xref: /linux-6.15/include/linux/minmax.h (revision f4b84b2f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MINMAX_H
3 #define _LINUX_MINMAX_H
4 
5 #include <linux/build_bug.h>
6 #include <linux/compiler.h>
7 #include <linux/const.h>
8 #include <linux/types.h>
9 
10 /*
11  * min()/max()/clamp() macros must accomplish three things:
12  *
13  * - avoid multiple evaluations of the arguments (so side-effects like
14  *   "x++" happen only once) when non-constant.
15  * - perform signed v unsigned type-checking (to generate compile
16  *   errors instead of nasty runtime surprises).
17  * - retain result as a constant expressions when called with only
18  *   constant expressions (to avoid tripping VLA warnings in stack
19  *   allocation usage).
20  */
21 #define __typecheck(x, y) \
22 	(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
23 
24 /* is_signed_type() isn't a constexpr for pointer types */
25 #define __is_signed(x) 								\
26 	__builtin_choose_expr(__is_constexpr(is_signed_type(typeof(x))),	\
27 		is_signed_type(typeof(x)), 0)
28 
29 #define __types_ok(x, y) \
30 	(__is_signed(x) == __is_signed(y))
31 
32 #define __cmp_op_min <
33 #define __cmp_op_max >
34 
35 #define __cmp(op, x, y)	((x) __cmp_op_##op (y) ? (x) : (y))
36 
37 #define __cmp_once(op, x, y, unique_x, unique_y) ({	\
38 	typeof(x) unique_x = (x);			\
39 	typeof(y) unique_y = (y);			\
40 	static_assert(__types_ok(x, y),			\
41 		#op "(" #x ", " #y ") signedness error, fix types or consider u" #op "() before " #op "_t()"); \
42 	__cmp(op, unique_x, unique_y); })
43 
44 #define __careful_cmp(op, x, y)					\
45 	__builtin_choose_expr(__is_constexpr((x) - (y)),	\
46 		__cmp(op, x, y),				\
47 		__cmp_once(op, x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y)))
48 
49 #define __clamp(val, lo, hi)	\
50 	((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
51 
52 #define __clamp_once(val, lo, hi, unique_val, unique_lo, unique_hi) ({		\
53 	typeof(val) unique_val = (val);						\
54 	typeof(lo) unique_lo = (lo);						\
55 	typeof(hi) unique_hi = (hi);						\
56 	static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), 	\
57 			(lo) <= (hi), true),					\
58 		"clamp() low limit " #lo " greater than high limit " #hi);	\
59 	static_assert(__types_ok(val, lo), "clamp() 'lo' signedness error");	\
60 	static_assert(__types_ok(val, hi), "clamp() 'hi' signedness error");	\
61 	__clamp(unique_val, unique_lo, unique_hi); })
62 
63 #define __careful_clamp(val, lo, hi) ({					\
64 	__builtin_choose_expr(__is_constexpr((val) - (lo) + (hi)),	\
65 		__clamp(val, lo, hi),					\
66 		__clamp_once(val, lo, hi, __UNIQUE_ID(__val),		\
67 			     __UNIQUE_ID(__lo), __UNIQUE_ID(__hi))); })
68 
69 /**
70  * min - return minimum of two values of the same or compatible types
71  * @x: first value
72  * @y: second value
73  */
74 #define min(x, y)	__careful_cmp(min, x, y)
75 
76 /**
77  * max - return maximum of two values of the same or compatible types
78  * @x: first value
79  * @y: second value
80  */
81 #define max(x, y)	__careful_cmp(max, x, y)
82 
83 /**
84  * umin - return minimum of two non-negative values
85  *   Signed types are zero extended to match a larger unsigned type.
86  * @x: first value
87  * @y: second value
88  */
89 #define umin(x, y)	\
90 	__careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
91 
92 /**
93  * umax - return maximum of two non-negative values
94  * @x: first value
95  * @y: second value
96  */
97 #define umax(x, y)	\
98 	__careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
99 
100 /**
101  * min3 - return minimum of three values
102  * @x: first value
103  * @y: second value
104  * @z: third value
105  */
106 #define min3(x, y, z) min((typeof(x))min(x, y), z)
107 
108 /**
109  * max3 - return maximum of three values
110  * @x: first value
111  * @y: second value
112  * @z: third value
113  */
114 #define max3(x, y, z) max((typeof(x))max(x, y), z)
115 
116 /**
117  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
118  * @x: value1
119  * @y: value2
120  */
121 #define min_not_zero(x, y) ({			\
122 	typeof(x) __x = (x);			\
123 	typeof(y) __y = (y);			\
124 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
125 
126 /**
127  * clamp - return a value clamped to a given range with strict typechecking
128  * @val: current value
129  * @lo: lowest allowable value
130  * @hi: highest allowable value
131  *
132  * This macro does strict typechecking of @lo/@hi to make sure they are of the
133  * same type as @val.  See the unnecessary pointer comparisons.
134  */
135 #define clamp(val, lo, hi) __careful_clamp(val, lo, hi)
136 
137 /*
138  * ..and if you can't take the strict
139  * types, you can specify one yourself.
140  *
141  * Or not use min/max/clamp at all, of course.
142  */
143 
144 /**
145  * min_t - return minimum of two values, using the specified type
146  * @type: data type to use
147  * @x: first value
148  * @y: second value
149  */
150 #define min_t(type, x, y)	__careful_cmp(min, (type)(x), (type)(y))
151 
152 /**
153  * max_t - return maximum of two values, using the specified type
154  * @type: data type to use
155  * @x: first value
156  * @y: second value
157  */
158 #define max_t(type, x, y)	__careful_cmp(max, (type)(x), (type)(y))
159 
160 /*
161  * Do not check the array parameter using __must_be_array().
162  * In the following legit use-case where the "array" passed is a simple pointer,
163  * __must_be_array() will return a failure.
164  * --- 8< ---
165  * int *buff
166  * ...
167  * min = min_array(buff, nb_items);
168  * --- 8< ---
169  *
170  * The first typeof(&(array)[0]) is needed in order to support arrays of both
171  * 'int *buff' and 'int buff[N]' types.
172  *
173  * The array can be an array of const items.
174  * typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order
175  * to discard the const qualifier for the __element variable.
176  */
177 #define __minmax_array(op, array, len) ({				\
178 	typeof(&(array)[0]) __array = (array);				\
179 	typeof(len) __len = (len);					\
180 	__unqual_scalar_typeof(__array[0]) __element = __array[--__len];\
181 	while (__len--)							\
182 		__element = op(__element, __array[__len]);		\
183 	__element; })
184 
185 /**
186  * min_array - return minimum of values present in an array
187  * @array: array
188  * @len: array length
189  *
190  * Note that @len must not be zero (empty array).
191  */
192 #define min_array(array, len) __minmax_array(min, array, len)
193 
194 /**
195  * max_array - return maximum of values present in an array
196  * @array: array
197  * @len: array length
198  *
199  * Note that @len must not be zero (empty array).
200  */
201 #define max_array(array, len) __minmax_array(max, array, len)
202 
203 /**
204  * clamp_t - return a value clamped to a given range using a given type
205  * @type: the type of variable to use
206  * @val: current value
207  * @lo: minimum allowable value
208  * @hi: maximum allowable value
209  *
210  * This macro does no typechecking and uses temporary variables of type
211  * @type to make all the comparisons.
212  */
213 #define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi))
214 
215 /**
216  * clamp_val - return a value clamped to a given range using val's type
217  * @val: current value
218  * @lo: minimum allowable value
219  * @hi: maximum allowable value
220  *
221  * This macro does no typechecking and uses temporary variables of whatever
222  * type the input argument @val is.  This is useful when @val is an unsigned
223  * type and @lo and @hi are literals that will otherwise be assigned a signed
224  * integer type.
225  */
226 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
227 
228 static inline bool in_range64(u64 val, u64 start, u64 len)
229 {
230 	return (val - start) < len;
231 }
232 
233 static inline bool in_range32(u32 val, u32 start, u32 len)
234 {
235 	return (val - start) < len;
236 }
237 
238 /**
239  * in_range - Determine if a value lies within a range.
240  * @val: Value to test.
241  * @start: First value in range.
242  * @len: Number of values in range.
243  *
244  * This is more efficient than "if (start <= val && val < (start + len))".
245  * It also gives a different answer if @start + @len overflows the size of
246  * the type by a sufficient amount to encompass @val.  Decide for yourself
247  * which behaviour you want, or prove that start + len never overflow.
248  * Do not blindly replace one form with the other.
249  */
250 #define in_range(val, start, len)					\
251 	((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ?	\
252 		in_range32(val, start, len) : in_range64(val, start, len))
253 
254 /**
255  * swap - swap values of @a and @b
256  * @a: first value
257  * @b: second value
258  */
259 #define swap(a, b) \
260 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
261 
262 #endif	/* _LINUX_MINMAX_H */
263