xref: /linux-6.15/include/linux/memremap.h (revision 6edf2e37)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MEMREMAP_H_
3 #define _LINUX_MEMREMAP_H_
4 #include <linux/ioport.h>
5 #include <linux/percpu-refcount.h>
6 
7 #include <asm/pgtable.h>
8 
9 struct resource;
10 struct device;
11 
12 /**
13  * struct vmem_altmap - pre-allocated storage for vmemmap_populate
14  * @base_pfn: base of the entire dev_pagemap mapping
15  * @reserve: pages mapped, but reserved for driver use (relative to @base)
16  * @free: free pages set aside in the mapping for memmap storage
17  * @align: pages reserved to meet allocation alignments
18  * @alloc: track pages consumed, private to vmemmap_populate()
19  */
20 struct vmem_altmap {
21 	const unsigned long base_pfn;
22 	const unsigned long reserve;
23 	unsigned long free;
24 	unsigned long align;
25 	unsigned long alloc;
26 };
27 
28 /*
29  * Specialize ZONE_DEVICE memory into multiple types each having differents
30  * usage.
31  *
32  * MEMORY_DEVICE_PRIVATE:
33  * Device memory that is not directly addressable by the CPU: CPU can neither
34  * read nor write private memory. In this case, we do still have struct pages
35  * backing the device memory. Doing so simplifies the implementation, but it is
36  * important to remember that there are certain points at which the struct page
37  * must be treated as an opaque object, rather than a "normal" struct page.
38  *
39  * A more complete discussion of unaddressable memory may be found in
40  * include/linux/hmm.h and Documentation/vm/hmm.rst.
41  *
42  * MEMORY_DEVICE_PUBLIC:
43  * Device memory that is cache coherent from device and CPU point of view. This
44  * is use on platform that have an advance system bus (like CAPI or CCIX). A
45  * driver can hotplug the device memory using ZONE_DEVICE and with that memory
46  * type. Any page of a process can be migrated to such memory. However no one
47  * should be allow to pin such memory so that it can always be evicted.
48  *
49  * MEMORY_DEVICE_FS_DAX:
50  * Host memory that has similar access semantics as System RAM i.e. DMA
51  * coherent and supports page pinning. In support of coordinating page
52  * pinning vs other operations MEMORY_DEVICE_FS_DAX arranges for a
53  * wakeup event whenever a page is unpinned and becomes idle. This
54  * wakeup is used to coordinate physical address space management (ex:
55  * fs truncate/hole punch) vs pinned pages (ex: device dma).
56  *
57  * MEMORY_DEVICE_PCI_P2PDMA:
58  * Device memory residing in a PCI BAR intended for use with Peer-to-Peer
59  * transactions.
60  */
61 enum memory_type {
62 	MEMORY_DEVICE_PRIVATE = 1,
63 	MEMORY_DEVICE_PUBLIC,
64 	MEMORY_DEVICE_FS_DAX,
65 	MEMORY_DEVICE_PCI_P2PDMA,
66 };
67 
68 /*
69  * For MEMORY_DEVICE_PRIVATE we use ZONE_DEVICE and extend it with two
70  * callbacks:
71  *   page_fault()
72  *   page_free()
73  *
74  * Additional notes about MEMORY_DEVICE_PRIVATE may be found in
75  * include/linux/hmm.h and Documentation/vm/hmm.rst. There is also a brief
76  * explanation in include/linux/memory_hotplug.h.
77  *
78  * The page_fault() callback must migrate page back, from device memory to
79  * system memory, so that the CPU can access it. This might fail for various
80  * reasons (device issues,  device have been unplugged, ...). When such error
81  * conditions happen, the page_fault() callback must return VM_FAULT_SIGBUS and
82  * set the CPU page table entry to "poisoned".
83  *
84  * Note that because memory cgroup charges are transferred to the device memory,
85  * this should never fail due to memory restrictions. However, allocation
86  * of a regular system page might still fail because we are out of memory. If
87  * that happens, the page_fault() callback must return VM_FAULT_OOM.
88  *
89  * The page_fault() callback can also try to migrate back multiple pages in one
90  * chunk, as an optimization. It must, however, prioritize the faulting address
91  * over all the others.
92  *
93  *
94  * The page_free() callback is called once the page refcount reaches 1
95  * (ZONE_DEVICE pages never reach 0 refcount unless there is a refcount bug.
96  * This allows the device driver to implement its own memory management.)
97  *
98  * For MEMORY_DEVICE_PUBLIC only the page_free() callback matter.
99  */
100 typedef int (*dev_page_fault_t)(struct vm_area_struct *vma,
101 				unsigned long addr,
102 				const struct page *page,
103 				unsigned int flags,
104 				pmd_t *pmdp);
105 typedef void (*dev_page_free_t)(struct page *page, void *data);
106 
107 /**
108  * struct dev_pagemap - metadata for ZONE_DEVICE mappings
109  * @page_fault: callback when CPU fault on an unaddressable device page
110  * @page_free: free page callback when page refcount reaches 1
111  * @altmap: pre-allocated/reserved memory for vmemmap allocations
112  * @res: physical address range covered by @ref
113  * @ref: reference count that pins the devm_memremap_pages() mapping
114  * @dev: host device of the mapping for debug
115  * @data: private data pointer for page_free()
116  * @type: memory type: see MEMORY_* in memory_hotplug.h
117  */
118 struct dev_pagemap {
119 	dev_page_fault_t page_fault;
120 	dev_page_free_t page_free;
121 	struct vmem_altmap altmap;
122 	bool altmap_valid;
123 	struct resource res;
124 	struct percpu_ref *ref;
125 	struct device *dev;
126 	void *data;
127 	enum memory_type type;
128 	u64 pci_p2pdma_bus_offset;
129 };
130 
131 #ifdef CONFIG_ZONE_DEVICE
132 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap);
133 struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
134 		struct dev_pagemap *pgmap);
135 
136 unsigned long vmem_altmap_offset(struct vmem_altmap *altmap);
137 void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns);
138 #else
139 static inline void *devm_memremap_pages(struct device *dev,
140 		struct dev_pagemap *pgmap)
141 {
142 	/*
143 	 * Fail attempts to call devm_memremap_pages() without
144 	 * ZONE_DEVICE support enabled, this requires callers to fall
145 	 * back to plain devm_memremap() based on config
146 	 */
147 	WARN_ON_ONCE(1);
148 	return ERR_PTR(-ENXIO);
149 }
150 
151 static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
152 		struct dev_pagemap *pgmap)
153 {
154 	return NULL;
155 }
156 
157 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
158 {
159 	return 0;
160 }
161 
162 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
163 		unsigned long nr_pfns)
164 {
165 }
166 #endif /* CONFIG_ZONE_DEVICE */
167 
168 static inline void put_dev_pagemap(struct dev_pagemap *pgmap)
169 {
170 	if (pgmap)
171 		percpu_ref_put(pgmap->ref);
172 }
173 #endif /* _LINUX_MEMREMAP_H_ */
174