xref: /linux-6.15/include/linux/memcontrol.h (revision fc5dfebc)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 #define MEM_CGROUP_ID_MAX	USHRT_MAX
65 
66 struct mem_cgroup_id {
67 	int id;
68 	refcount_t ref;
69 };
70 
71 /*
72  * Per memcg event counter is incremented at every pagein/pageout. With THP,
73  * it will be incremented by the number of pages. This counter is used
74  * to trigger some periodic events. This is straightforward and better
75  * than using jiffies etc. to handle periodic memcg event.
76  */
77 enum mem_cgroup_events_target {
78 	MEM_CGROUP_TARGET_THRESH,
79 	MEM_CGROUP_TARGET_SOFTLIMIT,
80 	MEM_CGROUP_NTARGETS,
81 };
82 
83 struct memcg_vmstats_percpu {
84 	/* Local (CPU and cgroup) page state & events */
85 	long			state[MEMCG_NR_STAT];
86 	unsigned long		events[NR_VM_EVENT_ITEMS];
87 
88 	/* Delta calculation for lockless upward propagation */
89 	long			state_prev[MEMCG_NR_STAT];
90 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
91 
92 	/* Cgroup1: threshold notifications & softlimit tree updates */
93 	unsigned long		nr_page_events;
94 	unsigned long		targets[MEM_CGROUP_NTARGETS];
95 };
96 
97 struct memcg_vmstats {
98 	/* Aggregated (CPU and subtree) page state & events */
99 	long			state[MEMCG_NR_STAT];
100 	unsigned long		events[NR_VM_EVENT_ITEMS];
101 
102 	/* Pending child counts during tree propagation */
103 	long			state_pending[MEMCG_NR_STAT];
104 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
105 };
106 
107 struct mem_cgroup_reclaim_iter {
108 	struct mem_cgroup *position;
109 	/* scan generation, increased every round-trip */
110 	unsigned int generation;
111 };
112 
113 /*
114  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
115  * shrinkers, which have elements charged to this memcg.
116  */
117 struct shrinker_info {
118 	struct rcu_head rcu;
119 	atomic_long_t *nr_deferred;
120 	unsigned long *map;
121 };
122 
123 struct lruvec_stats_percpu {
124 	/* Local (CPU and cgroup) state */
125 	long state[NR_VM_NODE_STAT_ITEMS];
126 
127 	/* Delta calculation for lockless upward propagation */
128 	long state_prev[NR_VM_NODE_STAT_ITEMS];
129 };
130 
131 struct lruvec_stats {
132 	/* Aggregated (CPU and subtree) state */
133 	long state[NR_VM_NODE_STAT_ITEMS];
134 
135 	/* Pending child counts during tree propagation */
136 	long state_pending[NR_VM_NODE_STAT_ITEMS];
137 };
138 
139 /*
140  * per-node information in memory controller.
141  */
142 struct mem_cgroup_per_node {
143 	struct lruvec		lruvec;
144 
145 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
146 	struct lruvec_stats			lruvec_stats;
147 
148 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
149 
150 	struct mem_cgroup_reclaim_iter	iter;
151 
152 	struct shrinker_info __rcu	*shrinker_info;
153 
154 	struct rb_node		tree_node;	/* RB tree node */
155 	unsigned long		usage_in_excess;/* Set to the value by which */
156 						/* the soft limit is exceeded*/
157 	bool			on_tree;
158 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
159 						/* use container_of	   */
160 };
161 
162 struct mem_cgroup_threshold {
163 	struct eventfd_ctx *eventfd;
164 	unsigned long threshold;
165 };
166 
167 /* For threshold */
168 struct mem_cgroup_threshold_ary {
169 	/* An array index points to threshold just below or equal to usage. */
170 	int current_threshold;
171 	/* Size of entries[] */
172 	unsigned int size;
173 	/* Array of thresholds */
174 	struct mem_cgroup_threshold entries[];
175 };
176 
177 struct mem_cgroup_thresholds {
178 	/* Primary thresholds array */
179 	struct mem_cgroup_threshold_ary *primary;
180 	/*
181 	 * Spare threshold array.
182 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
183 	 * It must be able to store at least primary->size - 1 entries.
184 	 */
185 	struct mem_cgroup_threshold_ary *spare;
186 };
187 
188 /*
189  * Remember four most recent foreign writebacks with dirty pages in this
190  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
191  * one in a given round, we're likely to catch it later if it keeps
192  * foreign-dirtying, so a fairly low count should be enough.
193  *
194  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
195  */
196 #define MEMCG_CGWB_FRN_CNT	4
197 
198 struct memcg_cgwb_frn {
199 	u64 bdi_id;			/* bdi->id of the foreign inode */
200 	int memcg_id;			/* memcg->css.id of foreign inode */
201 	u64 at;				/* jiffies_64 at the time of dirtying */
202 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
203 };
204 
205 /*
206  * Bucket for arbitrarily byte-sized objects charged to a memory
207  * cgroup. The bucket can be reparented in one piece when the cgroup
208  * is destroyed, without having to round up the individual references
209  * of all live memory objects in the wild.
210  */
211 struct obj_cgroup {
212 	struct percpu_ref refcnt;
213 	struct mem_cgroup *memcg;
214 	atomic_t nr_charged_bytes;
215 	union {
216 		struct list_head list; /* protected by objcg_lock */
217 		struct rcu_head rcu;
218 	};
219 };
220 
221 /*
222  * The memory controller data structure. The memory controller controls both
223  * page cache and RSS per cgroup. We would eventually like to provide
224  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
225  * to help the administrator determine what knobs to tune.
226  */
227 struct mem_cgroup {
228 	struct cgroup_subsys_state css;
229 
230 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
231 	struct mem_cgroup_id id;
232 
233 	/* Accounted resources */
234 	struct page_counter memory;		/* Both v1 & v2 */
235 
236 	union {
237 		struct page_counter swap;	/* v2 only */
238 		struct page_counter memsw;	/* v1 only */
239 	};
240 
241 	/* Legacy consumer-oriented counters */
242 	struct page_counter kmem;		/* v1 only */
243 	struct page_counter tcpmem;		/* v1 only */
244 
245 	/* Range enforcement for interrupt charges */
246 	struct work_struct high_work;
247 
248 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
249 	unsigned long zswap_max;
250 #endif
251 
252 	unsigned long soft_limit;
253 
254 	/* vmpressure notifications */
255 	struct vmpressure vmpressure;
256 
257 	/*
258 	 * Should the OOM killer kill all belonging tasks, had it kill one?
259 	 */
260 	bool oom_group;
261 
262 	/* protected by memcg_oom_lock */
263 	bool		oom_lock;
264 	int		under_oom;
265 
266 	int	swappiness;
267 	/* OOM-Killer disable */
268 	int		oom_kill_disable;
269 
270 	/* memory.events and memory.events.local */
271 	struct cgroup_file events_file;
272 	struct cgroup_file events_local_file;
273 
274 	/* handle for "memory.swap.events" */
275 	struct cgroup_file swap_events_file;
276 
277 	/* protect arrays of thresholds */
278 	struct mutex thresholds_lock;
279 
280 	/* thresholds for memory usage. RCU-protected */
281 	struct mem_cgroup_thresholds thresholds;
282 
283 	/* thresholds for mem+swap usage. RCU-protected */
284 	struct mem_cgroup_thresholds memsw_thresholds;
285 
286 	/* For oom notifier event fd */
287 	struct list_head oom_notify;
288 
289 	/*
290 	 * Should we move charges of a task when a task is moved into this
291 	 * mem_cgroup ? And what type of charges should we move ?
292 	 */
293 	unsigned long move_charge_at_immigrate;
294 	/* taken only while moving_account > 0 */
295 	spinlock_t		move_lock;
296 	unsigned long		move_lock_flags;
297 
298 	CACHELINE_PADDING(_pad1_);
299 
300 	/* memory.stat */
301 	struct memcg_vmstats	vmstats;
302 
303 	/* memory.events */
304 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
305 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
306 
307 	unsigned long		socket_pressure;
308 
309 	/* Legacy tcp memory accounting */
310 	bool			tcpmem_active;
311 	int			tcpmem_pressure;
312 
313 #ifdef CONFIG_MEMCG_KMEM
314 	int kmemcg_id;
315 	struct obj_cgroup __rcu *objcg;
316 	/* list of inherited objcgs, protected by objcg_lock */
317 	struct list_head objcg_list;
318 #endif
319 
320 	CACHELINE_PADDING(_pad2_);
321 
322 	/*
323 	 * set > 0 if pages under this cgroup are moving to other cgroup.
324 	 */
325 	atomic_t		moving_account;
326 	struct task_struct	*move_lock_task;
327 
328 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
329 
330 #ifdef CONFIG_CGROUP_WRITEBACK
331 	struct list_head cgwb_list;
332 	struct wb_domain cgwb_domain;
333 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
334 #endif
335 
336 	/* List of events which userspace want to receive */
337 	struct list_head event_list;
338 	spinlock_t event_list_lock;
339 
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 	struct deferred_split deferred_split_queue;
342 #endif
343 
344 #ifdef CONFIG_LRU_GEN
345 	/* per-memcg mm_struct list */
346 	struct lru_gen_mm_list mm_list;
347 #endif
348 
349 	struct mem_cgroup_per_node *nodeinfo[];
350 };
351 
352 /*
353  * size of first charge trial.
354  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
355  * workload.
356  */
357 #define MEMCG_CHARGE_BATCH 64U
358 
359 extern struct mem_cgroup *root_mem_cgroup;
360 
361 enum page_memcg_data_flags {
362 	/* page->memcg_data is a pointer to an objcgs vector */
363 	MEMCG_DATA_OBJCGS = (1UL << 0),
364 	/* page has been accounted as a non-slab kernel page */
365 	MEMCG_DATA_KMEM = (1UL << 1),
366 	/* the next bit after the last actual flag */
367 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
368 };
369 
370 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
371 
372 static inline bool folio_memcg_kmem(struct folio *folio);
373 
374 /*
375  * After the initialization objcg->memcg is always pointing at
376  * a valid memcg, but can be atomically swapped to the parent memcg.
377  *
378  * The caller must ensure that the returned memcg won't be released:
379  * e.g. acquire the rcu_read_lock or css_set_lock.
380  */
381 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
382 {
383 	return READ_ONCE(objcg->memcg);
384 }
385 
386 /*
387  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the memory cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper memory cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * kmem folios.
395  */
396 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
403 
404 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 }
406 
407 /*
408  * __folio_objcg - get the object cgroup associated with a kmem folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the object cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper object cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios or
415  * LRU folios.
416  */
417 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
418 {
419 	unsigned long memcg_data = folio->memcg_data;
420 
421 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
422 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
423 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
424 
425 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
426 }
427 
428 /*
429  * folio_memcg - Get the memory cgroup associated with a folio.
430  * @folio: Pointer to the folio.
431  *
432  * Returns a pointer to the memory cgroup associated with the folio,
433  * or NULL. This function assumes that the folio is known to have a
434  * proper memory cgroup pointer. It's not safe to call this function
435  * against some type of folios, e.g. slab folios or ex-slab folios.
436  *
437  * For a non-kmem folio any of the following ensures folio and memcg binding
438  * stability:
439  *
440  * - the folio lock
441  * - LRU isolation
442  * - lock_page_memcg()
443  * - exclusive reference
444  * - mem_cgroup_trylock_pages()
445  *
446  * For a kmem folio a caller should hold an rcu read lock to protect memcg
447  * associated with a kmem folio from being released.
448  */
449 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
450 {
451 	if (folio_memcg_kmem(folio))
452 		return obj_cgroup_memcg(__folio_objcg(folio));
453 	return __folio_memcg(folio);
454 }
455 
456 static inline struct mem_cgroup *page_memcg(struct page *page)
457 {
458 	return folio_memcg(page_folio(page));
459 }
460 
461 /**
462  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
463  * @folio: Pointer to the folio.
464  *
465  * This function assumes that the folio is known to have a
466  * proper memory cgroup pointer. It's not safe to call this function
467  * against some type of folios, e.g. slab folios or ex-slab folios.
468  *
469  * Return: A pointer to the memory cgroup associated with the folio,
470  * or NULL.
471  */
472 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
473 {
474 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
475 
476 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
477 	WARN_ON_ONCE(!rcu_read_lock_held());
478 
479 	if (memcg_data & MEMCG_DATA_KMEM) {
480 		struct obj_cgroup *objcg;
481 
482 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
483 		return obj_cgroup_memcg(objcg);
484 	}
485 
486 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
487 }
488 
489 /*
490  * page_memcg_check - get the memory cgroup associated with a page
491  * @page: a pointer to the page struct
492  *
493  * Returns a pointer to the memory cgroup associated with the page,
494  * or NULL. This function unlike page_memcg() can take any page
495  * as an argument. It has to be used in cases when it's not known if a page
496  * has an associated memory cgroup pointer or an object cgroups vector or
497  * an object cgroup.
498  *
499  * For a non-kmem page any of the following ensures page and memcg binding
500  * stability:
501  *
502  * - the page lock
503  * - LRU isolation
504  * - lock_page_memcg()
505  * - exclusive reference
506  * - mem_cgroup_trylock_pages()
507  *
508  * For a kmem page a caller should hold an rcu read lock to protect memcg
509  * associated with a kmem page from being released.
510  */
511 static inline struct mem_cgroup *page_memcg_check(struct page *page)
512 {
513 	/*
514 	 * Because page->memcg_data might be changed asynchronously
515 	 * for slab pages, READ_ONCE() should be used here.
516 	 */
517 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
518 
519 	if (memcg_data & MEMCG_DATA_OBJCGS)
520 		return NULL;
521 
522 	if (memcg_data & MEMCG_DATA_KMEM) {
523 		struct obj_cgroup *objcg;
524 
525 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
526 		return obj_cgroup_memcg(objcg);
527 	}
528 
529 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
530 }
531 
532 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
533 {
534 	struct mem_cgroup *memcg;
535 
536 	rcu_read_lock();
537 retry:
538 	memcg = obj_cgroup_memcg(objcg);
539 	if (unlikely(!css_tryget(&memcg->css)))
540 		goto retry;
541 	rcu_read_unlock();
542 
543 	return memcg;
544 }
545 
546 #ifdef CONFIG_MEMCG_KMEM
547 /*
548  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
549  * @folio: Pointer to the folio.
550  *
551  * Checks if the folio has MemcgKmem flag set. The caller must ensure
552  * that the folio has an associated memory cgroup. It's not safe to call
553  * this function against some types of folios, e.g. slab folios.
554  */
555 static inline bool folio_memcg_kmem(struct folio *folio)
556 {
557 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
558 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
559 	return folio->memcg_data & MEMCG_DATA_KMEM;
560 }
561 
562 
563 #else
564 static inline bool folio_memcg_kmem(struct folio *folio)
565 {
566 	return false;
567 }
568 
569 #endif
570 
571 static inline bool PageMemcgKmem(struct page *page)
572 {
573 	return folio_memcg_kmem(page_folio(page));
574 }
575 
576 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
577 {
578 	return (memcg == root_mem_cgroup);
579 }
580 
581 static inline bool mem_cgroup_disabled(void)
582 {
583 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
584 }
585 
586 static inline void mem_cgroup_protection(struct mem_cgroup *root,
587 					 struct mem_cgroup *memcg,
588 					 unsigned long *min,
589 					 unsigned long *low)
590 {
591 	*min = *low = 0;
592 
593 	if (mem_cgroup_disabled())
594 		return;
595 
596 	/*
597 	 * There is no reclaim protection applied to a targeted reclaim.
598 	 * We are special casing this specific case here because
599 	 * mem_cgroup_protected calculation is not robust enough to keep
600 	 * the protection invariant for calculated effective values for
601 	 * parallel reclaimers with different reclaim target. This is
602 	 * especially a problem for tail memcgs (as they have pages on LRU)
603 	 * which would want to have effective values 0 for targeted reclaim
604 	 * but a different value for external reclaim.
605 	 *
606 	 * Example
607 	 * Let's have global and A's reclaim in parallel:
608 	 *  |
609 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
610 	 *  |\
611 	 *  | C (low = 1G, usage = 2.5G)
612 	 *  B (low = 1G, usage = 0.5G)
613 	 *
614 	 * For the global reclaim
615 	 * A.elow = A.low
616 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
617 	 * C.elow = min(C.usage, C.low)
618 	 *
619 	 * With the effective values resetting we have A reclaim
620 	 * A.elow = 0
621 	 * B.elow = B.low
622 	 * C.elow = C.low
623 	 *
624 	 * If the global reclaim races with A's reclaim then
625 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
626 	 * is possible and reclaiming B would be violating the protection.
627 	 *
628 	 */
629 	if (root == memcg)
630 		return;
631 
632 	*min = READ_ONCE(memcg->memory.emin);
633 	*low = READ_ONCE(memcg->memory.elow);
634 }
635 
636 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
637 				     struct mem_cgroup *memcg);
638 
639 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
640 {
641 	/*
642 	 * The root memcg doesn't account charges, and doesn't support
643 	 * protection.
644 	 */
645 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
646 
647 }
648 
649 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
650 {
651 	if (!mem_cgroup_supports_protection(memcg))
652 		return false;
653 
654 	return READ_ONCE(memcg->memory.elow) >=
655 		page_counter_read(&memcg->memory);
656 }
657 
658 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
659 {
660 	if (!mem_cgroup_supports_protection(memcg))
661 		return false;
662 
663 	return READ_ONCE(memcg->memory.emin) >=
664 		page_counter_read(&memcg->memory);
665 }
666 
667 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
668 
669 /**
670  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
671  * @folio: Folio to charge.
672  * @mm: mm context of the allocating task.
673  * @gfp: Reclaim mode.
674  *
675  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
676  * pages according to @gfp if necessary.  If @mm is NULL, try to
677  * charge to the active memcg.
678  *
679  * Do not use this for folios allocated for swapin.
680  *
681  * Return: 0 on success. Otherwise, an error code is returned.
682  */
683 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
684 				    gfp_t gfp)
685 {
686 	if (mem_cgroup_disabled())
687 		return 0;
688 	return __mem_cgroup_charge(folio, mm, gfp);
689 }
690 
691 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
692 				  gfp_t gfp, swp_entry_t entry);
693 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
694 
695 void __mem_cgroup_uncharge(struct folio *folio);
696 
697 /**
698  * mem_cgroup_uncharge - Uncharge a folio.
699  * @folio: Folio to uncharge.
700  *
701  * Uncharge a folio previously charged with mem_cgroup_charge().
702  */
703 static inline void mem_cgroup_uncharge(struct folio *folio)
704 {
705 	if (mem_cgroup_disabled())
706 		return;
707 	__mem_cgroup_uncharge(folio);
708 }
709 
710 void __mem_cgroup_uncharge_list(struct list_head *page_list);
711 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
712 {
713 	if (mem_cgroup_disabled())
714 		return;
715 	__mem_cgroup_uncharge_list(page_list);
716 }
717 
718 void mem_cgroup_migrate(struct folio *old, struct folio *new);
719 
720 /**
721  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
722  * @memcg: memcg of the wanted lruvec
723  * @pgdat: pglist_data
724  *
725  * Returns the lru list vector holding pages for a given @memcg &
726  * @pgdat combination. This can be the node lruvec, if the memory
727  * controller is disabled.
728  */
729 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
730 					       struct pglist_data *pgdat)
731 {
732 	struct mem_cgroup_per_node *mz;
733 	struct lruvec *lruvec;
734 
735 	if (mem_cgroup_disabled()) {
736 		lruvec = &pgdat->__lruvec;
737 		goto out;
738 	}
739 
740 	if (!memcg)
741 		memcg = root_mem_cgroup;
742 
743 	mz = memcg->nodeinfo[pgdat->node_id];
744 	lruvec = &mz->lruvec;
745 out:
746 	/*
747 	 * Since a node can be onlined after the mem_cgroup was created,
748 	 * we have to be prepared to initialize lruvec->pgdat here;
749 	 * and if offlined then reonlined, we need to reinitialize it.
750 	 */
751 	if (unlikely(lruvec->pgdat != pgdat))
752 		lruvec->pgdat = pgdat;
753 	return lruvec;
754 }
755 
756 /**
757  * folio_lruvec - return lruvec for isolating/putting an LRU folio
758  * @folio: Pointer to the folio.
759  *
760  * This function relies on folio->mem_cgroup being stable.
761  */
762 static inline struct lruvec *folio_lruvec(struct folio *folio)
763 {
764 	struct mem_cgroup *memcg = folio_memcg(folio);
765 
766 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
767 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
768 }
769 
770 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
771 
772 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
773 
774 struct lruvec *folio_lruvec_lock(struct folio *folio);
775 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
776 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
777 						unsigned long *flags);
778 
779 #ifdef CONFIG_DEBUG_VM
780 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
781 #else
782 static inline
783 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
784 {
785 }
786 #endif
787 
788 static inline
789 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
790 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
791 }
792 
793 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
794 {
795 	return percpu_ref_tryget(&objcg->refcnt);
796 }
797 
798 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
799 {
800 	percpu_ref_get(&objcg->refcnt);
801 }
802 
803 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
804 				       unsigned long nr)
805 {
806 	percpu_ref_get_many(&objcg->refcnt, nr);
807 }
808 
809 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
810 {
811 	percpu_ref_put(&objcg->refcnt);
812 }
813 
814 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
815 {
816 	if (memcg)
817 		css_put(&memcg->css);
818 }
819 
820 #define mem_cgroup_from_counter(counter, member)	\
821 	container_of(counter, struct mem_cgroup, member)
822 
823 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
824 				   struct mem_cgroup *,
825 				   struct mem_cgroup_reclaim_cookie *);
826 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
827 int mem_cgroup_scan_tasks(struct mem_cgroup *,
828 			  int (*)(struct task_struct *, void *), void *);
829 
830 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
831 {
832 	if (mem_cgroup_disabled())
833 		return 0;
834 
835 	return memcg->id.id;
836 }
837 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
838 
839 #ifdef CONFIG_SHRINKER_DEBUG
840 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
841 {
842 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
843 }
844 
845 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
846 #endif
847 
848 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
849 {
850 	return mem_cgroup_from_css(seq_css(m));
851 }
852 
853 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
854 {
855 	struct mem_cgroup_per_node *mz;
856 
857 	if (mem_cgroup_disabled())
858 		return NULL;
859 
860 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
861 	return mz->memcg;
862 }
863 
864 /**
865  * parent_mem_cgroup - find the accounting parent of a memcg
866  * @memcg: memcg whose parent to find
867  *
868  * Returns the parent memcg, or NULL if this is the root or the memory
869  * controller is in legacy no-hierarchy mode.
870  */
871 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
872 {
873 	return mem_cgroup_from_css(memcg->css.parent);
874 }
875 
876 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
877 			      struct mem_cgroup *root)
878 {
879 	if (root == memcg)
880 		return true;
881 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
882 }
883 
884 static inline bool mm_match_cgroup(struct mm_struct *mm,
885 				   struct mem_cgroup *memcg)
886 {
887 	struct mem_cgroup *task_memcg;
888 	bool match = false;
889 
890 	rcu_read_lock();
891 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
892 	if (task_memcg)
893 		match = mem_cgroup_is_descendant(task_memcg, memcg);
894 	rcu_read_unlock();
895 	return match;
896 }
897 
898 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
899 ino_t page_cgroup_ino(struct page *page);
900 
901 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
902 {
903 	if (mem_cgroup_disabled())
904 		return true;
905 	return !!(memcg->css.flags & CSS_ONLINE);
906 }
907 
908 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
909 		int zid, int nr_pages);
910 
911 static inline
912 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
913 		enum lru_list lru, int zone_idx)
914 {
915 	struct mem_cgroup_per_node *mz;
916 
917 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
918 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
919 }
920 
921 void mem_cgroup_handle_over_high(void);
922 
923 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
924 
925 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
926 
927 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
928 				struct task_struct *p);
929 
930 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
931 
932 static inline void mem_cgroup_enter_user_fault(void)
933 {
934 	WARN_ON(current->in_user_fault);
935 	current->in_user_fault = 1;
936 }
937 
938 static inline void mem_cgroup_exit_user_fault(void)
939 {
940 	WARN_ON(!current->in_user_fault);
941 	current->in_user_fault = 0;
942 }
943 
944 static inline bool task_in_memcg_oom(struct task_struct *p)
945 {
946 	return p->memcg_in_oom;
947 }
948 
949 bool mem_cgroup_oom_synchronize(bool wait);
950 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
951 					    struct mem_cgroup *oom_domain);
952 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
953 
954 void folio_memcg_lock(struct folio *folio);
955 void folio_memcg_unlock(struct folio *folio);
956 void lock_page_memcg(struct page *page);
957 void unlock_page_memcg(struct page *page);
958 
959 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
960 
961 /* try to stablize folio_memcg() for all the pages in a memcg */
962 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
963 {
964 	rcu_read_lock();
965 
966 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
967 		return true;
968 
969 	rcu_read_unlock();
970 	return false;
971 }
972 
973 static inline void mem_cgroup_unlock_pages(void)
974 {
975 	rcu_read_unlock();
976 }
977 
978 /* idx can be of type enum memcg_stat_item or node_stat_item */
979 static inline void mod_memcg_state(struct mem_cgroup *memcg,
980 				   int idx, int val)
981 {
982 	unsigned long flags;
983 
984 	local_irq_save(flags);
985 	__mod_memcg_state(memcg, idx, val);
986 	local_irq_restore(flags);
987 }
988 
989 static inline void mod_memcg_page_state(struct page *page,
990 					int idx, int val)
991 {
992 	struct mem_cgroup *memcg;
993 
994 	if (mem_cgroup_disabled())
995 		return;
996 
997 	rcu_read_lock();
998 	memcg = page_memcg(page);
999 	if (memcg)
1000 		mod_memcg_state(memcg, idx, val);
1001 	rcu_read_unlock();
1002 }
1003 
1004 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1005 {
1006 	long x = READ_ONCE(memcg->vmstats.state[idx]);
1007 #ifdef CONFIG_SMP
1008 	if (x < 0)
1009 		x = 0;
1010 #endif
1011 	return x;
1012 }
1013 
1014 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1015 					      enum node_stat_item idx)
1016 {
1017 	struct mem_cgroup_per_node *pn;
1018 	long x;
1019 
1020 	if (mem_cgroup_disabled())
1021 		return node_page_state(lruvec_pgdat(lruvec), idx);
1022 
1023 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1024 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1025 #ifdef CONFIG_SMP
1026 	if (x < 0)
1027 		x = 0;
1028 #endif
1029 	return x;
1030 }
1031 
1032 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1033 						    enum node_stat_item idx)
1034 {
1035 	struct mem_cgroup_per_node *pn;
1036 	long x = 0;
1037 	int cpu;
1038 
1039 	if (mem_cgroup_disabled())
1040 		return node_page_state(lruvec_pgdat(lruvec), idx);
1041 
1042 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1043 	for_each_possible_cpu(cpu)
1044 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1045 #ifdef CONFIG_SMP
1046 	if (x < 0)
1047 		x = 0;
1048 #endif
1049 	return x;
1050 }
1051 
1052 void mem_cgroup_flush_stats(void);
1053 void mem_cgroup_flush_stats_delayed(void);
1054 
1055 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1056 			      int val);
1057 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1058 
1059 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1060 					 int val)
1061 {
1062 	unsigned long flags;
1063 
1064 	local_irq_save(flags);
1065 	__mod_lruvec_kmem_state(p, idx, val);
1066 	local_irq_restore(flags);
1067 }
1068 
1069 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1070 					  enum node_stat_item idx, int val)
1071 {
1072 	unsigned long flags;
1073 
1074 	local_irq_save(flags);
1075 	__mod_memcg_lruvec_state(lruvec, idx, val);
1076 	local_irq_restore(flags);
1077 }
1078 
1079 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1080 			  unsigned long count);
1081 
1082 static inline void count_memcg_events(struct mem_cgroup *memcg,
1083 				      enum vm_event_item idx,
1084 				      unsigned long count)
1085 {
1086 	unsigned long flags;
1087 
1088 	local_irq_save(flags);
1089 	__count_memcg_events(memcg, idx, count);
1090 	local_irq_restore(flags);
1091 }
1092 
1093 static inline void count_memcg_page_event(struct page *page,
1094 					  enum vm_event_item idx)
1095 {
1096 	struct mem_cgroup *memcg = page_memcg(page);
1097 
1098 	if (memcg)
1099 		count_memcg_events(memcg, idx, 1);
1100 }
1101 
1102 static inline void count_memcg_folio_events(struct folio *folio,
1103 		enum vm_event_item idx, unsigned long nr)
1104 {
1105 	struct mem_cgroup *memcg = folio_memcg(folio);
1106 
1107 	if (memcg)
1108 		count_memcg_events(memcg, idx, nr);
1109 }
1110 
1111 static inline void count_memcg_event_mm(struct mm_struct *mm,
1112 					enum vm_event_item idx)
1113 {
1114 	struct mem_cgroup *memcg;
1115 
1116 	if (mem_cgroup_disabled())
1117 		return;
1118 
1119 	rcu_read_lock();
1120 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1121 	if (likely(memcg))
1122 		count_memcg_events(memcg, idx, 1);
1123 	rcu_read_unlock();
1124 }
1125 
1126 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1127 				      enum memcg_memory_event event)
1128 {
1129 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1130 			  event == MEMCG_SWAP_FAIL;
1131 
1132 	atomic_long_inc(&memcg->memory_events_local[event]);
1133 	if (!swap_event)
1134 		cgroup_file_notify(&memcg->events_local_file);
1135 
1136 	do {
1137 		atomic_long_inc(&memcg->memory_events[event]);
1138 		if (swap_event)
1139 			cgroup_file_notify(&memcg->swap_events_file);
1140 		else
1141 			cgroup_file_notify(&memcg->events_file);
1142 
1143 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1144 			break;
1145 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1146 			break;
1147 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1148 		 !mem_cgroup_is_root(memcg));
1149 }
1150 
1151 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1152 					 enum memcg_memory_event event)
1153 {
1154 	struct mem_cgroup *memcg;
1155 
1156 	if (mem_cgroup_disabled())
1157 		return;
1158 
1159 	rcu_read_lock();
1160 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 	if (likely(memcg))
1162 		memcg_memory_event(memcg, event);
1163 	rcu_read_unlock();
1164 }
1165 
1166 void split_page_memcg(struct page *head, unsigned int nr);
1167 
1168 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1169 						gfp_t gfp_mask,
1170 						unsigned long *total_scanned);
1171 
1172 #else /* CONFIG_MEMCG */
1173 
1174 #define MEM_CGROUP_ID_SHIFT	0
1175 #define MEM_CGROUP_ID_MAX	0
1176 
1177 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1178 {
1179 	return NULL;
1180 }
1181 
1182 static inline struct mem_cgroup *page_memcg(struct page *page)
1183 {
1184 	return NULL;
1185 }
1186 
1187 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1188 {
1189 	WARN_ON_ONCE(!rcu_read_lock_held());
1190 	return NULL;
1191 }
1192 
1193 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1194 {
1195 	return NULL;
1196 }
1197 
1198 static inline bool folio_memcg_kmem(struct folio *folio)
1199 {
1200 	return false;
1201 }
1202 
1203 static inline bool PageMemcgKmem(struct page *page)
1204 {
1205 	return false;
1206 }
1207 
1208 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1209 {
1210 	return true;
1211 }
1212 
1213 static inline bool mem_cgroup_disabled(void)
1214 {
1215 	return true;
1216 }
1217 
1218 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1219 				      enum memcg_memory_event event)
1220 {
1221 }
1222 
1223 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1224 					 enum memcg_memory_event event)
1225 {
1226 }
1227 
1228 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1229 					 struct mem_cgroup *memcg,
1230 					 unsigned long *min,
1231 					 unsigned long *low)
1232 {
1233 	*min = *low = 0;
1234 }
1235 
1236 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1237 						   struct mem_cgroup *memcg)
1238 {
1239 }
1240 
1241 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1242 {
1243 	return false;
1244 }
1245 
1246 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1247 {
1248 	return false;
1249 }
1250 
1251 static inline int mem_cgroup_charge(struct folio *folio,
1252 		struct mm_struct *mm, gfp_t gfp)
1253 {
1254 	return 0;
1255 }
1256 
1257 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1258 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1259 {
1260 	return 0;
1261 }
1262 
1263 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1264 {
1265 }
1266 
1267 static inline void mem_cgroup_uncharge(struct folio *folio)
1268 {
1269 }
1270 
1271 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1272 {
1273 }
1274 
1275 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1276 {
1277 }
1278 
1279 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1280 					       struct pglist_data *pgdat)
1281 {
1282 	return &pgdat->__lruvec;
1283 }
1284 
1285 static inline struct lruvec *folio_lruvec(struct folio *folio)
1286 {
1287 	struct pglist_data *pgdat = folio_pgdat(folio);
1288 	return &pgdat->__lruvec;
1289 }
1290 
1291 static inline
1292 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1293 {
1294 }
1295 
1296 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1297 {
1298 	return NULL;
1299 }
1300 
1301 static inline bool mm_match_cgroup(struct mm_struct *mm,
1302 		struct mem_cgroup *memcg)
1303 {
1304 	return true;
1305 }
1306 
1307 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1308 {
1309 	return NULL;
1310 }
1311 
1312 static inline
1313 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1314 {
1315 	return NULL;
1316 }
1317 
1318 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1319 {
1320 }
1321 
1322 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1323 {
1324 }
1325 
1326 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1327 {
1328 	struct pglist_data *pgdat = folio_pgdat(folio);
1329 
1330 	spin_lock(&pgdat->__lruvec.lru_lock);
1331 	return &pgdat->__lruvec;
1332 }
1333 
1334 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1335 {
1336 	struct pglist_data *pgdat = folio_pgdat(folio);
1337 
1338 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1339 	return &pgdat->__lruvec;
1340 }
1341 
1342 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1343 		unsigned long *flagsp)
1344 {
1345 	struct pglist_data *pgdat = folio_pgdat(folio);
1346 
1347 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1348 	return &pgdat->__lruvec;
1349 }
1350 
1351 static inline struct mem_cgroup *
1352 mem_cgroup_iter(struct mem_cgroup *root,
1353 		struct mem_cgroup *prev,
1354 		struct mem_cgroup_reclaim_cookie *reclaim)
1355 {
1356 	return NULL;
1357 }
1358 
1359 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1360 					 struct mem_cgroup *prev)
1361 {
1362 }
1363 
1364 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1365 		int (*fn)(struct task_struct *, void *), void *arg)
1366 {
1367 	return 0;
1368 }
1369 
1370 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1371 {
1372 	return 0;
1373 }
1374 
1375 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1376 {
1377 	WARN_ON_ONCE(id);
1378 	/* XXX: This should always return root_mem_cgroup */
1379 	return NULL;
1380 }
1381 
1382 #ifdef CONFIG_SHRINKER_DEBUG
1383 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1384 {
1385 	return 0;
1386 }
1387 
1388 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1389 {
1390 	return NULL;
1391 }
1392 #endif
1393 
1394 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1395 {
1396 	return NULL;
1397 }
1398 
1399 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1400 {
1401 	return NULL;
1402 }
1403 
1404 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1405 {
1406 	return true;
1407 }
1408 
1409 static inline
1410 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1411 		enum lru_list lru, int zone_idx)
1412 {
1413 	return 0;
1414 }
1415 
1416 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1417 {
1418 	return 0;
1419 }
1420 
1421 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1422 {
1423 	return 0;
1424 }
1425 
1426 static inline void
1427 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1428 {
1429 }
1430 
1431 static inline void
1432 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1433 {
1434 }
1435 
1436 static inline void lock_page_memcg(struct page *page)
1437 {
1438 }
1439 
1440 static inline void unlock_page_memcg(struct page *page)
1441 {
1442 }
1443 
1444 static inline void folio_memcg_lock(struct folio *folio)
1445 {
1446 }
1447 
1448 static inline void folio_memcg_unlock(struct folio *folio)
1449 {
1450 }
1451 
1452 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1453 {
1454 	/* to match folio_memcg_rcu() */
1455 	rcu_read_lock();
1456 	return true;
1457 }
1458 
1459 static inline void mem_cgroup_unlock_pages(void)
1460 {
1461 	rcu_read_unlock();
1462 }
1463 
1464 static inline void mem_cgroup_handle_over_high(void)
1465 {
1466 }
1467 
1468 static inline void mem_cgroup_enter_user_fault(void)
1469 {
1470 }
1471 
1472 static inline void mem_cgroup_exit_user_fault(void)
1473 {
1474 }
1475 
1476 static inline bool task_in_memcg_oom(struct task_struct *p)
1477 {
1478 	return false;
1479 }
1480 
1481 static inline bool mem_cgroup_oom_synchronize(bool wait)
1482 {
1483 	return false;
1484 }
1485 
1486 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1487 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1488 {
1489 	return NULL;
1490 }
1491 
1492 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1493 {
1494 }
1495 
1496 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1497 				     int idx,
1498 				     int nr)
1499 {
1500 }
1501 
1502 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1503 				   int idx,
1504 				   int nr)
1505 {
1506 }
1507 
1508 static inline void mod_memcg_page_state(struct page *page,
1509 					int idx, int val)
1510 {
1511 }
1512 
1513 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1514 {
1515 	return 0;
1516 }
1517 
1518 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1519 					      enum node_stat_item idx)
1520 {
1521 	return node_page_state(lruvec_pgdat(lruvec), idx);
1522 }
1523 
1524 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1525 						    enum node_stat_item idx)
1526 {
1527 	return node_page_state(lruvec_pgdat(lruvec), idx);
1528 }
1529 
1530 static inline void mem_cgroup_flush_stats(void)
1531 {
1532 }
1533 
1534 static inline void mem_cgroup_flush_stats_delayed(void)
1535 {
1536 }
1537 
1538 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1539 					    enum node_stat_item idx, int val)
1540 {
1541 }
1542 
1543 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1544 					   int val)
1545 {
1546 	struct page *page = virt_to_head_page(p);
1547 
1548 	__mod_node_page_state(page_pgdat(page), idx, val);
1549 }
1550 
1551 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1552 					 int val)
1553 {
1554 	struct page *page = virt_to_head_page(p);
1555 
1556 	mod_node_page_state(page_pgdat(page), idx, val);
1557 }
1558 
1559 static inline void count_memcg_events(struct mem_cgroup *memcg,
1560 				      enum vm_event_item idx,
1561 				      unsigned long count)
1562 {
1563 }
1564 
1565 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1566 					enum vm_event_item idx,
1567 					unsigned long count)
1568 {
1569 }
1570 
1571 static inline void count_memcg_page_event(struct page *page,
1572 					  int idx)
1573 {
1574 }
1575 
1576 static inline void count_memcg_folio_events(struct folio *folio,
1577 		enum vm_event_item idx, unsigned long nr)
1578 {
1579 }
1580 
1581 static inline
1582 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1583 {
1584 }
1585 
1586 static inline void split_page_memcg(struct page *head, unsigned int nr)
1587 {
1588 }
1589 
1590 static inline
1591 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1592 					    gfp_t gfp_mask,
1593 					    unsigned long *total_scanned)
1594 {
1595 	return 0;
1596 }
1597 #endif /* CONFIG_MEMCG */
1598 
1599 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1600 {
1601 	__mod_lruvec_kmem_state(p, idx, 1);
1602 }
1603 
1604 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1605 {
1606 	__mod_lruvec_kmem_state(p, idx, -1);
1607 }
1608 
1609 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1610 {
1611 	struct mem_cgroup *memcg;
1612 
1613 	memcg = lruvec_memcg(lruvec);
1614 	if (!memcg)
1615 		return NULL;
1616 	memcg = parent_mem_cgroup(memcg);
1617 	if (!memcg)
1618 		return NULL;
1619 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1620 }
1621 
1622 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1623 {
1624 	spin_unlock(&lruvec->lru_lock);
1625 }
1626 
1627 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1628 {
1629 	spin_unlock_irq(&lruvec->lru_lock);
1630 }
1631 
1632 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1633 		unsigned long flags)
1634 {
1635 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1636 }
1637 
1638 /* Test requires a stable page->memcg binding, see page_memcg() */
1639 static inline bool folio_matches_lruvec(struct folio *folio,
1640 		struct lruvec *lruvec)
1641 {
1642 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1643 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1644 }
1645 
1646 /* Don't lock again iff page's lruvec locked */
1647 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1648 		struct lruvec *locked_lruvec)
1649 {
1650 	if (locked_lruvec) {
1651 		if (folio_matches_lruvec(folio, locked_lruvec))
1652 			return locked_lruvec;
1653 
1654 		unlock_page_lruvec_irq(locked_lruvec);
1655 	}
1656 
1657 	return folio_lruvec_lock_irq(folio);
1658 }
1659 
1660 /* Don't lock again iff page's lruvec locked */
1661 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1662 		struct lruvec *locked_lruvec, unsigned long *flags)
1663 {
1664 	if (locked_lruvec) {
1665 		if (folio_matches_lruvec(folio, locked_lruvec))
1666 			return locked_lruvec;
1667 
1668 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1669 	}
1670 
1671 	return folio_lruvec_lock_irqsave(folio, flags);
1672 }
1673 
1674 #ifdef CONFIG_CGROUP_WRITEBACK
1675 
1676 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1677 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1678 			 unsigned long *pheadroom, unsigned long *pdirty,
1679 			 unsigned long *pwriteback);
1680 
1681 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1682 					     struct bdi_writeback *wb);
1683 
1684 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1685 						  struct bdi_writeback *wb)
1686 {
1687 	if (mem_cgroup_disabled())
1688 		return;
1689 
1690 	if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1691 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1692 }
1693 
1694 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1695 
1696 #else	/* CONFIG_CGROUP_WRITEBACK */
1697 
1698 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1699 {
1700 	return NULL;
1701 }
1702 
1703 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1704 				       unsigned long *pfilepages,
1705 				       unsigned long *pheadroom,
1706 				       unsigned long *pdirty,
1707 				       unsigned long *pwriteback)
1708 {
1709 }
1710 
1711 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1712 						  struct bdi_writeback *wb)
1713 {
1714 }
1715 
1716 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1717 {
1718 }
1719 
1720 #endif	/* CONFIG_CGROUP_WRITEBACK */
1721 
1722 struct sock;
1723 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1724 			     gfp_t gfp_mask);
1725 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1726 #ifdef CONFIG_MEMCG
1727 extern struct static_key_false memcg_sockets_enabled_key;
1728 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1729 void mem_cgroup_sk_alloc(struct sock *sk);
1730 void mem_cgroup_sk_free(struct sock *sk);
1731 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1732 {
1733 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1734 		return true;
1735 	do {
1736 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1737 			return true;
1738 	} while ((memcg = parent_mem_cgroup(memcg)));
1739 	return false;
1740 }
1741 
1742 int alloc_shrinker_info(struct mem_cgroup *memcg);
1743 void free_shrinker_info(struct mem_cgroup *memcg);
1744 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1745 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1746 #else
1747 #define mem_cgroup_sockets_enabled 0
1748 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1749 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1750 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1751 {
1752 	return false;
1753 }
1754 
1755 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1756 				    int nid, int shrinker_id)
1757 {
1758 }
1759 #endif
1760 
1761 #ifdef CONFIG_MEMCG_KMEM
1762 bool mem_cgroup_kmem_disabled(void);
1763 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1764 void __memcg_kmem_uncharge_page(struct page *page, int order);
1765 
1766 struct obj_cgroup *get_obj_cgroup_from_current(void);
1767 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1768 
1769 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1770 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1771 
1772 extern struct static_key_false memcg_kmem_enabled_key;
1773 
1774 static inline bool memcg_kmem_enabled(void)
1775 {
1776 	return static_branch_likely(&memcg_kmem_enabled_key);
1777 }
1778 
1779 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1780 					 int order)
1781 {
1782 	if (memcg_kmem_enabled())
1783 		return __memcg_kmem_charge_page(page, gfp, order);
1784 	return 0;
1785 }
1786 
1787 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1788 {
1789 	if (memcg_kmem_enabled())
1790 		__memcg_kmem_uncharge_page(page, order);
1791 }
1792 
1793 /*
1794  * A helper for accessing memcg's kmem_id, used for getting
1795  * corresponding LRU lists.
1796  */
1797 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1798 {
1799 	return memcg ? memcg->kmemcg_id : -1;
1800 }
1801 
1802 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1803 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1804 
1805 static inline void count_objcg_event(struct obj_cgroup *objcg,
1806 				     enum vm_event_item idx)
1807 {
1808 	struct mem_cgroup *memcg;
1809 
1810 	if (mem_cgroup_kmem_disabled())
1811 		return;
1812 
1813 	rcu_read_lock();
1814 	memcg = obj_cgroup_memcg(objcg);
1815 	count_memcg_events(memcg, idx, 1);
1816 	rcu_read_unlock();
1817 }
1818 
1819 /**
1820  * get_mem_cgroup_from_obj - get a memcg associated with passed kernel object.
1821  * @p: pointer to object from which memcg should be extracted. It can be NULL.
1822  *
1823  * Retrieves the memory group into which the memory of the pointed kernel
1824  * object is accounted. If memcg is found, its reference is taken.
1825  * If a passed kernel object is uncharged, or if proper memcg cannot be found,
1826  * as well as if mem_cgroup is disabled, NULL is returned.
1827  *
1828  * Return: valid memcg pointer with taken reference or NULL.
1829  */
1830 static inline struct mem_cgroup *get_mem_cgroup_from_obj(void *p)
1831 {
1832 	struct mem_cgroup *memcg;
1833 
1834 	rcu_read_lock();
1835 	do {
1836 		memcg = mem_cgroup_from_obj(p);
1837 	} while (memcg && !css_tryget(&memcg->css));
1838 	rcu_read_unlock();
1839 	return memcg;
1840 }
1841 
1842 /**
1843  * mem_cgroup_or_root - always returns a pointer to a valid memory cgroup.
1844  * @memcg: pointer to a valid memory cgroup or NULL.
1845  *
1846  * If passed argument is not NULL, returns it without any additional checks
1847  * and changes. Otherwise, root_mem_cgroup is returned.
1848  *
1849  * NOTE: root_mem_cgroup can be NULL during early boot.
1850  */
1851 static inline struct mem_cgroup *mem_cgroup_or_root(struct mem_cgroup *memcg)
1852 {
1853 	return memcg ? memcg : root_mem_cgroup;
1854 }
1855 #else
1856 static inline bool mem_cgroup_kmem_disabled(void)
1857 {
1858 	return true;
1859 }
1860 
1861 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1862 					 int order)
1863 {
1864 	return 0;
1865 }
1866 
1867 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1868 {
1869 }
1870 
1871 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1872 					   int order)
1873 {
1874 	return 0;
1875 }
1876 
1877 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1878 {
1879 }
1880 
1881 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1882 {
1883 	return NULL;
1884 }
1885 
1886 static inline bool memcg_kmem_enabled(void)
1887 {
1888 	return false;
1889 }
1890 
1891 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1892 {
1893 	return -1;
1894 }
1895 
1896 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1897 {
1898 	return NULL;
1899 }
1900 
1901 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1902 {
1903 	return NULL;
1904 }
1905 
1906 static inline void count_objcg_event(struct obj_cgroup *objcg,
1907 				     enum vm_event_item idx)
1908 {
1909 }
1910 
1911 static inline struct mem_cgroup *get_mem_cgroup_from_obj(void *p)
1912 {
1913 	return NULL;
1914 }
1915 
1916 static inline struct mem_cgroup *mem_cgroup_or_root(struct mem_cgroup *memcg)
1917 {
1918 	return NULL;
1919 }
1920 #endif /* CONFIG_MEMCG_KMEM */
1921 
1922 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1923 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1924 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1925 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1926 #else
1927 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1928 {
1929 	return true;
1930 }
1931 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1932 					   size_t size)
1933 {
1934 }
1935 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1936 					     size_t size)
1937 {
1938 }
1939 #endif
1940 
1941 #endif /* _LINUX_MEMCONTROL_H */
1942