xref: /linux-6.15/include/linux/memcontrol.h (revision fbcdaa19)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	long stat[MEMCG_NR_STAT];
80 	unsigned long events[NR_VM_EVENT_ITEMS];
81 	unsigned long nr_page_events;
82 	unsigned long targets[MEM_CGROUP_NTARGETS];
83 };
84 
85 struct mem_cgroup_reclaim_iter {
86 	struct mem_cgroup *position;
87 	/* scan generation, increased every round-trip */
88 	unsigned int generation;
89 };
90 
91 struct lruvec_stat {
92 	long count[NR_VM_NODE_STAT_ITEMS];
93 };
94 
95 /*
96  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
97  * which have elements charged to this memcg.
98  */
99 struct memcg_shrinker_map {
100 	struct rcu_head rcu;
101 	unsigned long map[];
102 };
103 
104 /*
105  * per-node information in memory controller.
106  */
107 struct mem_cgroup_per_node {
108 	struct lruvec		lruvec;
109 
110 	/* Legacy local VM stats */
111 	struct lruvec_stat __percpu *lruvec_stat_local;
112 
113 	/* Subtree VM stats (batched updates) */
114 	struct lruvec_stat __percpu *lruvec_stat_cpu;
115 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
116 
117 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
118 
119 	struct mem_cgroup_reclaim_iter	iter;
120 
121 	struct memcg_shrinker_map __rcu	*shrinker_map;
122 
123 	struct rb_node		tree_node;	/* RB tree node */
124 	unsigned long		usage_in_excess;/* Set to the value by which */
125 						/* the soft limit is exceeded*/
126 	bool			on_tree;
127 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
128 						/* use container_of	   */
129 };
130 
131 struct mem_cgroup_threshold {
132 	struct eventfd_ctx *eventfd;
133 	unsigned long threshold;
134 };
135 
136 /* For threshold */
137 struct mem_cgroup_threshold_ary {
138 	/* An array index points to threshold just below or equal to usage. */
139 	int current_threshold;
140 	/* Size of entries[] */
141 	unsigned int size;
142 	/* Array of thresholds */
143 	struct mem_cgroup_threshold entries[];
144 };
145 
146 struct mem_cgroup_thresholds {
147 	/* Primary thresholds array */
148 	struct mem_cgroup_threshold_ary *primary;
149 	/*
150 	 * Spare threshold array.
151 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
152 	 * It must be able to store at least primary->size - 1 entries.
153 	 */
154 	struct mem_cgroup_threshold_ary *spare;
155 };
156 
157 enum memcg_kmem_state {
158 	KMEM_NONE,
159 	KMEM_ALLOCATED,
160 	KMEM_ONLINE,
161 };
162 
163 #if defined(CONFIG_SMP)
164 struct memcg_padding {
165 	char x[0];
166 } ____cacheline_internodealigned_in_smp;
167 #define MEMCG_PADDING(name)      struct memcg_padding name;
168 #else
169 #define MEMCG_PADDING(name)
170 #endif
171 
172 /*
173  * Remember four most recent foreign writebacks with dirty pages in this
174  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
175  * one in a given round, we're likely to catch it later if it keeps
176  * foreign-dirtying, so a fairly low count should be enough.
177  *
178  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
179  */
180 #define MEMCG_CGWB_FRN_CNT	4
181 
182 struct memcg_cgwb_frn {
183 	u64 bdi_id;			/* bdi->id of the foreign inode */
184 	int memcg_id;			/* memcg->css.id of foreign inode */
185 	u64 at;				/* jiffies_64 at the time of dirtying */
186 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
187 };
188 
189 /*
190  * Bucket for arbitrarily byte-sized objects charged to a memory
191  * cgroup. The bucket can be reparented in one piece when the cgroup
192  * is destroyed, without having to round up the individual references
193  * of all live memory objects in the wild.
194  */
195 struct obj_cgroup {
196 	struct percpu_ref refcnt;
197 	struct mem_cgroup *memcg;
198 	atomic_t nr_charged_bytes;
199 	union {
200 		struct list_head list;
201 		struct rcu_head rcu;
202 	};
203 };
204 
205 /*
206  * The memory controller data structure. The memory controller controls both
207  * page cache and RSS per cgroup. We would eventually like to provide
208  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209  * to help the administrator determine what knobs to tune.
210  */
211 struct mem_cgroup {
212 	struct cgroup_subsys_state css;
213 
214 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
215 	struct mem_cgroup_id id;
216 
217 	/* Accounted resources */
218 	struct page_counter memory;		/* Both v1 & v2 */
219 
220 	union {
221 		struct page_counter swap;	/* v2 only */
222 		struct page_counter memsw;	/* v1 only */
223 	};
224 
225 	/* Legacy consumer-oriented counters */
226 	struct page_counter kmem;		/* v1 only */
227 	struct page_counter tcpmem;		/* v1 only */
228 
229 	/* Range enforcement for interrupt charges */
230 	struct work_struct high_work;
231 
232 	unsigned long soft_limit;
233 
234 	/* vmpressure notifications */
235 	struct vmpressure vmpressure;
236 
237 	/*
238 	 * Should the OOM killer kill all belonging tasks, had it kill one?
239 	 */
240 	bool oom_group;
241 
242 	/* protected by memcg_oom_lock */
243 	bool		oom_lock;
244 	int		under_oom;
245 
246 	int	swappiness;
247 	/* OOM-Killer disable */
248 	int		oom_kill_disable;
249 
250 	/* memory.events and memory.events.local */
251 	struct cgroup_file events_file;
252 	struct cgroup_file events_local_file;
253 
254 	/* handle for "memory.swap.events" */
255 	struct cgroup_file swap_events_file;
256 
257 	/* protect arrays of thresholds */
258 	struct mutex thresholds_lock;
259 
260 	/* thresholds for memory usage. RCU-protected */
261 	struct mem_cgroup_thresholds thresholds;
262 
263 	/* thresholds for mem+swap usage. RCU-protected */
264 	struct mem_cgroup_thresholds memsw_thresholds;
265 
266 	/* For oom notifier event fd */
267 	struct list_head oom_notify;
268 
269 	/*
270 	 * Should we move charges of a task when a task is moved into this
271 	 * mem_cgroup ? And what type of charges should we move ?
272 	 */
273 	unsigned long move_charge_at_immigrate;
274 	/* taken only while moving_account > 0 */
275 	spinlock_t		move_lock;
276 	unsigned long		move_lock_flags;
277 
278 	MEMCG_PADDING(_pad1_);
279 
280 	atomic_long_t		vmstats[MEMCG_NR_STAT];
281 	atomic_long_t		vmevents[NR_VM_EVENT_ITEMS];
282 
283 	/* memory.events */
284 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
285 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
286 
287 	unsigned long		socket_pressure;
288 
289 	/* Legacy tcp memory accounting */
290 	bool			tcpmem_active;
291 	int			tcpmem_pressure;
292 
293 #ifdef CONFIG_MEMCG_KMEM
294 	int kmemcg_id;
295 	enum memcg_kmem_state kmem_state;
296 	struct obj_cgroup __rcu *objcg;
297 	struct list_head objcg_list; /* list of inherited objcgs */
298 #endif
299 
300 	MEMCG_PADDING(_pad2_);
301 
302 	/*
303 	 * set > 0 if pages under this cgroup are moving to other cgroup.
304 	 */
305 	atomic_t		moving_account;
306 	struct task_struct	*move_lock_task;
307 
308 	/* Legacy local VM stats and events */
309 	struct memcg_vmstats_percpu __percpu *vmstats_local;
310 
311 	/* Subtree VM stats and events (batched updates) */
312 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
313 
314 #ifdef CONFIG_CGROUP_WRITEBACK
315 	struct list_head cgwb_list;
316 	struct wb_domain cgwb_domain;
317 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
318 #endif
319 
320 	/* List of events which userspace want to receive */
321 	struct list_head event_list;
322 	spinlock_t event_list_lock;
323 
324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
325 	struct deferred_split deferred_split_queue;
326 #endif
327 
328 	struct mem_cgroup_per_node *nodeinfo[0];
329 	/* WARNING: nodeinfo must be the last member here */
330 };
331 
332 /*
333  * size of first charge trial. "32" comes from vmscan.c's magic value.
334  * TODO: maybe necessary to use big numbers in big irons.
335  */
336 #define MEMCG_CHARGE_BATCH 32U
337 
338 extern struct mem_cgroup *root_mem_cgroup;
339 
340 enum page_memcg_data_flags {
341 	/* page->memcg_data is a pointer to an objcgs vector */
342 	MEMCG_DATA_OBJCGS = (1UL << 0),
343 	/* page has been accounted as a non-slab kernel page */
344 	MEMCG_DATA_KMEM = (1UL << 1),
345 	/* the next bit after the last actual flag */
346 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
347 };
348 
349 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350 
351 /*
352  * page_memcg - get the memory cgroup associated with a page
353  * @page: a pointer to the page struct
354  *
355  * Returns a pointer to the memory cgroup associated with the page,
356  * or NULL. This function assumes that the page is known to have a
357  * proper memory cgroup pointer. It's not safe to call this function
358  * against some type of pages, e.g. slab pages or ex-slab pages.
359  *
360  * Any of the following ensures page and memcg binding stability:
361  * - the page lock
362  * - LRU isolation
363  * - lock_page_memcg()
364  * - exclusive reference
365  */
366 static inline struct mem_cgroup *page_memcg(struct page *page)
367 {
368 	unsigned long memcg_data = page->memcg_data;
369 
370 	VM_BUG_ON_PAGE(PageSlab(page), page);
371 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
372 
373 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
374 }
375 
376 /*
377  * page_memcg_rcu - locklessly get the memory cgroup associated with a page
378  * @page: a pointer to the page struct
379  *
380  * Returns a pointer to the memory cgroup associated with the page,
381  * or NULL. This function assumes that the page is known to have a
382  * proper memory cgroup pointer. It's not safe to call this function
383  * against some type of pages, e.g. slab pages or ex-slab pages.
384  */
385 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
386 {
387 	VM_BUG_ON_PAGE(PageSlab(page), page);
388 	WARN_ON_ONCE(!rcu_read_lock_held());
389 
390 	return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
391 				     ~MEMCG_DATA_FLAGS_MASK);
392 }
393 
394 /*
395  * page_memcg_check - get the memory cgroup associated with a page
396  * @page: a pointer to the page struct
397  *
398  * Returns a pointer to the memory cgroup associated with the page,
399  * or NULL. This function unlike page_memcg() can take any  page
400  * as an argument. It has to be used in cases when it's not known if a page
401  * has an associated memory cgroup pointer or an object cgroups vector.
402  *
403  * Any of the following ensures page and memcg binding stability:
404  * - the page lock
405  * - LRU isolation
406  * - lock_page_memcg()
407  * - exclusive reference
408  */
409 static inline struct mem_cgroup *page_memcg_check(struct page *page)
410 {
411 	/*
412 	 * Because page->memcg_data might be changed asynchronously
413 	 * for slab pages, READ_ONCE() should be used here.
414 	 */
415 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
416 
417 	if (memcg_data & MEMCG_DATA_OBJCGS)
418 		return NULL;
419 
420 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
421 }
422 
423 /*
424  * PageMemcgKmem - check if the page has MemcgKmem flag set
425  * @page: a pointer to the page struct
426  *
427  * Checks if the page has MemcgKmem flag set. The caller must ensure that
428  * the page has an associated memory cgroup. It's not safe to call this function
429  * against some types of pages, e.g. slab pages.
430  */
431 static inline bool PageMemcgKmem(struct page *page)
432 {
433 	VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
434 	return page->memcg_data & MEMCG_DATA_KMEM;
435 }
436 
437 #ifdef CONFIG_MEMCG_KMEM
438 /*
439  * page_objcgs - get the object cgroups vector associated with a page
440  * @page: a pointer to the page struct
441  *
442  * Returns a pointer to the object cgroups vector associated with the page,
443  * or NULL. This function assumes that the page is known to have an
444  * associated object cgroups vector. It's not safe to call this function
445  * against pages, which might have an associated memory cgroup: e.g.
446  * kernel stack pages.
447  */
448 static inline struct obj_cgroup **page_objcgs(struct page *page)
449 {
450 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
451 
452 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
453 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
454 
455 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
456 }
457 
458 /*
459  * page_objcgs_check - get the object cgroups vector associated with a page
460  * @page: a pointer to the page struct
461  *
462  * Returns a pointer to the object cgroups vector associated with the page,
463  * or NULL. This function is safe to use if the page can be directly associated
464  * with a memory cgroup.
465  */
466 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
467 {
468 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
469 
470 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
471 		return NULL;
472 
473 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
474 
475 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
476 }
477 
478 /*
479  * set_page_objcgs - associate a page with a object cgroups vector
480  * @page: a pointer to the page struct
481  * @objcgs: a pointer to the object cgroups vector
482  *
483  * Atomically associates a page with a vector of object cgroups.
484  */
485 static inline bool set_page_objcgs(struct page *page,
486 					struct obj_cgroup **objcgs)
487 {
488 	return !cmpxchg(&page->memcg_data, 0, (unsigned long)objcgs |
489 			MEMCG_DATA_OBJCGS);
490 }
491 #else
492 static inline struct obj_cgroup **page_objcgs(struct page *page)
493 {
494 	return NULL;
495 }
496 
497 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
498 {
499 	return NULL;
500 }
501 
502 static inline bool set_page_objcgs(struct page *page,
503 					struct obj_cgroup **objcgs)
504 {
505 	return true;
506 }
507 #endif
508 
509 static __always_inline bool memcg_stat_item_in_bytes(int idx)
510 {
511 	if (idx == MEMCG_PERCPU_B)
512 		return true;
513 	return vmstat_item_in_bytes(idx);
514 }
515 
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 	return (memcg == root_mem_cgroup);
519 }
520 
521 static inline bool mem_cgroup_disabled(void)
522 {
523 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
524 }
525 
526 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
527 						  struct mem_cgroup *memcg,
528 						  bool in_low_reclaim)
529 {
530 	if (mem_cgroup_disabled())
531 		return 0;
532 
533 	/*
534 	 * There is no reclaim protection applied to a targeted reclaim.
535 	 * We are special casing this specific case here because
536 	 * mem_cgroup_protected calculation is not robust enough to keep
537 	 * the protection invariant for calculated effective values for
538 	 * parallel reclaimers with different reclaim target. This is
539 	 * especially a problem for tail memcgs (as they have pages on LRU)
540 	 * which would want to have effective values 0 for targeted reclaim
541 	 * but a different value for external reclaim.
542 	 *
543 	 * Example
544 	 * Let's have global and A's reclaim in parallel:
545 	 *  |
546 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
547 	 *  |\
548 	 *  | C (low = 1G, usage = 2.5G)
549 	 *  B (low = 1G, usage = 0.5G)
550 	 *
551 	 * For the global reclaim
552 	 * A.elow = A.low
553 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
554 	 * C.elow = min(C.usage, C.low)
555 	 *
556 	 * With the effective values resetting we have A reclaim
557 	 * A.elow = 0
558 	 * B.elow = B.low
559 	 * C.elow = C.low
560 	 *
561 	 * If the global reclaim races with A's reclaim then
562 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
563 	 * is possible and reclaiming B would be violating the protection.
564 	 *
565 	 */
566 	if (root == memcg)
567 		return 0;
568 
569 	if (in_low_reclaim)
570 		return READ_ONCE(memcg->memory.emin);
571 
572 	return max(READ_ONCE(memcg->memory.emin),
573 		   READ_ONCE(memcg->memory.elow));
574 }
575 
576 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
577 				     struct mem_cgroup *memcg);
578 
579 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
580 {
581 	/*
582 	 * The root memcg doesn't account charges, and doesn't support
583 	 * protection.
584 	 */
585 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
586 
587 }
588 
589 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
590 {
591 	if (!mem_cgroup_supports_protection(memcg))
592 		return false;
593 
594 	return READ_ONCE(memcg->memory.elow) >=
595 		page_counter_read(&memcg->memory);
596 }
597 
598 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
599 {
600 	if (!mem_cgroup_supports_protection(memcg))
601 		return false;
602 
603 	return READ_ONCE(memcg->memory.emin) >=
604 		page_counter_read(&memcg->memory);
605 }
606 
607 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
608 
609 void mem_cgroup_uncharge(struct page *page);
610 void mem_cgroup_uncharge_list(struct list_head *page_list);
611 
612 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
613 
614 static struct mem_cgroup_per_node *
615 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
616 {
617 	return memcg->nodeinfo[nid];
618 }
619 
620 /**
621  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
622  * @memcg: memcg of the wanted lruvec
623  * @pgdat: pglist_data
624  *
625  * Returns the lru list vector holding pages for a given @memcg &
626  * @pgdat combination. This can be the node lruvec, if the memory
627  * controller is disabled.
628  */
629 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
630 					       struct pglist_data *pgdat)
631 {
632 	struct mem_cgroup_per_node *mz;
633 	struct lruvec *lruvec;
634 
635 	if (mem_cgroup_disabled()) {
636 		lruvec = &pgdat->__lruvec;
637 		goto out;
638 	}
639 
640 	if (!memcg)
641 		memcg = root_mem_cgroup;
642 
643 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
644 	lruvec = &mz->lruvec;
645 out:
646 	/*
647 	 * Since a node can be onlined after the mem_cgroup was created,
648 	 * we have to be prepared to initialize lruvec->pgdat here;
649 	 * and if offlined then reonlined, we need to reinitialize it.
650 	 */
651 	if (unlikely(lruvec->pgdat != pgdat))
652 		lruvec->pgdat = pgdat;
653 	return lruvec;
654 }
655 
656 /**
657  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
658  * @page: the page
659  * @pgdat: pgdat of the page
660  *
661  * This function relies on page->mem_cgroup being stable.
662  */
663 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
664 						struct pglist_data *pgdat)
665 {
666 	struct mem_cgroup *memcg = page_memcg(page);
667 
668 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
669 	return mem_cgroup_lruvec(memcg, pgdat);
670 }
671 
672 static inline bool lruvec_holds_page_lru_lock(struct page *page,
673 					      struct lruvec *lruvec)
674 {
675 	pg_data_t *pgdat = page_pgdat(page);
676 	const struct mem_cgroup *memcg;
677 	struct mem_cgroup_per_node *mz;
678 
679 	if (mem_cgroup_disabled())
680 		return lruvec == &pgdat->__lruvec;
681 
682 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
683 	memcg = page_memcg(page) ? : root_mem_cgroup;
684 
685 	return lruvec->pgdat == pgdat && mz->memcg == memcg;
686 }
687 
688 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
689 
690 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
691 
692 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
693 
694 struct lruvec *lock_page_lruvec(struct page *page);
695 struct lruvec *lock_page_lruvec_irq(struct page *page);
696 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
697 						unsigned long *flags);
698 
699 #ifdef CONFIG_DEBUG_VM
700 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
701 #else
702 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
703 {
704 }
705 #endif
706 
707 static inline
708 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
709 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
710 }
711 
712 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
713 {
714 	return percpu_ref_tryget(&objcg->refcnt);
715 }
716 
717 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
718 {
719 	percpu_ref_get(&objcg->refcnt);
720 }
721 
722 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
723 {
724 	percpu_ref_put(&objcg->refcnt);
725 }
726 
727 /*
728  * After the initialization objcg->memcg is always pointing at
729  * a valid memcg, but can be atomically swapped to the parent memcg.
730  *
731  * The caller must ensure that the returned memcg won't be released:
732  * e.g. acquire the rcu_read_lock or css_set_lock.
733  */
734 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
735 {
736 	return READ_ONCE(objcg->memcg);
737 }
738 
739 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
740 {
741 	if (memcg)
742 		css_put(&memcg->css);
743 }
744 
745 #define mem_cgroup_from_counter(counter, member)	\
746 	container_of(counter, struct mem_cgroup, member)
747 
748 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
749 				   struct mem_cgroup *,
750 				   struct mem_cgroup_reclaim_cookie *);
751 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
752 int mem_cgroup_scan_tasks(struct mem_cgroup *,
753 			  int (*)(struct task_struct *, void *), void *);
754 
755 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
756 {
757 	if (mem_cgroup_disabled())
758 		return 0;
759 
760 	return memcg->id.id;
761 }
762 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
763 
764 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
765 {
766 	return mem_cgroup_from_css(seq_css(m));
767 }
768 
769 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
770 {
771 	struct mem_cgroup_per_node *mz;
772 
773 	if (mem_cgroup_disabled())
774 		return NULL;
775 
776 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
777 	return mz->memcg;
778 }
779 
780 /**
781  * parent_mem_cgroup - find the accounting parent of a memcg
782  * @memcg: memcg whose parent to find
783  *
784  * Returns the parent memcg, or NULL if this is the root or the memory
785  * controller is in legacy no-hierarchy mode.
786  */
787 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
788 {
789 	if (!memcg->memory.parent)
790 		return NULL;
791 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
792 }
793 
794 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
795 			      struct mem_cgroup *root)
796 {
797 	if (root == memcg)
798 		return true;
799 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
800 }
801 
802 static inline bool mm_match_cgroup(struct mm_struct *mm,
803 				   struct mem_cgroup *memcg)
804 {
805 	struct mem_cgroup *task_memcg;
806 	bool match = false;
807 
808 	rcu_read_lock();
809 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
810 	if (task_memcg)
811 		match = mem_cgroup_is_descendant(task_memcg, memcg);
812 	rcu_read_unlock();
813 	return match;
814 }
815 
816 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
817 ino_t page_cgroup_ino(struct page *page);
818 
819 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
820 {
821 	if (mem_cgroup_disabled())
822 		return true;
823 	return !!(memcg->css.flags & CSS_ONLINE);
824 }
825 
826 /*
827  * For memory reclaim.
828  */
829 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
830 
831 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
832 		int zid, int nr_pages);
833 
834 static inline
835 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
836 		enum lru_list lru, int zone_idx)
837 {
838 	struct mem_cgroup_per_node *mz;
839 
840 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
841 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
842 }
843 
844 void mem_cgroup_handle_over_high(void);
845 
846 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
847 
848 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
849 
850 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
851 				struct task_struct *p);
852 
853 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
854 
855 static inline void mem_cgroup_enter_user_fault(void)
856 {
857 	WARN_ON(current->in_user_fault);
858 	current->in_user_fault = 1;
859 }
860 
861 static inline void mem_cgroup_exit_user_fault(void)
862 {
863 	WARN_ON(!current->in_user_fault);
864 	current->in_user_fault = 0;
865 }
866 
867 static inline bool task_in_memcg_oom(struct task_struct *p)
868 {
869 	return p->memcg_in_oom;
870 }
871 
872 bool mem_cgroup_oom_synchronize(bool wait);
873 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
874 					    struct mem_cgroup *oom_domain);
875 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
876 
877 #ifdef CONFIG_MEMCG_SWAP
878 extern bool cgroup_memory_noswap;
879 #endif
880 
881 struct mem_cgroup *lock_page_memcg(struct page *page);
882 void __unlock_page_memcg(struct mem_cgroup *memcg);
883 void unlock_page_memcg(struct page *page);
884 
885 /*
886  * idx can be of type enum memcg_stat_item or node_stat_item.
887  * Keep in sync with memcg_exact_page_state().
888  */
889 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
890 {
891 	long x = atomic_long_read(&memcg->vmstats[idx]);
892 #ifdef CONFIG_SMP
893 	if (x < 0)
894 		x = 0;
895 #endif
896 	return x;
897 }
898 
899 /*
900  * idx can be of type enum memcg_stat_item or node_stat_item.
901  * Keep in sync with memcg_exact_page_state().
902  */
903 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
904 						   int idx)
905 {
906 	long x = 0;
907 	int cpu;
908 
909 	for_each_possible_cpu(cpu)
910 		x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
911 #ifdef CONFIG_SMP
912 	if (x < 0)
913 		x = 0;
914 #endif
915 	return x;
916 }
917 
918 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
919 
920 /* idx can be of type enum memcg_stat_item or node_stat_item */
921 static inline void mod_memcg_state(struct mem_cgroup *memcg,
922 				   int idx, int val)
923 {
924 	unsigned long flags;
925 
926 	local_irq_save(flags);
927 	__mod_memcg_state(memcg, idx, val);
928 	local_irq_restore(flags);
929 }
930 
931 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
932 					      enum node_stat_item idx)
933 {
934 	struct mem_cgroup_per_node *pn;
935 	long x;
936 
937 	if (mem_cgroup_disabled())
938 		return node_page_state(lruvec_pgdat(lruvec), idx);
939 
940 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
941 	x = atomic_long_read(&pn->lruvec_stat[idx]);
942 #ifdef CONFIG_SMP
943 	if (x < 0)
944 		x = 0;
945 #endif
946 	return x;
947 }
948 
949 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
950 						    enum node_stat_item idx)
951 {
952 	struct mem_cgroup_per_node *pn;
953 	long x = 0;
954 	int cpu;
955 
956 	if (mem_cgroup_disabled())
957 		return node_page_state(lruvec_pgdat(lruvec), idx);
958 
959 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
960 	for_each_possible_cpu(cpu)
961 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
962 #ifdef CONFIG_SMP
963 	if (x < 0)
964 		x = 0;
965 #endif
966 	return x;
967 }
968 
969 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
970 			      int val);
971 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
972 
973 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
974 					 int val)
975 {
976 	unsigned long flags;
977 
978 	local_irq_save(flags);
979 	__mod_lruvec_kmem_state(p, idx, val);
980 	local_irq_restore(flags);
981 }
982 
983 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
984 					  enum node_stat_item idx, int val)
985 {
986 	unsigned long flags;
987 
988 	local_irq_save(flags);
989 	__mod_memcg_lruvec_state(lruvec, idx, val);
990 	local_irq_restore(flags);
991 }
992 
993 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
994 						gfp_t gfp_mask,
995 						unsigned long *total_scanned);
996 
997 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
998 			  unsigned long count);
999 
1000 static inline void count_memcg_events(struct mem_cgroup *memcg,
1001 				      enum vm_event_item idx,
1002 				      unsigned long count)
1003 {
1004 	unsigned long flags;
1005 
1006 	local_irq_save(flags);
1007 	__count_memcg_events(memcg, idx, count);
1008 	local_irq_restore(flags);
1009 }
1010 
1011 static inline void count_memcg_page_event(struct page *page,
1012 					  enum vm_event_item idx)
1013 {
1014 	struct mem_cgroup *memcg = page_memcg(page);
1015 
1016 	if (memcg)
1017 		count_memcg_events(memcg, idx, 1);
1018 }
1019 
1020 static inline void count_memcg_event_mm(struct mm_struct *mm,
1021 					enum vm_event_item idx)
1022 {
1023 	struct mem_cgroup *memcg;
1024 
1025 	if (mem_cgroup_disabled())
1026 		return;
1027 
1028 	rcu_read_lock();
1029 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030 	if (likely(memcg))
1031 		count_memcg_events(memcg, idx, 1);
1032 	rcu_read_unlock();
1033 }
1034 
1035 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1036 				      enum memcg_memory_event event)
1037 {
1038 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1039 			  event == MEMCG_SWAP_FAIL;
1040 
1041 	atomic_long_inc(&memcg->memory_events_local[event]);
1042 	if (!swap_event)
1043 		cgroup_file_notify(&memcg->events_local_file);
1044 
1045 	do {
1046 		atomic_long_inc(&memcg->memory_events[event]);
1047 		if (swap_event)
1048 			cgroup_file_notify(&memcg->swap_events_file);
1049 		else
1050 			cgroup_file_notify(&memcg->events_file);
1051 
1052 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1053 			break;
1054 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1055 			break;
1056 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1057 		 !mem_cgroup_is_root(memcg));
1058 }
1059 
1060 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1061 					 enum memcg_memory_event event)
1062 {
1063 	struct mem_cgroup *memcg;
1064 
1065 	if (mem_cgroup_disabled())
1066 		return;
1067 
1068 	rcu_read_lock();
1069 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 	if (likely(memcg))
1071 		memcg_memory_event(memcg, event);
1072 	rcu_read_unlock();
1073 }
1074 
1075 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1076 void mem_cgroup_split_huge_fixup(struct page *head);
1077 #endif
1078 
1079 #else /* CONFIG_MEMCG */
1080 
1081 #define MEM_CGROUP_ID_SHIFT	0
1082 #define MEM_CGROUP_ID_MAX	0
1083 
1084 struct mem_cgroup;
1085 
1086 static inline struct mem_cgroup *page_memcg(struct page *page)
1087 {
1088 	return NULL;
1089 }
1090 
1091 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1092 {
1093 	WARN_ON_ONCE(!rcu_read_lock_held());
1094 	return NULL;
1095 }
1096 
1097 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1098 {
1099 	return NULL;
1100 }
1101 
1102 static inline bool PageMemcgKmem(struct page *page)
1103 {
1104 	return false;
1105 }
1106 
1107 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1108 {
1109 	return true;
1110 }
1111 
1112 static inline bool mem_cgroup_disabled(void)
1113 {
1114 	return true;
1115 }
1116 
1117 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1118 				      enum memcg_memory_event event)
1119 {
1120 }
1121 
1122 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1123 					 enum memcg_memory_event event)
1124 {
1125 }
1126 
1127 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1128 						  struct mem_cgroup *memcg,
1129 						  bool in_low_reclaim)
1130 {
1131 	return 0;
1132 }
1133 
1134 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1135 						   struct mem_cgroup *memcg)
1136 {
1137 }
1138 
1139 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1140 {
1141 	return false;
1142 }
1143 
1144 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1145 {
1146 	return false;
1147 }
1148 
1149 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1150 				    gfp_t gfp_mask)
1151 {
1152 	return 0;
1153 }
1154 
1155 static inline void mem_cgroup_uncharge(struct page *page)
1156 {
1157 }
1158 
1159 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1160 {
1161 }
1162 
1163 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1164 {
1165 }
1166 
1167 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1168 					       struct pglist_data *pgdat)
1169 {
1170 	return &pgdat->__lruvec;
1171 }
1172 
1173 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1174 						    struct pglist_data *pgdat)
1175 {
1176 	return &pgdat->__lruvec;
1177 }
1178 
1179 static inline bool lruvec_holds_page_lru_lock(struct page *page,
1180 					      struct lruvec *lruvec)
1181 {
1182 	pg_data_t *pgdat = page_pgdat(page);
1183 
1184 	return lruvec == &pgdat->__lruvec;
1185 }
1186 
1187 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1188 {
1189 	return NULL;
1190 }
1191 
1192 static inline bool mm_match_cgroup(struct mm_struct *mm,
1193 		struct mem_cgroup *memcg)
1194 {
1195 	return true;
1196 }
1197 
1198 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1199 {
1200 	return NULL;
1201 }
1202 
1203 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1204 {
1205 	return NULL;
1206 }
1207 
1208 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1209 {
1210 }
1211 
1212 static inline struct lruvec *lock_page_lruvec(struct page *page)
1213 {
1214 	struct pglist_data *pgdat = page_pgdat(page);
1215 
1216 	spin_lock(&pgdat->__lruvec.lru_lock);
1217 	return &pgdat->__lruvec;
1218 }
1219 
1220 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1221 {
1222 	struct pglist_data *pgdat = page_pgdat(page);
1223 
1224 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1225 	return &pgdat->__lruvec;
1226 }
1227 
1228 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1229 		unsigned long *flagsp)
1230 {
1231 	struct pglist_data *pgdat = page_pgdat(page);
1232 
1233 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1234 	return &pgdat->__lruvec;
1235 }
1236 
1237 static inline struct mem_cgroup *
1238 mem_cgroup_iter(struct mem_cgroup *root,
1239 		struct mem_cgroup *prev,
1240 		struct mem_cgroup_reclaim_cookie *reclaim)
1241 {
1242 	return NULL;
1243 }
1244 
1245 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1246 					 struct mem_cgroup *prev)
1247 {
1248 }
1249 
1250 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1251 		int (*fn)(struct task_struct *, void *), void *arg)
1252 {
1253 	return 0;
1254 }
1255 
1256 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1257 {
1258 	return 0;
1259 }
1260 
1261 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1262 {
1263 	WARN_ON_ONCE(id);
1264 	/* XXX: This should always return root_mem_cgroup */
1265 	return NULL;
1266 }
1267 
1268 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1269 {
1270 	return NULL;
1271 }
1272 
1273 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1274 {
1275 	return NULL;
1276 }
1277 
1278 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1279 {
1280 	return true;
1281 }
1282 
1283 static inline
1284 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1285 		enum lru_list lru, int zone_idx)
1286 {
1287 	return 0;
1288 }
1289 
1290 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1291 {
1292 	return 0;
1293 }
1294 
1295 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1296 {
1297 	return 0;
1298 }
1299 
1300 static inline void
1301 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1302 {
1303 }
1304 
1305 static inline void
1306 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1307 {
1308 }
1309 
1310 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1311 {
1312 	return NULL;
1313 }
1314 
1315 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1316 {
1317 }
1318 
1319 static inline void unlock_page_memcg(struct page *page)
1320 {
1321 }
1322 
1323 static inline void mem_cgroup_handle_over_high(void)
1324 {
1325 }
1326 
1327 static inline void mem_cgroup_enter_user_fault(void)
1328 {
1329 }
1330 
1331 static inline void mem_cgroup_exit_user_fault(void)
1332 {
1333 }
1334 
1335 static inline bool task_in_memcg_oom(struct task_struct *p)
1336 {
1337 	return false;
1338 }
1339 
1340 static inline bool mem_cgroup_oom_synchronize(bool wait)
1341 {
1342 	return false;
1343 }
1344 
1345 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1346 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1347 {
1348 	return NULL;
1349 }
1350 
1351 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1352 {
1353 }
1354 
1355 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1356 {
1357 	return 0;
1358 }
1359 
1360 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1361 						   int idx)
1362 {
1363 	return 0;
1364 }
1365 
1366 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1367 				     int idx,
1368 				     int nr)
1369 {
1370 }
1371 
1372 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1373 				   int idx,
1374 				   int nr)
1375 {
1376 }
1377 
1378 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1379 					      enum node_stat_item idx)
1380 {
1381 	return node_page_state(lruvec_pgdat(lruvec), idx);
1382 }
1383 
1384 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1385 						    enum node_stat_item idx)
1386 {
1387 	return node_page_state(lruvec_pgdat(lruvec), idx);
1388 }
1389 
1390 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1391 					    enum node_stat_item idx, int val)
1392 {
1393 }
1394 
1395 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1396 					   int val)
1397 {
1398 	struct page *page = virt_to_head_page(p);
1399 
1400 	__mod_node_page_state(page_pgdat(page), idx, val);
1401 }
1402 
1403 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1404 					 int val)
1405 {
1406 	struct page *page = virt_to_head_page(p);
1407 
1408 	mod_node_page_state(page_pgdat(page), idx, val);
1409 }
1410 
1411 static inline
1412 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1413 					    gfp_t gfp_mask,
1414 					    unsigned long *total_scanned)
1415 {
1416 	return 0;
1417 }
1418 
1419 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1420 {
1421 }
1422 
1423 static inline void count_memcg_events(struct mem_cgroup *memcg,
1424 				      enum vm_event_item idx,
1425 				      unsigned long count)
1426 {
1427 }
1428 
1429 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1430 					enum vm_event_item idx,
1431 					unsigned long count)
1432 {
1433 }
1434 
1435 static inline void count_memcg_page_event(struct page *page,
1436 					  int idx)
1437 {
1438 }
1439 
1440 static inline
1441 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1442 {
1443 }
1444 
1445 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1446 {
1447 }
1448 #endif /* CONFIG_MEMCG */
1449 
1450 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1451 {
1452 	__mod_lruvec_kmem_state(p, idx, 1);
1453 }
1454 
1455 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1456 {
1457 	__mod_lruvec_kmem_state(p, idx, -1);
1458 }
1459 
1460 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1461 {
1462 	struct mem_cgroup *memcg;
1463 
1464 	memcg = lruvec_memcg(lruvec);
1465 	if (!memcg)
1466 		return NULL;
1467 	memcg = parent_mem_cgroup(memcg);
1468 	if (!memcg)
1469 		return NULL;
1470 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1471 }
1472 
1473 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1474 {
1475 	spin_unlock(&lruvec->lru_lock);
1476 }
1477 
1478 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1479 {
1480 	spin_unlock_irq(&lruvec->lru_lock);
1481 }
1482 
1483 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1484 		unsigned long flags)
1485 {
1486 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1487 }
1488 
1489 /* Don't lock again iff page's lruvec locked */
1490 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1491 		struct lruvec *locked_lruvec)
1492 {
1493 	if (locked_lruvec) {
1494 		if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1495 			return locked_lruvec;
1496 
1497 		unlock_page_lruvec_irq(locked_lruvec);
1498 	}
1499 
1500 	return lock_page_lruvec_irq(page);
1501 }
1502 
1503 /* Don't lock again iff page's lruvec locked */
1504 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1505 		struct lruvec *locked_lruvec, unsigned long *flags)
1506 {
1507 	if (locked_lruvec) {
1508 		if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1509 			return locked_lruvec;
1510 
1511 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1512 	}
1513 
1514 	return lock_page_lruvec_irqsave(page, flags);
1515 }
1516 
1517 #ifdef CONFIG_CGROUP_WRITEBACK
1518 
1519 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1520 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1521 			 unsigned long *pheadroom, unsigned long *pdirty,
1522 			 unsigned long *pwriteback);
1523 
1524 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1525 					     struct bdi_writeback *wb);
1526 
1527 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1528 						  struct bdi_writeback *wb)
1529 {
1530 	if (mem_cgroup_disabled())
1531 		return;
1532 
1533 	if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1534 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1535 }
1536 
1537 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1538 
1539 #else	/* CONFIG_CGROUP_WRITEBACK */
1540 
1541 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1542 {
1543 	return NULL;
1544 }
1545 
1546 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1547 				       unsigned long *pfilepages,
1548 				       unsigned long *pheadroom,
1549 				       unsigned long *pdirty,
1550 				       unsigned long *pwriteback)
1551 {
1552 }
1553 
1554 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1555 						  struct bdi_writeback *wb)
1556 {
1557 }
1558 
1559 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1560 {
1561 }
1562 
1563 #endif	/* CONFIG_CGROUP_WRITEBACK */
1564 
1565 struct sock;
1566 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1567 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1568 #ifdef CONFIG_MEMCG
1569 extern struct static_key_false memcg_sockets_enabled_key;
1570 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1571 void mem_cgroup_sk_alloc(struct sock *sk);
1572 void mem_cgroup_sk_free(struct sock *sk);
1573 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1574 {
1575 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1576 		return true;
1577 	do {
1578 		if (time_before(jiffies, memcg->socket_pressure))
1579 			return true;
1580 	} while ((memcg = parent_mem_cgroup(memcg)));
1581 	return false;
1582 }
1583 
1584 extern int memcg_expand_shrinker_maps(int new_id);
1585 
1586 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1587 				   int nid, int shrinker_id);
1588 #else
1589 #define mem_cgroup_sockets_enabled 0
1590 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1591 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1592 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1593 {
1594 	return false;
1595 }
1596 
1597 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1598 					  int nid, int shrinker_id)
1599 {
1600 }
1601 #endif
1602 
1603 #ifdef CONFIG_MEMCG_KMEM
1604 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1605 			unsigned int nr_pages);
1606 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1607 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1608 void __memcg_kmem_uncharge_page(struct page *page, int order);
1609 
1610 struct obj_cgroup *get_obj_cgroup_from_current(void);
1611 
1612 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1613 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1614 
1615 extern struct static_key_false memcg_kmem_enabled_key;
1616 
1617 extern int memcg_nr_cache_ids;
1618 void memcg_get_cache_ids(void);
1619 void memcg_put_cache_ids(void);
1620 
1621 /*
1622  * Helper macro to loop through all memcg-specific caches. Callers must still
1623  * check if the cache is valid (it is either valid or NULL).
1624  * the slab_mutex must be held when looping through those caches
1625  */
1626 #define for_each_memcg_cache_index(_idx)	\
1627 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1628 
1629 static inline bool memcg_kmem_enabled(void)
1630 {
1631 	return static_branch_likely(&memcg_kmem_enabled_key);
1632 }
1633 
1634 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1635 					 int order)
1636 {
1637 	if (memcg_kmem_enabled())
1638 		return __memcg_kmem_charge_page(page, gfp, order);
1639 	return 0;
1640 }
1641 
1642 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1643 {
1644 	if (memcg_kmem_enabled())
1645 		__memcg_kmem_uncharge_page(page, order);
1646 }
1647 
1648 /*
1649  * A helper for accessing memcg's kmem_id, used for getting
1650  * corresponding LRU lists.
1651  */
1652 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1653 {
1654 	return memcg ? memcg->kmemcg_id : -1;
1655 }
1656 
1657 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1658 
1659 #else
1660 
1661 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1662 					 int order)
1663 {
1664 	return 0;
1665 }
1666 
1667 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1668 {
1669 }
1670 
1671 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1672 					   int order)
1673 {
1674 	return 0;
1675 }
1676 
1677 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1678 {
1679 }
1680 
1681 #define for_each_memcg_cache_index(_idx)	\
1682 	for (; NULL; )
1683 
1684 static inline bool memcg_kmem_enabled(void)
1685 {
1686 	return false;
1687 }
1688 
1689 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1690 {
1691 	return -1;
1692 }
1693 
1694 static inline void memcg_get_cache_ids(void)
1695 {
1696 }
1697 
1698 static inline void memcg_put_cache_ids(void)
1699 {
1700 }
1701 
1702 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1703 {
1704        return NULL;
1705 }
1706 
1707 #endif /* CONFIG_MEMCG_KMEM */
1708 
1709 #endif /* _LINUX_MEMCONTROL_H */
1710