xref: /linux-6.15/include/linux/memcontrol.h (revision fc94cf20)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct page;
27 struct mm_struct;
28 struct kmem_cache;
29 
30 /* Cgroup-specific page state, on top of universal node page state */
31 enum memcg_stat_item {
32 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 	MEMCG_RSS,
34 	MEMCG_RSS_HUGE,
35 	MEMCG_SWAP,
36 	MEMCG_SOCK,
37 	/* XXX: why are these zone and not node counters? */
38 	MEMCG_KERNEL_STACK_KB,
39 	MEMCG_NR_STAT,
40 };
41 
42 enum memcg_memory_event {
43 	MEMCG_LOW,
44 	MEMCG_HIGH,
45 	MEMCG_MAX,
46 	MEMCG_OOM,
47 	MEMCG_OOM_KILL,
48 	MEMCG_SWAP_MAX,
49 	MEMCG_SWAP_FAIL,
50 	MEMCG_NR_MEMORY_EVENTS,
51 };
52 
53 enum mem_cgroup_protection {
54 	MEMCG_PROT_NONE,
55 	MEMCG_PROT_LOW,
56 	MEMCG_PROT_MIN,
57 };
58 
59 struct mem_cgroup_reclaim_cookie {
60 	pg_data_t *pgdat;
61 	unsigned int generation;
62 };
63 
64 #ifdef CONFIG_MEMCG
65 
66 #define MEM_CGROUP_ID_SHIFT	16
67 #define MEM_CGROUP_ID_MAX	USHRT_MAX
68 
69 struct mem_cgroup_id {
70 	int id;
71 	refcount_t ref;
72 };
73 
74 /*
75  * Per memcg event counter is incremented at every pagein/pageout. With THP,
76  * it will be incremated by the number of pages. This counter is used for
77  * for trigger some periodic events. This is straightforward and better
78  * than using jiffies etc. to handle periodic memcg event.
79  */
80 enum mem_cgroup_events_target {
81 	MEM_CGROUP_TARGET_THRESH,
82 	MEM_CGROUP_TARGET_SOFTLIMIT,
83 	MEM_CGROUP_NTARGETS,
84 };
85 
86 struct memcg_vmstats_percpu {
87 	long stat[MEMCG_NR_STAT];
88 	unsigned long events[NR_VM_EVENT_ITEMS];
89 	unsigned long nr_page_events;
90 	unsigned long targets[MEM_CGROUP_NTARGETS];
91 };
92 
93 struct mem_cgroup_reclaim_iter {
94 	struct mem_cgroup *position;
95 	/* scan generation, increased every round-trip */
96 	unsigned int generation;
97 };
98 
99 struct lruvec_stat {
100 	long count[NR_VM_NODE_STAT_ITEMS];
101 };
102 
103 /*
104  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
105  * which have elements charged to this memcg.
106  */
107 struct memcg_shrinker_map {
108 	struct rcu_head rcu;
109 	unsigned long map[];
110 };
111 
112 /*
113  * per-node information in memory controller.
114  */
115 struct mem_cgroup_per_node {
116 	struct lruvec		lruvec;
117 
118 	/* Legacy local VM stats */
119 	struct lruvec_stat __percpu *lruvec_stat_local;
120 
121 	/* Subtree VM stats (batched updates) */
122 	struct lruvec_stat __percpu *lruvec_stat_cpu;
123 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
124 
125 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
126 
127 	struct mem_cgroup_reclaim_iter	iter;
128 
129 	struct memcg_shrinker_map __rcu	*shrinker_map;
130 
131 	struct rb_node		tree_node;	/* RB tree node */
132 	unsigned long		usage_in_excess;/* Set to the value by which */
133 						/* the soft limit is exceeded*/
134 	bool			on_tree;
135 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
136 						/* use container_of	   */
137 };
138 
139 struct mem_cgroup_threshold {
140 	struct eventfd_ctx *eventfd;
141 	unsigned long threshold;
142 };
143 
144 /* For threshold */
145 struct mem_cgroup_threshold_ary {
146 	/* An array index points to threshold just below or equal to usage. */
147 	int current_threshold;
148 	/* Size of entries[] */
149 	unsigned int size;
150 	/* Array of thresholds */
151 	struct mem_cgroup_threshold entries[];
152 };
153 
154 struct mem_cgroup_thresholds {
155 	/* Primary thresholds array */
156 	struct mem_cgroup_threshold_ary *primary;
157 	/*
158 	 * Spare threshold array.
159 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
160 	 * It must be able to store at least primary->size - 1 entries.
161 	 */
162 	struct mem_cgroup_threshold_ary *spare;
163 };
164 
165 enum memcg_kmem_state {
166 	KMEM_NONE,
167 	KMEM_ALLOCATED,
168 	KMEM_ONLINE,
169 };
170 
171 #if defined(CONFIG_SMP)
172 struct memcg_padding {
173 	char x[0];
174 } ____cacheline_internodealigned_in_smp;
175 #define MEMCG_PADDING(name)      struct memcg_padding name;
176 #else
177 #define MEMCG_PADDING(name)
178 #endif
179 
180 /*
181  * Remember four most recent foreign writebacks with dirty pages in this
182  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
183  * one in a given round, we're likely to catch it later if it keeps
184  * foreign-dirtying, so a fairly low count should be enough.
185  *
186  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
187  */
188 #define MEMCG_CGWB_FRN_CNT	4
189 
190 struct memcg_cgwb_frn {
191 	u64 bdi_id;			/* bdi->id of the foreign inode */
192 	int memcg_id;			/* memcg->css.id of foreign inode */
193 	u64 at;				/* jiffies_64 at the time of dirtying */
194 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
195 };
196 
197 /*
198  * The memory controller data structure. The memory controller controls both
199  * page cache and RSS per cgroup. We would eventually like to provide
200  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
201  * to help the administrator determine what knobs to tune.
202  */
203 struct mem_cgroup {
204 	struct cgroup_subsys_state css;
205 
206 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
207 	struct mem_cgroup_id id;
208 
209 	/* Accounted resources */
210 	struct page_counter memory;
211 	struct page_counter swap;
212 
213 	/* Legacy consumer-oriented counters */
214 	struct page_counter memsw;
215 	struct page_counter kmem;
216 	struct page_counter tcpmem;
217 
218 	/* Upper bound of normal memory consumption range */
219 	unsigned long high;
220 
221 	/* Range enforcement for interrupt charges */
222 	struct work_struct high_work;
223 
224 	unsigned long soft_limit;
225 
226 	/* vmpressure notifications */
227 	struct vmpressure vmpressure;
228 
229 	/*
230 	 * Should the accounting and control be hierarchical, per subtree?
231 	 */
232 	bool use_hierarchy;
233 
234 	/*
235 	 * Should the OOM killer kill all belonging tasks, had it kill one?
236 	 */
237 	bool oom_group;
238 
239 	/* protected by memcg_oom_lock */
240 	bool		oom_lock;
241 	int		under_oom;
242 
243 	int	swappiness;
244 	/* OOM-Killer disable */
245 	int		oom_kill_disable;
246 
247 	/* memory.events and memory.events.local */
248 	struct cgroup_file events_file;
249 	struct cgroup_file events_local_file;
250 
251 	/* handle for "memory.swap.events" */
252 	struct cgroup_file swap_events_file;
253 
254 	/* protect arrays of thresholds */
255 	struct mutex thresholds_lock;
256 
257 	/* thresholds for memory usage. RCU-protected */
258 	struct mem_cgroup_thresholds thresholds;
259 
260 	/* thresholds for mem+swap usage. RCU-protected */
261 	struct mem_cgroup_thresholds memsw_thresholds;
262 
263 	/* For oom notifier event fd */
264 	struct list_head oom_notify;
265 
266 	/*
267 	 * Should we move charges of a task when a task is moved into this
268 	 * mem_cgroup ? And what type of charges should we move ?
269 	 */
270 	unsigned long move_charge_at_immigrate;
271 	/* taken only while moving_account > 0 */
272 	spinlock_t		move_lock;
273 	unsigned long		move_lock_flags;
274 
275 	MEMCG_PADDING(_pad1_);
276 
277 	/*
278 	 * set > 0 if pages under this cgroup are moving to other cgroup.
279 	 */
280 	atomic_t		moving_account;
281 	struct task_struct	*move_lock_task;
282 
283 	/* Legacy local VM stats and events */
284 	struct memcg_vmstats_percpu __percpu *vmstats_local;
285 
286 	/* Subtree VM stats and events (batched updates) */
287 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
288 
289 	MEMCG_PADDING(_pad2_);
290 
291 	atomic_long_t		vmstats[MEMCG_NR_STAT];
292 	atomic_long_t		vmevents[NR_VM_EVENT_ITEMS];
293 
294 	/* memory.events */
295 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
296 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
297 
298 	unsigned long		socket_pressure;
299 
300 	/* Legacy tcp memory accounting */
301 	bool			tcpmem_active;
302 	int			tcpmem_pressure;
303 
304 #ifdef CONFIG_MEMCG_KMEM
305         /* Index in the kmem_cache->memcg_params.memcg_caches array */
306 	int kmemcg_id;
307 	enum memcg_kmem_state kmem_state;
308 	struct list_head kmem_caches;
309 #endif
310 
311 #ifdef CONFIG_CGROUP_WRITEBACK
312 	struct list_head cgwb_list;
313 	struct wb_domain cgwb_domain;
314 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
315 #endif
316 
317 	/* List of events which userspace want to receive */
318 	struct list_head event_list;
319 	spinlock_t event_list_lock;
320 
321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 	struct deferred_split deferred_split_queue;
323 #endif
324 
325 	struct mem_cgroup_per_node *nodeinfo[0];
326 	/* WARNING: nodeinfo must be the last member here */
327 };
328 
329 /*
330  * size of first charge trial. "32" comes from vmscan.c's magic value.
331  * TODO: maybe necessary to use big numbers in big irons.
332  */
333 #define MEMCG_CHARGE_BATCH 32U
334 
335 extern struct mem_cgroup *root_mem_cgroup;
336 
337 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
338 {
339 	return (memcg == root_mem_cgroup);
340 }
341 
342 static inline bool mem_cgroup_disabled(void)
343 {
344 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
345 }
346 
347 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
348 						  bool in_low_reclaim)
349 {
350 	if (mem_cgroup_disabled())
351 		return 0;
352 
353 	if (in_low_reclaim)
354 		return READ_ONCE(memcg->memory.emin);
355 
356 	return max(READ_ONCE(memcg->memory.emin),
357 		   READ_ONCE(memcg->memory.elow));
358 }
359 
360 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
361 						struct mem_cgroup *memcg);
362 
363 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
364 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
365 			  bool compound);
366 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
367 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
368 			  bool compound);
369 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
370 			      bool lrucare, bool compound);
371 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
372 		bool compound);
373 void mem_cgroup_uncharge(struct page *page);
374 void mem_cgroup_uncharge_list(struct list_head *page_list);
375 
376 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
377 
378 static struct mem_cgroup_per_node *
379 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
380 {
381 	return memcg->nodeinfo[nid];
382 }
383 
384 /**
385  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
386  * @memcg: memcg of the wanted lruvec
387  *
388  * Returns the lru list vector holding pages for a given @memcg &
389  * @node combination. This can be the node lruvec, if the memory
390  * controller is disabled.
391  */
392 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
393 					       struct pglist_data *pgdat)
394 {
395 	struct mem_cgroup_per_node *mz;
396 	struct lruvec *lruvec;
397 
398 	if (mem_cgroup_disabled()) {
399 		lruvec = &pgdat->__lruvec;
400 		goto out;
401 	}
402 
403 	if (!memcg)
404 		memcg = root_mem_cgroup;
405 
406 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
407 	lruvec = &mz->lruvec;
408 out:
409 	/*
410 	 * Since a node can be onlined after the mem_cgroup was created,
411 	 * we have to be prepared to initialize lruvec->pgdat here;
412 	 * and if offlined then reonlined, we need to reinitialize it.
413 	 */
414 	if (unlikely(lruvec->pgdat != pgdat))
415 		lruvec->pgdat = pgdat;
416 	return lruvec;
417 }
418 
419 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
420 
421 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
422 
423 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
424 
425 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
426 
427 static inline
428 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
429 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
430 }
431 
432 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
433 {
434 	if (memcg)
435 		css_put(&memcg->css);
436 }
437 
438 #define mem_cgroup_from_counter(counter, member)	\
439 	container_of(counter, struct mem_cgroup, member)
440 
441 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
442 				   struct mem_cgroup *,
443 				   struct mem_cgroup_reclaim_cookie *);
444 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
445 int mem_cgroup_scan_tasks(struct mem_cgroup *,
446 			  int (*)(struct task_struct *, void *), void *);
447 
448 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
449 {
450 	if (mem_cgroup_disabled())
451 		return 0;
452 
453 	return memcg->id.id;
454 }
455 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
456 
457 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
458 {
459 	return mem_cgroup_from_css(seq_css(m));
460 }
461 
462 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
463 {
464 	struct mem_cgroup_per_node *mz;
465 
466 	if (mem_cgroup_disabled())
467 		return NULL;
468 
469 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
470 	return mz->memcg;
471 }
472 
473 /**
474  * parent_mem_cgroup - find the accounting parent of a memcg
475  * @memcg: memcg whose parent to find
476  *
477  * Returns the parent memcg, or NULL if this is the root or the memory
478  * controller is in legacy no-hierarchy mode.
479  */
480 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
481 {
482 	if (!memcg->memory.parent)
483 		return NULL;
484 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
485 }
486 
487 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
488 			      struct mem_cgroup *root)
489 {
490 	if (root == memcg)
491 		return true;
492 	if (!root->use_hierarchy)
493 		return false;
494 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
495 }
496 
497 static inline bool mm_match_cgroup(struct mm_struct *mm,
498 				   struct mem_cgroup *memcg)
499 {
500 	struct mem_cgroup *task_memcg;
501 	bool match = false;
502 
503 	rcu_read_lock();
504 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
505 	if (task_memcg)
506 		match = mem_cgroup_is_descendant(task_memcg, memcg);
507 	rcu_read_unlock();
508 	return match;
509 }
510 
511 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
512 ino_t page_cgroup_ino(struct page *page);
513 
514 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
515 {
516 	if (mem_cgroup_disabled())
517 		return true;
518 	return !!(memcg->css.flags & CSS_ONLINE);
519 }
520 
521 /*
522  * For memory reclaim.
523  */
524 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
525 
526 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
527 		int zid, int nr_pages);
528 
529 static inline
530 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
531 		enum lru_list lru, int zone_idx)
532 {
533 	struct mem_cgroup_per_node *mz;
534 
535 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
536 	return mz->lru_zone_size[zone_idx][lru];
537 }
538 
539 void mem_cgroup_handle_over_high(void);
540 
541 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
542 
543 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
544 
545 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
546 				struct task_struct *p);
547 
548 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
549 
550 static inline void mem_cgroup_enter_user_fault(void)
551 {
552 	WARN_ON(current->in_user_fault);
553 	current->in_user_fault = 1;
554 }
555 
556 static inline void mem_cgroup_exit_user_fault(void)
557 {
558 	WARN_ON(!current->in_user_fault);
559 	current->in_user_fault = 0;
560 }
561 
562 static inline bool task_in_memcg_oom(struct task_struct *p)
563 {
564 	return p->memcg_in_oom;
565 }
566 
567 bool mem_cgroup_oom_synchronize(bool wait);
568 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
569 					    struct mem_cgroup *oom_domain);
570 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
571 
572 #ifdef CONFIG_MEMCG_SWAP
573 extern int do_swap_account;
574 #endif
575 
576 struct mem_cgroup *lock_page_memcg(struct page *page);
577 void __unlock_page_memcg(struct mem_cgroup *memcg);
578 void unlock_page_memcg(struct page *page);
579 
580 /*
581  * idx can be of type enum memcg_stat_item or node_stat_item.
582  * Keep in sync with memcg_exact_page_state().
583  */
584 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
585 {
586 	long x = atomic_long_read(&memcg->vmstats[idx]);
587 #ifdef CONFIG_SMP
588 	if (x < 0)
589 		x = 0;
590 #endif
591 	return x;
592 }
593 
594 /*
595  * idx can be of type enum memcg_stat_item or node_stat_item.
596  * Keep in sync with memcg_exact_page_state().
597  */
598 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
599 						   int idx)
600 {
601 	long x = 0;
602 	int cpu;
603 
604 	for_each_possible_cpu(cpu)
605 		x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
606 #ifdef CONFIG_SMP
607 	if (x < 0)
608 		x = 0;
609 #endif
610 	return x;
611 }
612 
613 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
614 
615 /* idx can be of type enum memcg_stat_item or node_stat_item */
616 static inline void mod_memcg_state(struct mem_cgroup *memcg,
617 				   int idx, int val)
618 {
619 	unsigned long flags;
620 
621 	local_irq_save(flags);
622 	__mod_memcg_state(memcg, idx, val);
623 	local_irq_restore(flags);
624 }
625 
626 /**
627  * mod_memcg_page_state - update page state statistics
628  * @page: the page
629  * @idx: page state item to account
630  * @val: number of pages (positive or negative)
631  *
632  * The @page must be locked or the caller must use lock_page_memcg()
633  * to prevent double accounting when the page is concurrently being
634  * moved to another memcg:
635  *
636  *   lock_page(page) or lock_page_memcg(page)
637  *   if (TestClearPageState(page))
638  *     mod_memcg_page_state(page, state, -1);
639  *   unlock_page(page) or unlock_page_memcg(page)
640  *
641  * Kernel pages are an exception to this, since they'll never move.
642  */
643 static inline void __mod_memcg_page_state(struct page *page,
644 					  int idx, int val)
645 {
646 	if (page->mem_cgroup)
647 		__mod_memcg_state(page->mem_cgroup, idx, val);
648 }
649 
650 static inline void mod_memcg_page_state(struct page *page,
651 					int idx, int val)
652 {
653 	if (page->mem_cgroup)
654 		mod_memcg_state(page->mem_cgroup, idx, val);
655 }
656 
657 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
658 					      enum node_stat_item idx)
659 {
660 	struct mem_cgroup_per_node *pn;
661 	long x;
662 
663 	if (mem_cgroup_disabled())
664 		return node_page_state(lruvec_pgdat(lruvec), idx);
665 
666 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
667 	x = atomic_long_read(&pn->lruvec_stat[idx]);
668 #ifdef CONFIG_SMP
669 	if (x < 0)
670 		x = 0;
671 #endif
672 	return x;
673 }
674 
675 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
676 						    enum node_stat_item idx)
677 {
678 	struct mem_cgroup_per_node *pn;
679 	long x = 0;
680 	int cpu;
681 
682 	if (mem_cgroup_disabled())
683 		return node_page_state(lruvec_pgdat(lruvec), idx);
684 
685 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
686 	for_each_possible_cpu(cpu)
687 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
688 #ifdef CONFIG_SMP
689 	if (x < 0)
690 		x = 0;
691 #endif
692 	return x;
693 }
694 
695 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696 			int val);
697 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
698 void mod_memcg_obj_state(void *p, int idx, int val);
699 
700 static inline void mod_lruvec_state(struct lruvec *lruvec,
701 				    enum node_stat_item idx, int val)
702 {
703 	unsigned long flags;
704 
705 	local_irq_save(flags);
706 	__mod_lruvec_state(lruvec, idx, val);
707 	local_irq_restore(flags);
708 }
709 
710 static inline void __mod_lruvec_page_state(struct page *page,
711 					   enum node_stat_item idx, int val)
712 {
713 	pg_data_t *pgdat = page_pgdat(page);
714 	struct lruvec *lruvec;
715 
716 	/* Untracked pages have no memcg, no lruvec. Update only the node */
717 	if (!page->mem_cgroup) {
718 		__mod_node_page_state(pgdat, idx, val);
719 		return;
720 	}
721 
722 	lruvec = mem_cgroup_lruvec(page->mem_cgroup, pgdat);
723 	__mod_lruvec_state(lruvec, idx, val);
724 }
725 
726 static inline void mod_lruvec_page_state(struct page *page,
727 					 enum node_stat_item idx, int val)
728 {
729 	unsigned long flags;
730 
731 	local_irq_save(flags);
732 	__mod_lruvec_page_state(page, idx, val);
733 	local_irq_restore(flags);
734 }
735 
736 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
737 						gfp_t gfp_mask,
738 						unsigned long *total_scanned);
739 
740 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
741 			  unsigned long count);
742 
743 static inline void count_memcg_events(struct mem_cgroup *memcg,
744 				      enum vm_event_item idx,
745 				      unsigned long count)
746 {
747 	unsigned long flags;
748 
749 	local_irq_save(flags);
750 	__count_memcg_events(memcg, idx, count);
751 	local_irq_restore(flags);
752 }
753 
754 static inline void count_memcg_page_event(struct page *page,
755 					  enum vm_event_item idx)
756 {
757 	if (page->mem_cgroup)
758 		count_memcg_events(page->mem_cgroup, idx, 1);
759 }
760 
761 static inline void count_memcg_event_mm(struct mm_struct *mm,
762 					enum vm_event_item idx)
763 {
764 	struct mem_cgroup *memcg;
765 
766 	if (mem_cgroup_disabled())
767 		return;
768 
769 	rcu_read_lock();
770 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
771 	if (likely(memcg))
772 		count_memcg_events(memcg, idx, 1);
773 	rcu_read_unlock();
774 }
775 
776 static inline void memcg_memory_event(struct mem_cgroup *memcg,
777 				      enum memcg_memory_event event)
778 {
779 	atomic_long_inc(&memcg->memory_events_local[event]);
780 	cgroup_file_notify(&memcg->events_local_file);
781 
782 	do {
783 		atomic_long_inc(&memcg->memory_events[event]);
784 		cgroup_file_notify(&memcg->events_file);
785 
786 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
787 			break;
788 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
789 			break;
790 	} while ((memcg = parent_mem_cgroup(memcg)) &&
791 		 !mem_cgroup_is_root(memcg));
792 }
793 
794 static inline void memcg_memory_event_mm(struct mm_struct *mm,
795 					 enum memcg_memory_event event)
796 {
797 	struct mem_cgroup *memcg;
798 
799 	if (mem_cgroup_disabled())
800 		return;
801 
802 	rcu_read_lock();
803 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
804 	if (likely(memcg))
805 		memcg_memory_event(memcg, event);
806 	rcu_read_unlock();
807 }
808 
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
810 void mem_cgroup_split_huge_fixup(struct page *head);
811 #endif
812 
813 #else /* CONFIG_MEMCG */
814 
815 #define MEM_CGROUP_ID_SHIFT	0
816 #define MEM_CGROUP_ID_MAX	0
817 
818 struct mem_cgroup;
819 
820 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
821 {
822 	return true;
823 }
824 
825 static inline bool mem_cgroup_disabled(void)
826 {
827 	return true;
828 }
829 
830 static inline void memcg_memory_event(struct mem_cgroup *memcg,
831 				      enum memcg_memory_event event)
832 {
833 }
834 
835 static inline void memcg_memory_event_mm(struct mm_struct *mm,
836 					 enum memcg_memory_event event)
837 {
838 }
839 
840 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
841 						  bool in_low_reclaim)
842 {
843 	return 0;
844 }
845 
846 static inline enum mem_cgroup_protection mem_cgroup_protected(
847 	struct mem_cgroup *root, struct mem_cgroup *memcg)
848 {
849 	return MEMCG_PROT_NONE;
850 }
851 
852 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
853 					gfp_t gfp_mask,
854 					struct mem_cgroup **memcgp,
855 					bool compound)
856 {
857 	*memcgp = NULL;
858 	return 0;
859 }
860 
861 static inline int mem_cgroup_try_charge_delay(struct page *page,
862 					      struct mm_struct *mm,
863 					      gfp_t gfp_mask,
864 					      struct mem_cgroup **memcgp,
865 					      bool compound)
866 {
867 	*memcgp = NULL;
868 	return 0;
869 }
870 
871 static inline void mem_cgroup_commit_charge(struct page *page,
872 					    struct mem_cgroup *memcg,
873 					    bool lrucare, bool compound)
874 {
875 }
876 
877 static inline void mem_cgroup_cancel_charge(struct page *page,
878 					    struct mem_cgroup *memcg,
879 					    bool compound)
880 {
881 }
882 
883 static inline void mem_cgroup_uncharge(struct page *page)
884 {
885 }
886 
887 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
888 {
889 }
890 
891 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
892 {
893 }
894 
895 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
896 					       struct pglist_data *pgdat)
897 {
898 	return &pgdat->__lruvec;
899 }
900 
901 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
902 						    struct pglist_data *pgdat)
903 {
904 	return &pgdat->__lruvec;
905 }
906 
907 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
908 {
909 	return NULL;
910 }
911 
912 static inline bool mm_match_cgroup(struct mm_struct *mm,
913 		struct mem_cgroup *memcg)
914 {
915 	return true;
916 }
917 
918 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
919 {
920 	return NULL;
921 }
922 
923 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
924 {
925 	return NULL;
926 }
927 
928 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
929 {
930 }
931 
932 static inline struct mem_cgroup *
933 mem_cgroup_iter(struct mem_cgroup *root,
934 		struct mem_cgroup *prev,
935 		struct mem_cgroup_reclaim_cookie *reclaim)
936 {
937 	return NULL;
938 }
939 
940 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
941 					 struct mem_cgroup *prev)
942 {
943 }
944 
945 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
946 		int (*fn)(struct task_struct *, void *), void *arg)
947 {
948 	return 0;
949 }
950 
951 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
952 {
953 	return 0;
954 }
955 
956 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
957 {
958 	WARN_ON_ONCE(id);
959 	/* XXX: This should always return root_mem_cgroup */
960 	return NULL;
961 }
962 
963 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
964 {
965 	return NULL;
966 }
967 
968 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
969 {
970 	return NULL;
971 }
972 
973 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
974 {
975 	return true;
976 }
977 
978 static inline
979 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
980 		enum lru_list lru, int zone_idx)
981 {
982 	return 0;
983 }
984 
985 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
986 {
987 	return 0;
988 }
989 
990 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
991 {
992 	return 0;
993 }
994 
995 static inline void
996 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
997 {
998 }
999 
1000 static inline void
1001 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1002 {
1003 }
1004 
1005 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1006 {
1007 	return NULL;
1008 }
1009 
1010 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1011 {
1012 }
1013 
1014 static inline void unlock_page_memcg(struct page *page)
1015 {
1016 }
1017 
1018 static inline void mem_cgroup_handle_over_high(void)
1019 {
1020 }
1021 
1022 static inline void mem_cgroup_enter_user_fault(void)
1023 {
1024 }
1025 
1026 static inline void mem_cgroup_exit_user_fault(void)
1027 {
1028 }
1029 
1030 static inline bool task_in_memcg_oom(struct task_struct *p)
1031 {
1032 	return false;
1033 }
1034 
1035 static inline bool mem_cgroup_oom_synchronize(bool wait)
1036 {
1037 	return false;
1038 }
1039 
1040 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1041 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1042 {
1043 	return NULL;
1044 }
1045 
1046 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1047 {
1048 }
1049 
1050 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1051 {
1052 	return 0;
1053 }
1054 
1055 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1056 						   int idx)
1057 {
1058 	return 0;
1059 }
1060 
1061 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1062 				     int idx,
1063 				     int nr)
1064 {
1065 }
1066 
1067 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1068 				   int idx,
1069 				   int nr)
1070 {
1071 }
1072 
1073 static inline void __mod_memcg_page_state(struct page *page,
1074 					  int idx,
1075 					  int nr)
1076 {
1077 }
1078 
1079 static inline void mod_memcg_page_state(struct page *page,
1080 					int idx,
1081 					int nr)
1082 {
1083 }
1084 
1085 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1086 					      enum node_stat_item idx)
1087 {
1088 	return node_page_state(lruvec_pgdat(lruvec), idx);
1089 }
1090 
1091 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1092 						    enum node_stat_item idx)
1093 {
1094 	return node_page_state(lruvec_pgdat(lruvec), idx);
1095 }
1096 
1097 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1098 				      enum node_stat_item idx, int val)
1099 {
1100 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1101 }
1102 
1103 static inline void mod_lruvec_state(struct lruvec *lruvec,
1104 				    enum node_stat_item idx, int val)
1105 {
1106 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1107 }
1108 
1109 static inline void __mod_lruvec_page_state(struct page *page,
1110 					   enum node_stat_item idx, int val)
1111 {
1112 	__mod_node_page_state(page_pgdat(page), idx, val);
1113 }
1114 
1115 static inline void mod_lruvec_page_state(struct page *page,
1116 					 enum node_stat_item idx, int val)
1117 {
1118 	mod_node_page_state(page_pgdat(page), idx, val);
1119 }
1120 
1121 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1122 					   int val)
1123 {
1124 	struct page *page = virt_to_head_page(p);
1125 
1126 	__mod_node_page_state(page_pgdat(page), idx, val);
1127 }
1128 
1129 static inline void mod_memcg_obj_state(void *p, int idx, int val)
1130 {
1131 }
1132 
1133 static inline
1134 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1135 					    gfp_t gfp_mask,
1136 					    unsigned long *total_scanned)
1137 {
1138 	return 0;
1139 }
1140 
1141 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1142 {
1143 }
1144 
1145 static inline void count_memcg_events(struct mem_cgroup *memcg,
1146 				      enum vm_event_item idx,
1147 				      unsigned long count)
1148 {
1149 }
1150 
1151 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1152 					enum vm_event_item idx,
1153 					unsigned long count)
1154 {
1155 }
1156 
1157 static inline void count_memcg_page_event(struct page *page,
1158 					  int idx)
1159 {
1160 }
1161 
1162 static inline
1163 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1164 {
1165 }
1166 #endif /* CONFIG_MEMCG */
1167 
1168 /* idx can be of type enum memcg_stat_item or node_stat_item */
1169 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1170 				     int idx)
1171 {
1172 	__mod_memcg_state(memcg, idx, 1);
1173 }
1174 
1175 /* idx can be of type enum memcg_stat_item or node_stat_item */
1176 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1177 				     int idx)
1178 {
1179 	__mod_memcg_state(memcg, idx, -1);
1180 }
1181 
1182 /* idx can be of type enum memcg_stat_item or node_stat_item */
1183 static inline void __inc_memcg_page_state(struct page *page,
1184 					  int idx)
1185 {
1186 	__mod_memcg_page_state(page, idx, 1);
1187 }
1188 
1189 /* idx can be of type enum memcg_stat_item or node_stat_item */
1190 static inline void __dec_memcg_page_state(struct page *page,
1191 					  int idx)
1192 {
1193 	__mod_memcg_page_state(page, idx, -1);
1194 }
1195 
1196 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1197 				      enum node_stat_item idx)
1198 {
1199 	__mod_lruvec_state(lruvec, idx, 1);
1200 }
1201 
1202 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1203 				      enum node_stat_item idx)
1204 {
1205 	__mod_lruvec_state(lruvec, idx, -1);
1206 }
1207 
1208 static inline void __inc_lruvec_page_state(struct page *page,
1209 					   enum node_stat_item idx)
1210 {
1211 	__mod_lruvec_page_state(page, idx, 1);
1212 }
1213 
1214 static inline void __dec_lruvec_page_state(struct page *page,
1215 					   enum node_stat_item idx)
1216 {
1217 	__mod_lruvec_page_state(page, idx, -1);
1218 }
1219 
1220 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1221 {
1222 	__mod_lruvec_slab_state(p, idx, 1);
1223 }
1224 
1225 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1226 {
1227 	__mod_lruvec_slab_state(p, idx, -1);
1228 }
1229 
1230 /* idx can be of type enum memcg_stat_item or node_stat_item */
1231 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1232 				   int idx)
1233 {
1234 	mod_memcg_state(memcg, idx, 1);
1235 }
1236 
1237 /* idx can be of type enum memcg_stat_item or node_stat_item */
1238 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1239 				   int idx)
1240 {
1241 	mod_memcg_state(memcg, idx, -1);
1242 }
1243 
1244 /* idx can be of type enum memcg_stat_item or node_stat_item */
1245 static inline void inc_memcg_page_state(struct page *page,
1246 					int idx)
1247 {
1248 	mod_memcg_page_state(page, idx, 1);
1249 }
1250 
1251 /* idx can be of type enum memcg_stat_item or node_stat_item */
1252 static inline void dec_memcg_page_state(struct page *page,
1253 					int idx)
1254 {
1255 	mod_memcg_page_state(page, idx, -1);
1256 }
1257 
1258 static inline void inc_lruvec_state(struct lruvec *lruvec,
1259 				    enum node_stat_item idx)
1260 {
1261 	mod_lruvec_state(lruvec, idx, 1);
1262 }
1263 
1264 static inline void dec_lruvec_state(struct lruvec *lruvec,
1265 				    enum node_stat_item idx)
1266 {
1267 	mod_lruvec_state(lruvec, idx, -1);
1268 }
1269 
1270 static inline void inc_lruvec_page_state(struct page *page,
1271 					 enum node_stat_item idx)
1272 {
1273 	mod_lruvec_page_state(page, idx, 1);
1274 }
1275 
1276 static inline void dec_lruvec_page_state(struct page *page,
1277 					 enum node_stat_item idx)
1278 {
1279 	mod_lruvec_page_state(page, idx, -1);
1280 }
1281 
1282 #ifdef CONFIG_CGROUP_WRITEBACK
1283 
1284 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1285 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1286 			 unsigned long *pheadroom, unsigned long *pdirty,
1287 			 unsigned long *pwriteback);
1288 
1289 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1290 					     struct bdi_writeback *wb);
1291 
1292 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1293 						  struct bdi_writeback *wb)
1294 {
1295 	if (mem_cgroup_disabled())
1296 		return;
1297 
1298 	if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1299 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1300 }
1301 
1302 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1303 
1304 #else	/* CONFIG_CGROUP_WRITEBACK */
1305 
1306 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1307 {
1308 	return NULL;
1309 }
1310 
1311 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1312 				       unsigned long *pfilepages,
1313 				       unsigned long *pheadroom,
1314 				       unsigned long *pdirty,
1315 				       unsigned long *pwriteback)
1316 {
1317 }
1318 
1319 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1320 						  struct bdi_writeback *wb)
1321 {
1322 }
1323 
1324 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1325 {
1326 }
1327 
1328 #endif	/* CONFIG_CGROUP_WRITEBACK */
1329 
1330 struct sock;
1331 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1332 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1333 #ifdef CONFIG_MEMCG
1334 extern struct static_key_false memcg_sockets_enabled_key;
1335 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1336 void mem_cgroup_sk_alloc(struct sock *sk);
1337 void mem_cgroup_sk_free(struct sock *sk);
1338 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1339 {
1340 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1341 		return true;
1342 	do {
1343 		if (time_before(jiffies, memcg->socket_pressure))
1344 			return true;
1345 	} while ((memcg = parent_mem_cgroup(memcg)));
1346 	return false;
1347 }
1348 
1349 extern int memcg_expand_shrinker_maps(int new_id);
1350 
1351 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1352 				   int nid, int shrinker_id);
1353 #else
1354 #define mem_cgroup_sockets_enabled 0
1355 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1356 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1357 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1358 {
1359 	return false;
1360 }
1361 
1362 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1363 					  int nid, int shrinker_id)
1364 {
1365 }
1366 #endif
1367 
1368 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1369 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1370 
1371 #ifdef CONFIG_MEMCG_KMEM
1372 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1373 			unsigned int nr_pages);
1374 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1375 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1376 void __memcg_kmem_uncharge_page(struct page *page, int order);
1377 
1378 extern struct static_key_false memcg_kmem_enabled_key;
1379 extern struct workqueue_struct *memcg_kmem_cache_wq;
1380 
1381 extern int memcg_nr_cache_ids;
1382 void memcg_get_cache_ids(void);
1383 void memcg_put_cache_ids(void);
1384 
1385 /*
1386  * Helper macro to loop through all memcg-specific caches. Callers must still
1387  * check if the cache is valid (it is either valid or NULL).
1388  * the slab_mutex must be held when looping through those caches
1389  */
1390 #define for_each_memcg_cache_index(_idx)	\
1391 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1392 
1393 static inline bool memcg_kmem_enabled(void)
1394 {
1395 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1396 }
1397 
1398 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1399 					 int order)
1400 {
1401 	if (memcg_kmem_enabled())
1402 		return __memcg_kmem_charge_page(page, gfp, order);
1403 	return 0;
1404 }
1405 
1406 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1407 {
1408 	if (memcg_kmem_enabled())
1409 		__memcg_kmem_uncharge_page(page, order);
1410 }
1411 
1412 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1413 				    unsigned int nr_pages)
1414 {
1415 	if (memcg_kmem_enabled())
1416 		return __memcg_kmem_charge(memcg, gfp, nr_pages);
1417 	return 0;
1418 }
1419 
1420 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1421 				       unsigned int nr_pages)
1422 {
1423 	if (memcg_kmem_enabled())
1424 		__memcg_kmem_uncharge(memcg, nr_pages);
1425 }
1426 
1427 /*
1428  * helper for accessing a memcg's index. It will be used as an index in the
1429  * child cache array in kmem_cache, and also to derive its name. This function
1430  * will return -1 when this is not a kmem-limited memcg.
1431  */
1432 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1433 {
1434 	return memcg ? memcg->kmemcg_id : -1;
1435 }
1436 
1437 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1438 
1439 #else
1440 
1441 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1442 					 int order)
1443 {
1444 	return 0;
1445 }
1446 
1447 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1448 {
1449 }
1450 
1451 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1452 					   int order)
1453 {
1454 	return 0;
1455 }
1456 
1457 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1458 {
1459 }
1460 
1461 #define for_each_memcg_cache_index(_idx)	\
1462 	for (; NULL; )
1463 
1464 static inline bool memcg_kmem_enabled(void)
1465 {
1466 	return false;
1467 }
1468 
1469 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1470 {
1471 	return -1;
1472 }
1473 
1474 static inline void memcg_get_cache_ids(void)
1475 {
1476 }
1477 
1478 static inline void memcg_put_cache_ids(void)
1479 {
1480 }
1481 
1482 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1483 {
1484        return NULL;
1485 }
1486 
1487 #endif /* CONFIG_MEMCG_KMEM */
1488 
1489 #endif /* _LINUX_MEMCONTROL_H */
1490