xref: /linux-6.15/include/linux/memcontrol.h (revision fbce3bef)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31 #include <linux/page-flags.h>
32 
33 struct mem_cgroup;
34 struct page;
35 struct mm_struct;
36 struct kmem_cache;
37 
38 /*
39  * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
40  * These two lists should keep in accord with each other.
41  */
42 enum mem_cgroup_stat_index {
43 	/*
44 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 	 */
46 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
47 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
48 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
49 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
50 	MEM_CGROUP_STAT_DIRTY,          /* # of dirty pages in page cache */
51 	MEM_CGROUP_STAT_WRITEBACK,	/* # of pages under writeback */
52 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
53 	MEM_CGROUP_STAT_NSTATS,
54 	/* default hierarchy stats */
55 	MEMCG_KERNEL_STACK = MEM_CGROUP_STAT_NSTATS,
56 	MEMCG_SLAB_RECLAIMABLE,
57 	MEMCG_SLAB_UNRECLAIMABLE,
58 	MEMCG_SOCK,
59 	MEMCG_NR_STAT,
60 };
61 
62 struct mem_cgroup_reclaim_cookie {
63 	struct zone *zone;
64 	int priority;
65 	unsigned int generation;
66 };
67 
68 enum mem_cgroup_events_index {
69 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
70 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
71 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
72 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
73 	MEM_CGROUP_EVENTS_NSTATS,
74 	/* default hierarchy events */
75 	MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
76 	MEMCG_HIGH,
77 	MEMCG_MAX,
78 	MEMCG_OOM,
79 	MEMCG_NR_EVENTS,
80 };
81 
82 /*
83  * Per memcg event counter is incremented at every pagein/pageout. With THP,
84  * it will be incremated by the number of pages. This counter is used for
85  * for trigger some periodic events. This is straightforward and better
86  * than using jiffies etc. to handle periodic memcg event.
87  */
88 enum mem_cgroup_events_target {
89 	MEM_CGROUP_TARGET_THRESH,
90 	MEM_CGROUP_TARGET_SOFTLIMIT,
91 	MEM_CGROUP_TARGET_NUMAINFO,
92 	MEM_CGROUP_NTARGETS,
93 };
94 
95 #ifdef CONFIG_MEMCG
96 
97 #define MEM_CGROUP_ID_SHIFT	16
98 #define MEM_CGROUP_ID_MAX	USHRT_MAX
99 
100 struct mem_cgroup_stat_cpu {
101 	long count[MEMCG_NR_STAT];
102 	unsigned long events[MEMCG_NR_EVENTS];
103 	unsigned long nr_page_events;
104 	unsigned long targets[MEM_CGROUP_NTARGETS];
105 };
106 
107 struct mem_cgroup_reclaim_iter {
108 	struct mem_cgroup *position;
109 	/* scan generation, increased every round-trip */
110 	unsigned int generation;
111 };
112 
113 /*
114  * per-zone information in memory controller.
115  */
116 struct mem_cgroup_per_zone {
117 	struct lruvec		lruvec;
118 	unsigned long		lru_size[NR_LRU_LISTS];
119 
120 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
121 
122 	struct rb_node		tree_node;	/* RB tree node */
123 	unsigned long		usage_in_excess;/* Set to the value by which */
124 						/* the soft limit is exceeded*/
125 	bool			on_tree;
126 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
127 						/* use container_of	   */
128 };
129 
130 struct mem_cgroup_per_node {
131 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
132 };
133 
134 struct mem_cgroup_threshold {
135 	struct eventfd_ctx *eventfd;
136 	unsigned long threshold;
137 };
138 
139 /* For threshold */
140 struct mem_cgroup_threshold_ary {
141 	/* An array index points to threshold just below or equal to usage. */
142 	int current_threshold;
143 	/* Size of entries[] */
144 	unsigned int size;
145 	/* Array of thresholds */
146 	struct mem_cgroup_threshold entries[0];
147 };
148 
149 struct mem_cgroup_thresholds {
150 	/* Primary thresholds array */
151 	struct mem_cgroup_threshold_ary *primary;
152 	/*
153 	 * Spare threshold array.
154 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
155 	 * It must be able to store at least primary->size - 1 entries.
156 	 */
157 	struct mem_cgroup_threshold_ary *spare;
158 };
159 
160 enum memcg_kmem_state {
161 	KMEM_NONE,
162 	KMEM_ALLOCATED,
163 	KMEM_ONLINE,
164 };
165 
166 /*
167  * The memory controller data structure. The memory controller controls both
168  * page cache and RSS per cgroup. We would eventually like to provide
169  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
170  * to help the administrator determine what knobs to tune.
171  */
172 struct mem_cgroup {
173 	struct cgroup_subsys_state css;
174 
175 	/* Accounted resources */
176 	struct page_counter memory;
177 	struct page_counter swap;
178 
179 	/* Legacy consumer-oriented counters */
180 	struct page_counter memsw;
181 	struct page_counter kmem;
182 	struct page_counter tcpmem;
183 
184 	/* Normal memory consumption range */
185 	unsigned long low;
186 	unsigned long high;
187 
188 	/* Range enforcement for interrupt charges */
189 	struct work_struct high_work;
190 
191 	unsigned long soft_limit;
192 
193 	/* vmpressure notifications */
194 	struct vmpressure vmpressure;
195 
196 	/*
197 	 * Should the accounting and control be hierarchical, per subtree?
198 	 */
199 	bool use_hierarchy;
200 
201 	/* protected by memcg_oom_lock */
202 	bool		oom_lock;
203 	int		under_oom;
204 
205 	int	swappiness;
206 	/* OOM-Killer disable */
207 	int		oom_kill_disable;
208 
209 	/* handle for "memory.events" */
210 	struct cgroup_file events_file;
211 
212 	/* protect arrays of thresholds */
213 	struct mutex thresholds_lock;
214 
215 	/* thresholds for memory usage. RCU-protected */
216 	struct mem_cgroup_thresholds thresholds;
217 
218 	/* thresholds for mem+swap usage. RCU-protected */
219 	struct mem_cgroup_thresholds memsw_thresholds;
220 
221 	/* For oom notifier event fd */
222 	struct list_head oom_notify;
223 
224 	/*
225 	 * Should we move charges of a task when a task is moved into this
226 	 * mem_cgroup ? And what type of charges should we move ?
227 	 */
228 	unsigned long move_charge_at_immigrate;
229 	/*
230 	 * set > 0 if pages under this cgroup are moving to other cgroup.
231 	 */
232 	atomic_t		moving_account;
233 	/* taken only while moving_account > 0 */
234 	spinlock_t		move_lock;
235 	struct task_struct	*move_lock_task;
236 	unsigned long		move_lock_flags;
237 	/*
238 	 * percpu counter.
239 	 */
240 	struct mem_cgroup_stat_cpu __percpu *stat;
241 
242 	unsigned long		socket_pressure;
243 
244 	/* Legacy tcp memory accounting */
245 	bool			tcpmem_active;
246 	int			tcpmem_pressure;
247 
248 #ifndef CONFIG_SLOB
249         /* Index in the kmem_cache->memcg_params.memcg_caches array */
250 	int kmemcg_id;
251 	enum memcg_kmem_state kmem_state;
252 #endif
253 
254 	int last_scanned_node;
255 #if MAX_NUMNODES > 1
256 	nodemask_t	scan_nodes;
257 	atomic_t	numainfo_events;
258 	atomic_t	numainfo_updating;
259 #endif
260 
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 	struct list_head cgwb_list;
263 	struct wb_domain cgwb_domain;
264 #endif
265 
266 	/* List of events which userspace want to receive */
267 	struct list_head event_list;
268 	spinlock_t event_list_lock;
269 
270 	struct mem_cgroup_per_node *nodeinfo[0];
271 	/* WARNING: nodeinfo must be the last member here */
272 };
273 
274 extern struct mem_cgroup *root_mem_cgroup;
275 
276 static inline bool mem_cgroup_disabled(void)
277 {
278 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
279 }
280 
281 /**
282  * mem_cgroup_events - count memory events against a cgroup
283  * @memcg: the memory cgroup
284  * @idx: the event index
285  * @nr: the number of events to account for
286  */
287 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
288 		       enum mem_cgroup_events_index idx,
289 		       unsigned int nr)
290 {
291 	this_cpu_add(memcg->stat->events[idx], nr);
292 	cgroup_file_notify(&memcg->events_file);
293 }
294 
295 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
296 
297 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
298 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
299 			  bool compound);
300 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
301 			      bool lrucare, bool compound);
302 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
303 		bool compound);
304 void mem_cgroup_uncharge(struct page *page);
305 void mem_cgroup_uncharge_list(struct list_head *page_list);
306 
307 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
308 
309 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
310 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
311 
312 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
313 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
314 
315 static inline
316 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
317 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
318 }
319 
320 #define mem_cgroup_from_counter(counter, member)	\
321 	container_of(counter, struct mem_cgroup, member)
322 
323 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
324 				   struct mem_cgroup *,
325 				   struct mem_cgroup_reclaim_cookie *);
326 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
327 
328 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
329 {
330 	if (mem_cgroup_disabled())
331 		return 0;
332 
333 	return memcg->css.id;
334 }
335 
336 /**
337  * mem_cgroup_from_id - look up a memcg from an id
338  * @id: the id to look up
339  *
340  * Caller must hold rcu_read_lock() and use css_tryget() as necessary.
341  */
342 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
343 {
344 	struct cgroup_subsys_state *css;
345 
346 	css = css_from_id(id, &memory_cgrp_subsys);
347 	return mem_cgroup_from_css(css);
348 }
349 
350 /**
351  * parent_mem_cgroup - find the accounting parent of a memcg
352  * @memcg: memcg whose parent to find
353  *
354  * Returns the parent memcg, or NULL if this is the root or the memory
355  * controller is in legacy no-hierarchy mode.
356  */
357 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
358 {
359 	if (!memcg->memory.parent)
360 		return NULL;
361 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
362 }
363 
364 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
365 			      struct mem_cgroup *root)
366 {
367 	if (root == memcg)
368 		return true;
369 	if (!root->use_hierarchy)
370 		return false;
371 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
372 }
373 
374 static inline bool mm_match_cgroup(struct mm_struct *mm,
375 				   struct mem_cgroup *memcg)
376 {
377 	struct mem_cgroup *task_memcg;
378 	bool match = false;
379 
380 	rcu_read_lock();
381 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
382 	if (task_memcg)
383 		match = mem_cgroup_is_descendant(task_memcg, memcg);
384 	rcu_read_unlock();
385 	return match;
386 }
387 
388 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
389 ino_t page_cgroup_ino(struct page *page);
390 
391 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
392 {
393 	if (mem_cgroup_disabled())
394 		return true;
395 	return !!(memcg->css.flags & CSS_ONLINE);
396 }
397 
398 /*
399  * For memory reclaim.
400  */
401 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
402 
403 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
404 		int nr_pages);
405 
406 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
407 					   int nid, unsigned int lru_mask);
408 
409 static inline
410 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
411 {
412 	struct mem_cgroup_per_zone *mz;
413 
414 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
415 	return mz->lru_size[lru];
416 }
417 
418 static inline bool mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
419 {
420 	unsigned long inactive_ratio;
421 	unsigned long inactive;
422 	unsigned long active;
423 	unsigned long gb;
424 
425 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
426 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
427 
428 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
429 	if (gb)
430 		inactive_ratio = int_sqrt(10 * gb);
431 	else
432 		inactive_ratio = 1;
433 
434 	return inactive * inactive_ratio < active;
435 }
436 
437 void mem_cgroup_handle_over_high(void);
438 
439 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
440 				struct task_struct *p);
441 
442 static inline void mem_cgroup_oom_enable(void)
443 {
444 	WARN_ON(current->memcg_may_oom);
445 	current->memcg_may_oom = 1;
446 }
447 
448 static inline void mem_cgroup_oom_disable(void)
449 {
450 	WARN_ON(!current->memcg_may_oom);
451 	current->memcg_may_oom = 0;
452 }
453 
454 static inline bool task_in_memcg_oom(struct task_struct *p)
455 {
456 	return p->memcg_in_oom;
457 }
458 
459 bool mem_cgroup_oom_synchronize(bool wait);
460 
461 #ifdef CONFIG_MEMCG_SWAP
462 extern int do_swap_account;
463 #endif
464 
465 void lock_page_memcg(struct page *page);
466 void unlock_page_memcg(struct page *page);
467 
468 /**
469  * mem_cgroup_update_page_stat - update page state statistics
470  * @page: the page
471  * @idx: page state item to account
472  * @val: number of pages (positive or negative)
473  *
474  * The @page must be locked or the caller must use lock_page_memcg()
475  * to prevent double accounting when the page is concurrently being
476  * moved to another memcg:
477  *
478  *   lock_page(page) or lock_page_memcg(page)
479  *   if (TestClearPageState(page))
480  *     mem_cgroup_update_page_stat(page, state, -1);
481  *   unlock_page(page) or unlock_page_memcg(page)
482  */
483 static inline void mem_cgroup_update_page_stat(struct page *page,
484 				 enum mem_cgroup_stat_index idx, int val)
485 {
486 	VM_BUG_ON(!(rcu_read_lock_held() || PageLocked(page)));
487 
488 	if (page->mem_cgroup)
489 		this_cpu_add(page->mem_cgroup->stat->count[idx], val);
490 }
491 
492 static inline void mem_cgroup_inc_page_stat(struct page *page,
493 					    enum mem_cgroup_stat_index idx)
494 {
495 	mem_cgroup_update_page_stat(page, idx, 1);
496 }
497 
498 static inline void mem_cgroup_dec_page_stat(struct page *page,
499 					    enum mem_cgroup_stat_index idx)
500 {
501 	mem_cgroup_update_page_stat(page, idx, -1);
502 }
503 
504 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
505 						gfp_t gfp_mask,
506 						unsigned long *total_scanned);
507 
508 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
509 					     enum vm_event_item idx)
510 {
511 	struct mem_cgroup *memcg;
512 
513 	if (mem_cgroup_disabled())
514 		return;
515 
516 	rcu_read_lock();
517 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
518 	if (unlikely(!memcg))
519 		goto out;
520 
521 	switch (idx) {
522 	case PGFAULT:
523 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
524 		break;
525 	case PGMAJFAULT:
526 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
527 		break;
528 	default:
529 		BUG();
530 	}
531 out:
532 	rcu_read_unlock();
533 }
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 void mem_cgroup_split_huge_fixup(struct page *head);
536 #endif
537 
538 #else /* CONFIG_MEMCG */
539 
540 #define MEM_CGROUP_ID_SHIFT	0
541 #define MEM_CGROUP_ID_MAX	0
542 
543 struct mem_cgroup;
544 
545 static inline bool mem_cgroup_disabled(void)
546 {
547 	return true;
548 }
549 
550 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
551 				     enum mem_cgroup_events_index idx,
552 				     unsigned int nr)
553 {
554 }
555 
556 static inline bool mem_cgroup_low(struct mem_cgroup *root,
557 				  struct mem_cgroup *memcg)
558 {
559 	return false;
560 }
561 
562 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
563 					gfp_t gfp_mask,
564 					struct mem_cgroup **memcgp,
565 					bool compound)
566 {
567 	*memcgp = NULL;
568 	return 0;
569 }
570 
571 static inline void mem_cgroup_commit_charge(struct page *page,
572 					    struct mem_cgroup *memcg,
573 					    bool lrucare, bool compound)
574 {
575 }
576 
577 static inline void mem_cgroup_cancel_charge(struct page *page,
578 					    struct mem_cgroup *memcg,
579 					    bool compound)
580 {
581 }
582 
583 static inline void mem_cgroup_uncharge(struct page *page)
584 {
585 }
586 
587 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
588 {
589 }
590 
591 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
592 {
593 }
594 
595 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
596 						    struct mem_cgroup *memcg)
597 {
598 	return &zone->lruvec;
599 }
600 
601 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
602 						    struct zone *zone)
603 {
604 	return &zone->lruvec;
605 }
606 
607 static inline bool mm_match_cgroup(struct mm_struct *mm,
608 		struct mem_cgroup *memcg)
609 {
610 	return true;
611 }
612 
613 static inline bool task_in_mem_cgroup(struct task_struct *task,
614 				      const struct mem_cgroup *memcg)
615 {
616 	return true;
617 }
618 
619 static inline struct mem_cgroup *
620 mem_cgroup_iter(struct mem_cgroup *root,
621 		struct mem_cgroup *prev,
622 		struct mem_cgroup_reclaim_cookie *reclaim)
623 {
624 	return NULL;
625 }
626 
627 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
628 					 struct mem_cgroup *prev)
629 {
630 }
631 
632 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
633 {
634 	return 0;
635 }
636 
637 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
638 {
639 	WARN_ON_ONCE(id);
640 	/* XXX: This should always return root_mem_cgroup */
641 	return NULL;
642 }
643 
644 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
645 {
646 	return true;
647 }
648 
649 static inline bool
650 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
651 {
652 	return true;
653 }
654 
655 static inline unsigned long
656 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
657 {
658 	return 0;
659 }
660 
661 static inline void
662 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
663 			      int increment)
664 {
665 }
666 
667 static inline unsigned long
668 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
669 			     int nid, unsigned int lru_mask)
670 {
671 	return 0;
672 }
673 
674 static inline void
675 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
676 {
677 }
678 
679 static inline void lock_page_memcg(struct page *page)
680 {
681 }
682 
683 static inline void unlock_page_memcg(struct page *page)
684 {
685 }
686 
687 static inline void mem_cgroup_handle_over_high(void)
688 {
689 }
690 
691 static inline void mem_cgroup_oom_enable(void)
692 {
693 }
694 
695 static inline void mem_cgroup_oom_disable(void)
696 {
697 }
698 
699 static inline bool task_in_memcg_oom(struct task_struct *p)
700 {
701 	return false;
702 }
703 
704 static inline bool mem_cgroup_oom_synchronize(bool wait)
705 {
706 	return false;
707 }
708 
709 static inline void mem_cgroup_inc_page_stat(struct page *page,
710 					    enum mem_cgroup_stat_index idx)
711 {
712 }
713 
714 static inline void mem_cgroup_dec_page_stat(struct page *page,
715 					    enum mem_cgroup_stat_index idx)
716 {
717 }
718 
719 static inline
720 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
721 					    gfp_t gfp_mask,
722 					    unsigned long *total_scanned)
723 {
724 	return 0;
725 }
726 
727 static inline void mem_cgroup_split_huge_fixup(struct page *head)
728 {
729 }
730 
731 static inline
732 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
733 {
734 }
735 #endif /* CONFIG_MEMCG */
736 
737 #ifdef CONFIG_CGROUP_WRITEBACK
738 
739 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
740 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
741 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
742 			 unsigned long *pheadroom, unsigned long *pdirty,
743 			 unsigned long *pwriteback);
744 
745 #else	/* CONFIG_CGROUP_WRITEBACK */
746 
747 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
748 {
749 	return NULL;
750 }
751 
752 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
753 				       unsigned long *pfilepages,
754 				       unsigned long *pheadroom,
755 				       unsigned long *pdirty,
756 				       unsigned long *pwriteback)
757 {
758 }
759 
760 #endif	/* CONFIG_CGROUP_WRITEBACK */
761 
762 struct sock;
763 void sock_update_memcg(struct sock *sk);
764 void sock_release_memcg(struct sock *sk);
765 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
766 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
767 #ifdef CONFIG_MEMCG
768 extern struct static_key_false memcg_sockets_enabled_key;
769 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
770 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
771 {
772 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
773 		return true;
774 	do {
775 		if (time_before(jiffies, memcg->socket_pressure))
776 			return true;
777 	} while ((memcg = parent_mem_cgroup(memcg)));
778 	return false;
779 }
780 #else
781 #define mem_cgroup_sockets_enabled 0
782 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
783 {
784 	return false;
785 }
786 #endif
787 
788 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
789 extern struct static_key_false memcg_kmem_enabled_key;
790 
791 extern int memcg_nr_cache_ids;
792 void memcg_get_cache_ids(void);
793 void memcg_put_cache_ids(void);
794 
795 /*
796  * Helper macro to loop through all memcg-specific caches. Callers must still
797  * check if the cache is valid (it is either valid or NULL).
798  * the slab_mutex must be held when looping through those caches
799  */
800 #define for_each_memcg_cache_index(_idx)	\
801 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
802 
803 static inline bool memcg_kmem_enabled(void)
804 {
805 	return static_branch_unlikely(&memcg_kmem_enabled_key);
806 }
807 
808 /*
809  * In general, we'll do everything in our power to not incur in any overhead
810  * for non-memcg users for the kmem functions. Not even a function call, if we
811  * can avoid it.
812  *
813  * Therefore, we'll inline all those functions so that in the best case, we'll
814  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
815  * we'll still do most of the flag checking inline. We check a lot of
816  * conditions, but because they are pretty simple, they are expected to be
817  * fast.
818  */
819 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
820 			      struct mem_cgroup *memcg);
821 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
822 void __memcg_kmem_uncharge(struct page *page, int order);
823 
824 /*
825  * helper for accessing a memcg's index. It will be used as an index in the
826  * child cache array in kmem_cache, and also to derive its name. This function
827  * will return -1 when this is not a kmem-limited memcg.
828  */
829 static inline int memcg_cache_id(struct mem_cgroup *memcg)
830 {
831 	return memcg ? memcg->kmemcg_id : -1;
832 }
833 
834 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
835 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
836 
837 static inline bool __memcg_kmem_bypass(void)
838 {
839 	if (!memcg_kmem_enabled())
840 		return true;
841 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
842 		return true;
843 	return false;
844 }
845 
846 /**
847  * memcg_kmem_charge: charge a kmem page
848  * @page: page to charge
849  * @gfp: reclaim mode
850  * @order: allocation order
851  *
852  * Returns 0 on success, an error code on failure.
853  */
854 static __always_inline int memcg_kmem_charge(struct page *page,
855 					     gfp_t gfp, int order)
856 {
857 	if (__memcg_kmem_bypass())
858 		return 0;
859 	if (!(gfp & __GFP_ACCOUNT))
860 		return 0;
861 	return __memcg_kmem_charge(page, gfp, order);
862 }
863 
864 /**
865  * memcg_kmem_uncharge: uncharge a kmem page
866  * @page: page to uncharge
867  * @order: allocation order
868  */
869 static __always_inline void memcg_kmem_uncharge(struct page *page, int order)
870 {
871 	if (memcg_kmem_enabled())
872 		__memcg_kmem_uncharge(page, order);
873 }
874 
875 /**
876  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
877  * @cachep: the original global kmem cache
878  *
879  * All memory allocated from a per-memcg cache is charged to the owner memcg.
880  */
881 static __always_inline struct kmem_cache *
882 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
883 {
884 	if (__memcg_kmem_bypass())
885 		return cachep;
886 	return __memcg_kmem_get_cache(cachep, gfp);
887 }
888 
889 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
890 {
891 	if (memcg_kmem_enabled())
892 		__memcg_kmem_put_cache(cachep);
893 }
894 
895 /**
896  * memcg_kmem_update_page_stat - update kmem page state statistics
897  * @page: the page
898  * @idx: page state item to account
899  * @val: number of pages (positive or negative)
900  */
901 static inline void memcg_kmem_update_page_stat(struct page *page,
902 				enum mem_cgroup_stat_index idx, int val)
903 {
904 	if (memcg_kmem_enabled() && page->mem_cgroup)
905 		this_cpu_add(page->mem_cgroup->stat->count[idx], val);
906 }
907 
908 #else
909 #define for_each_memcg_cache_index(_idx)	\
910 	for (; NULL; )
911 
912 static inline bool memcg_kmem_enabled(void)
913 {
914 	return false;
915 }
916 
917 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
918 {
919 	return 0;
920 }
921 
922 static inline void memcg_kmem_uncharge(struct page *page, int order)
923 {
924 }
925 
926 static inline int memcg_cache_id(struct mem_cgroup *memcg)
927 {
928 	return -1;
929 }
930 
931 static inline void memcg_get_cache_ids(void)
932 {
933 }
934 
935 static inline void memcg_put_cache_ids(void)
936 {
937 }
938 
939 static inline struct kmem_cache *
940 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
941 {
942 	return cachep;
943 }
944 
945 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
946 {
947 }
948 
949 static inline void memcg_kmem_update_page_stat(struct page *page,
950 				enum mem_cgroup_stat_index idx, int val)
951 {
952 }
953 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
954 
955 #endif /* _LINUX_MEMCONTROL_H */
956