xref: /linux-6.15/include/linux/memcontrol.h (revision fa23a338)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/* Legacy tcp memory accounting */
303 	bool tcpmem_active;
304 	int tcpmem_pressure;
305 
306 	/* List of events which userspace want to receive */
307 	struct list_head event_list;
308 	spinlock_t event_list_lock;
309 #endif /* CONFIG_MEMCG_V1 */
310 
311 	struct mem_cgroup_per_node *nodeinfo[];
312 };
313 
314 /*
315  * size of first charge trial.
316  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
317  * workload.
318  */
319 #define MEMCG_CHARGE_BATCH 64U
320 
321 extern struct mem_cgroup *root_mem_cgroup;
322 
323 enum page_memcg_data_flags {
324 	/* page->memcg_data is a pointer to an slabobj_ext vector */
325 	MEMCG_DATA_OBJEXTS = (1UL << 0),
326 	/* page has been accounted as a non-slab kernel page */
327 	MEMCG_DATA_KMEM = (1UL << 1),
328 	/* the next bit after the last actual flag */
329 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
330 };
331 
332 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
333 
334 #else /* CONFIG_MEMCG */
335 
336 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
337 
338 #endif /* CONFIG_MEMCG */
339 
340 enum objext_flags {
341 	/* slabobj_ext vector failed to allocate */
342 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
343 	/* the next bit after the last actual flag */
344 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
345 };
346 
347 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
348 
349 #ifdef CONFIG_MEMCG
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released.
358  */
359 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
360 {
361 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - exclusive reference
422  *
423  * For a kmem folio a caller should hold an rcu read lock to protect memcg
424  * associated with a kmem folio from being released.
425  */
426 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
427 {
428 	if (folio_memcg_kmem(folio))
429 		return obj_cgroup_memcg(__folio_objcg(folio));
430 	return __folio_memcg(folio);
431 }
432 
433 /*
434  * folio_memcg_charged - If a folio is charged to a memory cgroup.
435  * @folio: Pointer to the folio.
436  *
437  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
438  */
439 static inline bool folio_memcg_charged(struct folio *folio)
440 {
441 	if (folio_memcg_kmem(folio))
442 		return __folio_objcg(folio) != NULL;
443 	return __folio_memcg(folio) != NULL;
444 }
445 
446 /*
447  * folio_memcg_check - Get the memory cgroup associated with a folio.
448  * @folio: Pointer to the folio.
449  *
450  * Returns a pointer to the memory cgroup associated with the folio,
451  * or NULL. This function unlike folio_memcg() can take any folio
452  * as an argument. It has to be used in cases when it's not known if a folio
453  * has an associated memory cgroup pointer or an object cgroups vector or
454  * an object cgroup.
455  *
456  * For a non-kmem folio any of the following ensures folio and memcg binding
457  * stability:
458  *
459  * - the folio lock
460  * - LRU isolation
461  * - exclusive reference
462  *
463  * For a kmem folio a caller should hold an rcu read lock to protect memcg
464  * associated with a kmem folio from being released.
465  */
466 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
467 {
468 	/*
469 	 * Because folio->memcg_data might be changed asynchronously
470 	 * for slabs, READ_ONCE() should be used here.
471 	 */
472 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
473 
474 	if (memcg_data & MEMCG_DATA_OBJEXTS)
475 		return NULL;
476 
477 	if (memcg_data & MEMCG_DATA_KMEM) {
478 		struct obj_cgroup *objcg;
479 
480 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
481 		return obj_cgroup_memcg(objcg);
482 	}
483 
484 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
485 }
486 
487 static inline struct mem_cgroup *page_memcg_check(struct page *page)
488 {
489 	if (PageTail(page))
490 		return NULL;
491 	return folio_memcg_check((struct folio *)page);
492 }
493 
494 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
495 {
496 	struct mem_cgroup *memcg;
497 
498 	rcu_read_lock();
499 retry:
500 	memcg = obj_cgroup_memcg(objcg);
501 	if (unlikely(!css_tryget(&memcg->css)))
502 		goto retry;
503 	rcu_read_unlock();
504 
505 	return memcg;
506 }
507 
508 /*
509  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
510  * @folio: Pointer to the folio.
511  *
512  * Checks if the folio has MemcgKmem flag set. The caller must ensure
513  * that the folio has an associated memory cgroup. It's not safe to call
514  * this function against some types of folios, e.g. slab folios.
515  */
516 static inline bool folio_memcg_kmem(struct folio *folio)
517 {
518 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
519 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
520 	return folio->memcg_data & MEMCG_DATA_KMEM;
521 }
522 
523 static inline bool PageMemcgKmem(struct page *page)
524 {
525 	return folio_memcg_kmem(page_folio(page));
526 }
527 
528 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
529 {
530 	return (memcg == root_mem_cgroup);
531 }
532 
533 static inline bool mem_cgroup_disabled(void)
534 {
535 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
536 }
537 
538 static inline void mem_cgroup_protection(struct mem_cgroup *root,
539 					 struct mem_cgroup *memcg,
540 					 unsigned long *min,
541 					 unsigned long *low)
542 {
543 	*min = *low = 0;
544 
545 	if (mem_cgroup_disabled())
546 		return;
547 
548 	/*
549 	 * There is no reclaim protection applied to a targeted reclaim.
550 	 * We are special casing this specific case here because
551 	 * mem_cgroup_calculate_protection is not robust enough to keep
552 	 * the protection invariant for calculated effective values for
553 	 * parallel reclaimers with different reclaim target. This is
554 	 * especially a problem for tail memcgs (as they have pages on LRU)
555 	 * which would want to have effective values 0 for targeted reclaim
556 	 * but a different value for external reclaim.
557 	 *
558 	 * Example
559 	 * Let's have global and A's reclaim in parallel:
560 	 *  |
561 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
562 	 *  |\
563 	 *  | C (low = 1G, usage = 2.5G)
564 	 *  B (low = 1G, usage = 0.5G)
565 	 *
566 	 * For the global reclaim
567 	 * A.elow = A.low
568 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
569 	 * C.elow = min(C.usage, C.low)
570 	 *
571 	 * With the effective values resetting we have A reclaim
572 	 * A.elow = 0
573 	 * B.elow = B.low
574 	 * C.elow = C.low
575 	 *
576 	 * If the global reclaim races with A's reclaim then
577 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
578 	 * is possible and reclaiming B would be violating the protection.
579 	 *
580 	 */
581 	if (root == memcg)
582 		return;
583 
584 	*min = READ_ONCE(memcg->memory.emin);
585 	*low = READ_ONCE(memcg->memory.elow);
586 }
587 
588 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
589 				     struct mem_cgroup *memcg);
590 
591 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
592 					  struct mem_cgroup *memcg)
593 {
594 	/*
595 	 * The root memcg doesn't account charges, and doesn't support
596 	 * protection. The target memcg's protection is ignored, see
597 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
598 	 */
599 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
600 		memcg == target;
601 }
602 
603 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
604 					struct mem_cgroup *memcg)
605 {
606 	if (mem_cgroup_unprotected(target, memcg))
607 		return false;
608 
609 	return READ_ONCE(memcg->memory.elow) >=
610 		page_counter_read(&memcg->memory);
611 }
612 
613 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
614 					struct mem_cgroup *memcg)
615 {
616 	if (mem_cgroup_unprotected(target, memcg))
617 		return false;
618 
619 	return READ_ONCE(memcg->memory.emin) >=
620 		page_counter_read(&memcg->memory);
621 }
622 
623 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
624 
625 /**
626  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
627  * @folio: Folio to charge.
628  * @mm: mm context of the allocating task.
629  * @gfp: Reclaim mode.
630  *
631  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
632  * pages according to @gfp if necessary.  If @mm is NULL, try to
633  * charge to the active memcg.
634  *
635  * Do not use this for folios allocated for swapin.
636  *
637  * Return: 0 on success. Otherwise, an error code is returned.
638  */
639 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
640 				    gfp_t gfp)
641 {
642 	if (mem_cgroup_disabled())
643 		return 0;
644 	return __mem_cgroup_charge(folio, mm, gfp);
645 }
646 
647 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
648 
649 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
650 				  gfp_t gfp, swp_entry_t entry);
651 
652 void __mem_cgroup_uncharge(struct folio *folio);
653 
654 /**
655  * mem_cgroup_uncharge - Uncharge a folio.
656  * @folio: Folio to uncharge.
657  *
658  * Uncharge a folio previously charged with mem_cgroup_charge().
659  */
660 static inline void mem_cgroup_uncharge(struct folio *folio)
661 {
662 	if (mem_cgroup_disabled())
663 		return;
664 	__mem_cgroup_uncharge(folio);
665 }
666 
667 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
668 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
669 {
670 	if (mem_cgroup_disabled())
671 		return;
672 	__mem_cgroup_uncharge_folios(folios);
673 }
674 
675 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
676 void mem_cgroup_migrate(struct folio *old, struct folio *new);
677 
678 /**
679  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
680  * @memcg: memcg of the wanted lruvec
681  * @pgdat: pglist_data
682  *
683  * Returns the lru list vector holding pages for a given @memcg &
684  * @pgdat combination. This can be the node lruvec, if the memory
685  * controller is disabled.
686  */
687 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
688 					       struct pglist_data *pgdat)
689 {
690 	struct mem_cgroup_per_node *mz;
691 	struct lruvec *lruvec;
692 
693 	if (mem_cgroup_disabled()) {
694 		lruvec = &pgdat->__lruvec;
695 		goto out;
696 	}
697 
698 	if (!memcg)
699 		memcg = root_mem_cgroup;
700 
701 	mz = memcg->nodeinfo[pgdat->node_id];
702 	lruvec = &mz->lruvec;
703 out:
704 	/*
705 	 * Since a node can be onlined after the mem_cgroup was created,
706 	 * we have to be prepared to initialize lruvec->pgdat here;
707 	 * and if offlined then reonlined, we need to reinitialize it.
708 	 */
709 	if (unlikely(lruvec->pgdat != pgdat))
710 		lruvec->pgdat = pgdat;
711 	return lruvec;
712 }
713 
714 /**
715  * folio_lruvec - return lruvec for isolating/putting an LRU folio
716  * @folio: Pointer to the folio.
717  *
718  * This function relies on folio->mem_cgroup being stable.
719  */
720 static inline struct lruvec *folio_lruvec(struct folio *folio)
721 {
722 	struct mem_cgroup *memcg = folio_memcg(folio);
723 
724 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
725 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
726 }
727 
728 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
729 
730 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
731 
732 struct mem_cgroup *get_mem_cgroup_from_current(void);
733 
734 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
735 
736 struct lruvec *folio_lruvec_lock(struct folio *folio);
737 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
738 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
739 						unsigned long *flags);
740 
741 #ifdef CONFIG_DEBUG_VM
742 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
743 #else
744 static inline
745 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
746 {
747 }
748 #endif
749 
750 static inline
751 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
752 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
753 }
754 
755 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
756 {
757 	return percpu_ref_tryget(&objcg->refcnt);
758 }
759 
760 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
761 {
762 	percpu_ref_get(&objcg->refcnt);
763 }
764 
765 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
766 				       unsigned long nr)
767 {
768 	percpu_ref_get_many(&objcg->refcnt, nr);
769 }
770 
771 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
772 {
773 	if (objcg)
774 		percpu_ref_put(&objcg->refcnt);
775 }
776 
777 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
778 {
779 	return !memcg || css_tryget(&memcg->css);
780 }
781 
782 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
783 {
784 	return !memcg || css_tryget_online(&memcg->css);
785 }
786 
787 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
788 {
789 	if (memcg)
790 		css_put(&memcg->css);
791 }
792 
793 #define mem_cgroup_from_counter(counter, member)	\
794 	container_of(counter, struct mem_cgroup, member)
795 
796 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
797 				   struct mem_cgroup *,
798 				   struct mem_cgroup_reclaim_cookie *);
799 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
800 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
801 			   int (*)(struct task_struct *, void *), void *arg);
802 
803 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
804 {
805 	if (mem_cgroup_disabled())
806 		return 0;
807 
808 	return memcg->id.id;
809 }
810 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
811 
812 #ifdef CONFIG_SHRINKER_DEBUG
813 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
814 {
815 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
816 }
817 
818 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
819 #endif
820 
821 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
822 {
823 	return mem_cgroup_from_css(seq_css(m));
824 }
825 
826 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
827 {
828 	struct mem_cgroup_per_node *mz;
829 
830 	if (mem_cgroup_disabled())
831 		return NULL;
832 
833 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
834 	return mz->memcg;
835 }
836 
837 /**
838  * parent_mem_cgroup - find the accounting parent of a memcg
839  * @memcg: memcg whose parent to find
840  *
841  * Returns the parent memcg, or NULL if this is the root.
842  */
843 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
844 {
845 	return mem_cgroup_from_css(memcg->css.parent);
846 }
847 
848 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
849 			      struct mem_cgroup *root)
850 {
851 	if (root == memcg)
852 		return true;
853 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
854 }
855 
856 static inline bool mm_match_cgroup(struct mm_struct *mm,
857 				   struct mem_cgroup *memcg)
858 {
859 	struct mem_cgroup *task_memcg;
860 	bool match = false;
861 
862 	rcu_read_lock();
863 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
864 	if (task_memcg)
865 		match = mem_cgroup_is_descendant(task_memcg, memcg);
866 	rcu_read_unlock();
867 	return match;
868 }
869 
870 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
871 ino_t page_cgroup_ino(struct page *page);
872 
873 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
874 {
875 	if (mem_cgroup_disabled())
876 		return true;
877 	return !!(memcg->css.flags & CSS_ONLINE);
878 }
879 
880 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
881 		int zid, int nr_pages);
882 
883 static inline
884 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
885 		enum lru_list lru, int zone_idx)
886 {
887 	struct mem_cgroup_per_node *mz;
888 
889 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
890 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
891 }
892 
893 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
894 
895 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
896 
897 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
898 
899 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
900 				struct task_struct *p);
901 
902 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
903 
904 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
905 					    struct mem_cgroup *oom_domain);
906 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
907 
908 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
909 		       int val);
910 
911 /* idx can be of type enum memcg_stat_item or node_stat_item */
912 static inline void mod_memcg_state(struct mem_cgroup *memcg,
913 				   enum memcg_stat_item idx, int val)
914 {
915 	unsigned long flags;
916 
917 	local_irq_save(flags);
918 	__mod_memcg_state(memcg, idx, val);
919 	local_irq_restore(flags);
920 }
921 
922 static inline void mod_memcg_page_state(struct page *page,
923 					enum memcg_stat_item idx, int val)
924 {
925 	struct mem_cgroup *memcg;
926 
927 	if (mem_cgroup_disabled())
928 		return;
929 
930 	rcu_read_lock();
931 	memcg = folio_memcg(page_folio(page));
932 	if (memcg)
933 		mod_memcg_state(memcg, idx, val);
934 	rcu_read_unlock();
935 }
936 
937 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
938 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
939 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
940 				      enum node_stat_item idx);
941 
942 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
943 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
944 
945 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
946 
947 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
948 					 int val)
949 {
950 	unsigned long flags;
951 
952 	local_irq_save(flags);
953 	__mod_lruvec_kmem_state(p, idx, val);
954 	local_irq_restore(flags);
955 }
956 
957 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
958 			  unsigned long count);
959 
960 static inline void count_memcg_events(struct mem_cgroup *memcg,
961 				      enum vm_event_item idx,
962 				      unsigned long count)
963 {
964 	unsigned long flags;
965 
966 	local_irq_save(flags);
967 	__count_memcg_events(memcg, idx, count);
968 	local_irq_restore(flags);
969 }
970 
971 static inline void count_memcg_folio_events(struct folio *folio,
972 		enum vm_event_item idx, unsigned long nr)
973 {
974 	struct mem_cgroup *memcg = folio_memcg(folio);
975 
976 	if (memcg)
977 		count_memcg_events(memcg, idx, nr);
978 }
979 
980 static inline void count_memcg_events_mm(struct mm_struct *mm,
981 					enum vm_event_item idx, unsigned long count)
982 {
983 	struct mem_cgroup *memcg;
984 
985 	if (mem_cgroup_disabled())
986 		return;
987 
988 	rcu_read_lock();
989 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
990 	if (likely(memcg))
991 		count_memcg_events(memcg, idx, count);
992 	rcu_read_unlock();
993 }
994 
995 static inline void count_memcg_event_mm(struct mm_struct *mm,
996 					enum vm_event_item idx)
997 {
998 	count_memcg_events_mm(mm, idx, 1);
999 }
1000 
1001 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1002 				      enum memcg_memory_event event)
1003 {
1004 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1005 			  event == MEMCG_SWAP_FAIL;
1006 
1007 	atomic_long_inc(&memcg->memory_events_local[event]);
1008 	if (!swap_event)
1009 		cgroup_file_notify(&memcg->events_local_file);
1010 
1011 	do {
1012 		atomic_long_inc(&memcg->memory_events[event]);
1013 		if (swap_event)
1014 			cgroup_file_notify(&memcg->swap_events_file);
1015 		else
1016 			cgroup_file_notify(&memcg->events_file);
1017 
1018 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1019 			break;
1020 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1021 			break;
1022 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1023 		 !mem_cgroup_is_root(memcg));
1024 }
1025 
1026 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1027 					 enum memcg_memory_event event)
1028 {
1029 	struct mem_cgroup *memcg;
1030 
1031 	if (mem_cgroup_disabled())
1032 		return;
1033 
1034 	rcu_read_lock();
1035 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 	if (likely(memcg))
1037 		memcg_memory_event(memcg, event);
1038 	rcu_read_unlock();
1039 }
1040 
1041 void split_page_memcg(struct page *head, int old_order, int new_order);
1042 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
1043 		unsigned new_order);
1044 
1045 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1046 {
1047 	struct mem_cgroup *memcg;
1048 	u64 id;
1049 
1050 	if (mem_cgroup_disabled())
1051 		return 0;
1052 
1053 	rcu_read_lock();
1054 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1055 	if (!memcg)
1056 		memcg = root_mem_cgroup;
1057 	id = cgroup_id(memcg->css.cgroup);
1058 	rcu_read_unlock();
1059 	return id;
1060 }
1061 
1062 #else /* CONFIG_MEMCG */
1063 
1064 #define MEM_CGROUP_ID_SHIFT	0
1065 
1066 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1067 {
1068 	return NULL;
1069 }
1070 
1071 static inline bool folio_memcg_charged(struct folio *folio)
1072 {
1073 	return false;
1074 }
1075 
1076 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1077 {
1078 	return NULL;
1079 }
1080 
1081 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1082 {
1083 	return NULL;
1084 }
1085 
1086 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1087 {
1088 	return NULL;
1089 }
1090 
1091 static inline bool folio_memcg_kmem(struct folio *folio)
1092 {
1093 	return false;
1094 }
1095 
1096 static inline bool PageMemcgKmem(struct page *page)
1097 {
1098 	return false;
1099 }
1100 
1101 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1102 {
1103 	return true;
1104 }
1105 
1106 static inline bool mem_cgroup_disabled(void)
1107 {
1108 	return true;
1109 }
1110 
1111 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1112 				      enum memcg_memory_event event)
1113 {
1114 }
1115 
1116 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1117 					 enum memcg_memory_event event)
1118 {
1119 }
1120 
1121 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1122 					 struct mem_cgroup *memcg,
1123 					 unsigned long *min,
1124 					 unsigned long *low)
1125 {
1126 	*min = *low = 0;
1127 }
1128 
1129 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1130 						   struct mem_cgroup *memcg)
1131 {
1132 }
1133 
1134 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1135 					  struct mem_cgroup *memcg)
1136 {
1137 	return true;
1138 }
1139 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1140 					struct mem_cgroup *memcg)
1141 {
1142 	return false;
1143 }
1144 
1145 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1146 					struct mem_cgroup *memcg)
1147 {
1148 	return false;
1149 }
1150 
1151 static inline int mem_cgroup_charge(struct folio *folio,
1152 		struct mm_struct *mm, gfp_t gfp)
1153 {
1154 	return 0;
1155 }
1156 
1157 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1158 {
1159         return 0;
1160 }
1161 
1162 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1163 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1164 {
1165 	return 0;
1166 }
1167 
1168 static inline void mem_cgroup_uncharge(struct folio *folio)
1169 {
1170 }
1171 
1172 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1173 {
1174 }
1175 
1176 static inline void mem_cgroup_replace_folio(struct folio *old,
1177 		struct folio *new)
1178 {
1179 }
1180 
1181 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1182 {
1183 }
1184 
1185 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1186 					       struct pglist_data *pgdat)
1187 {
1188 	return &pgdat->__lruvec;
1189 }
1190 
1191 static inline struct lruvec *folio_lruvec(struct folio *folio)
1192 {
1193 	struct pglist_data *pgdat = folio_pgdat(folio);
1194 	return &pgdat->__lruvec;
1195 }
1196 
1197 static inline
1198 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1199 {
1200 }
1201 
1202 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1203 {
1204 	return NULL;
1205 }
1206 
1207 static inline bool mm_match_cgroup(struct mm_struct *mm,
1208 		struct mem_cgroup *memcg)
1209 {
1210 	return true;
1211 }
1212 
1213 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1214 {
1215 	return NULL;
1216 }
1217 
1218 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1219 {
1220 	return NULL;
1221 }
1222 
1223 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1224 {
1225 	return NULL;
1226 }
1227 
1228 static inline
1229 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1230 {
1231 	return NULL;
1232 }
1233 
1234 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1235 {
1236 }
1237 
1238 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1239 {
1240 }
1241 
1242 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1243 {
1244 	return true;
1245 }
1246 
1247 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1248 {
1249 	return true;
1250 }
1251 
1252 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1253 {
1254 }
1255 
1256 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1257 {
1258 	struct pglist_data *pgdat = folio_pgdat(folio);
1259 
1260 	spin_lock(&pgdat->__lruvec.lru_lock);
1261 	return &pgdat->__lruvec;
1262 }
1263 
1264 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1265 {
1266 	struct pglist_data *pgdat = folio_pgdat(folio);
1267 
1268 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1269 	return &pgdat->__lruvec;
1270 }
1271 
1272 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1273 		unsigned long *flagsp)
1274 {
1275 	struct pglist_data *pgdat = folio_pgdat(folio);
1276 
1277 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1278 	return &pgdat->__lruvec;
1279 }
1280 
1281 static inline struct mem_cgroup *
1282 mem_cgroup_iter(struct mem_cgroup *root,
1283 		struct mem_cgroup *prev,
1284 		struct mem_cgroup_reclaim_cookie *reclaim)
1285 {
1286 	return NULL;
1287 }
1288 
1289 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 					 struct mem_cgroup *prev)
1291 {
1292 }
1293 
1294 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1295 		int (*fn)(struct task_struct *, void *), void *arg)
1296 {
1297 }
1298 
1299 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1300 {
1301 	return 0;
1302 }
1303 
1304 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1305 {
1306 	WARN_ON_ONCE(id);
1307 	/* XXX: This should always return root_mem_cgroup */
1308 	return NULL;
1309 }
1310 
1311 #ifdef CONFIG_SHRINKER_DEBUG
1312 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1313 {
1314 	return 0;
1315 }
1316 
1317 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1318 {
1319 	return NULL;
1320 }
1321 #endif
1322 
1323 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1324 {
1325 	return NULL;
1326 }
1327 
1328 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1329 {
1330 	return NULL;
1331 }
1332 
1333 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1334 {
1335 	return true;
1336 }
1337 
1338 static inline
1339 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1340 		enum lru_list lru, int zone_idx)
1341 {
1342 	return 0;
1343 }
1344 
1345 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1346 {
1347 	return 0;
1348 }
1349 
1350 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1351 {
1352 	return 0;
1353 }
1354 
1355 static inline void
1356 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1357 {
1358 }
1359 
1360 static inline void
1361 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1362 {
1363 }
1364 
1365 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1366 {
1367 }
1368 
1369 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1370 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1371 {
1372 	return NULL;
1373 }
1374 
1375 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1376 {
1377 }
1378 
1379 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1380 				     enum memcg_stat_item idx,
1381 				     int nr)
1382 {
1383 }
1384 
1385 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1386 				   enum memcg_stat_item idx,
1387 				   int nr)
1388 {
1389 }
1390 
1391 static inline void mod_memcg_page_state(struct page *page,
1392 					enum memcg_stat_item idx, int val)
1393 {
1394 }
1395 
1396 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1397 {
1398 	return 0;
1399 }
1400 
1401 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1402 					      enum node_stat_item idx)
1403 {
1404 	return node_page_state(lruvec_pgdat(lruvec), idx);
1405 }
1406 
1407 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1408 						    enum node_stat_item idx)
1409 {
1410 	return node_page_state(lruvec_pgdat(lruvec), idx);
1411 }
1412 
1413 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1414 {
1415 }
1416 
1417 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1418 {
1419 }
1420 
1421 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1422 					   int val)
1423 {
1424 	struct page *page = virt_to_head_page(p);
1425 
1426 	__mod_node_page_state(page_pgdat(page), idx, val);
1427 }
1428 
1429 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1430 					 int val)
1431 {
1432 	struct page *page = virt_to_head_page(p);
1433 
1434 	mod_node_page_state(page_pgdat(page), idx, val);
1435 }
1436 
1437 static inline void count_memcg_events(struct mem_cgroup *memcg,
1438 				      enum vm_event_item idx,
1439 				      unsigned long count)
1440 {
1441 }
1442 
1443 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1444 					enum vm_event_item idx,
1445 					unsigned long count)
1446 {
1447 }
1448 
1449 static inline void count_memcg_folio_events(struct folio *folio,
1450 		enum vm_event_item idx, unsigned long nr)
1451 {
1452 }
1453 
1454 static inline void count_memcg_events_mm(struct mm_struct *mm,
1455 					enum vm_event_item idx, unsigned long count)
1456 {
1457 }
1458 
1459 static inline
1460 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1461 {
1462 }
1463 
1464 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1465 {
1466 }
1467 
1468 static inline void folio_split_memcg_refs(struct folio *folio,
1469 		unsigned old_order, unsigned new_order)
1470 {
1471 }
1472 
1473 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1474 {
1475 	return 0;
1476 }
1477 #endif /* CONFIG_MEMCG */
1478 
1479 /*
1480  * Extended information for slab objects stored as an array in page->memcg_data
1481  * if MEMCG_DATA_OBJEXTS is set.
1482  */
1483 struct slabobj_ext {
1484 #ifdef CONFIG_MEMCG
1485 	struct obj_cgroup *objcg;
1486 #endif
1487 #ifdef CONFIG_MEM_ALLOC_PROFILING
1488 	union codetag_ref ref;
1489 #endif
1490 } __aligned(8);
1491 
1492 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1493 {
1494 	__mod_lruvec_kmem_state(p, idx, 1);
1495 }
1496 
1497 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1498 {
1499 	__mod_lruvec_kmem_state(p, idx, -1);
1500 }
1501 
1502 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1503 {
1504 	struct mem_cgroup *memcg;
1505 
1506 	memcg = lruvec_memcg(lruvec);
1507 	if (!memcg)
1508 		return NULL;
1509 	memcg = parent_mem_cgroup(memcg);
1510 	if (!memcg)
1511 		return NULL;
1512 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1513 }
1514 
1515 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1516 {
1517 	spin_unlock(&lruvec->lru_lock);
1518 }
1519 
1520 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1521 {
1522 	spin_unlock_irq(&lruvec->lru_lock);
1523 }
1524 
1525 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1526 		unsigned long flags)
1527 {
1528 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1529 }
1530 
1531 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1532 static inline bool folio_matches_lruvec(struct folio *folio,
1533 		struct lruvec *lruvec)
1534 {
1535 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1536 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1537 }
1538 
1539 /* Don't lock again iff page's lruvec locked */
1540 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1541 		struct lruvec *locked_lruvec)
1542 {
1543 	if (locked_lruvec) {
1544 		if (folio_matches_lruvec(folio, locked_lruvec))
1545 			return locked_lruvec;
1546 
1547 		unlock_page_lruvec_irq(locked_lruvec);
1548 	}
1549 
1550 	return folio_lruvec_lock_irq(folio);
1551 }
1552 
1553 /* Don't lock again iff folio's lruvec locked */
1554 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1555 		struct lruvec **lruvecp, unsigned long *flags)
1556 {
1557 	if (*lruvecp) {
1558 		if (folio_matches_lruvec(folio, *lruvecp))
1559 			return;
1560 
1561 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1562 	}
1563 
1564 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1565 }
1566 
1567 #ifdef CONFIG_CGROUP_WRITEBACK
1568 
1569 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1570 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1571 			 unsigned long *pheadroom, unsigned long *pdirty,
1572 			 unsigned long *pwriteback);
1573 
1574 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1575 					     struct bdi_writeback *wb);
1576 
1577 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1578 						  struct bdi_writeback *wb)
1579 {
1580 	struct mem_cgroup *memcg;
1581 
1582 	if (mem_cgroup_disabled())
1583 		return;
1584 
1585 	memcg = folio_memcg(folio);
1586 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1587 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1588 }
1589 
1590 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1591 
1592 #else	/* CONFIG_CGROUP_WRITEBACK */
1593 
1594 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1595 {
1596 	return NULL;
1597 }
1598 
1599 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1600 				       unsigned long *pfilepages,
1601 				       unsigned long *pheadroom,
1602 				       unsigned long *pdirty,
1603 				       unsigned long *pwriteback)
1604 {
1605 }
1606 
1607 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1608 						  struct bdi_writeback *wb)
1609 {
1610 }
1611 
1612 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1613 {
1614 }
1615 
1616 #endif	/* CONFIG_CGROUP_WRITEBACK */
1617 
1618 struct sock;
1619 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1620 			     gfp_t gfp_mask);
1621 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1622 #ifdef CONFIG_MEMCG
1623 extern struct static_key_false memcg_sockets_enabled_key;
1624 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1625 void mem_cgroup_sk_alloc(struct sock *sk);
1626 void mem_cgroup_sk_free(struct sock *sk);
1627 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1628 {
1629 #ifdef CONFIG_MEMCG_V1
1630 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1631 		return !!memcg->tcpmem_pressure;
1632 #endif /* CONFIG_MEMCG_V1 */
1633 	do {
1634 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1635 			return true;
1636 	} while ((memcg = parent_mem_cgroup(memcg)));
1637 	return false;
1638 }
1639 
1640 int alloc_shrinker_info(struct mem_cgroup *memcg);
1641 void free_shrinker_info(struct mem_cgroup *memcg);
1642 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1643 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1644 #else
1645 #define mem_cgroup_sockets_enabled 0
1646 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1647 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1648 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1649 {
1650 	return false;
1651 }
1652 
1653 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1654 				    int nid, int shrinker_id)
1655 {
1656 }
1657 #endif
1658 
1659 #ifdef CONFIG_MEMCG
1660 bool mem_cgroup_kmem_disabled(void);
1661 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1662 void __memcg_kmem_uncharge_page(struct page *page, int order);
1663 
1664 /*
1665  * The returned objcg pointer is safe to use without additional
1666  * protection within a scope. The scope is defined either by
1667  * the current task (similar to the "current" global variable)
1668  * or by set_active_memcg() pair.
1669  * Please, use obj_cgroup_get() to get a reference if the pointer
1670  * needs to be used outside of the local scope.
1671  */
1672 struct obj_cgroup *current_obj_cgroup(void);
1673 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1674 
1675 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1676 {
1677 	struct obj_cgroup *objcg = current_obj_cgroup();
1678 
1679 	if (objcg)
1680 		obj_cgroup_get(objcg);
1681 
1682 	return objcg;
1683 }
1684 
1685 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1686 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1687 
1688 extern struct static_key_false memcg_bpf_enabled_key;
1689 static inline bool memcg_bpf_enabled(void)
1690 {
1691 	return static_branch_likely(&memcg_bpf_enabled_key);
1692 }
1693 
1694 extern struct static_key_false memcg_kmem_online_key;
1695 
1696 static inline bool memcg_kmem_online(void)
1697 {
1698 	return static_branch_likely(&memcg_kmem_online_key);
1699 }
1700 
1701 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1702 					 int order)
1703 {
1704 	if (memcg_kmem_online())
1705 		return __memcg_kmem_charge_page(page, gfp, order);
1706 	return 0;
1707 }
1708 
1709 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1710 {
1711 	if (memcg_kmem_online())
1712 		__memcg_kmem_uncharge_page(page, order);
1713 }
1714 
1715 /*
1716  * A helper for accessing memcg's kmem_id, used for getting
1717  * corresponding LRU lists.
1718  */
1719 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1720 {
1721 	return memcg ? memcg->kmemcg_id : -1;
1722 }
1723 
1724 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1725 
1726 static inline void count_objcg_events(struct obj_cgroup *objcg,
1727 				      enum vm_event_item idx,
1728 				      unsigned long count)
1729 {
1730 	struct mem_cgroup *memcg;
1731 
1732 	if (!memcg_kmem_online())
1733 		return;
1734 
1735 	rcu_read_lock();
1736 	memcg = obj_cgroup_memcg(objcg);
1737 	count_memcg_events(memcg, idx, count);
1738 	rcu_read_unlock();
1739 }
1740 
1741 #else
1742 static inline bool mem_cgroup_kmem_disabled(void)
1743 {
1744 	return true;
1745 }
1746 
1747 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1748 					 int order)
1749 {
1750 	return 0;
1751 }
1752 
1753 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1754 {
1755 }
1756 
1757 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1758 					   int order)
1759 {
1760 	return 0;
1761 }
1762 
1763 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1764 {
1765 }
1766 
1767 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1768 {
1769 	return NULL;
1770 }
1771 
1772 static inline bool memcg_bpf_enabled(void)
1773 {
1774 	return false;
1775 }
1776 
1777 static inline bool memcg_kmem_online(void)
1778 {
1779 	return false;
1780 }
1781 
1782 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1783 {
1784 	return -1;
1785 }
1786 
1787 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1788 {
1789 	return NULL;
1790 }
1791 
1792 static inline void count_objcg_events(struct obj_cgroup *objcg,
1793 				      enum vm_event_item idx,
1794 				      unsigned long count)
1795 {
1796 }
1797 
1798 #endif /* CONFIG_MEMCG */
1799 
1800 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1801 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1802 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1803 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1804 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1805 #else
1806 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1807 {
1808 	return true;
1809 }
1810 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1811 					   size_t size)
1812 {
1813 }
1814 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1815 					     size_t size)
1816 {
1817 }
1818 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1819 {
1820 	/* if zswap is disabled, do not block pages going to the swapping device */
1821 	return true;
1822 }
1823 #endif
1824 
1825 
1826 /* Cgroup v1-related declarations */
1827 
1828 #ifdef CONFIG_MEMCG_V1
1829 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1830 					gfp_t gfp_mask,
1831 					unsigned long *total_scanned);
1832 
1833 bool mem_cgroup_oom_synchronize(bool wait);
1834 
1835 static inline bool task_in_memcg_oom(struct task_struct *p)
1836 {
1837 	return p->memcg_in_oom;
1838 }
1839 
1840 static inline void mem_cgroup_enter_user_fault(void)
1841 {
1842 	WARN_ON(current->in_user_fault);
1843 	current->in_user_fault = 1;
1844 }
1845 
1846 static inline void mem_cgroup_exit_user_fault(void)
1847 {
1848 	WARN_ON(!current->in_user_fault);
1849 	current->in_user_fault = 0;
1850 }
1851 
1852 void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1853 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1854 
1855 #else /* CONFIG_MEMCG_V1 */
1856 static inline
1857 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1858 					gfp_t gfp_mask,
1859 					unsigned long *total_scanned)
1860 {
1861 	return 0;
1862 }
1863 
1864 static inline bool task_in_memcg_oom(struct task_struct *p)
1865 {
1866 	return false;
1867 }
1868 
1869 static inline bool mem_cgroup_oom_synchronize(bool wait)
1870 {
1871 	return false;
1872 }
1873 
1874 static inline void mem_cgroup_enter_user_fault(void)
1875 {
1876 }
1877 
1878 static inline void mem_cgroup_exit_user_fault(void)
1879 {
1880 }
1881 
1882 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1883 {
1884 }
1885 
1886 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1887 {
1888 }
1889 
1890 #endif /* CONFIG_MEMCG_V1 */
1891 
1892 #endif /* _LINUX_MEMCONTROL_H */
1893