xref: /linux-6.15/include/linux/memcontrol.h (revision fc7db767)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33 
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38 
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 	MEMCG_RSS,
43 	MEMCG_RSS_HUGE,
44 	MEMCG_SWAP,
45 	MEMCG_SOCK,
46 	/* XXX: why are these zone and not node counters? */
47 	MEMCG_KERNEL_STACK_KB,
48 	MEMCG_NR_STAT,
49 };
50 
51 enum memcg_memory_event {
52 	MEMCG_LOW,
53 	MEMCG_HIGH,
54 	MEMCG_MAX,
55 	MEMCG_OOM,
56 	MEMCG_OOM_KILL,
57 	MEMCG_SWAP_MAX,
58 	MEMCG_SWAP_FAIL,
59 	MEMCG_NR_MEMORY_EVENTS,
60 };
61 
62 enum mem_cgroup_protection {
63 	MEMCG_PROT_NONE,
64 	MEMCG_PROT_LOW,
65 	MEMCG_PROT_MIN,
66 };
67 
68 struct mem_cgroup_reclaim_cookie {
69 	pg_data_t *pgdat;
70 	int priority;
71 	unsigned int generation;
72 };
73 
74 #ifdef CONFIG_MEMCG
75 
76 #define MEM_CGROUP_ID_SHIFT	16
77 #define MEM_CGROUP_ID_MAX	USHRT_MAX
78 
79 struct mem_cgroup_id {
80 	int id;
81 	refcount_t ref;
82 };
83 
84 /*
85  * Per memcg event counter is incremented at every pagein/pageout. With THP,
86  * it will be incremated by the number of pages. This counter is used for
87  * for trigger some periodic events. This is straightforward and better
88  * than using jiffies etc. to handle periodic memcg event.
89  */
90 enum mem_cgroup_events_target {
91 	MEM_CGROUP_TARGET_THRESH,
92 	MEM_CGROUP_TARGET_SOFTLIMIT,
93 	MEM_CGROUP_TARGET_NUMAINFO,
94 	MEM_CGROUP_NTARGETS,
95 };
96 
97 struct mem_cgroup_stat_cpu {
98 	long count[MEMCG_NR_STAT];
99 	unsigned long events[NR_VM_EVENT_ITEMS];
100 	unsigned long nr_page_events;
101 	unsigned long targets[MEM_CGROUP_NTARGETS];
102 };
103 
104 struct mem_cgroup_reclaim_iter {
105 	struct mem_cgroup *position;
106 	/* scan generation, increased every round-trip */
107 	unsigned int generation;
108 };
109 
110 struct lruvec_stat {
111 	long count[NR_VM_NODE_STAT_ITEMS];
112 };
113 
114 /*
115  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116  * which have elements charged to this memcg.
117  */
118 struct memcg_shrinker_map {
119 	struct rcu_head rcu;
120 	unsigned long map[0];
121 };
122 
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_node {
127 	struct lruvec		lruvec;
128 
129 	struct lruvec_stat __percpu *lruvec_stat_cpu;
130 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131 
132 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133 
134 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
135 
136 #ifdef CONFIG_MEMCG_KMEM
137 	struct memcg_shrinker_map __rcu	*shrinker_map;
138 #endif
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long		usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	bool			congested;	/* memcg has many dirty pages */
144 						/* backed by a congested BDI */
145 
146 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147 						/* use container_of	   */
148 };
149 
150 struct mem_cgroup_threshold {
151 	struct eventfd_ctx *eventfd;
152 	unsigned long threshold;
153 };
154 
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157 	/* An array index points to threshold just below or equal to usage. */
158 	int current_threshold;
159 	/* Size of entries[] */
160 	unsigned int size;
161 	/* Array of thresholds */
162 	struct mem_cgroup_threshold entries[0];
163 };
164 
165 struct mem_cgroup_thresholds {
166 	/* Primary thresholds array */
167 	struct mem_cgroup_threshold_ary *primary;
168 	/*
169 	 * Spare threshold array.
170 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 	 * It must be able to store at least primary->size - 1 entries.
172 	 */
173 	struct mem_cgroup_threshold_ary *spare;
174 };
175 
176 enum memcg_kmem_state {
177 	KMEM_NONE,
178 	KMEM_ALLOCATED,
179 	KMEM_ONLINE,
180 };
181 
182 #if defined(CONFIG_SMP)
183 struct memcg_padding {
184 	char x[0];
185 } ____cacheline_internodealigned_in_smp;
186 #define MEMCG_PADDING(name)      struct memcg_padding name;
187 #else
188 #define MEMCG_PADDING(name)
189 #endif
190 
191 /*
192  * The memory controller data structure. The memory controller controls both
193  * page cache and RSS per cgroup. We would eventually like to provide
194  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195  * to help the administrator determine what knobs to tune.
196  */
197 struct mem_cgroup {
198 	struct cgroup_subsys_state css;
199 
200 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
201 	struct mem_cgroup_id id;
202 
203 	/* Accounted resources */
204 	struct page_counter memory;
205 	struct page_counter swap;
206 
207 	/* Legacy consumer-oriented counters */
208 	struct page_counter memsw;
209 	struct page_counter kmem;
210 	struct page_counter tcpmem;
211 
212 	/* Upper bound of normal memory consumption range */
213 	unsigned long high;
214 
215 	/* Range enforcement for interrupt charges */
216 	struct work_struct high_work;
217 
218 	unsigned long soft_limit;
219 
220 	/* vmpressure notifications */
221 	struct vmpressure vmpressure;
222 
223 	/*
224 	 * Should the accounting and control be hierarchical, per subtree?
225 	 */
226 	bool use_hierarchy;
227 
228 	/*
229 	 * Should the OOM killer kill all belonging tasks, had it kill one?
230 	 */
231 	bool oom_group;
232 
233 	/* protected by memcg_oom_lock */
234 	bool		oom_lock;
235 	int		under_oom;
236 
237 	int	swappiness;
238 	/* OOM-Killer disable */
239 	int		oom_kill_disable;
240 
241 	/* memory.events */
242 	struct cgroup_file events_file;
243 
244 	/* handle for "memory.swap.events" */
245 	struct cgroup_file swap_events_file;
246 
247 	/* protect arrays of thresholds */
248 	struct mutex thresholds_lock;
249 
250 	/* thresholds for memory usage. RCU-protected */
251 	struct mem_cgroup_thresholds thresholds;
252 
253 	/* thresholds for mem+swap usage. RCU-protected */
254 	struct mem_cgroup_thresholds memsw_thresholds;
255 
256 	/* For oom notifier event fd */
257 	struct list_head oom_notify;
258 
259 	/*
260 	 * Should we move charges of a task when a task is moved into this
261 	 * mem_cgroup ? And what type of charges should we move ?
262 	 */
263 	unsigned long move_charge_at_immigrate;
264 	/* taken only while moving_account > 0 */
265 	spinlock_t		move_lock;
266 	unsigned long		move_lock_flags;
267 
268 	MEMCG_PADDING(_pad1_);
269 
270 	/*
271 	 * set > 0 if pages under this cgroup are moving to other cgroup.
272 	 */
273 	atomic_t		moving_account;
274 	struct task_struct	*move_lock_task;
275 
276 	/* memory.stat */
277 	struct mem_cgroup_stat_cpu __percpu *stat_cpu;
278 
279 	MEMCG_PADDING(_pad2_);
280 
281 	atomic_long_t		stat[MEMCG_NR_STAT];
282 	atomic_long_t		events[NR_VM_EVENT_ITEMS];
283 	atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 
285 	unsigned long		socket_pressure;
286 
287 	/* Legacy tcp memory accounting */
288 	bool			tcpmem_active;
289 	int			tcpmem_pressure;
290 
291 #ifdef CONFIG_MEMCG_KMEM
292         /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 	int kmemcg_id;
294 	enum memcg_kmem_state kmem_state;
295 	struct list_head kmem_caches;
296 #endif
297 
298 	int last_scanned_node;
299 #if MAX_NUMNODES > 1
300 	nodemask_t	scan_nodes;
301 	atomic_t	numainfo_events;
302 	atomic_t	numainfo_updating;
303 #endif
304 
305 #ifdef CONFIG_CGROUP_WRITEBACK
306 	struct list_head cgwb_list;
307 	struct wb_domain cgwb_domain;
308 #endif
309 
310 	/* List of events which userspace want to receive */
311 	struct list_head event_list;
312 	spinlock_t event_list_lock;
313 
314 	struct mem_cgroup_per_node *nodeinfo[0];
315 	/* WARNING: nodeinfo must be the last member here */
316 };
317 
318 /*
319  * size of first charge trial. "32" comes from vmscan.c's magic value.
320  * TODO: maybe necessary to use big numbers in big irons.
321  */
322 #define MEMCG_CHARGE_BATCH 32U
323 
324 extern struct mem_cgroup *root_mem_cgroup;
325 
326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327 {
328 	return (memcg == root_mem_cgroup);
329 }
330 
331 static inline bool mem_cgroup_disabled(void)
332 {
333 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
334 }
335 
336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 						struct mem_cgroup *memcg);
338 
339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 			  bool compound);
342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 			  bool compound);
345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 			      bool lrucare, bool compound);
347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 		bool compound);
349 void mem_cgroup_uncharge(struct page *page);
350 void mem_cgroup_uncharge_list(struct list_head *page_list);
351 
352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353 
354 static struct mem_cgroup_per_node *
355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356 {
357 	return memcg->nodeinfo[nid];
358 }
359 
360 /**
361  * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362  * @node: node of the wanted lruvec
363  * @memcg: memcg of the wanted lruvec
364  *
365  * Returns the lru list vector holding pages for a given @node or a given
366  * @memcg and @zone. This can be the node lruvec, if the memory controller
367  * is disabled.
368  */
369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 				struct mem_cgroup *memcg)
371 {
372 	struct mem_cgroup_per_node *mz;
373 	struct lruvec *lruvec;
374 
375 	if (mem_cgroup_disabled()) {
376 		lruvec = node_lruvec(pgdat);
377 		goto out;
378 	}
379 
380 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 	lruvec = &mz->lruvec;
382 out:
383 	/*
384 	 * Since a node can be onlined after the mem_cgroup was created,
385 	 * we have to be prepared to initialize lruvec->pgdat here;
386 	 * and if offlined then reonlined, we need to reinitialize it.
387 	 */
388 	if (unlikely(lruvec->pgdat != pgdat))
389 		lruvec->pgdat = pgdat;
390 	return lruvec;
391 }
392 
393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394 
395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397 
398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399 
400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401 
402 static inline
403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
405 }
406 
407 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408 {
409 	if (memcg)
410 		css_put(&memcg->css);
411 }
412 
413 #define mem_cgroup_from_counter(counter, member)	\
414 	container_of(counter, struct mem_cgroup, member)
415 
416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 				   struct mem_cgroup *,
418 				   struct mem_cgroup_reclaim_cookie *);
419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420 int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 			  int (*)(struct task_struct *, void *), void *);
422 
423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424 {
425 	if (mem_cgroup_disabled())
426 		return 0;
427 
428 	return memcg->id.id;
429 }
430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431 
432 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
433 {
434 	return mem_cgroup_from_css(seq_css(m));
435 }
436 
437 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
438 {
439 	struct mem_cgroup_per_node *mz;
440 
441 	if (mem_cgroup_disabled())
442 		return NULL;
443 
444 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
445 	return mz->memcg;
446 }
447 
448 /**
449  * parent_mem_cgroup - find the accounting parent of a memcg
450  * @memcg: memcg whose parent to find
451  *
452  * Returns the parent memcg, or NULL if this is the root or the memory
453  * controller is in legacy no-hierarchy mode.
454  */
455 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
456 {
457 	if (!memcg->memory.parent)
458 		return NULL;
459 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
460 }
461 
462 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
463 			      struct mem_cgroup *root)
464 {
465 	if (root == memcg)
466 		return true;
467 	if (!root->use_hierarchy)
468 		return false;
469 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
470 }
471 
472 static inline bool mm_match_cgroup(struct mm_struct *mm,
473 				   struct mem_cgroup *memcg)
474 {
475 	struct mem_cgroup *task_memcg;
476 	bool match = false;
477 
478 	rcu_read_lock();
479 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
480 	if (task_memcg)
481 		match = mem_cgroup_is_descendant(task_memcg, memcg);
482 	rcu_read_unlock();
483 	return match;
484 }
485 
486 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
487 ino_t page_cgroup_ino(struct page *page);
488 
489 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
490 {
491 	if (mem_cgroup_disabled())
492 		return true;
493 	return !!(memcg->css.flags & CSS_ONLINE);
494 }
495 
496 /*
497  * For memory reclaim.
498  */
499 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
500 
501 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
502 		int zid, int nr_pages);
503 
504 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
505 					   int nid, unsigned int lru_mask);
506 
507 static inline
508 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
509 {
510 	struct mem_cgroup_per_node *mz;
511 	unsigned long nr_pages = 0;
512 	int zid;
513 
514 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
515 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
516 		nr_pages += mz->lru_zone_size[zid][lru];
517 	return nr_pages;
518 }
519 
520 static inline
521 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
522 		enum lru_list lru, int zone_idx)
523 {
524 	struct mem_cgroup_per_node *mz;
525 
526 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
527 	return mz->lru_zone_size[zone_idx][lru];
528 }
529 
530 void mem_cgroup_handle_over_high(void);
531 
532 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
533 
534 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
535 				struct task_struct *p);
536 
537 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
538 
539 static inline void mem_cgroup_enter_user_fault(void)
540 {
541 	WARN_ON(current->in_user_fault);
542 	current->in_user_fault = 1;
543 }
544 
545 static inline void mem_cgroup_exit_user_fault(void)
546 {
547 	WARN_ON(!current->in_user_fault);
548 	current->in_user_fault = 0;
549 }
550 
551 static inline bool task_in_memcg_oom(struct task_struct *p)
552 {
553 	return p->memcg_in_oom;
554 }
555 
556 bool mem_cgroup_oom_synchronize(bool wait);
557 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
558 					    struct mem_cgroup *oom_domain);
559 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
560 
561 #ifdef CONFIG_MEMCG_SWAP
562 extern int do_swap_account;
563 #endif
564 
565 struct mem_cgroup *lock_page_memcg(struct page *page);
566 void __unlock_page_memcg(struct mem_cgroup *memcg);
567 void unlock_page_memcg(struct page *page);
568 
569 /*
570  * idx can be of type enum memcg_stat_item or node_stat_item.
571  * Keep in sync with memcg_exact_page_state().
572  */
573 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
574 					     int idx)
575 {
576 	long x = atomic_long_read(&memcg->stat[idx]);
577 #ifdef CONFIG_SMP
578 	if (x < 0)
579 		x = 0;
580 #endif
581 	return x;
582 }
583 
584 /* idx can be of type enum memcg_stat_item or node_stat_item */
585 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
586 				     int idx, int val)
587 {
588 	long x;
589 
590 	if (mem_cgroup_disabled())
591 		return;
592 
593 	x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
594 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
595 		atomic_long_add(x, &memcg->stat[idx]);
596 		x = 0;
597 	}
598 	__this_cpu_write(memcg->stat_cpu->count[idx], x);
599 }
600 
601 /* idx can be of type enum memcg_stat_item or node_stat_item */
602 static inline void mod_memcg_state(struct mem_cgroup *memcg,
603 				   int idx, int val)
604 {
605 	unsigned long flags;
606 
607 	local_irq_save(flags);
608 	__mod_memcg_state(memcg, idx, val);
609 	local_irq_restore(flags);
610 }
611 
612 /**
613  * mod_memcg_page_state - update page state statistics
614  * @page: the page
615  * @idx: page state item to account
616  * @val: number of pages (positive or negative)
617  *
618  * The @page must be locked or the caller must use lock_page_memcg()
619  * to prevent double accounting when the page is concurrently being
620  * moved to another memcg:
621  *
622  *   lock_page(page) or lock_page_memcg(page)
623  *   if (TestClearPageState(page))
624  *     mod_memcg_page_state(page, state, -1);
625  *   unlock_page(page) or unlock_page_memcg(page)
626  *
627  * Kernel pages are an exception to this, since they'll never move.
628  */
629 static inline void __mod_memcg_page_state(struct page *page,
630 					  int idx, int val)
631 {
632 	if (page->mem_cgroup)
633 		__mod_memcg_state(page->mem_cgroup, idx, val);
634 }
635 
636 static inline void mod_memcg_page_state(struct page *page,
637 					int idx, int val)
638 {
639 	if (page->mem_cgroup)
640 		mod_memcg_state(page->mem_cgroup, idx, val);
641 }
642 
643 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
644 					      enum node_stat_item idx)
645 {
646 	struct mem_cgroup_per_node *pn;
647 	long x;
648 
649 	if (mem_cgroup_disabled())
650 		return node_page_state(lruvec_pgdat(lruvec), idx);
651 
652 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
653 	x = atomic_long_read(&pn->lruvec_stat[idx]);
654 #ifdef CONFIG_SMP
655 	if (x < 0)
656 		x = 0;
657 #endif
658 	return x;
659 }
660 
661 static inline void __mod_lruvec_state(struct lruvec *lruvec,
662 				      enum node_stat_item idx, int val)
663 {
664 	struct mem_cgroup_per_node *pn;
665 	long x;
666 
667 	/* Update node */
668 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
669 
670 	if (mem_cgroup_disabled())
671 		return;
672 
673 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
674 
675 	/* Update memcg */
676 	__mod_memcg_state(pn->memcg, idx, val);
677 
678 	/* Update lruvec */
679 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
680 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
681 		atomic_long_add(x, &pn->lruvec_stat[idx]);
682 		x = 0;
683 	}
684 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
685 }
686 
687 static inline void mod_lruvec_state(struct lruvec *lruvec,
688 				    enum node_stat_item idx, int val)
689 {
690 	unsigned long flags;
691 
692 	local_irq_save(flags);
693 	__mod_lruvec_state(lruvec, idx, val);
694 	local_irq_restore(flags);
695 }
696 
697 static inline void __mod_lruvec_page_state(struct page *page,
698 					   enum node_stat_item idx, int val)
699 {
700 	pg_data_t *pgdat = page_pgdat(page);
701 	struct lruvec *lruvec;
702 
703 	/* Untracked pages have no memcg, no lruvec. Update only the node */
704 	if (!page->mem_cgroup) {
705 		__mod_node_page_state(pgdat, idx, val);
706 		return;
707 	}
708 
709 	lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
710 	__mod_lruvec_state(lruvec, idx, val);
711 }
712 
713 static inline void mod_lruvec_page_state(struct page *page,
714 					 enum node_stat_item idx, int val)
715 {
716 	unsigned long flags;
717 
718 	local_irq_save(flags);
719 	__mod_lruvec_page_state(page, idx, val);
720 	local_irq_restore(flags);
721 }
722 
723 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
724 						gfp_t gfp_mask,
725 						unsigned long *total_scanned);
726 
727 static inline void __count_memcg_events(struct mem_cgroup *memcg,
728 					enum vm_event_item idx,
729 					unsigned long count)
730 {
731 	unsigned long x;
732 
733 	if (mem_cgroup_disabled())
734 		return;
735 
736 	x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
737 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
738 		atomic_long_add(x, &memcg->events[idx]);
739 		x = 0;
740 	}
741 	__this_cpu_write(memcg->stat_cpu->events[idx], x);
742 }
743 
744 static inline void count_memcg_events(struct mem_cgroup *memcg,
745 				      enum vm_event_item idx,
746 				      unsigned long count)
747 {
748 	unsigned long flags;
749 
750 	local_irq_save(flags);
751 	__count_memcg_events(memcg, idx, count);
752 	local_irq_restore(flags);
753 }
754 
755 static inline void count_memcg_page_event(struct page *page,
756 					  enum vm_event_item idx)
757 {
758 	if (page->mem_cgroup)
759 		count_memcg_events(page->mem_cgroup, idx, 1);
760 }
761 
762 static inline void count_memcg_event_mm(struct mm_struct *mm,
763 					enum vm_event_item idx)
764 {
765 	struct mem_cgroup *memcg;
766 
767 	if (mem_cgroup_disabled())
768 		return;
769 
770 	rcu_read_lock();
771 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
772 	if (likely(memcg))
773 		count_memcg_events(memcg, idx, 1);
774 	rcu_read_unlock();
775 }
776 
777 static inline void memcg_memory_event(struct mem_cgroup *memcg,
778 				      enum memcg_memory_event event)
779 {
780 	atomic_long_inc(&memcg->memory_events[event]);
781 	cgroup_file_notify(&memcg->events_file);
782 }
783 
784 static inline void memcg_memory_event_mm(struct mm_struct *mm,
785 					 enum memcg_memory_event event)
786 {
787 	struct mem_cgroup *memcg;
788 
789 	if (mem_cgroup_disabled())
790 		return;
791 
792 	rcu_read_lock();
793 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
794 	if (likely(memcg))
795 		memcg_memory_event(memcg, event);
796 	rcu_read_unlock();
797 }
798 
799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
800 void mem_cgroup_split_huge_fixup(struct page *head);
801 #endif
802 
803 #else /* CONFIG_MEMCG */
804 
805 #define MEM_CGROUP_ID_SHIFT	0
806 #define MEM_CGROUP_ID_MAX	0
807 
808 struct mem_cgroup;
809 
810 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
811 {
812 	return true;
813 }
814 
815 static inline bool mem_cgroup_disabled(void)
816 {
817 	return true;
818 }
819 
820 static inline void memcg_memory_event(struct mem_cgroup *memcg,
821 				      enum memcg_memory_event event)
822 {
823 }
824 
825 static inline void memcg_memory_event_mm(struct mm_struct *mm,
826 					 enum memcg_memory_event event)
827 {
828 }
829 
830 static inline enum mem_cgroup_protection mem_cgroup_protected(
831 	struct mem_cgroup *root, struct mem_cgroup *memcg)
832 {
833 	return MEMCG_PROT_NONE;
834 }
835 
836 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
837 					gfp_t gfp_mask,
838 					struct mem_cgroup **memcgp,
839 					bool compound)
840 {
841 	*memcgp = NULL;
842 	return 0;
843 }
844 
845 static inline int mem_cgroup_try_charge_delay(struct page *page,
846 					      struct mm_struct *mm,
847 					      gfp_t gfp_mask,
848 					      struct mem_cgroup **memcgp,
849 					      bool compound)
850 {
851 	*memcgp = NULL;
852 	return 0;
853 }
854 
855 static inline void mem_cgroup_commit_charge(struct page *page,
856 					    struct mem_cgroup *memcg,
857 					    bool lrucare, bool compound)
858 {
859 }
860 
861 static inline void mem_cgroup_cancel_charge(struct page *page,
862 					    struct mem_cgroup *memcg,
863 					    bool compound)
864 {
865 }
866 
867 static inline void mem_cgroup_uncharge(struct page *page)
868 {
869 }
870 
871 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
872 {
873 }
874 
875 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
876 {
877 }
878 
879 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
880 				struct mem_cgroup *memcg)
881 {
882 	return node_lruvec(pgdat);
883 }
884 
885 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
886 						    struct pglist_data *pgdat)
887 {
888 	return &pgdat->lruvec;
889 }
890 
891 static inline bool mm_match_cgroup(struct mm_struct *mm,
892 		struct mem_cgroup *memcg)
893 {
894 	return true;
895 }
896 
897 static inline bool task_in_mem_cgroup(struct task_struct *task,
898 				      const struct mem_cgroup *memcg)
899 {
900 	return true;
901 }
902 
903 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
904 {
905 	return NULL;
906 }
907 
908 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
909 {
910 	return NULL;
911 }
912 
913 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
914 {
915 }
916 
917 static inline struct mem_cgroup *
918 mem_cgroup_iter(struct mem_cgroup *root,
919 		struct mem_cgroup *prev,
920 		struct mem_cgroup_reclaim_cookie *reclaim)
921 {
922 	return NULL;
923 }
924 
925 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
926 					 struct mem_cgroup *prev)
927 {
928 }
929 
930 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
931 		int (*fn)(struct task_struct *, void *), void *arg)
932 {
933 	return 0;
934 }
935 
936 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
937 {
938 	return 0;
939 }
940 
941 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
942 {
943 	WARN_ON_ONCE(id);
944 	/* XXX: This should always return root_mem_cgroup */
945 	return NULL;
946 }
947 
948 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
949 {
950 	return NULL;
951 }
952 
953 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
954 {
955 	return NULL;
956 }
957 
958 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
959 {
960 	return true;
961 }
962 
963 static inline unsigned long
964 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
965 {
966 	return 0;
967 }
968 static inline
969 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
970 		enum lru_list lru, int zone_idx)
971 {
972 	return 0;
973 }
974 
975 static inline unsigned long
976 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
977 			     int nid, unsigned int lru_mask)
978 {
979 	return 0;
980 }
981 
982 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
983 {
984 	return 0;
985 }
986 
987 static inline void
988 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
989 {
990 }
991 
992 static inline void
993 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
994 {
995 }
996 
997 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
998 {
999 	return NULL;
1000 }
1001 
1002 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1003 {
1004 }
1005 
1006 static inline void unlock_page_memcg(struct page *page)
1007 {
1008 }
1009 
1010 static inline void mem_cgroup_handle_over_high(void)
1011 {
1012 }
1013 
1014 static inline void mem_cgroup_enter_user_fault(void)
1015 {
1016 }
1017 
1018 static inline void mem_cgroup_exit_user_fault(void)
1019 {
1020 }
1021 
1022 static inline bool task_in_memcg_oom(struct task_struct *p)
1023 {
1024 	return false;
1025 }
1026 
1027 static inline bool mem_cgroup_oom_synchronize(bool wait)
1028 {
1029 	return false;
1030 }
1031 
1032 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1033 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1034 {
1035 	return NULL;
1036 }
1037 
1038 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1039 {
1040 }
1041 
1042 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1043 					     int idx)
1044 {
1045 	return 0;
1046 }
1047 
1048 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1049 				     int idx,
1050 				     int nr)
1051 {
1052 }
1053 
1054 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1055 				   int idx,
1056 				   int nr)
1057 {
1058 }
1059 
1060 static inline void __mod_memcg_page_state(struct page *page,
1061 					  int idx,
1062 					  int nr)
1063 {
1064 }
1065 
1066 static inline void mod_memcg_page_state(struct page *page,
1067 					int idx,
1068 					int nr)
1069 {
1070 }
1071 
1072 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1073 					      enum node_stat_item idx)
1074 {
1075 	return node_page_state(lruvec_pgdat(lruvec), idx);
1076 }
1077 
1078 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1079 				      enum node_stat_item idx, int val)
1080 {
1081 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1082 }
1083 
1084 static inline void mod_lruvec_state(struct lruvec *lruvec,
1085 				    enum node_stat_item idx, int val)
1086 {
1087 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1088 }
1089 
1090 static inline void __mod_lruvec_page_state(struct page *page,
1091 					   enum node_stat_item idx, int val)
1092 {
1093 	__mod_node_page_state(page_pgdat(page), idx, val);
1094 }
1095 
1096 static inline void mod_lruvec_page_state(struct page *page,
1097 					 enum node_stat_item idx, int val)
1098 {
1099 	mod_node_page_state(page_pgdat(page), idx, val);
1100 }
1101 
1102 static inline
1103 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1104 					    gfp_t gfp_mask,
1105 					    unsigned long *total_scanned)
1106 {
1107 	return 0;
1108 }
1109 
1110 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1111 {
1112 }
1113 
1114 static inline void count_memcg_events(struct mem_cgroup *memcg,
1115 				      enum vm_event_item idx,
1116 				      unsigned long count)
1117 {
1118 }
1119 
1120 static inline void count_memcg_page_event(struct page *page,
1121 					  int idx)
1122 {
1123 }
1124 
1125 static inline
1126 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1127 {
1128 }
1129 #endif /* CONFIG_MEMCG */
1130 
1131 /* idx can be of type enum memcg_stat_item or node_stat_item */
1132 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1133 				     int idx)
1134 {
1135 	__mod_memcg_state(memcg, idx, 1);
1136 }
1137 
1138 /* idx can be of type enum memcg_stat_item or node_stat_item */
1139 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1140 				     int idx)
1141 {
1142 	__mod_memcg_state(memcg, idx, -1);
1143 }
1144 
1145 /* idx can be of type enum memcg_stat_item or node_stat_item */
1146 static inline void __inc_memcg_page_state(struct page *page,
1147 					  int idx)
1148 {
1149 	__mod_memcg_page_state(page, idx, 1);
1150 }
1151 
1152 /* idx can be of type enum memcg_stat_item or node_stat_item */
1153 static inline void __dec_memcg_page_state(struct page *page,
1154 					  int idx)
1155 {
1156 	__mod_memcg_page_state(page, idx, -1);
1157 }
1158 
1159 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1160 				      enum node_stat_item idx)
1161 {
1162 	__mod_lruvec_state(lruvec, idx, 1);
1163 }
1164 
1165 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1166 				      enum node_stat_item idx)
1167 {
1168 	__mod_lruvec_state(lruvec, idx, -1);
1169 }
1170 
1171 static inline void __inc_lruvec_page_state(struct page *page,
1172 					   enum node_stat_item idx)
1173 {
1174 	__mod_lruvec_page_state(page, idx, 1);
1175 }
1176 
1177 static inline void __dec_lruvec_page_state(struct page *page,
1178 					   enum node_stat_item idx)
1179 {
1180 	__mod_lruvec_page_state(page, idx, -1);
1181 }
1182 
1183 /* idx can be of type enum memcg_stat_item or node_stat_item */
1184 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1185 				   int idx)
1186 {
1187 	mod_memcg_state(memcg, idx, 1);
1188 }
1189 
1190 /* idx can be of type enum memcg_stat_item or node_stat_item */
1191 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1192 				   int idx)
1193 {
1194 	mod_memcg_state(memcg, idx, -1);
1195 }
1196 
1197 /* idx can be of type enum memcg_stat_item or node_stat_item */
1198 static inline void inc_memcg_page_state(struct page *page,
1199 					int idx)
1200 {
1201 	mod_memcg_page_state(page, idx, 1);
1202 }
1203 
1204 /* idx can be of type enum memcg_stat_item or node_stat_item */
1205 static inline void dec_memcg_page_state(struct page *page,
1206 					int idx)
1207 {
1208 	mod_memcg_page_state(page, idx, -1);
1209 }
1210 
1211 static inline void inc_lruvec_state(struct lruvec *lruvec,
1212 				    enum node_stat_item idx)
1213 {
1214 	mod_lruvec_state(lruvec, idx, 1);
1215 }
1216 
1217 static inline void dec_lruvec_state(struct lruvec *lruvec,
1218 				    enum node_stat_item idx)
1219 {
1220 	mod_lruvec_state(lruvec, idx, -1);
1221 }
1222 
1223 static inline void inc_lruvec_page_state(struct page *page,
1224 					 enum node_stat_item idx)
1225 {
1226 	mod_lruvec_page_state(page, idx, 1);
1227 }
1228 
1229 static inline void dec_lruvec_page_state(struct page *page,
1230 					 enum node_stat_item idx)
1231 {
1232 	mod_lruvec_page_state(page, idx, -1);
1233 }
1234 
1235 #ifdef CONFIG_CGROUP_WRITEBACK
1236 
1237 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1238 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1239 			 unsigned long *pheadroom, unsigned long *pdirty,
1240 			 unsigned long *pwriteback);
1241 
1242 #else	/* CONFIG_CGROUP_WRITEBACK */
1243 
1244 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1245 {
1246 	return NULL;
1247 }
1248 
1249 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1250 				       unsigned long *pfilepages,
1251 				       unsigned long *pheadroom,
1252 				       unsigned long *pdirty,
1253 				       unsigned long *pwriteback)
1254 {
1255 }
1256 
1257 #endif	/* CONFIG_CGROUP_WRITEBACK */
1258 
1259 struct sock;
1260 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1261 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1262 #ifdef CONFIG_MEMCG
1263 extern struct static_key_false memcg_sockets_enabled_key;
1264 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1265 void mem_cgroup_sk_alloc(struct sock *sk);
1266 void mem_cgroup_sk_free(struct sock *sk);
1267 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1268 {
1269 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1270 		return true;
1271 	do {
1272 		if (time_before(jiffies, memcg->socket_pressure))
1273 			return true;
1274 	} while ((memcg = parent_mem_cgroup(memcg)));
1275 	return false;
1276 }
1277 #else
1278 #define mem_cgroup_sockets_enabled 0
1279 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1280 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1281 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1282 {
1283 	return false;
1284 }
1285 #endif
1286 
1287 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1288 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1289 
1290 #ifdef CONFIG_MEMCG_KMEM
1291 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1292 void __memcg_kmem_uncharge(struct page *page, int order);
1293 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1294 			      struct mem_cgroup *memcg);
1295 
1296 extern struct static_key_false memcg_kmem_enabled_key;
1297 extern struct workqueue_struct *memcg_kmem_cache_wq;
1298 
1299 extern int memcg_nr_cache_ids;
1300 void memcg_get_cache_ids(void);
1301 void memcg_put_cache_ids(void);
1302 
1303 /*
1304  * Helper macro to loop through all memcg-specific caches. Callers must still
1305  * check if the cache is valid (it is either valid or NULL).
1306  * the slab_mutex must be held when looping through those caches
1307  */
1308 #define for_each_memcg_cache_index(_idx)	\
1309 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1310 
1311 static inline bool memcg_kmem_enabled(void)
1312 {
1313 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1314 }
1315 
1316 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1317 {
1318 	if (memcg_kmem_enabled())
1319 		return __memcg_kmem_charge(page, gfp, order);
1320 	return 0;
1321 }
1322 
1323 static inline void memcg_kmem_uncharge(struct page *page, int order)
1324 {
1325 	if (memcg_kmem_enabled())
1326 		__memcg_kmem_uncharge(page, order);
1327 }
1328 
1329 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1330 					  int order, struct mem_cgroup *memcg)
1331 {
1332 	if (memcg_kmem_enabled())
1333 		return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1334 	return 0;
1335 }
1336 /*
1337  * helper for accessing a memcg's index. It will be used as an index in the
1338  * child cache array in kmem_cache, and also to derive its name. This function
1339  * will return -1 when this is not a kmem-limited memcg.
1340  */
1341 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1342 {
1343 	return memcg ? memcg->kmemcg_id : -1;
1344 }
1345 
1346 extern int memcg_expand_shrinker_maps(int new_id);
1347 
1348 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1349 				   int nid, int shrinker_id);
1350 #else
1351 
1352 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1353 {
1354 	return 0;
1355 }
1356 
1357 static inline void memcg_kmem_uncharge(struct page *page, int order)
1358 {
1359 }
1360 
1361 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1362 {
1363 	return 0;
1364 }
1365 
1366 static inline void __memcg_kmem_uncharge(struct page *page, int order)
1367 {
1368 }
1369 
1370 #define for_each_memcg_cache_index(_idx)	\
1371 	for (; NULL; )
1372 
1373 static inline bool memcg_kmem_enabled(void)
1374 {
1375 	return false;
1376 }
1377 
1378 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1379 {
1380 	return -1;
1381 }
1382 
1383 static inline void memcg_get_cache_ids(void)
1384 {
1385 }
1386 
1387 static inline void memcg_put_cache_ids(void)
1388 {
1389 }
1390 
1391 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1392 					  int nid, int shrinker_id) { }
1393 #endif /* CONFIG_MEMCG_KMEM */
1394 
1395 #endif /* _LINUX_MEMCONTROL_H */
1396