1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct page; 27 struct mm_struct; 28 struct kmem_cache; 29 30 /* Cgroup-specific page state, on top of universal node page state */ 31 enum memcg_stat_item { 32 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_SOCK, 34 /* XXX: why are these zone and not node counters? */ 35 MEMCG_KERNEL_STACK_KB, 36 MEMCG_NR_STAT, 37 }; 38 39 enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49 }; 50 51 enum mem_cgroup_protection { 52 MEMCG_PROT_NONE, 53 MEMCG_PROT_LOW, 54 MEMCG_PROT_MIN, 55 }; 56 57 struct mem_cgroup_reclaim_cookie { 58 pg_data_t *pgdat; 59 unsigned int generation; 60 }; 61 62 #ifdef CONFIG_MEMCG 63 64 #define MEM_CGROUP_ID_SHIFT 16 65 #define MEM_CGROUP_ID_MAX USHRT_MAX 66 67 struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70 }; 71 72 /* 73 * Per memcg event counter is incremented at every pagein/pageout. With THP, 74 * it will be incremated by the number of pages. This counter is used for 75 * for trigger some periodic events. This is straightforward and better 76 * than using jiffies etc. to handle periodic memcg event. 77 */ 78 enum mem_cgroup_events_target { 79 MEM_CGROUP_TARGET_THRESH, 80 MEM_CGROUP_TARGET_SOFTLIMIT, 81 MEM_CGROUP_NTARGETS, 82 }; 83 84 struct memcg_vmstats_percpu { 85 long stat[MEMCG_NR_STAT]; 86 unsigned long events[NR_VM_EVENT_ITEMS]; 87 unsigned long nr_page_events; 88 unsigned long targets[MEM_CGROUP_NTARGETS]; 89 }; 90 91 struct mem_cgroup_reclaim_iter { 92 struct mem_cgroup *position; 93 /* scan generation, increased every round-trip */ 94 unsigned int generation; 95 }; 96 97 struct lruvec_stat { 98 long count[NR_VM_NODE_STAT_ITEMS]; 99 }; 100 101 /* 102 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 103 * which have elements charged to this memcg. 104 */ 105 struct memcg_shrinker_map { 106 struct rcu_head rcu; 107 unsigned long map[]; 108 }; 109 110 /* 111 * per-node information in memory controller. 112 */ 113 struct mem_cgroup_per_node { 114 struct lruvec lruvec; 115 116 /* Legacy local VM stats */ 117 struct lruvec_stat __percpu *lruvec_stat_local; 118 119 /* Subtree VM stats (batched updates) */ 120 struct lruvec_stat __percpu *lruvec_stat_cpu; 121 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 122 123 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 124 125 struct mem_cgroup_reclaim_iter iter; 126 127 struct memcg_shrinker_map __rcu *shrinker_map; 128 129 struct rb_node tree_node; /* RB tree node */ 130 unsigned long usage_in_excess;/* Set to the value by which */ 131 /* the soft limit is exceeded*/ 132 bool on_tree; 133 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 134 /* use container_of */ 135 }; 136 137 struct mem_cgroup_threshold { 138 struct eventfd_ctx *eventfd; 139 unsigned long threshold; 140 }; 141 142 /* For threshold */ 143 struct mem_cgroup_threshold_ary { 144 /* An array index points to threshold just below or equal to usage. */ 145 int current_threshold; 146 /* Size of entries[] */ 147 unsigned int size; 148 /* Array of thresholds */ 149 struct mem_cgroup_threshold entries[]; 150 }; 151 152 struct mem_cgroup_thresholds { 153 /* Primary thresholds array */ 154 struct mem_cgroup_threshold_ary *primary; 155 /* 156 * Spare threshold array. 157 * This is needed to make mem_cgroup_unregister_event() "never fail". 158 * It must be able to store at least primary->size - 1 entries. 159 */ 160 struct mem_cgroup_threshold_ary *spare; 161 }; 162 163 enum memcg_kmem_state { 164 KMEM_NONE, 165 KMEM_ALLOCATED, 166 KMEM_ONLINE, 167 }; 168 169 #if defined(CONFIG_SMP) 170 struct memcg_padding { 171 char x[0]; 172 } ____cacheline_internodealigned_in_smp; 173 #define MEMCG_PADDING(name) struct memcg_padding name; 174 #else 175 #define MEMCG_PADDING(name) 176 #endif 177 178 /* 179 * Remember four most recent foreign writebacks with dirty pages in this 180 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 181 * one in a given round, we're likely to catch it later if it keeps 182 * foreign-dirtying, so a fairly low count should be enough. 183 * 184 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 185 */ 186 #define MEMCG_CGWB_FRN_CNT 4 187 188 struct memcg_cgwb_frn { 189 u64 bdi_id; /* bdi->id of the foreign inode */ 190 int memcg_id; /* memcg->css.id of foreign inode */ 191 u64 at; /* jiffies_64 at the time of dirtying */ 192 struct wb_completion done; /* tracks in-flight foreign writebacks */ 193 }; 194 195 /* 196 * The memory controller data structure. The memory controller controls both 197 * page cache and RSS per cgroup. We would eventually like to provide 198 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 199 * to help the administrator determine what knobs to tune. 200 */ 201 struct mem_cgroup { 202 struct cgroup_subsys_state css; 203 204 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 205 struct mem_cgroup_id id; 206 207 /* Accounted resources */ 208 struct page_counter memory; 209 struct page_counter swap; 210 211 /* Legacy consumer-oriented counters */ 212 struct page_counter memsw; 213 struct page_counter kmem; 214 struct page_counter tcpmem; 215 216 /* Range enforcement for interrupt charges */ 217 struct work_struct high_work; 218 219 unsigned long soft_limit; 220 221 /* vmpressure notifications */ 222 struct vmpressure vmpressure; 223 224 /* 225 * Should the accounting and control be hierarchical, per subtree? 226 */ 227 bool use_hierarchy; 228 229 /* 230 * Should the OOM killer kill all belonging tasks, had it kill one? 231 */ 232 bool oom_group; 233 234 /* protected by memcg_oom_lock */ 235 bool oom_lock; 236 int under_oom; 237 238 int swappiness; 239 /* OOM-Killer disable */ 240 int oom_kill_disable; 241 242 /* memory.events and memory.events.local */ 243 struct cgroup_file events_file; 244 struct cgroup_file events_local_file; 245 246 /* handle for "memory.swap.events" */ 247 struct cgroup_file swap_events_file; 248 249 /* protect arrays of thresholds */ 250 struct mutex thresholds_lock; 251 252 /* thresholds for memory usage. RCU-protected */ 253 struct mem_cgroup_thresholds thresholds; 254 255 /* thresholds for mem+swap usage. RCU-protected */ 256 struct mem_cgroup_thresholds memsw_thresholds; 257 258 /* For oom notifier event fd */ 259 struct list_head oom_notify; 260 261 /* 262 * Should we move charges of a task when a task is moved into this 263 * mem_cgroup ? And what type of charges should we move ? 264 */ 265 unsigned long move_charge_at_immigrate; 266 /* taken only while moving_account > 0 */ 267 spinlock_t move_lock; 268 unsigned long move_lock_flags; 269 270 MEMCG_PADDING(_pad1_); 271 272 /* 273 * set > 0 if pages under this cgroup are moving to other cgroup. 274 */ 275 atomic_t moving_account; 276 struct task_struct *move_lock_task; 277 278 /* Legacy local VM stats and events */ 279 struct memcg_vmstats_percpu __percpu *vmstats_local; 280 281 /* Subtree VM stats and events (batched updates) */ 282 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 283 284 MEMCG_PADDING(_pad2_); 285 286 atomic_long_t vmstats[MEMCG_NR_STAT]; 287 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 288 289 /* memory.events */ 290 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 291 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 292 293 unsigned long socket_pressure; 294 295 /* Legacy tcp memory accounting */ 296 bool tcpmem_active; 297 int tcpmem_pressure; 298 299 #ifdef CONFIG_MEMCG_KMEM 300 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 301 int kmemcg_id; 302 enum memcg_kmem_state kmem_state; 303 struct list_head kmem_caches; 304 #endif 305 306 #ifdef CONFIG_CGROUP_WRITEBACK 307 struct list_head cgwb_list; 308 struct wb_domain cgwb_domain; 309 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 310 #endif 311 312 /* List of events which userspace want to receive */ 313 struct list_head event_list; 314 spinlock_t event_list_lock; 315 316 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 317 struct deferred_split deferred_split_queue; 318 #endif 319 320 struct mem_cgroup_per_node *nodeinfo[0]; 321 /* WARNING: nodeinfo must be the last member here */ 322 }; 323 324 /* 325 * size of first charge trial. "32" comes from vmscan.c's magic value. 326 * TODO: maybe necessary to use big numbers in big irons. 327 */ 328 #define MEMCG_CHARGE_BATCH 32U 329 330 extern struct mem_cgroup *root_mem_cgroup; 331 332 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 333 { 334 return (memcg == root_mem_cgroup); 335 } 336 337 static inline bool mem_cgroup_disabled(void) 338 { 339 return !cgroup_subsys_enabled(memory_cgrp_subsys); 340 } 341 342 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 343 bool in_low_reclaim) 344 { 345 if (mem_cgroup_disabled()) 346 return 0; 347 348 if (in_low_reclaim) 349 return READ_ONCE(memcg->memory.emin); 350 351 return max(READ_ONCE(memcg->memory.emin), 352 READ_ONCE(memcg->memory.elow)); 353 } 354 355 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 356 struct mem_cgroup *memcg); 357 358 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 359 360 void mem_cgroup_uncharge(struct page *page); 361 void mem_cgroup_uncharge_list(struct list_head *page_list); 362 363 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 364 365 static struct mem_cgroup_per_node * 366 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 367 { 368 return memcg->nodeinfo[nid]; 369 } 370 371 /** 372 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 373 * @memcg: memcg of the wanted lruvec 374 * 375 * Returns the lru list vector holding pages for a given @memcg & 376 * @node combination. This can be the node lruvec, if the memory 377 * controller is disabled. 378 */ 379 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 380 struct pglist_data *pgdat) 381 { 382 struct mem_cgroup_per_node *mz; 383 struct lruvec *lruvec; 384 385 if (mem_cgroup_disabled()) { 386 lruvec = &pgdat->__lruvec; 387 goto out; 388 } 389 390 if (!memcg) 391 memcg = root_mem_cgroup; 392 393 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 394 lruvec = &mz->lruvec; 395 out: 396 /* 397 * Since a node can be onlined after the mem_cgroup was created, 398 * we have to be prepared to initialize lruvec->pgdat here; 399 * and if offlined then reonlined, we need to reinitialize it. 400 */ 401 if (unlikely(lruvec->pgdat != pgdat)) 402 lruvec->pgdat = pgdat; 403 return lruvec; 404 } 405 406 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 407 408 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 409 410 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 411 412 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 413 414 static inline 415 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 416 return css ? container_of(css, struct mem_cgroup, css) : NULL; 417 } 418 419 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 420 { 421 if (memcg) 422 css_put(&memcg->css); 423 } 424 425 #define mem_cgroup_from_counter(counter, member) \ 426 container_of(counter, struct mem_cgroup, member) 427 428 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 429 struct mem_cgroup *, 430 struct mem_cgroup_reclaim_cookie *); 431 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 432 int mem_cgroup_scan_tasks(struct mem_cgroup *, 433 int (*)(struct task_struct *, void *), void *); 434 435 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 436 { 437 if (mem_cgroup_disabled()) 438 return 0; 439 440 return memcg->id.id; 441 } 442 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 443 444 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 445 { 446 return mem_cgroup_from_css(seq_css(m)); 447 } 448 449 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 450 { 451 struct mem_cgroup_per_node *mz; 452 453 if (mem_cgroup_disabled()) 454 return NULL; 455 456 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 457 return mz->memcg; 458 } 459 460 /** 461 * parent_mem_cgroup - find the accounting parent of a memcg 462 * @memcg: memcg whose parent to find 463 * 464 * Returns the parent memcg, or NULL if this is the root or the memory 465 * controller is in legacy no-hierarchy mode. 466 */ 467 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 468 { 469 if (!memcg->memory.parent) 470 return NULL; 471 return mem_cgroup_from_counter(memcg->memory.parent, memory); 472 } 473 474 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 475 struct mem_cgroup *root) 476 { 477 if (root == memcg) 478 return true; 479 if (!root->use_hierarchy) 480 return false; 481 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 482 } 483 484 static inline bool mm_match_cgroup(struct mm_struct *mm, 485 struct mem_cgroup *memcg) 486 { 487 struct mem_cgroup *task_memcg; 488 bool match = false; 489 490 rcu_read_lock(); 491 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 492 if (task_memcg) 493 match = mem_cgroup_is_descendant(task_memcg, memcg); 494 rcu_read_unlock(); 495 return match; 496 } 497 498 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 499 ino_t page_cgroup_ino(struct page *page); 500 501 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 502 { 503 if (mem_cgroup_disabled()) 504 return true; 505 return !!(memcg->css.flags & CSS_ONLINE); 506 } 507 508 /* 509 * For memory reclaim. 510 */ 511 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 512 513 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 514 int zid, int nr_pages); 515 516 static inline 517 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 518 enum lru_list lru, int zone_idx) 519 { 520 struct mem_cgroup_per_node *mz; 521 522 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 523 return mz->lru_zone_size[zone_idx][lru]; 524 } 525 526 void mem_cgroup_handle_over_high(void); 527 528 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 529 530 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 531 532 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 533 struct task_struct *p); 534 535 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 536 537 static inline void mem_cgroup_enter_user_fault(void) 538 { 539 WARN_ON(current->in_user_fault); 540 current->in_user_fault = 1; 541 } 542 543 static inline void mem_cgroup_exit_user_fault(void) 544 { 545 WARN_ON(!current->in_user_fault); 546 current->in_user_fault = 0; 547 } 548 549 static inline bool task_in_memcg_oom(struct task_struct *p) 550 { 551 return p->memcg_in_oom; 552 } 553 554 bool mem_cgroup_oom_synchronize(bool wait); 555 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 556 struct mem_cgroup *oom_domain); 557 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 558 559 #ifdef CONFIG_MEMCG_SWAP 560 extern bool cgroup_memory_noswap; 561 #endif 562 563 struct mem_cgroup *lock_page_memcg(struct page *page); 564 void __unlock_page_memcg(struct mem_cgroup *memcg); 565 void unlock_page_memcg(struct page *page); 566 567 /* 568 * idx can be of type enum memcg_stat_item or node_stat_item. 569 * Keep in sync with memcg_exact_page_state(). 570 */ 571 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 572 { 573 long x = atomic_long_read(&memcg->vmstats[idx]); 574 #ifdef CONFIG_SMP 575 if (x < 0) 576 x = 0; 577 #endif 578 return x; 579 } 580 581 /* 582 * idx can be of type enum memcg_stat_item or node_stat_item. 583 * Keep in sync with memcg_exact_page_state(). 584 */ 585 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 586 int idx) 587 { 588 long x = 0; 589 int cpu; 590 591 for_each_possible_cpu(cpu) 592 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 593 #ifdef CONFIG_SMP 594 if (x < 0) 595 x = 0; 596 #endif 597 return x; 598 } 599 600 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 601 602 /* idx can be of type enum memcg_stat_item or node_stat_item */ 603 static inline void mod_memcg_state(struct mem_cgroup *memcg, 604 int idx, int val) 605 { 606 unsigned long flags; 607 608 local_irq_save(flags); 609 __mod_memcg_state(memcg, idx, val); 610 local_irq_restore(flags); 611 } 612 613 /** 614 * mod_memcg_page_state - update page state statistics 615 * @page: the page 616 * @idx: page state item to account 617 * @val: number of pages (positive or negative) 618 * 619 * The @page must be locked or the caller must use lock_page_memcg() 620 * to prevent double accounting when the page is concurrently being 621 * moved to another memcg: 622 * 623 * lock_page(page) or lock_page_memcg(page) 624 * if (TestClearPageState(page)) 625 * mod_memcg_page_state(page, state, -1); 626 * unlock_page(page) or unlock_page_memcg(page) 627 * 628 * Kernel pages are an exception to this, since they'll never move. 629 */ 630 static inline void __mod_memcg_page_state(struct page *page, 631 int idx, int val) 632 { 633 if (page->mem_cgroup) 634 __mod_memcg_state(page->mem_cgroup, idx, val); 635 } 636 637 static inline void mod_memcg_page_state(struct page *page, 638 int idx, int val) 639 { 640 if (page->mem_cgroup) 641 mod_memcg_state(page->mem_cgroup, idx, val); 642 } 643 644 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 645 enum node_stat_item idx) 646 { 647 struct mem_cgroup_per_node *pn; 648 long x; 649 650 if (mem_cgroup_disabled()) 651 return node_page_state(lruvec_pgdat(lruvec), idx); 652 653 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 654 x = atomic_long_read(&pn->lruvec_stat[idx]); 655 #ifdef CONFIG_SMP 656 if (x < 0) 657 x = 0; 658 #endif 659 return x; 660 } 661 662 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 663 enum node_stat_item idx) 664 { 665 struct mem_cgroup_per_node *pn; 666 long x = 0; 667 int cpu; 668 669 if (mem_cgroup_disabled()) 670 return node_page_state(lruvec_pgdat(lruvec), idx); 671 672 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 673 for_each_possible_cpu(cpu) 674 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 675 #ifdef CONFIG_SMP 676 if (x < 0) 677 x = 0; 678 #endif 679 return x; 680 } 681 682 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 683 int val); 684 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 685 void mod_memcg_obj_state(void *p, int idx, int val); 686 687 static inline void mod_lruvec_state(struct lruvec *lruvec, 688 enum node_stat_item idx, int val) 689 { 690 unsigned long flags; 691 692 local_irq_save(flags); 693 __mod_lruvec_state(lruvec, idx, val); 694 local_irq_restore(flags); 695 } 696 697 static inline void __mod_lruvec_page_state(struct page *page, 698 enum node_stat_item idx, int val) 699 { 700 struct page *head = compound_head(page); /* rmap on tail pages */ 701 pg_data_t *pgdat = page_pgdat(page); 702 struct lruvec *lruvec; 703 704 /* Untracked pages have no memcg, no lruvec. Update only the node */ 705 if (!head->mem_cgroup) { 706 __mod_node_page_state(pgdat, idx, val); 707 return; 708 } 709 710 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); 711 __mod_lruvec_state(lruvec, idx, val); 712 } 713 714 static inline void mod_lruvec_page_state(struct page *page, 715 enum node_stat_item idx, int val) 716 { 717 unsigned long flags; 718 719 local_irq_save(flags); 720 __mod_lruvec_page_state(page, idx, val); 721 local_irq_restore(flags); 722 } 723 724 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 725 gfp_t gfp_mask, 726 unsigned long *total_scanned); 727 728 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 729 unsigned long count); 730 731 static inline void count_memcg_events(struct mem_cgroup *memcg, 732 enum vm_event_item idx, 733 unsigned long count) 734 { 735 unsigned long flags; 736 737 local_irq_save(flags); 738 __count_memcg_events(memcg, idx, count); 739 local_irq_restore(flags); 740 } 741 742 static inline void count_memcg_page_event(struct page *page, 743 enum vm_event_item idx) 744 { 745 if (page->mem_cgroup) 746 count_memcg_events(page->mem_cgroup, idx, 1); 747 } 748 749 static inline void count_memcg_event_mm(struct mm_struct *mm, 750 enum vm_event_item idx) 751 { 752 struct mem_cgroup *memcg; 753 754 if (mem_cgroup_disabled()) 755 return; 756 757 rcu_read_lock(); 758 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 759 if (likely(memcg)) 760 count_memcg_events(memcg, idx, 1); 761 rcu_read_unlock(); 762 } 763 764 static inline void memcg_memory_event(struct mem_cgroup *memcg, 765 enum memcg_memory_event event) 766 { 767 atomic_long_inc(&memcg->memory_events_local[event]); 768 cgroup_file_notify(&memcg->events_local_file); 769 770 do { 771 atomic_long_inc(&memcg->memory_events[event]); 772 cgroup_file_notify(&memcg->events_file); 773 774 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 775 break; 776 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 777 break; 778 } while ((memcg = parent_mem_cgroup(memcg)) && 779 !mem_cgroup_is_root(memcg)); 780 } 781 782 static inline void memcg_memory_event_mm(struct mm_struct *mm, 783 enum memcg_memory_event event) 784 { 785 struct mem_cgroup *memcg; 786 787 if (mem_cgroup_disabled()) 788 return; 789 790 rcu_read_lock(); 791 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 792 if (likely(memcg)) 793 memcg_memory_event(memcg, event); 794 rcu_read_unlock(); 795 } 796 797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 798 void mem_cgroup_split_huge_fixup(struct page *head); 799 #endif 800 801 #else /* CONFIG_MEMCG */ 802 803 #define MEM_CGROUP_ID_SHIFT 0 804 #define MEM_CGROUP_ID_MAX 0 805 806 struct mem_cgroup; 807 808 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 809 { 810 return true; 811 } 812 813 static inline bool mem_cgroup_disabled(void) 814 { 815 return true; 816 } 817 818 static inline void memcg_memory_event(struct mem_cgroup *memcg, 819 enum memcg_memory_event event) 820 { 821 } 822 823 static inline void memcg_memory_event_mm(struct mm_struct *mm, 824 enum memcg_memory_event event) 825 { 826 } 827 828 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 829 bool in_low_reclaim) 830 { 831 return 0; 832 } 833 834 static inline enum mem_cgroup_protection mem_cgroup_protected( 835 struct mem_cgroup *root, struct mem_cgroup *memcg) 836 { 837 return MEMCG_PROT_NONE; 838 } 839 840 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 841 gfp_t gfp_mask) 842 { 843 return 0; 844 } 845 846 static inline void mem_cgroup_uncharge(struct page *page) 847 { 848 } 849 850 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 851 { 852 } 853 854 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 855 { 856 } 857 858 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 859 struct pglist_data *pgdat) 860 { 861 return &pgdat->__lruvec; 862 } 863 864 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 865 struct pglist_data *pgdat) 866 { 867 return &pgdat->__lruvec; 868 } 869 870 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 871 { 872 return NULL; 873 } 874 875 static inline bool mm_match_cgroup(struct mm_struct *mm, 876 struct mem_cgroup *memcg) 877 { 878 return true; 879 } 880 881 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 882 { 883 return NULL; 884 } 885 886 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 887 { 888 return NULL; 889 } 890 891 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 892 { 893 } 894 895 static inline struct mem_cgroup * 896 mem_cgroup_iter(struct mem_cgroup *root, 897 struct mem_cgroup *prev, 898 struct mem_cgroup_reclaim_cookie *reclaim) 899 { 900 return NULL; 901 } 902 903 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 904 struct mem_cgroup *prev) 905 { 906 } 907 908 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 909 int (*fn)(struct task_struct *, void *), void *arg) 910 { 911 return 0; 912 } 913 914 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 915 { 916 return 0; 917 } 918 919 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 920 { 921 WARN_ON_ONCE(id); 922 /* XXX: This should always return root_mem_cgroup */ 923 return NULL; 924 } 925 926 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 927 { 928 return NULL; 929 } 930 931 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 932 { 933 return NULL; 934 } 935 936 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 937 { 938 return true; 939 } 940 941 static inline 942 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 943 enum lru_list lru, int zone_idx) 944 { 945 return 0; 946 } 947 948 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 949 { 950 return 0; 951 } 952 953 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 954 { 955 return 0; 956 } 957 958 static inline void 959 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 960 { 961 } 962 963 static inline void 964 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 965 { 966 } 967 968 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 969 { 970 return NULL; 971 } 972 973 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 974 { 975 } 976 977 static inline void unlock_page_memcg(struct page *page) 978 { 979 } 980 981 static inline void mem_cgroup_handle_over_high(void) 982 { 983 } 984 985 static inline void mem_cgroup_enter_user_fault(void) 986 { 987 } 988 989 static inline void mem_cgroup_exit_user_fault(void) 990 { 991 } 992 993 static inline bool task_in_memcg_oom(struct task_struct *p) 994 { 995 return false; 996 } 997 998 static inline bool mem_cgroup_oom_synchronize(bool wait) 999 { 1000 return false; 1001 } 1002 1003 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1004 struct task_struct *victim, struct mem_cgroup *oom_domain) 1005 { 1006 return NULL; 1007 } 1008 1009 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1010 { 1011 } 1012 1013 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1014 { 1015 return 0; 1016 } 1017 1018 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1019 int idx) 1020 { 1021 return 0; 1022 } 1023 1024 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1025 int idx, 1026 int nr) 1027 { 1028 } 1029 1030 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1031 int idx, 1032 int nr) 1033 { 1034 } 1035 1036 static inline void __mod_memcg_page_state(struct page *page, 1037 int idx, 1038 int nr) 1039 { 1040 } 1041 1042 static inline void mod_memcg_page_state(struct page *page, 1043 int idx, 1044 int nr) 1045 { 1046 } 1047 1048 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1049 enum node_stat_item idx) 1050 { 1051 return node_page_state(lruvec_pgdat(lruvec), idx); 1052 } 1053 1054 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1055 enum node_stat_item idx) 1056 { 1057 return node_page_state(lruvec_pgdat(lruvec), idx); 1058 } 1059 1060 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1061 enum node_stat_item idx, int val) 1062 { 1063 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1064 } 1065 1066 static inline void mod_lruvec_state(struct lruvec *lruvec, 1067 enum node_stat_item idx, int val) 1068 { 1069 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1070 } 1071 1072 static inline void __mod_lruvec_page_state(struct page *page, 1073 enum node_stat_item idx, int val) 1074 { 1075 __mod_node_page_state(page_pgdat(page), idx, val); 1076 } 1077 1078 static inline void mod_lruvec_page_state(struct page *page, 1079 enum node_stat_item idx, int val) 1080 { 1081 mod_node_page_state(page_pgdat(page), idx, val); 1082 } 1083 1084 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1085 int val) 1086 { 1087 struct page *page = virt_to_head_page(p); 1088 1089 __mod_node_page_state(page_pgdat(page), idx, val); 1090 } 1091 1092 static inline void mod_memcg_obj_state(void *p, int idx, int val) 1093 { 1094 } 1095 1096 static inline 1097 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1098 gfp_t gfp_mask, 1099 unsigned long *total_scanned) 1100 { 1101 return 0; 1102 } 1103 1104 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1105 { 1106 } 1107 1108 static inline void count_memcg_events(struct mem_cgroup *memcg, 1109 enum vm_event_item idx, 1110 unsigned long count) 1111 { 1112 } 1113 1114 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1115 enum vm_event_item idx, 1116 unsigned long count) 1117 { 1118 } 1119 1120 static inline void count_memcg_page_event(struct page *page, 1121 int idx) 1122 { 1123 } 1124 1125 static inline 1126 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1127 { 1128 } 1129 #endif /* CONFIG_MEMCG */ 1130 1131 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1132 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1133 int idx) 1134 { 1135 __mod_memcg_state(memcg, idx, 1); 1136 } 1137 1138 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1139 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1140 int idx) 1141 { 1142 __mod_memcg_state(memcg, idx, -1); 1143 } 1144 1145 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1146 static inline void __inc_memcg_page_state(struct page *page, 1147 int idx) 1148 { 1149 __mod_memcg_page_state(page, idx, 1); 1150 } 1151 1152 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1153 static inline void __dec_memcg_page_state(struct page *page, 1154 int idx) 1155 { 1156 __mod_memcg_page_state(page, idx, -1); 1157 } 1158 1159 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1160 enum node_stat_item idx) 1161 { 1162 __mod_lruvec_state(lruvec, idx, 1); 1163 } 1164 1165 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1166 enum node_stat_item idx) 1167 { 1168 __mod_lruvec_state(lruvec, idx, -1); 1169 } 1170 1171 static inline void __inc_lruvec_page_state(struct page *page, 1172 enum node_stat_item idx) 1173 { 1174 __mod_lruvec_page_state(page, idx, 1); 1175 } 1176 1177 static inline void __dec_lruvec_page_state(struct page *page, 1178 enum node_stat_item idx) 1179 { 1180 __mod_lruvec_page_state(page, idx, -1); 1181 } 1182 1183 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1184 { 1185 __mod_lruvec_slab_state(p, idx, 1); 1186 } 1187 1188 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1189 { 1190 __mod_lruvec_slab_state(p, idx, -1); 1191 } 1192 1193 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1194 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1195 int idx) 1196 { 1197 mod_memcg_state(memcg, idx, 1); 1198 } 1199 1200 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1201 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1202 int idx) 1203 { 1204 mod_memcg_state(memcg, idx, -1); 1205 } 1206 1207 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1208 static inline void inc_memcg_page_state(struct page *page, 1209 int idx) 1210 { 1211 mod_memcg_page_state(page, idx, 1); 1212 } 1213 1214 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1215 static inline void dec_memcg_page_state(struct page *page, 1216 int idx) 1217 { 1218 mod_memcg_page_state(page, idx, -1); 1219 } 1220 1221 static inline void inc_lruvec_state(struct lruvec *lruvec, 1222 enum node_stat_item idx) 1223 { 1224 mod_lruvec_state(lruvec, idx, 1); 1225 } 1226 1227 static inline void dec_lruvec_state(struct lruvec *lruvec, 1228 enum node_stat_item idx) 1229 { 1230 mod_lruvec_state(lruvec, idx, -1); 1231 } 1232 1233 static inline void inc_lruvec_page_state(struct page *page, 1234 enum node_stat_item idx) 1235 { 1236 mod_lruvec_page_state(page, idx, 1); 1237 } 1238 1239 static inline void dec_lruvec_page_state(struct page *page, 1240 enum node_stat_item idx) 1241 { 1242 mod_lruvec_page_state(page, idx, -1); 1243 } 1244 1245 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1246 { 1247 struct mem_cgroup *memcg; 1248 1249 memcg = lruvec_memcg(lruvec); 1250 if (!memcg) 1251 return NULL; 1252 memcg = parent_mem_cgroup(memcg); 1253 if (!memcg) 1254 return NULL; 1255 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1256 } 1257 1258 #ifdef CONFIG_CGROUP_WRITEBACK 1259 1260 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1261 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1262 unsigned long *pheadroom, unsigned long *pdirty, 1263 unsigned long *pwriteback); 1264 1265 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1266 struct bdi_writeback *wb); 1267 1268 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1269 struct bdi_writeback *wb) 1270 { 1271 if (mem_cgroup_disabled()) 1272 return; 1273 1274 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1275 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1276 } 1277 1278 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1279 1280 #else /* CONFIG_CGROUP_WRITEBACK */ 1281 1282 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1283 { 1284 return NULL; 1285 } 1286 1287 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1288 unsigned long *pfilepages, 1289 unsigned long *pheadroom, 1290 unsigned long *pdirty, 1291 unsigned long *pwriteback) 1292 { 1293 } 1294 1295 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1296 struct bdi_writeback *wb) 1297 { 1298 } 1299 1300 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1301 { 1302 } 1303 1304 #endif /* CONFIG_CGROUP_WRITEBACK */ 1305 1306 struct sock; 1307 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1308 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1309 #ifdef CONFIG_MEMCG 1310 extern struct static_key_false memcg_sockets_enabled_key; 1311 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1312 void mem_cgroup_sk_alloc(struct sock *sk); 1313 void mem_cgroup_sk_free(struct sock *sk); 1314 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1315 { 1316 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1317 return true; 1318 do { 1319 if (time_before(jiffies, memcg->socket_pressure)) 1320 return true; 1321 } while ((memcg = parent_mem_cgroup(memcg))); 1322 return false; 1323 } 1324 1325 extern int memcg_expand_shrinker_maps(int new_id); 1326 1327 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1328 int nid, int shrinker_id); 1329 #else 1330 #define mem_cgroup_sockets_enabled 0 1331 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1332 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1333 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1334 { 1335 return false; 1336 } 1337 1338 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1339 int nid, int shrinker_id) 1340 { 1341 } 1342 #endif 1343 1344 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1345 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1346 1347 #ifdef CONFIG_MEMCG_KMEM 1348 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1349 unsigned int nr_pages); 1350 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 1351 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1352 void __memcg_kmem_uncharge_page(struct page *page, int order); 1353 1354 extern struct static_key_false memcg_kmem_enabled_key; 1355 extern struct workqueue_struct *memcg_kmem_cache_wq; 1356 1357 extern int memcg_nr_cache_ids; 1358 void memcg_get_cache_ids(void); 1359 void memcg_put_cache_ids(void); 1360 1361 /* 1362 * Helper macro to loop through all memcg-specific caches. Callers must still 1363 * check if the cache is valid (it is either valid or NULL). 1364 * the slab_mutex must be held when looping through those caches 1365 */ 1366 #define for_each_memcg_cache_index(_idx) \ 1367 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1368 1369 static inline bool memcg_kmem_enabled(void) 1370 { 1371 return static_branch_unlikely(&memcg_kmem_enabled_key); 1372 } 1373 1374 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1375 int order) 1376 { 1377 if (memcg_kmem_enabled()) 1378 return __memcg_kmem_charge_page(page, gfp, order); 1379 return 0; 1380 } 1381 1382 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1383 { 1384 if (memcg_kmem_enabled()) 1385 __memcg_kmem_uncharge_page(page, order); 1386 } 1387 1388 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1389 unsigned int nr_pages) 1390 { 1391 if (memcg_kmem_enabled()) 1392 return __memcg_kmem_charge(memcg, gfp, nr_pages); 1393 return 0; 1394 } 1395 1396 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, 1397 unsigned int nr_pages) 1398 { 1399 if (memcg_kmem_enabled()) 1400 __memcg_kmem_uncharge(memcg, nr_pages); 1401 } 1402 1403 /* 1404 * helper for accessing a memcg's index. It will be used as an index in the 1405 * child cache array in kmem_cache, and also to derive its name. This function 1406 * will return -1 when this is not a kmem-limited memcg. 1407 */ 1408 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1409 { 1410 return memcg ? memcg->kmemcg_id : -1; 1411 } 1412 1413 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1414 1415 #else 1416 1417 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1418 int order) 1419 { 1420 return 0; 1421 } 1422 1423 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1424 { 1425 } 1426 1427 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1428 int order) 1429 { 1430 return 0; 1431 } 1432 1433 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1434 { 1435 } 1436 1437 #define for_each_memcg_cache_index(_idx) \ 1438 for (; NULL; ) 1439 1440 static inline bool memcg_kmem_enabled(void) 1441 { 1442 return false; 1443 } 1444 1445 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1446 { 1447 return -1; 1448 } 1449 1450 static inline void memcg_get_cache_ids(void) 1451 { 1452 } 1453 1454 static inline void memcg_put_cache_ids(void) 1455 { 1456 } 1457 1458 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1459 { 1460 return NULL; 1461 } 1462 1463 #endif /* CONFIG_MEMCG_KMEM */ 1464 1465 #endif /* _LINUX_MEMCONTROL_H */ 1466