1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 26 struct mempolicy; 27 struct anon_vma; 28 struct anon_vma_chain; 29 struct file_ra_state; 30 struct user_struct; 31 struct writeback_control; 32 struct bdi_writeback; 33 34 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 35 extern unsigned long max_mapnr; 36 37 static inline void set_max_mapnr(unsigned long limit) 38 { 39 max_mapnr = limit; 40 } 41 #else 42 static inline void set_max_mapnr(unsigned long limit) { } 43 #endif 44 45 extern unsigned long totalram_pages; 46 extern void * high_memory; 47 extern int page_cluster; 48 49 #ifdef CONFIG_SYSCTL 50 extern int sysctl_legacy_va_layout; 51 #else 52 #define sysctl_legacy_va_layout 0 53 #endif 54 55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 56 extern const int mmap_rnd_bits_min; 57 extern const int mmap_rnd_bits_max; 58 extern int mmap_rnd_bits __read_mostly; 59 #endif 60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 61 extern const int mmap_rnd_compat_bits_min; 62 extern const int mmap_rnd_compat_bits_max; 63 extern int mmap_rnd_compat_bits __read_mostly; 64 #endif 65 66 #include <asm/page.h> 67 #include <asm/pgtable.h> 68 #include <asm/processor.h> 69 70 #ifndef __pa_symbol 71 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 72 #endif 73 74 /* 75 * To prevent common memory management code establishing 76 * a zero page mapping on a read fault. 77 * This macro should be defined within <asm/pgtable.h>. 78 * s390 does this to prevent multiplexing of hardware bits 79 * related to the physical page in case of virtualization. 80 */ 81 #ifndef mm_forbids_zeropage 82 #define mm_forbids_zeropage(X) (0) 83 #endif 84 85 extern unsigned long sysctl_user_reserve_kbytes; 86 extern unsigned long sysctl_admin_reserve_kbytes; 87 88 extern int sysctl_overcommit_memory; 89 extern int sysctl_overcommit_ratio; 90 extern unsigned long sysctl_overcommit_kbytes; 91 92 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 93 size_t *, loff_t *); 94 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 95 size_t *, loff_t *); 96 97 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 98 99 /* to align the pointer to the (next) page boundary */ 100 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 101 102 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 103 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 104 105 /* 106 * Linux kernel virtual memory manager primitives. 107 * The idea being to have a "virtual" mm in the same way 108 * we have a virtual fs - giving a cleaner interface to the 109 * mm details, and allowing different kinds of memory mappings 110 * (from shared memory to executable loading to arbitrary 111 * mmap() functions). 112 */ 113 114 extern struct kmem_cache *vm_area_cachep; 115 116 #ifndef CONFIG_MMU 117 extern struct rb_root nommu_region_tree; 118 extern struct rw_semaphore nommu_region_sem; 119 120 extern unsigned int kobjsize(const void *objp); 121 #endif 122 123 /* 124 * vm_flags in vm_area_struct, see mm_types.h. 125 */ 126 #define VM_NONE 0x00000000 127 128 #define VM_READ 0x00000001 /* currently active flags */ 129 #define VM_WRITE 0x00000002 130 #define VM_EXEC 0x00000004 131 #define VM_SHARED 0x00000008 132 133 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 134 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 135 #define VM_MAYWRITE 0x00000020 136 #define VM_MAYEXEC 0x00000040 137 #define VM_MAYSHARE 0x00000080 138 139 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 140 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 141 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 142 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 143 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 144 145 #define VM_LOCKED 0x00002000 146 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 147 148 /* Used by sys_madvise() */ 149 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 150 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 151 152 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 153 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 154 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 155 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 156 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 157 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 158 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 159 #define VM_ARCH_2 0x02000000 160 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 161 162 #ifdef CONFIG_MEM_SOFT_DIRTY 163 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 164 #else 165 # define VM_SOFTDIRTY 0 166 #endif 167 168 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 169 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 170 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 171 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 172 173 #if defined(CONFIG_X86) 174 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 175 #elif defined(CONFIG_PPC) 176 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 177 #elif defined(CONFIG_PARISC) 178 # define VM_GROWSUP VM_ARCH_1 179 #elif defined(CONFIG_METAG) 180 # define VM_GROWSUP VM_ARCH_1 181 #elif defined(CONFIG_IA64) 182 # define VM_GROWSUP VM_ARCH_1 183 #elif !defined(CONFIG_MMU) 184 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 185 #endif 186 187 #if defined(CONFIG_X86) 188 /* MPX specific bounds table or bounds directory */ 189 # define VM_MPX VM_ARCH_2 190 #endif 191 192 #ifndef VM_GROWSUP 193 # define VM_GROWSUP VM_NONE 194 #endif 195 196 /* Bits set in the VMA until the stack is in its final location */ 197 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 198 199 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 200 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 201 #endif 202 203 #ifdef CONFIG_STACK_GROWSUP 204 #define VM_STACK VM_GROWSUP 205 #else 206 #define VM_STACK VM_GROWSDOWN 207 #endif 208 209 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 210 211 /* 212 * Special vmas that are non-mergable, non-mlock()able. 213 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 214 */ 215 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 216 217 /* This mask defines which mm->def_flags a process can inherit its parent */ 218 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 219 220 /* This mask is used to clear all the VMA flags used by mlock */ 221 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 222 223 /* 224 * mapping from the currently active vm_flags protection bits (the 225 * low four bits) to a page protection mask.. 226 */ 227 extern pgprot_t protection_map[16]; 228 229 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 230 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 231 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 232 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 233 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 234 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 235 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 236 237 /* 238 * vm_fault is filled by the the pagefault handler and passed to the vma's 239 * ->fault function. The vma's ->fault is responsible for returning a bitmask 240 * of VM_FAULT_xxx flags that give details about how the fault was handled. 241 * 242 * MM layer fills up gfp_mask for page allocations but fault handler might 243 * alter it if its implementation requires a different allocation context. 244 * 245 * pgoff should be used in favour of virtual_address, if possible. 246 */ 247 struct vm_fault { 248 unsigned int flags; /* FAULT_FLAG_xxx flags */ 249 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 250 pgoff_t pgoff; /* Logical page offset based on vma */ 251 void __user *virtual_address; /* Faulting virtual address */ 252 253 struct page *cow_page; /* Handler may choose to COW */ 254 struct page *page; /* ->fault handlers should return a 255 * page here, unless VM_FAULT_NOPAGE 256 * is set (which is also implied by 257 * VM_FAULT_ERROR). 258 */ 259 /* for ->map_pages() only */ 260 pgoff_t max_pgoff; /* map pages for offset from pgoff till 261 * max_pgoff inclusive */ 262 pte_t *pte; /* pte entry associated with ->pgoff */ 263 }; 264 265 /* 266 * These are the virtual MM functions - opening of an area, closing and 267 * unmapping it (needed to keep files on disk up-to-date etc), pointer 268 * to the functions called when a no-page or a wp-page exception occurs. 269 */ 270 struct vm_operations_struct { 271 void (*open)(struct vm_area_struct * area); 272 void (*close)(struct vm_area_struct * area); 273 int (*mremap)(struct vm_area_struct * area); 274 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 275 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 276 pmd_t *, unsigned int flags); 277 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 278 279 /* notification that a previously read-only page is about to become 280 * writable, if an error is returned it will cause a SIGBUS */ 281 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 282 283 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 284 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 285 286 /* called by access_process_vm when get_user_pages() fails, typically 287 * for use by special VMAs that can switch between memory and hardware 288 */ 289 int (*access)(struct vm_area_struct *vma, unsigned long addr, 290 void *buf, int len, int write); 291 292 /* Called by the /proc/PID/maps code to ask the vma whether it 293 * has a special name. Returning non-NULL will also cause this 294 * vma to be dumped unconditionally. */ 295 const char *(*name)(struct vm_area_struct *vma); 296 297 #ifdef CONFIG_NUMA 298 /* 299 * set_policy() op must add a reference to any non-NULL @new mempolicy 300 * to hold the policy upon return. Caller should pass NULL @new to 301 * remove a policy and fall back to surrounding context--i.e. do not 302 * install a MPOL_DEFAULT policy, nor the task or system default 303 * mempolicy. 304 */ 305 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 306 307 /* 308 * get_policy() op must add reference [mpol_get()] to any policy at 309 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 310 * in mm/mempolicy.c will do this automatically. 311 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 312 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 313 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 314 * must return NULL--i.e., do not "fallback" to task or system default 315 * policy. 316 */ 317 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 318 unsigned long addr); 319 #endif 320 /* 321 * Called by vm_normal_page() for special PTEs to find the 322 * page for @addr. This is useful if the default behavior 323 * (using pte_page()) would not find the correct page. 324 */ 325 struct page *(*find_special_page)(struct vm_area_struct *vma, 326 unsigned long addr); 327 }; 328 329 struct mmu_gather; 330 struct inode; 331 332 #define page_private(page) ((page)->private) 333 #define set_page_private(page, v) ((page)->private = (v)) 334 335 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 336 static inline int pmd_devmap(pmd_t pmd) 337 { 338 return 0; 339 } 340 #endif 341 342 /* 343 * FIXME: take this include out, include page-flags.h in 344 * files which need it (119 of them) 345 */ 346 #include <linux/page-flags.h> 347 #include <linux/huge_mm.h> 348 349 /* 350 * Methods to modify the page usage count. 351 * 352 * What counts for a page usage: 353 * - cache mapping (page->mapping) 354 * - private data (page->private) 355 * - page mapped in a task's page tables, each mapping 356 * is counted separately 357 * 358 * Also, many kernel routines increase the page count before a critical 359 * routine so they can be sure the page doesn't go away from under them. 360 */ 361 362 /* 363 * Drop a ref, return true if the refcount fell to zero (the page has no users) 364 */ 365 static inline int put_page_testzero(struct page *page) 366 { 367 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 368 return atomic_dec_and_test(&page->_count); 369 } 370 371 /* 372 * Try to grab a ref unless the page has a refcount of zero, return false if 373 * that is the case. 374 * This can be called when MMU is off so it must not access 375 * any of the virtual mappings. 376 */ 377 static inline int get_page_unless_zero(struct page *page) 378 { 379 return atomic_inc_not_zero(&page->_count); 380 } 381 382 extern int page_is_ram(unsigned long pfn); 383 384 enum { 385 REGION_INTERSECTS, 386 REGION_DISJOINT, 387 REGION_MIXED, 388 }; 389 390 int region_intersects(resource_size_t offset, size_t size, const char *type); 391 392 /* Support for virtually mapped pages */ 393 struct page *vmalloc_to_page(const void *addr); 394 unsigned long vmalloc_to_pfn(const void *addr); 395 396 /* 397 * Determine if an address is within the vmalloc range 398 * 399 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 400 * is no special casing required. 401 */ 402 static inline int is_vmalloc_addr(const void *x) 403 { 404 #ifdef CONFIG_MMU 405 unsigned long addr = (unsigned long)x; 406 407 return addr >= VMALLOC_START && addr < VMALLOC_END; 408 #else 409 return 0; 410 #endif 411 } 412 #ifdef CONFIG_MMU 413 extern int is_vmalloc_or_module_addr(const void *x); 414 #else 415 static inline int is_vmalloc_or_module_addr(const void *x) 416 { 417 return 0; 418 } 419 #endif 420 421 extern void kvfree(const void *addr); 422 423 static inline atomic_t *compound_mapcount_ptr(struct page *page) 424 { 425 return &page[1].compound_mapcount; 426 } 427 428 static inline int compound_mapcount(struct page *page) 429 { 430 if (!PageCompound(page)) 431 return 0; 432 page = compound_head(page); 433 return atomic_read(compound_mapcount_ptr(page)) + 1; 434 } 435 436 /* 437 * The atomic page->_mapcount, starts from -1: so that transitions 438 * both from it and to it can be tracked, using atomic_inc_and_test 439 * and atomic_add_negative(-1). 440 */ 441 static inline void page_mapcount_reset(struct page *page) 442 { 443 atomic_set(&(page)->_mapcount, -1); 444 } 445 446 int __page_mapcount(struct page *page); 447 448 static inline int page_mapcount(struct page *page) 449 { 450 VM_BUG_ON_PAGE(PageSlab(page), page); 451 452 if (unlikely(PageCompound(page))) 453 return __page_mapcount(page); 454 return atomic_read(&page->_mapcount) + 1; 455 } 456 457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 458 int total_mapcount(struct page *page); 459 #else 460 static inline int total_mapcount(struct page *page) 461 { 462 return page_mapcount(page); 463 } 464 #endif 465 466 static inline int page_count(struct page *page) 467 { 468 return atomic_read(&compound_head(page)->_count); 469 } 470 471 static inline struct page *virt_to_head_page(const void *x) 472 { 473 struct page *page = virt_to_page(x); 474 475 return compound_head(page); 476 } 477 478 /* 479 * Setup the page count before being freed into the page allocator for 480 * the first time (boot or memory hotplug) 481 */ 482 static inline void init_page_count(struct page *page) 483 { 484 atomic_set(&page->_count, 1); 485 } 486 487 void __put_page(struct page *page); 488 489 void put_pages_list(struct list_head *pages); 490 491 void split_page(struct page *page, unsigned int order); 492 int split_free_page(struct page *page); 493 494 /* 495 * Compound pages have a destructor function. Provide a 496 * prototype for that function and accessor functions. 497 * These are _only_ valid on the head of a compound page. 498 */ 499 typedef void compound_page_dtor(struct page *); 500 501 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 502 enum compound_dtor_id { 503 NULL_COMPOUND_DTOR, 504 COMPOUND_PAGE_DTOR, 505 #ifdef CONFIG_HUGETLB_PAGE 506 HUGETLB_PAGE_DTOR, 507 #endif 508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 509 TRANSHUGE_PAGE_DTOR, 510 #endif 511 NR_COMPOUND_DTORS, 512 }; 513 extern compound_page_dtor * const compound_page_dtors[]; 514 515 static inline void set_compound_page_dtor(struct page *page, 516 enum compound_dtor_id compound_dtor) 517 { 518 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 519 page[1].compound_dtor = compound_dtor; 520 } 521 522 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 523 { 524 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 525 return compound_page_dtors[page[1].compound_dtor]; 526 } 527 528 static inline unsigned int compound_order(struct page *page) 529 { 530 if (!PageHead(page)) 531 return 0; 532 return page[1].compound_order; 533 } 534 535 static inline void set_compound_order(struct page *page, unsigned int order) 536 { 537 page[1].compound_order = order; 538 } 539 540 void free_compound_page(struct page *page); 541 542 #ifdef CONFIG_MMU 543 /* 544 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 545 * servicing faults for write access. In the normal case, do always want 546 * pte_mkwrite. But get_user_pages can cause write faults for mappings 547 * that do not have writing enabled, when used by access_process_vm. 548 */ 549 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 550 { 551 if (likely(vma->vm_flags & VM_WRITE)) 552 pte = pte_mkwrite(pte); 553 return pte; 554 } 555 556 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 557 struct page *page, pte_t *pte, bool write, bool anon); 558 #endif 559 560 /* 561 * Multiple processes may "see" the same page. E.g. for untouched 562 * mappings of /dev/null, all processes see the same page full of 563 * zeroes, and text pages of executables and shared libraries have 564 * only one copy in memory, at most, normally. 565 * 566 * For the non-reserved pages, page_count(page) denotes a reference count. 567 * page_count() == 0 means the page is free. page->lru is then used for 568 * freelist management in the buddy allocator. 569 * page_count() > 0 means the page has been allocated. 570 * 571 * Pages are allocated by the slab allocator in order to provide memory 572 * to kmalloc and kmem_cache_alloc. In this case, the management of the 573 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 574 * unless a particular usage is carefully commented. (the responsibility of 575 * freeing the kmalloc memory is the caller's, of course). 576 * 577 * A page may be used by anyone else who does a __get_free_page(). 578 * In this case, page_count still tracks the references, and should only 579 * be used through the normal accessor functions. The top bits of page->flags 580 * and page->virtual store page management information, but all other fields 581 * are unused and could be used privately, carefully. The management of this 582 * page is the responsibility of the one who allocated it, and those who have 583 * subsequently been given references to it. 584 * 585 * The other pages (we may call them "pagecache pages") are completely 586 * managed by the Linux memory manager: I/O, buffers, swapping etc. 587 * The following discussion applies only to them. 588 * 589 * A pagecache page contains an opaque `private' member, which belongs to the 590 * page's address_space. Usually, this is the address of a circular list of 591 * the page's disk buffers. PG_private must be set to tell the VM to call 592 * into the filesystem to release these pages. 593 * 594 * A page may belong to an inode's memory mapping. In this case, page->mapping 595 * is the pointer to the inode, and page->index is the file offset of the page, 596 * in units of PAGE_CACHE_SIZE. 597 * 598 * If pagecache pages are not associated with an inode, they are said to be 599 * anonymous pages. These may become associated with the swapcache, and in that 600 * case PG_swapcache is set, and page->private is an offset into the swapcache. 601 * 602 * In either case (swapcache or inode backed), the pagecache itself holds one 603 * reference to the page. Setting PG_private should also increment the 604 * refcount. The each user mapping also has a reference to the page. 605 * 606 * The pagecache pages are stored in a per-mapping radix tree, which is 607 * rooted at mapping->page_tree, and indexed by offset. 608 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 609 * lists, we instead now tag pages as dirty/writeback in the radix tree. 610 * 611 * All pagecache pages may be subject to I/O: 612 * - inode pages may need to be read from disk, 613 * - inode pages which have been modified and are MAP_SHARED may need 614 * to be written back to the inode on disk, 615 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 616 * modified may need to be swapped out to swap space and (later) to be read 617 * back into memory. 618 */ 619 620 /* 621 * The zone field is never updated after free_area_init_core() 622 * sets it, so none of the operations on it need to be atomic. 623 */ 624 625 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 626 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 627 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 628 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 629 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 630 631 /* 632 * Define the bit shifts to access each section. For non-existent 633 * sections we define the shift as 0; that plus a 0 mask ensures 634 * the compiler will optimise away reference to them. 635 */ 636 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 637 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 638 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 639 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 640 641 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 642 #ifdef NODE_NOT_IN_PAGE_FLAGS 643 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 644 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 645 SECTIONS_PGOFF : ZONES_PGOFF) 646 #else 647 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 648 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 649 NODES_PGOFF : ZONES_PGOFF) 650 #endif 651 652 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 653 654 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 655 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 656 #endif 657 658 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 659 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 660 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 661 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 662 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 663 664 static inline enum zone_type page_zonenum(const struct page *page) 665 { 666 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 667 } 668 669 #ifdef CONFIG_ZONE_DEVICE 670 void get_zone_device_page(struct page *page); 671 void put_zone_device_page(struct page *page); 672 static inline bool is_zone_device_page(const struct page *page) 673 { 674 return page_zonenum(page) == ZONE_DEVICE; 675 } 676 #else 677 static inline void get_zone_device_page(struct page *page) 678 { 679 } 680 static inline void put_zone_device_page(struct page *page) 681 { 682 } 683 static inline bool is_zone_device_page(const struct page *page) 684 { 685 return false; 686 } 687 #endif 688 689 static inline void get_page(struct page *page) 690 { 691 page = compound_head(page); 692 /* 693 * Getting a normal page or the head of a compound page 694 * requires to already have an elevated page->_count. 695 */ 696 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 697 atomic_inc(&page->_count); 698 699 if (unlikely(is_zone_device_page(page))) 700 get_zone_device_page(page); 701 } 702 703 static inline void put_page(struct page *page) 704 { 705 page = compound_head(page); 706 707 if (put_page_testzero(page)) 708 __put_page(page); 709 710 if (unlikely(is_zone_device_page(page))) 711 put_zone_device_page(page); 712 } 713 714 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 715 #define SECTION_IN_PAGE_FLAGS 716 #endif 717 718 /* 719 * The identification function is mainly used by the buddy allocator for 720 * determining if two pages could be buddies. We are not really identifying 721 * the zone since we could be using the section number id if we do not have 722 * node id available in page flags. 723 * We only guarantee that it will return the same value for two combinable 724 * pages in a zone. 725 */ 726 static inline int page_zone_id(struct page *page) 727 { 728 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 729 } 730 731 static inline int zone_to_nid(struct zone *zone) 732 { 733 #ifdef CONFIG_NUMA 734 return zone->node; 735 #else 736 return 0; 737 #endif 738 } 739 740 #ifdef NODE_NOT_IN_PAGE_FLAGS 741 extern int page_to_nid(const struct page *page); 742 #else 743 static inline int page_to_nid(const struct page *page) 744 { 745 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 746 } 747 #endif 748 749 #ifdef CONFIG_NUMA_BALANCING 750 static inline int cpu_pid_to_cpupid(int cpu, int pid) 751 { 752 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 753 } 754 755 static inline int cpupid_to_pid(int cpupid) 756 { 757 return cpupid & LAST__PID_MASK; 758 } 759 760 static inline int cpupid_to_cpu(int cpupid) 761 { 762 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 763 } 764 765 static inline int cpupid_to_nid(int cpupid) 766 { 767 return cpu_to_node(cpupid_to_cpu(cpupid)); 768 } 769 770 static inline bool cpupid_pid_unset(int cpupid) 771 { 772 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 773 } 774 775 static inline bool cpupid_cpu_unset(int cpupid) 776 { 777 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 778 } 779 780 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 781 { 782 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 783 } 784 785 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 786 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 787 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 788 { 789 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 790 } 791 792 static inline int page_cpupid_last(struct page *page) 793 { 794 return page->_last_cpupid; 795 } 796 static inline void page_cpupid_reset_last(struct page *page) 797 { 798 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 799 } 800 #else 801 static inline int page_cpupid_last(struct page *page) 802 { 803 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 804 } 805 806 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 807 808 static inline void page_cpupid_reset_last(struct page *page) 809 { 810 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 811 812 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 813 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 814 } 815 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 816 #else /* !CONFIG_NUMA_BALANCING */ 817 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 818 { 819 return page_to_nid(page); /* XXX */ 820 } 821 822 static inline int page_cpupid_last(struct page *page) 823 { 824 return page_to_nid(page); /* XXX */ 825 } 826 827 static inline int cpupid_to_nid(int cpupid) 828 { 829 return -1; 830 } 831 832 static inline int cpupid_to_pid(int cpupid) 833 { 834 return -1; 835 } 836 837 static inline int cpupid_to_cpu(int cpupid) 838 { 839 return -1; 840 } 841 842 static inline int cpu_pid_to_cpupid(int nid, int pid) 843 { 844 return -1; 845 } 846 847 static inline bool cpupid_pid_unset(int cpupid) 848 { 849 return 1; 850 } 851 852 static inline void page_cpupid_reset_last(struct page *page) 853 { 854 } 855 856 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 857 { 858 return false; 859 } 860 #endif /* CONFIG_NUMA_BALANCING */ 861 862 static inline struct zone *page_zone(const struct page *page) 863 { 864 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 865 } 866 867 #ifdef SECTION_IN_PAGE_FLAGS 868 static inline void set_page_section(struct page *page, unsigned long section) 869 { 870 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 871 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 872 } 873 874 static inline unsigned long page_to_section(const struct page *page) 875 { 876 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 877 } 878 #endif 879 880 static inline void set_page_zone(struct page *page, enum zone_type zone) 881 { 882 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 883 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 884 } 885 886 static inline void set_page_node(struct page *page, unsigned long node) 887 { 888 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 889 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 890 } 891 892 static inline void set_page_links(struct page *page, enum zone_type zone, 893 unsigned long node, unsigned long pfn) 894 { 895 set_page_zone(page, zone); 896 set_page_node(page, node); 897 #ifdef SECTION_IN_PAGE_FLAGS 898 set_page_section(page, pfn_to_section_nr(pfn)); 899 #endif 900 } 901 902 #ifdef CONFIG_MEMCG 903 static inline struct mem_cgroup *page_memcg(struct page *page) 904 { 905 return page->mem_cgroup; 906 } 907 908 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 909 { 910 page->mem_cgroup = memcg; 911 } 912 #else 913 static inline struct mem_cgroup *page_memcg(struct page *page) 914 { 915 return NULL; 916 } 917 918 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 919 { 920 } 921 #endif 922 923 /* 924 * Some inline functions in vmstat.h depend on page_zone() 925 */ 926 #include <linux/vmstat.h> 927 928 static __always_inline void *lowmem_page_address(const struct page *page) 929 { 930 return __va(PFN_PHYS(page_to_pfn(page))); 931 } 932 933 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 934 #define HASHED_PAGE_VIRTUAL 935 #endif 936 937 #if defined(WANT_PAGE_VIRTUAL) 938 static inline void *page_address(const struct page *page) 939 { 940 return page->virtual; 941 } 942 static inline void set_page_address(struct page *page, void *address) 943 { 944 page->virtual = address; 945 } 946 #define page_address_init() do { } while(0) 947 #endif 948 949 #if defined(HASHED_PAGE_VIRTUAL) 950 void *page_address(const struct page *page); 951 void set_page_address(struct page *page, void *virtual); 952 void page_address_init(void); 953 #endif 954 955 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 956 #define page_address(page) lowmem_page_address(page) 957 #define set_page_address(page, address) do { } while(0) 958 #define page_address_init() do { } while(0) 959 #endif 960 961 extern void *page_rmapping(struct page *page); 962 extern struct anon_vma *page_anon_vma(struct page *page); 963 extern struct address_space *page_mapping(struct page *page); 964 965 extern struct address_space *__page_file_mapping(struct page *); 966 967 static inline 968 struct address_space *page_file_mapping(struct page *page) 969 { 970 if (unlikely(PageSwapCache(page))) 971 return __page_file_mapping(page); 972 973 return page->mapping; 974 } 975 976 /* 977 * Return the pagecache index of the passed page. Regular pagecache pages 978 * use ->index whereas swapcache pages use ->private 979 */ 980 static inline pgoff_t page_index(struct page *page) 981 { 982 if (unlikely(PageSwapCache(page))) 983 return page_private(page); 984 return page->index; 985 } 986 987 extern pgoff_t __page_file_index(struct page *page); 988 989 /* 990 * Return the file index of the page. Regular pagecache pages use ->index 991 * whereas swapcache pages use swp_offset(->private) 992 */ 993 static inline pgoff_t page_file_index(struct page *page) 994 { 995 if (unlikely(PageSwapCache(page))) 996 return __page_file_index(page); 997 998 return page->index; 999 } 1000 1001 /* 1002 * Return true if this page is mapped into pagetables. 1003 * For compound page it returns true if any subpage of compound page is mapped. 1004 */ 1005 static inline bool page_mapped(struct page *page) 1006 { 1007 int i; 1008 if (likely(!PageCompound(page))) 1009 return atomic_read(&page->_mapcount) >= 0; 1010 page = compound_head(page); 1011 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 1012 return true; 1013 for (i = 0; i < hpage_nr_pages(page); i++) { 1014 if (atomic_read(&page[i]._mapcount) >= 0) 1015 return true; 1016 } 1017 return false; 1018 } 1019 1020 /* 1021 * Return true only if the page has been allocated with 1022 * ALLOC_NO_WATERMARKS and the low watermark was not 1023 * met implying that the system is under some pressure. 1024 */ 1025 static inline bool page_is_pfmemalloc(struct page *page) 1026 { 1027 /* 1028 * Page index cannot be this large so this must be 1029 * a pfmemalloc page. 1030 */ 1031 return page->index == -1UL; 1032 } 1033 1034 /* 1035 * Only to be called by the page allocator on a freshly allocated 1036 * page. 1037 */ 1038 static inline void set_page_pfmemalloc(struct page *page) 1039 { 1040 page->index = -1UL; 1041 } 1042 1043 static inline void clear_page_pfmemalloc(struct page *page) 1044 { 1045 page->index = 0; 1046 } 1047 1048 /* 1049 * Different kinds of faults, as returned by handle_mm_fault(). 1050 * Used to decide whether a process gets delivered SIGBUS or 1051 * just gets major/minor fault counters bumped up. 1052 */ 1053 1054 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1055 1056 #define VM_FAULT_OOM 0x0001 1057 #define VM_FAULT_SIGBUS 0x0002 1058 #define VM_FAULT_MAJOR 0x0004 1059 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1060 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1061 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1062 #define VM_FAULT_SIGSEGV 0x0040 1063 1064 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1065 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1066 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1067 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1068 1069 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1070 1071 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1072 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1073 VM_FAULT_FALLBACK) 1074 1075 /* Encode hstate index for a hwpoisoned large page */ 1076 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1077 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1078 1079 /* 1080 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1081 */ 1082 extern void pagefault_out_of_memory(void); 1083 1084 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1085 1086 /* 1087 * Flags passed to show_mem() and show_free_areas() to suppress output in 1088 * various contexts. 1089 */ 1090 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1091 1092 extern void show_free_areas(unsigned int flags); 1093 extern bool skip_free_areas_node(unsigned int flags, int nid); 1094 1095 int shmem_zero_setup(struct vm_area_struct *); 1096 #ifdef CONFIG_SHMEM 1097 bool shmem_mapping(struct address_space *mapping); 1098 #else 1099 static inline bool shmem_mapping(struct address_space *mapping) 1100 { 1101 return false; 1102 } 1103 #endif 1104 1105 extern bool can_do_mlock(void); 1106 extern int user_shm_lock(size_t, struct user_struct *); 1107 extern void user_shm_unlock(size_t, struct user_struct *); 1108 1109 /* 1110 * Parameter block passed down to zap_pte_range in exceptional cases. 1111 */ 1112 struct zap_details { 1113 struct address_space *check_mapping; /* Check page->mapping if set */ 1114 pgoff_t first_index; /* Lowest page->index to unmap */ 1115 pgoff_t last_index; /* Highest page->index to unmap */ 1116 }; 1117 1118 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1119 pte_t pte); 1120 1121 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1122 unsigned long size); 1123 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1124 unsigned long size, struct zap_details *); 1125 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1126 unsigned long start, unsigned long end); 1127 1128 /** 1129 * mm_walk - callbacks for walk_page_range 1130 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1131 * this handler is required to be able to handle 1132 * pmd_trans_huge() pmds. They may simply choose to 1133 * split_huge_page() instead of handling it explicitly. 1134 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1135 * @pte_hole: if set, called for each hole at all levels 1136 * @hugetlb_entry: if set, called for each hugetlb entry 1137 * @test_walk: caller specific callback function to determine whether 1138 * we walk over the current vma or not. A positive returned 1139 * value means "do page table walk over the current vma," 1140 * and a negative one means "abort current page table walk 1141 * right now." 0 means "skip the current vma." 1142 * @mm: mm_struct representing the target process of page table walk 1143 * @vma: vma currently walked (NULL if walking outside vmas) 1144 * @private: private data for callbacks' usage 1145 * 1146 * (see the comment on walk_page_range() for more details) 1147 */ 1148 struct mm_walk { 1149 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1150 unsigned long next, struct mm_walk *walk); 1151 int (*pte_entry)(pte_t *pte, unsigned long addr, 1152 unsigned long next, struct mm_walk *walk); 1153 int (*pte_hole)(unsigned long addr, unsigned long next, 1154 struct mm_walk *walk); 1155 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1156 unsigned long addr, unsigned long next, 1157 struct mm_walk *walk); 1158 int (*test_walk)(unsigned long addr, unsigned long next, 1159 struct mm_walk *walk); 1160 struct mm_struct *mm; 1161 struct vm_area_struct *vma; 1162 void *private; 1163 }; 1164 1165 int walk_page_range(unsigned long addr, unsigned long end, 1166 struct mm_walk *walk); 1167 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1168 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1169 unsigned long end, unsigned long floor, unsigned long ceiling); 1170 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1171 struct vm_area_struct *vma); 1172 void unmap_mapping_range(struct address_space *mapping, 1173 loff_t const holebegin, loff_t const holelen, int even_cows); 1174 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1175 unsigned long *pfn); 1176 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1177 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1178 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1179 void *buf, int len, int write); 1180 1181 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1182 loff_t const holebegin, loff_t const holelen) 1183 { 1184 unmap_mapping_range(mapping, holebegin, holelen, 0); 1185 } 1186 1187 extern void truncate_pagecache(struct inode *inode, loff_t new); 1188 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1189 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1190 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1191 int truncate_inode_page(struct address_space *mapping, struct page *page); 1192 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1193 int invalidate_inode_page(struct page *page); 1194 1195 #ifdef CONFIG_MMU 1196 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1197 unsigned long address, unsigned int flags); 1198 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1199 unsigned long address, unsigned int fault_flags, 1200 bool *unlocked); 1201 #else 1202 static inline int handle_mm_fault(struct mm_struct *mm, 1203 struct vm_area_struct *vma, unsigned long address, 1204 unsigned int flags) 1205 { 1206 /* should never happen if there's no MMU */ 1207 BUG(); 1208 return VM_FAULT_SIGBUS; 1209 } 1210 static inline int fixup_user_fault(struct task_struct *tsk, 1211 struct mm_struct *mm, unsigned long address, 1212 unsigned int fault_flags, bool *unlocked) 1213 { 1214 /* should never happen if there's no MMU */ 1215 BUG(); 1216 return -EFAULT; 1217 } 1218 #endif 1219 1220 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1221 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1222 void *buf, int len, int write); 1223 1224 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1225 unsigned long start, unsigned long nr_pages, 1226 unsigned int foll_flags, struct page **pages, 1227 struct vm_area_struct **vmas, int *nonblocking); 1228 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1229 unsigned long start, unsigned long nr_pages, 1230 int write, int force, struct page **pages, 1231 struct vm_area_struct **vmas); 1232 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1233 unsigned long start, unsigned long nr_pages, 1234 int write, int force, struct page **pages, 1235 int *locked); 1236 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1237 unsigned long start, unsigned long nr_pages, 1238 int write, int force, struct page **pages, 1239 unsigned int gup_flags); 1240 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1241 unsigned long start, unsigned long nr_pages, 1242 int write, int force, struct page **pages); 1243 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1244 struct page **pages); 1245 1246 /* Container for pinned pfns / pages */ 1247 struct frame_vector { 1248 unsigned int nr_allocated; /* Number of frames we have space for */ 1249 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1250 bool got_ref; /* Did we pin pages by getting page ref? */ 1251 bool is_pfns; /* Does array contain pages or pfns? */ 1252 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1253 * pfns_vector_pages() or pfns_vector_pfns() 1254 * for access */ 1255 }; 1256 1257 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1258 void frame_vector_destroy(struct frame_vector *vec); 1259 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1260 bool write, bool force, struct frame_vector *vec); 1261 void put_vaddr_frames(struct frame_vector *vec); 1262 int frame_vector_to_pages(struct frame_vector *vec); 1263 void frame_vector_to_pfns(struct frame_vector *vec); 1264 1265 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1266 { 1267 return vec->nr_frames; 1268 } 1269 1270 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1271 { 1272 if (vec->is_pfns) { 1273 int err = frame_vector_to_pages(vec); 1274 1275 if (err) 1276 return ERR_PTR(err); 1277 } 1278 return (struct page **)(vec->ptrs); 1279 } 1280 1281 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1282 { 1283 if (!vec->is_pfns) 1284 frame_vector_to_pfns(vec); 1285 return (unsigned long *)(vec->ptrs); 1286 } 1287 1288 struct kvec; 1289 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1290 struct page **pages); 1291 int get_kernel_page(unsigned long start, int write, struct page **pages); 1292 struct page *get_dump_page(unsigned long addr); 1293 1294 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1295 extern void do_invalidatepage(struct page *page, unsigned int offset, 1296 unsigned int length); 1297 1298 int __set_page_dirty_nobuffers(struct page *page); 1299 int __set_page_dirty_no_writeback(struct page *page); 1300 int redirty_page_for_writepage(struct writeback_control *wbc, 1301 struct page *page); 1302 void account_page_dirtied(struct page *page, struct address_space *mapping, 1303 struct mem_cgroup *memcg); 1304 void account_page_cleaned(struct page *page, struct address_space *mapping, 1305 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1306 int set_page_dirty(struct page *page); 1307 int set_page_dirty_lock(struct page *page); 1308 void cancel_dirty_page(struct page *page); 1309 int clear_page_dirty_for_io(struct page *page); 1310 1311 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1312 1313 /* Is the vma a continuation of the stack vma above it? */ 1314 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1315 { 1316 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1317 } 1318 1319 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1320 { 1321 return !vma->vm_ops; 1322 } 1323 1324 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1325 unsigned long addr) 1326 { 1327 return (vma->vm_flags & VM_GROWSDOWN) && 1328 (vma->vm_start == addr) && 1329 !vma_growsdown(vma->vm_prev, addr); 1330 } 1331 1332 /* Is the vma a continuation of the stack vma below it? */ 1333 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1334 { 1335 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1336 } 1337 1338 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1339 unsigned long addr) 1340 { 1341 return (vma->vm_flags & VM_GROWSUP) && 1342 (vma->vm_end == addr) && 1343 !vma_growsup(vma->vm_next, addr); 1344 } 1345 1346 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1347 1348 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1349 unsigned long old_addr, struct vm_area_struct *new_vma, 1350 unsigned long new_addr, unsigned long len, 1351 bool need_rmap_locks); 1352 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1353 unsigned long end, pgprot_t newprot, 1354 int dirty_accountable, int prot_numa); 1355 extern int mprotect_fixup(struct vm_area_struct *vma, 1356 struct vm_area_struct **pprev, unsigned long start, 1357 unsigned long end, unsigned long newflags); 1358 1359 /* 1360 * doesn't attempt to fault and will return short. 1361 */ 1362 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1363 struct page **pages); 1364 /* 1365 * per-process(per-mm_struct) statistics. 1366 */ 1367 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1368 { 1369 long val = atomic_long_read(&mm->rss_stat.count[member]); 1370 1371 #ifdef SPLIT_RSS_COUNTING 1372 /* 1373 * counter is updated in asynchronous manner and may go to minus. 1374 * But it's never be expected number for users. 1375 */ 1376 if (val < 0) 1377 val = 0; 1378 #endif 1379 return (unsigned long)val; 1380 } 1381 1382 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1383 { 1384 atomic_long_add(value, &mm->rss_stat.count[member]); 1385 } 1386 1387 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1388 { 1389 atomic_long_inc(&mm->rss_stat.count[member]); 1390 } 1391 1392 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1393 { 1394 atomic_long_dec(&mm->rss_stat.count[member]); 1395 } 1396 1397 /* Optimized variant when page is already known not to be PageAnon */ 1398 static inline int mm_counter_file(struct page *page) 1399 { 1400 if (PageSwapBacked(page)) 1401 return MM_SHMEMPAGES; 1402 return MM_FILEPAGES; 1403 } 1404 1405 static inline int mm_counter(struct page *page) 1406 { 1407 if (PageAnon(page)) 1408 return MM_ANONPAGES; 1409 return mm_counter_file(page); 1410 } 1411 1412 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1413 { 1414 return get_mm_counter(mm, MM_FILEPAGES) + 1415 get_mm_counter(mm, MM_ANONPAGES) + 1416 get_mm_counter(mm, MM_SHMEMPAGES); 1417 } 1418 1419 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1420 { 1421 return max(mm->hiwater_rss, get_mm_rss(mm)); 1422 } 1423 1424 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1425 { 1426 return max(mm->hiwater_vm, mm->total_vm); 1427 } 1428 1429 static inline void update_hiwater_rss(struct mm_struct *mm) 1430 { 1431 unsigned long _rss = get_mm_rss(mm); 1432 1433 if ((mm)->hiwater_rss < _rss) 1434 (mm)->hiwater_rss = _rss; 1435 } 1436 1437 static inline void update_hiwater_vm(struct mm_struct *mm) 1438 { 1439 if (mm->hiwater_vm < mm->total_vm) 1440 mm->hiwater_vm = mm->total_vm; 1441 } 1442 1443 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1444 { 1445 mm->hiwater_rss = get_mm_rss(mm); 1446 } 1447 1448 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1449 struct mm_struct *mm) 1450 { 1451 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1452 1453 if (*maxrss < hiwater_rss) 1454 *maxrss = hiwater_rss; 1455 } 1456 1457 #if defined(SPLIT_RSS_COUNTING) 1458 void sync_mm_rss(struct mm_struct *mm); 1459 #else 1460 static inline void sync_mm_rss(struct mm_struct *mm) 1461 { 1462 } 1463 #endif 1464 1465 #ifndef __HAVE_ARCH_PTE_DEVMAP 1466 static inline int pte_devmap(pte_t pte) 1467 { 1468 return 0; 1469 } 1470 #endif 1471 1472 int vma_wants_writenotify(struct vm_area_struct *vma); 1473 1474 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1475 spinlock_t **ptl); 1476 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1477 spinlock_t **ptl) 1478 { 1479 pte_t *ptep; 1480 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1481 return ptep; 1482 } 1483 1484 #ifdef __PAGETABLE_PUD_FOLDED 1485 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1486 unsigned long address) 1487 { 1488 return 0; 1489 } 1490 #else 1491 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1492 #endif 1493 1494 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1495 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1496 unsigned long address) 1497 { 1498 return 0; 1499 } 1500 1501 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1502 1503 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1504 { 1505 return 0; 1506 } 1507 1508 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1509 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1510 1511 #else 1512 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1513 1514 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1515 { 1516 atomic_long_set(&mm->nr_pmds, 0); 1517 } 1518 1519 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1520 { 1521 return atomic_long_read(&mm->nr_pmds); 1522 } 1523 1524 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1525 { 1526 atomic_long_inc(&mm->nr_pmds); 1527 } 1528 1529 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1530 { 1531 atomic_long_dec(&mm->nr_pmds); 1532 } 1533 #endif 1534 1535 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1536 pmd_t *pmd, unsigned long address); 1537 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1538 1539 /* 1540 * The following ifdef needed to get the 4level-fixup.h header to work. 1541 * Remove it when 4level-fixup.h has been removed. 1542 */ 1543 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1544 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1545 { 1546 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1547 NULL: pud_offset(pgd, address); 1548 } 1549 1550 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1551 { 1552 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1553 NULL: pmd_offset(pud, address); 1554 } 1555 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1556 1557 #if USE_SPLIT_PTE_PTLOCKS 1558 #if ALLOC_SPLIT_PTLOCKS 1559 void __init ptlock_cache_init(void); 1560 extern bool ptlock_alloc(struct page *page); 1561 extern void ptlock_free(struct page *page); 1562 1563 static inline spinlock_t *ptlock_ptr(struct page *page) 1564 { 1565 return page->ptl; 1566 } 1567 #else /* ALLOC_SPLIT_PTLOCKS */ 1568 static inline void ptlock_cache_init(void) 1569 { 1570 } 1571 1572 static inline bool ptlock_alloc(struct page *page) 1573 { 1574 return true; 1575 } 1576 1577 static inline void ptlock_free(struct page *page) 1578 { 1579 } 1580 1581 static inline spinlock_t *ptlock_ptr(struct page *page) 1582 { 1583 return &page->ptl; 1584 } 1585 #endif /* ALLOC_SPLIT_PTLOCKS */ 1586 1587 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1588 { 1589 return ptlock_ptr(pmd_page(*pmd)); 1590 } 1591 1592 static inline bool ptlock_init(struct page *page) 1593 { 1594 /* 1595 * prep_new_page() initialize page->private (and therefore page->ptl) 1596 * with 0. Make sure nobody took it in use in between. 1597 * 1598 * It can happen if arch try to use slab for page table allocation: 1599 * slab code uses page->slab_cache, which share storage with page->ptl. 1600 */ 1601 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1602 if (!ptlock_alloc(page)) 1603 return false; 1604 spin_lock_init(ptlock_ptr(page)); 1605 return true; 1606 } 1607 1608 /* Reset page->mapping so free_pages_check won't complain. */ 1609 static inline void pte_lock_deinit(struct page *page) 1610 { 1611 page->mapping = NULL; 1612 ptlock_free(page); 1613 } 1614 1615 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1616 /* 1617 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1618 */ 1619 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1620 { 1621 return &mm->page_table_lock; 1622 } 1623 static inline void ptlock_cache_init(void) {} 1624 static inline bool ptlock_init(struct page *page) { return true; } 1625 static inline void pte_lock_deinit(struct page *page) {} 1626 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1627 1628 static inline void pgtable_init(void) 1629 { 1630 ptlock_cache_init(); 1631 pgtable_cache_init(); 1632 } 1633 1634 static inline bool pgtable_page_ctor(struct page *page) 1635 { 1636 if (!ptlock_init(page)) 1637 return false; 1638 inc_zone_page_state(page, NR_PAGETABLE); 1639 return true; 1640 } 1641 1642 static inline void pgtable_page_dtor(struct page *page) 1643 { 1644 pte_lock_deinit(page); 1645 dec_zone_page_state(page, NR_PAGETABLE); 1646 } 1647 1648 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1649 ({ \ 1650 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1651 pte_t *__pte = pte_offset_map(pmd, address); \ 1652 *(ptlp) = __ptl; \ 1653 spin_lock(__ptl); \ 1654 __pte; \ 1655 }) 1656 1657 #define pte_unmap_unlock(pte, ptl) do { \ 1658 spin_unlock(ptl); \ 1659 pte_unmap(pte); \ 1660 } while (0) 1661 1662 #define pte_alloc_map(mm, vma, pmd, address) \ 1663 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1664 pmd, address))? \ 1665 NULL: pte_offset_map(pmd, address)) 1666 1667 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1668 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1669 pmd, address))? \ 1670 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1671 1672 #define pte_alloc_kernel(pmd, address) \ 1673 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1674 NULL: pte_offset_kernel(pmd, address)) 1675 1676 #if USE_SPLIT_PMD_PTLOCKS 1677 1678 static struct page *pmd_to_page(pmd_t *pmd) 1679 { 1680 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1681 return virt_to_page((void *)((unsigned long) pmd & mask)); 1682 } 1683 1684 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1685 { 1686 return ptlock_ptr(pmd_to_page(pmd)); 1687 } 1688 1689 static inline bool pgtable_pmd_page_ctor(struct page *page) 1690 { 1691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1692 page->pmd_huge_pte = NULL; 1693 #endif 1694 return ptlock_init(page); 1695 } 1696 1697 static inline void pgtable_pmd_page_dtor(struct page *page) 1698 { 1699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1700 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1701 #endif 1702 ptlock_free(page); 1703 } 1704 1705 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1706 1707 #else 1708 1709 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1710 { 1711 return &mm->page_table_lock; 1712 } 1713 1714 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1715 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1716 1717 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1718 1719 #endif 1720 1721 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1722 { 1723 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1724 spin_lock(ptl); 1725 return ptl; 1726 } 1727 1728 extern void free_area_init(unsigned long * zones_size); 1729 extern void free_area_init_node(int nid, unsigned long * zones_size, 1730 unsigned long zone_start_pfn, unsigned long *zholes_size); 1731 extern void free_initmem(void); 1732 1733 /* 1734 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1735 * into the buddy system. The freed pages will be poisoned with pattern 1736 * "poison" if it's within range [0, UCHAR_MAX]. 1737 * Return pages freed into the buddy system. 1738 */ 1739 extern unsigned long free_reserved_area(void *start, void *end, 1740 int poison, char *s); 1741 1742 #ifdef CONFIG_HIGHMEM 1743 /* 1744 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1745 * and totalram_pages. 1746 */ 1747 extern void free_highmem_page(struct page *page); 1748 #endif 1749 1750 extern void adjust_managed_page_count(struct page *page, long count); 1751 extern void mem_init_print_info(const char *str); 1752 1753 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1754 1755 /* Free the reserved page into the buddy system, so it gets managed. */ 1756 static inline void __free_reserved_page(struct page *page) 1757 { 1758 ClearPageReserved(page); 1759 init_page_count(page); 1760 __free_page(page); 1761 } 1762 1763 static inline void free_reserved_page(struct page *page) 1764 { 1765 __free_reserved_page(page); 1766 adjust_managed_page_count(page, 1); 1767 } 1768 1769 static inline void mark_page_reserved(struct page *page) 1770 { 1771 SetPageReserved(page); 1772 adjust_managed_page_count(page, -1); 1773 } 1774 1775 /* 1776 * Default method to free all the __init memory into the buddy system. 1777 * The freed pages will be poisoned with pattern "poison" if it's within 1778 * range [0, UCHAR_MAX]. 1779 * Return pages freed into the buddy system. 1780 */ 1781 static inline unsigned long free_initmem_default(int poison) 1782 { 1783 extern char __init_begin[], __init_end[]; 1784 1785 return free_reserved_area(&__init_begin, &__init_end, 1786 poison, "unused kernel"); 1787 } 1788 1789 static inline unsigned long get_num_physpages(void) 1790 { 1791 int nid; 1792 unsigned long phys_pages = 0; 1793 1794 for_each_online_node(nid) 1795 phys_pages += node_present_pages(nid); 1796 1797 return phys_pages; 1798 } 1799 1800 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1801 /* 1802 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1803 * zones, allocate the backing mem_map and account for memory holes in a more 1804 * architecture independent manner. This is a substitute for creating the 1805 * zone_sizes[] and zholes_size[] arrays and passing them to 1806 * free_area_init_node() 1807 * 1808 * An architecture is expected to register range of page frames backed by 1809 * physical memory with memblock_add[_node]() before calling 1810 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1811 * usage, an architecture is expected to do something like 1812 * 1813 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1814 * max_highmem_pfn}; 1815 * for_each_valid_physical_page_range() 1816 * memblock_add_node(base, size, nid) 1817 * free_area_init_nodes(max_zone_pfns); 1818 * 1819 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1820 * registered physical page range. Similarly 1821 * sparse_memory_present_with_active_regions() calls memory_present() for 1822 * each range when SPARSEMEM is enabled. 1823 * 1824 * See mm/page_alloc.c for more information on each function exposed by 1825 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1826 */ 1827 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1828 unsigned long node_map_pfn_alignment(void); 1829 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1830 unsigned long end_pfn); 1831 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1832 unsigned long end_pfn); 1833 extern void get_pfn_range_for_nid(unsigned int nid, 1834 unsigned long *start_pfn, unsigned long *end_pfn); 1835 extern unsigned long find_min_pfn_with_active_regions(void); 1836 extern void free_bootmem_with_active_regions(int nid, 1837 unsigned long max_low_pfn); 1838 extern void sparse_memory_present_with_active_regions(int nid); 1839 1840 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1841 1842 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1843 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1844 static inline int __early_pfn_to_nid(unsigned long pfn, 1845 struct mminit_pfnnid_cache *state) 1846 { 1847 return 0; 1848 } 1849 #else 1850 /* please see mm/page_alloc.c */ 1851 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1852 /* there is a per-arch backend function. */ 1853 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1854 struct mminit_pfnnid_cache *state); 1855 #endif 1856 1857 extern void set_dma_reserve(unsigned long new_dma_reserve); 1858 extern void memmap_init_zone(unsigned long, int, unsigned long, 1859 unsigned long, enum memmap_context); 1860 extern void setup_per_zone_wmarks(void); 1861 extern int __meminit init_per_zone_wmark_min(void); 1862 extern void mem_init(void); 1863 extern void __init mmap_init(void); 1864 extern void show_mem(unsigned int flags); 1865 extern void si_meminfo(struct sysinfo * val); 1866 extern void si_meminfo_node(struct sysinfo *val, int nid); 1867 1868 extern __printf(3, 4) 1869 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1870 const char *fmt, ...); 1871 1872 extern void setup_per_cpu_pageset(void); 1873 1874 extern void zone_pcp_update(struct zone *zone); 1875 extern void zone_pcp_reset(struct zone *zone); 1876 1877 /* page_alloc.c */ 1878 extern int min_free_kbytes; 1879 1880 /* nommu.c */ 1881 extern atomic_long_t mmap_pages_allocated; 1882 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1883 1884 /* interval_tree.c */ 1885 void vma_interval_tree_insert(struct vm_area_struct *node, 1886 struct rb_root *root); 1887 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1888 struct vm_area_struct *prev, 1889 struct rb_root *root); 1890 void vma_interval_tree_remove(struct vm_area_struct *node, 1891 struct rb_root *root); 1892 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1893 unsigned long start, unsigned long last); 1894 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1895 unsigned long start, unsigned long last); 1896 1897 #define vma_interval_tree_foreach(vma, root, start, last) \ 1898 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1899 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1900 1901 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1902 struct rb_root *root); 1903 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1904 struct rb_root *root); 1905 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1906 struct rb_root *root, unsigned long start, unsigned long last); 1907 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1908 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1909 #ifdef CONFIG_DEBUG_VM_RB 1910 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1911 #endif 1912 1913 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1914 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1915 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1916 1917 /* mmap.c */ 1918 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1919 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1920 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1921 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1922 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1923 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1924 struct mempolicy *, struct vm_userfaultfd_ctx); 1925 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1926 extern int split_vma(struct mm_struct *, 1927 struct vm_area_struct *, unsigned long addr, int new_below); 1928 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1929 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1930 struct rb_node **, struct rb_node *); 1931 extern void unlink_file_vma(struct vm_area_struct *); 1932 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1933 unsigned long addr, unsigned long len, pgoff_t pgoff, 1934 bool *need_rmap_locks); 1935 extern void exit_mmap(struct mm_struct *); 1936 1937 static inline int check_data_rlimit(unsigned long rlim, 1938 unsigned long new, 1939 unsigned long start, 1940 unsigned long end_data, 1941 unsigned long start_data) 1942 { 1943 if (rlim < RLIM_INFINITY) { 1944 if (((new - start) + (end_data - start_data)) > rlim) 1945 return -ENOSPC; 1946 } 1947 1948 return 0; 1949 } 1950 1951 extern int mm_take_all_locks(struct mm_struct *mm); 1952 extern void mm_drop_all_locks(struct mm_struct *mm); 1953 1954 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1955 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1956 1957 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 1958 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 1959 1960 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1961 unsigned long addr, unsigned long len, 1962 unsigned long flags, 1963 const struct vm_special_mapping *spec); 1964 /* This is an obsolete alternative to _install_special_mapping. */ 1965 extern int install_special_mapping(struct mm_struct *mm, 1966 unsigned long addr, unsigned long len, 1967 unsigned long flags, struct page **pages); 1968 1969 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1970 1971 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1972 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1973 extern unsigned long do_mmap(struct file *file, unsigned long addr, 1974 unsigned long len, unsigned long prot, unsigned long flags, 1975 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1976 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1977 1978 static inline unsigned long 1979 do_mmap_pgoff(struct file *file, unsigned long addr, 1980 unsigned long len, unsigned long prot, unsigned long flags, 1981 unsigned long pgoff, unsigned long *populate) 1982 { 1983 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1984 } 1985 1986 #ifdef CONFIG_MMU 1987 extern int __mm_populate(unsigned long addr, unsigned long len, 1988 int ignore_errors); 1989 static inline void mm_populate(unsigned long addr, unsigned long len) 1990 { 1991 /* Ignore errors */ 1992 (void) __mm_populate(addr, len, 1); 1993 } 1994 #else 1995 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1996 #endif 1997 1998 /* These take the mm semaphore themselves */ 1999 extern unsigned long vm_brk(unsigned long, unsigned long); 2000 extern int vm_munmap(unsigned long, size_t); 2001 extern unsigned long vm_mmap(struct file *, unsigned long, 2002 unsigned long, unsigned long, 2003 unsigned long, unsigned long); 2004 2005 struct vm_unmapped_area_info { 2006 #define VM_UNMAPPED_AREA_TOPDOWN 1 2007 unsigned long flags; 2008 unsigned long length; 2009 unsigned long low_limit; 2010 unsigned long high_limit; 2011 unsigned long align_mask; 2012 unsigned long align_offset; 2013 }; 2014 2015 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2016 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2017 2018 /* 2019 * Search for an unmapped address range. 2020 * 2021 * We are looking for a range that: 2022 * - does not intersect with any VMA; 2023 * - is contained within the [low_limit, high_limit) interval; 2024 * - is at least the desired size. 2025 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2026 */ 2027 static inline unsigned long 2028 vm_unmapped_area(struct vm_unmapped_area_info *info) 2029 { 2030 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2031 return unmapped_area_topdown(info); 2032 else 2033 return unmapped_area(info); 2034 } 2035 2036 /* truncate.c */ 2037 extern void truncate_inode_pages(struct address_space *, loff_t); 2038 extern void truncate_inode_pages_range(struct address_space *, 2039 loff_t lstart, loff_t lend); 2040 extern void truncate_inode_pages_final(struct address_space *); 2041 2042 /* generic vm_area_ops exported for stackable file systems */ 2043 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2044 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2045 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2046 2047 /* mm/page-writeback.c */ 2048 int write_one_page(struct page *page, int wait); 2049 void task_dirty_inc(struct task_struct *tsk); 2050 2051 /* readahead.c */ 2052 #define VM_MAX_READAHEAD 128 /* kbytes */ 2053 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2054 2055 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2056 pgoff_t offset, unsigned long nr_to_read); 2057 2058 void page_cache_sync_readahead(struct address_space *mapping, 2059 struct file_ra_state *ra, 2060 struct file *filp, 2061 pgoff_t offset, 2062 unsigned long size); 2063 2064 void page_cache_async_readahead(struct address_space *mapping, 2065 struct file_ra_state *ra, 2066 struct file *filp, 2067 struct page *pg, 2068 pgoff_t offset, 2069 unsigned long size); 2070 2071 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2072 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2073 2074 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2075 extern int expand_downwards(struct vm_area_struct *vma, 2076 unsigned long address); 2077 #if VM_GROWSUP 2078 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2079 #else 2080 #define expand_upwards(vma, address) (0) 2081 #endif 2082 2083 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2084 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2085 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2086 struct vm_area_struct **pprev); 2087 2088 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2089 NULL if none. Assume start_addr < end_addr. */ 2090 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2091 { 2092 struct vm_area_struct * vma = find_vma(mm,start_addr); 2093 2094 if (vma && end_addr <= vma->vm_start) 2095 vma = NULL; 2096 return vma; 2097 } 2098 2099 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2100 { 2101 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2102 } 2103 2104 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2105 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2106 unsigned long vm_start, unsigned long vm_end) 2107 { 2108 struct vm_area_struct *vma = find_vma(mm, vm_start); 2109 2110 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2111 vma = NULL; 2112 2113 return vma; 2114 } 2115 2116 #ifdef CONFIG_MMU 2117 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2118 void vma_set_page_prot(struct vm_area_struct *vma); 2119 #else 2120 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2121 { 2122 return __pgprot(0); 2123 } 2124 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2125 { 2126 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2127 } 2128 #endif 2129 2130 #ifdef CONFIG_NUMA_BALANCING 2131 unsigned long change_prot_numa(struct vm_area_struct *vma, 2132 unsigned long start, unsigned long end); 2133 #endif 2134 2135 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2136 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2137 unsigned long pfn, unsigned long size, pgprot_t); 2138 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2139 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2140 unsigned long pfn); 2141 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2142 pfn_t pfn); 2143 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2144 2145 2146 struct page *follow_page_mask(struct vm_area_struct *vma, 2147 unsigned long address, unsigned int foll_flags, 2148 unsigned int *page_mask); 2149 2150 static inline struct page *follow_page(struct vm_area_struct *vma, 2151 unsigned long address, unsigned int foll_flags) 2152 { 2153 unsigned int unused_page_mask; 2154 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2155 } 2156 2157 #define FOLL_WRITE 0x01 /* check pte is writable */ 2158 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2159 #define FOLL_GET 0x04 /* do get_page on page */ 2160 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2161 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2162 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2163 * and return without waiting upon it */ 2164 #define FOLL_POPULATE 0x40 /* fault in page */ 2165 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2166 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2167 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2168 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2169 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2170 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2171 2172 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2173 void *data); 2174 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2175 unsigned long size, pte_fn_t fn, void *data); 2176 2177 2178 #ifdef CONFIG_DEBUG_PAGEALLOC 2179 extern bool _debug_pagealloc_enabled; 2180 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2181 2182 static inline bool debug_pagealloc_enabled(void) 2183 { 2184 return _debug_pagealloc_enabled; 2185 } 2186 2187 static inline void 2188 kernel_map_pages(struct page *page, int numpages, int enable) 2189 { 2190 if (!debug_pagealloc_enabled()) 2191 return; 2192 2193 __kernel_map_pages(page, numpages, enable); 2194 } 2195 #ifdef CONFIG_HIBERNATION 2196 extern bool kernel_page_present(struct page *page); 2197 #endif /* CONFIG_HIBERNATION */ 2198 #else 2199 static inline void 2200 kernel_map_pages(struct page *page, int numpages, int enable) {} 2201 #ifdef CONFIG_HIBERNATION 2202 static inline bool kernel_page_present(struct page *page) { return true; } 2203 #endif /* CONFIG_HIBERNATION */ 2204 #endif 2205 2206 #ifdef __HAVE_ARCH_GATE_AREA 2207 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2208 extern int in_gate_area_no_mm(unsigned long addr); 2209 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2210 #else 2211 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2212 { 2213 return NULL; 2214 } 2215 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2216 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2217 { 2218 return 0; 2219 } 2220 #endif /* __HAVE_ARCH_GATE_AREA */ 2221 2222 #ifdef CONFIG_SYSCTL 2223 extern int sysctl_drop_caches; 2224 int drop_caches_sysctl_handler(struct ctl_table *, int, 2225 void __user *, size_t *, loff_t *); 2226 #endif 2227 2228 void drop_slab(void); 2229 void drop_slab_node(int nid); 2230 2231 #ifndef CONFIG_MMU 2232 #define randomize_va_space 0 2233 #else 2234 extern int randomize_va_space; 2235 #endif 2236 2237 const char * arch_vma_name(struct vm_area_struct *vma); 2238 void print_vma_addr(char *prefix, unsigned long rip); 2239 2240 void sparse_mem_maps_populate_node(struct page **map_map, 2241 unsigned long pnum_begin, 2242 unsigned long pnum_end, 2243 unsigned long map_count, 2244 int nodeid); 2245 2246 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2247 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2248 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2249 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2250 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2251 void *vmemmap_alloc_block(unsigned long size, int node); 2252 struct vmem_altmap; 2253 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2254 struct vmem_altmap *altmap); 2255 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2256 { 2257 return __vmemmap_alloc_block_buf(size, node, NULL); 2258 } 2259 2260 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2261 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2262 int node); 2263 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2264 void vmemmap_populate_print_last(void); 2265 #ifdef CONFIG_MEMORY_HOTPLUG 2266 void vmemmap_free(unsigned long start, unsigned long end); 2267 #endif 2268 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2269 unsigned long size); 2270 2271 enum mf_flags { 2272 MF_COUNT_INCREASED = 1 << 0, 2273 MF_ACTION_REQUIRED = 1 << 1, 2274 MF_MUST_KILL = 1 << 2, 2275 MF_SOFT_OFFLINE = 1 << 3, 2276 }; 2277 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2278 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2279 extern int unpoison_memory(unsigned long pfn); 2280 extern int get_hwpoison_page(struct page *page); 2281 #define put_hwpoison_page(page) put_page(page) 2282 extern int sysctl_memory_failure_early_kill; 2283 extern int sysctl_memory_failure_recovery; 2284 extern void shake_page(struct page *p, int access); 2285 extern atomic_long_t num_poisoned_pages; 2286 extern int soft_offline_page(struct page *page, int flags); 2287 2288 2289 /* 2290 * Error handlers for various types of pages. 2291 */ 2292 enum mf_result { 2293 MF_IGNORED, /* Error: cannot be handled */ 2294 MF_FAILED, /* Error: handling failed */ 2295 MF_DELAYED, /* Will be handled later */ 2296 MF_RECOVERED, /* Successfully recovered */ 2297 }; 2298 2299 enum mf_action_page_type { 2300 MF_MSG_KERNEL, 2301 MF_MSG_KERNEL_HIGH_ORDER, 2302 MF_MSG_SLAB, 2303 MF_MSG_DIFFERENT_COMPOUND, 2304 MF_MSG_POISONED_HUGE, 2305 MF_MSG_HUGE, 2306 MF_MSG_FREE_HUGE, 2307 MF_MSG_UNMAP_FAILED, 2308 MF_MSG_DIRTY_SWAPCACHE, 2309 MF_MSG_CLEAN_SWAPCACHE, 2310 MF_MSG_DIRTY_MLOCKED_LRU, 2311 MF_MSG_CLEAN_MLOCKED_LRU, 2312 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2313 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2314 MF_MSG_DIRTY_LRU, 2315 MF_MSG_CLEAN_LRU, 2316 MF_MSG_TRUNCATED_LRU, 2317 MF_MSG_BUDDY, 2318 MF_MSG_BUDDY_2ND, 2319 MF_MSG_UNKNOWN, 2320 }; 2321 2322 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2323 extern void clear_huge_page(struct page *page, 2324 unsigned long addr, 2325 unsigned int pages_per_huge_page); 2326 extern void copy_user_huge_page(struct page *dst, struct page *src, 2327 unsigned long addr, struct vm_area_struct *vma, 2328 unsigned int pages_per_huge_page); 2329 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2330 2331 extern struct page_ext_operations debug_guardpage_ops; 2332 extern struct page_ext_operations page_poisoning_ops; 2333 2334 #ifdef CONFIG_DEBUG_PAGEALLOC 2335 extern unsigned int _debug_guardpage_minorder; 2336 extern bool _debug_guardpage_enabled; 2337 2338 static inline unsigned int debug_guardpage_minorder(void) 2339 { 2340 return _debug_guardpage_minorder; 2341 } 2342 2343 static inline bool debug_guardpage_enabled(void) 2344 { 2345 return _debug_guardpage_enabled; 2346 } 2347 2348 static inline bool page_is_guard(struct page *page) 2349 { 2350 struct page_ext *page_ext; 2351 2352 if (!debug_guardpage_enabled()) 2353 return false; 2354 2355 page_ext = lookup_page_ext(page); 2356 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2357 } 2358 #else 2359 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2360 static inline bool debug_guardpage_enabled(void) { return false; } 2361 static inline bool page_is_guard(struct page *page) { return false; } 2362 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2363 2364 #if MAX_NUMNODES > 1 2365 void __init setup_nr_node_ids(void); 2366 #else 2367 static inline void setup_nr_node_ids(void) {} 2368 #endif 2369 2370 #endif /* __KERNEL__ */ 2371 #endif /* _LINUX_MM_H */ 2372