern int vm_munmap(unsigned long, size_t);
2601 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2602         unsigned long, unsigned long,
2603         unsigned long, unsigned long);
2604 
2605 struct vm_unmapped_area_info {
2606 #define VM_UNMAPPED_AREA_TOPDOWN 1
2607 	unsigned long flags;
2608 	unsigned long length;
2609 	unsigned long low_limit;
2610 	unsigned long high_limit;
2611 	unsigned long align_mask;
2612 	unsigned long align_offset;
2613 };
2614 
2615 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2616 
2617 /* truncate.c */
2618 extern void truncate_inode_pages(struct address_space *, loff_t);
2619 extern void truncate_inode_pages_range(struct address_space *,
2620 				       loff_t lstart, loff_t lend);
2621 extern void truncate_inode_pages_final(struct address_space *);
2622 
2623 /* generic vm_area_ops exported for stackable file systems */
2624 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2625 extern void filemap_map_pages(struct vm_fault *vmf,
2626 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2627 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2628 
2629 /* mm/page-writeback.c */
2630 int __must_check write_one_page(struct page *page);
2631 void task_dirty_inc(struct task_struct *tsk);
2632 
2633 extern unsigned long stack_guard_gap;
2634 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2635 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2636 
2637 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2638 extern int expand_downwards(struct vm_area_struct *vma,
2639 		unsigned long address);
2640 #if VM_GROWSUP
2641 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2642 #else
2643   #define expand_upwards(vma, address) (0)
2644 #endif
2645 
2646 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2647 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2648 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2649 					     struct vm_area_struct **pprev);
2650 
2651 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2652    NULL if none.  Assume start_addr < end_addr. */
2653 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2654 {
2655 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2656 
2657 	if (vma && end_addr <= vma->vm_start)
2658 		vma = NULL;
2659 	return vma;
2660 }
2661 
2662 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2663 {
2664 	unsigned long vm_start = vma->vm_start;
2665 
2666 	if (vma->vm_flags & VM_GROWSDOWN) {
2667 		vm_start -= stack_guard_gap;
2668 		if (vm_start > vma->vm_start)
2669 			vm_start = 0;
2670 	}
2671 	return vm_start;
2672 }
2673 
2674 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2675 {
2676 	unsigned long vm_end = vma->vm_end;
2677 
2678 	if (vma->vm_flags & VM_GROWSUP) {
2679 		vm_end += stack_guard_gap;
2680 		if (vm_end < vma->vm_end)
2681 			vm_end = -PAGE_SIZE;
2682 	}
2683 	return vm_end;
2684 }
2685 
2686 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2687 {
2688 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2689 }
2690 
2691 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2692 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2693 				unsigned long vm_start, unsigned long vm_end)
2694 {
2695 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2696 
2697 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2698 		vma = NULL;
2699 
2700 	return vma;
2701 }
2702 
2703 static inline bool range_in_vma(struct vm_area_struct *vma,
2704 				unsigned long start, unsigned long end)
2705 {
2706 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2707 }
2708 
2709 #ifdef CONFIG_MMU
2710 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2711 void vma_set_page_prot(struct vm_area_struct *vma);
2712 #else
2713 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2714 {
2715 	return __pgprot(0);
2716 }
2717 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2718 {
2719 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2720 }
2721 #endif
2722 
2723 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2724 
2725 #ifdef CONFIG_NUMA_BALANCING
2726 unsigned long change_prot_numa(struct vm_area_struct *vma,
2727 			unsigned long start, unsigned long end);
2728 #endif
2729 
2730 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2731 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2732 			unsigned long pfn, unsigned long size, pgprot_t);
2733 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2734 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2735 			struct page **pages, unsigned long *num);
2736 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2737 				unsigned long num);
2738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2739 				unsigned long num);
2740 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2741 			unsigned long pfn);
2742 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2743 			unsigned long pfn, pgprot_t pgprot);
2744 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2745 			pfn_t pfn);
2746 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2747 			pfn_t pfn, pgprot_t pgprot);
2748 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2749 		unsigned long addr, pfn_t pfn);
2750 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2751 
2752 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2753 				unsigned long addr, struct page *page)
2754 {
2755 	int err = vm_insert_page(vma, addr, page);
2756 
2757 	if (err == -ENOMEM)
2758 		return VM_FAULT_OOM;
2759 	if (err < 0 && err != -EBUSY)
2760 		return VM_FAULT_SIGBUS;
2761 
2762 	return VM_FAULT_NOPAGE;
2763 }
2764 
2765 #ifndef io_remap_pfn_range
2766 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2767 				     unsigned long addr, unsigned long pfn,
2768 				     unsigned long size, pgprot_t prot)
2769 {
2770 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2771 }
2772 #endif
2773 
2774 static inline vm_fault_t vmf_error(int err)
2775 {
2776 	if (err == -ENOMEM)
2777 		return VM_FAULT_OOM;
2778 	return VM_FAULT_SIGBUS;
2779 }
2780 
2781 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2782 			 unsigned int foll_flags);
2783 
2784 #define FOLL_WRITE	0x01	/* check pte is writable */
2785 #define FOLL_TOUCH	0x02	/* mark page accessed */
2786 #define FOLL_GET	0x04	/* do get_page on page */
2787 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2788 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2789 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2790 				 * and return without waiting upon it */
2791 #define FOLL_POPULATE	0x40	/* fault in page */
2792 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2793 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2794 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2795 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2796 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2797 #define FOLL_MLOCK	0x1000	/* lock present pages */
2798 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2799 #define FOLL_COW	0x4000	/* internal GUP flag */
2800 #define FOLL_ANON	0x8000	/* don't do file mappings */
2801 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2802 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2803 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2804 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2805 
2806 /*
2807  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2808  * other. Here is what they mean, and how to use them:
2809  *
2810  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2811  * period _often_ under userspace control.  This is in contrast to
2812  * iov_iter_get_pages(), whose usages are transient.
2813  *
2814  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2815  * lifetime enforced by the filesystem and we need guarantees that longterm
2816  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2817  * the filesystem.  Ideas for this coordination include revoking the longterm
2818  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2819  * added after the problem with filesystems was found FS DAX VMAs are
2820  * specifically failed.  Filesystem pages are still subject to bugs and use of
2821  * FOLL_LONGTERM should be avoided on those pages.
2822  *
2823  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2824  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2825  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2826  * is due to an incompatibility with the FS DAX check and
2827  * FAULT_FLAG_ALLOW_RETRY.
2828  *
2829  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2830  * that region.  And so, CMA attempts to migrate the page before pinning, when
2831  * FOLL_LONGTERM is specified.
2832  *
2833  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2834  * but an additional pin counting system) will be invoked. This is intended for
2835  * anything that gets a page reference and then touches page data (for example,
2836  * Direct IO). This lets the filesystem know that some non-file-system entity is
2837  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2838  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2839  * a call to unpin_user_page().
2840  *
2841  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2842  * and separate refcounting mechanisms, however, and that means that each has
2843  * its own acquire and release mechanisms:
2844  *
2845  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2846  *
2847  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2848  *
2849  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2850  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2851  * calls applied to them, and that's perfectly OK. This is a constraint on the
2852  * callers, not on the pages.)
2853  *
2854  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2855  * directly by the caller. That's in order to help avoid mismatches when
2856  * releasing pages: get_user_pages*() pages must be released via put_page(),
2857  * while pin_user_pages*() pages must be released via unpin_user_page().
2858  *
2859  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2860  */
2861 
2862 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2863 {
2864 	if (vm_fault & VM_FAULT_OOM)
2865 		return -ENOMEM;
2866 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2867 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2868 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2869 		return -EFAULT;
2870 	return 0;
2871 }
2872 
2873 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2874 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2875 			       unsigned long size, pte_fn_t fn, void *data);
2876 extern int apply_to_existing_page_range(struct mm_struct *mm,
2877 				   unsigned long address, unsigned long size,
2878 				   pte_fn_t fn, void *data);
2879 
2880 extern void init_mem_debugging_and_hardening(void);
2881 #ifdef CONFIG_PAGE_POISONING
2882 extern void __kernel_poison_pages(struct page *page, int numpages);
2883 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2884 extern bool _page_poisoning_enabled_early;
2885 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2886 static inline bool page_poisoning_enabled(void)
2887 {
2888 	return _page_poisoning_enabled_early;
2889 }
2890 /*
2891  * For use in fast paths after init_mem_debugging() has run, or when a
2892  * false negative result is not harmful when called too early.
2893  */
2894 static inline bool page_poisoning_enabled_static(void)
2895 {
2896 	return static_branch_unlikely(&_page_poisoning_enabled);
2897 }
2898 static inline void kernel_poison_pages(struct page *page, int numpages)
2899 {
2900 	if (page_poisoning_enabled_static())
2901 		__kernel_poison_pages(page, numpages);
2902 }
2903 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2904 {
2905 	if (page_poisoning_enabled_static())
2906 		__kernel_unpoison_pages(page, numpages);
2907 }
2908 #else
2909 static inline bool page_poisoning_enabled(void) { return false; }
2910 static inline bool page_poisoning_enabled_static(void) { return false; }
2911 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2912 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2913 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2914 #endif
2915 
2916 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2917 static inline bool want_init_on_alloc(gfp_t flags)
2918 {
2919 	if (static_branch_unlikely(&init_on_alloc))
2920 		return true;
2921 	return flags & __GFP_ZERO;
2922 }
2923 
2924 DECLARE_STATIC_KEY_FALSE(init_on_free);
2925 static inline bool want_init_on_free(void)
2926 {
2927 	return static_branch_unlikely(&init_on_free);
2928 }
2929 
2930 extern bool _debug_pagealloc_enabled_early;
2931 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2932 
2933 static inline bool debug_pagealloc_enabled(void)
2934 {
2935 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2936 		_debug_pagealloc_enabled_early;
2937 }
2938 
2939 /*
2940  * For use in fast paths after init_debug_pagealloc() has run, or when a
2941  * false negative result is not harmful when called too early.
2942  */
2943 static inline bool debug_pagealloc_enabled_static(void)
2944 {
2945 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2946 		return false;
2947 
2948 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2949 }
2950 
2951 #ifdef CONFIG_DEBUG_PAGEALLOC
2952 /*
2953  * To support DEBUG_PAGEALLOC architecture must ensure that
2954  * __kernel_map_pages() never fails
2955  */
2956 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2957 
2958 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2959 {
2960 	if (debug_pagealloc_enabled_static())
2961 		__kernel_map_pages(page, numpages, 1);
2962 }
2963 
2964 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2965 {
2966 	if (debug_pagealloc_enabled_static())
2967 		__kernel_map_pages(page, numpages, 0);
2968 }
2969 #else	/* CONFIG_DEBUG_PAGEALLOC */
2970 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2971 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2972 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2973 
2974 #ifdef __HAVE_ARCH_GATE_AREA
2975 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2976 extern int in_gate_area_no_mm(unsigned long addr);
2977 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2978 #else
2979 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2980 {
2981 	return NULL;
2982 }
2983 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2984 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2985 {
2986 	return 0;
2987 }
2988 #endif	/* __HAVE_ARCH_GATE_AREA */
2989 
2990 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2991 
2992 #ifdef CONFIG_SYSCTL
2993 extern int sysctl_drop_caches;
2994 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2995 		loff_t *);
2996 #endif
2997 
2998 void drop_slab(void);
2999 void drop_slab_node(int nid);
3000 
3001 #ifndef CONFIG_MMU
3002 #define randomize_va_space 0
3003 #else
3004 extern int randomize_va_space;
3005 #endif
3006 
3007 const char * arch_vma_name(struct vm_area_struct *vma);
3008 #ifdef CONFIG_MMU
3009 void print_vma_addr(char *prefix, unsigned long rip);
3010 #else
3011 static inline void print_vma_addr(char *prefix, unsigned long rip)
3012 {
3013 }
3014 #endif
3015 
3016 void *sparse_buffer_alloc(unsigned long size);
3017 struct page * __populate_section_memmap(unsigned long pfn,
3018 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3019 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3020 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3021 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3022 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3023 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3024 			    struct vmem_altmap *altmap);
3025 void *vmemmap_alloc_block(unsigned long size, int node);
3026 struct vmem_altmap;
3027 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3028 			      struct vmem_altmap *altmap);
3029 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3030 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3031 			       int node, struct vmem_altmap *altmap);
3032 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3033 		struct vmem_altmap *altmap);
3034 void vmemmap_populate_print_last(void);
3035 #ifdef CONFIG_MEMORY_HOTPLUG
3036 void vmemmap_free(unsigned long start, unsigned long end,
3037 		struct vmem_altmap *altmap);
3038 #endif
3039 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3040 				  unsigned long nr_pages);
3041 
3042 enum mf_flags {
3043 	MF_COUNT_INCREASED = 1 << 0,
3044 	MF_ACTION_REQUIRED = 1 << 1,
3045 	MF_MUST_KILL = 1 << 2,
3046 	MF_SOFT_OFFLINE = 1 << 3,
3047 };
3048 extern int memory_failure(unsigned long pfn, int flags);
3049 extern void memory_failure_queue(unsigned long pfn, int flags);
3050 extern void memory_failure_queue_kick(int cpu);
3051 extern int unpoison_memory(unsigned long pfn);
3052 extern int sysctl_memory_failure_early_kill;
3053 extern int sysctl_memory_failure_recovery;
3054 extern void shake_page(struct page *p, int access);
3055 extern atomic_long_t num_poisoned_pages __read_mostly;
3056 extern int soft_offline_page(unsigned long pfn, int flags);
3057 
3058 
3059 /*
3060  * Error handlers for various types of pages.
3061  */
3062 enum mf_result {
3063 	MF_IGNORED,	/* Error: cannot be handled */
3064 	MF_FAILED,	/* Error: handling failed */
3065 	MF_DELAYED,	/* Will be handled later */
3066 	MF_RECOVERED,	/* Successfully recovered */
3067 };
3068 
3069 enum mf_action_page_type {
3070 	MF_MSG_KERNEL,
3071 	MF_MSG_KERNEL_HIGH_ORDER,
3072 	MF_MSG_SLAB,
3073 	MF_MSG_DIFFERENT_COMPOUND,
3074 	MF_MSG_POISONED_HUGE,
3075 	MF_MSG_HUGE,
3076 	MF_MSG_FREE_HUGE,
3077 	MF_MSG_NON_PMD_HUGE,
3078 	MF_MSG_UNMAP_FAILED,
3079 	MF_MSG_DIRTY_SWAPCACHE,
3080 	MF_MSG_CLEAN_SWAPCACHE,
3081 	MF_MSG_DIRTY_MLOCKED_LRU,
3082 	MF_MSG_CLEAN_MLOCKED_LRU,
3083 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3084 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3085 	MF_MSG_DIRTY_LRU,
3086 	MF_MSG_CLEAN_LRU,
3087 	MF_MSG_TRUNCATED_LRU,
3088 	MF_MSG_BUDDY,
3089 	MF_MSG_BUDDY_2ND,
3090 	MF_MSG_DAX,
3091 	MF_MSG_UNSPLIT_THP,
3092 	MF_MSG_UNKNOWN,
3093 };
3094 
3095 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3096 extern void clear_huge_page(struct page *page,
3097 			    unsigned long addr_hint,
3098 			    unsigned int pages_per_huge_page);
3099 extern void copy_user_huge_page(struct page *dst, struct page *src,
3100 				unsigned long addr_hint,
3101 				struct vm_area_struct *vma,
3102 				unsigned int pages_per_huge_page);
3103 extern long copy_huge_page_from_user(struct page *dst_page,
3104 				const void __user *usr_src,
3105 				unsigned int pages_per_huge_page,
3106 				bool allow_pagefault);
3107 
3108 /**
3109  * vma_is_special_huge - Are transhuge page-table entries considered special?
3110  * @vma: Pointer to the struct vm_area_struct to consider
3111  *
3112  * Whether transhuge page-table entries are considered "special" following
3113  * the definition in vm_normal_page().
3114  *
3115  * Return: true if transhuge page-table entries should be considered special,
3116  * false otherwise.
3117  */
3118 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3119 {
3120 	return vma_is_dax(vma) || (vma->vm_file &&
3121 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3122 }
3123 
3124 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3125 
3126 #ifdef CONFIG_DEBUG_PAGEALLOC
3127 extern unsigned int _debug_guardpage_minorder;
3128 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3129 
3130 static inline unsigned int debug_guardpage_minorder(void)
3131 {
3132 	return _debug_guardpage_minorder;
3133 }
3134 
3135 static inline bool debug_guardpage_enabled(void)
3136 {
3137 	return static_branch_unlikely(&_debug_guardpage_enabled);
3138 }
3139 
3140 static inline bool page_is_guard(struct page *page)
3141 {
3142 	if (!debug_guardpage_enabled())
3143 		return false;
3144 
3145 	return PageGuard(page);
3146 }
3147 #else
3148 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3149 static inline bool debug_guardpage_enabled(void) { return false; }
3150 static inline bool page_is_guard(struct page *page) { return false; }
3151 #endif /* CONFIG_DEBUG_PAGEALLOC */
3152 
3153 #if MAX_NUMNODES > 1
3154 void __init setup_nr_node_ids(void);
3155 #else
3156 static inline void setup_nr_node_ids(void) {}
3157 #endif
3158 
3159 extern int memcmp_pages(struct page *page1, struct page *page2);
3160 
3161 static inline int pages_identical(struct page *page1, struct page *page2)
3162 {
3163 	return !memcmp_pages(page1, page2);
3164 }
3165 
3166 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3167 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3168 						pgoff_t first_index, pgoff_t nr,
3169 						pgoff_t bitmap_pgoff,
3170 						unsigned long *bitmap,
3171 						pgoff_t *start,
3172 						pgoff_t *end);
3173 
3174 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3175 				      pgoff_t first_index, pgoff_t nr);
3176 #endif
3177 
3178 extern int sysctl_nr_trim_pages;
3179 
3180 #endif /* __KERNEL__ */
3181 #endif /* _LINUX_MM_H */
3182