1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct obj_cgroup; 27 struct page; 28 struct mm_struct; 29 struct kmem_cache; 30 31 /* Cgroup-specific page state, on top of universal node page state */ 32 enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37 }; 38 39 enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49 }; 50 51 struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 58 #define MEM_CGROUP_ID_SHIFT 16 59 #define MEM_CGROUP_ID_MAX USHRT_MAX 60 61 struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64 }; 65 66 /* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72 enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76 }; 77 78 struct memcg_vmstats_percpu { 79 /* Local (CPU and cgroup) page state & events */ 80 long state[MEMCG_NR_STAT]; 81 unsigned long events[NR_VM_EVENT_ITEMS]; 82 83 /* Delta calculation for lockless upward propagation */ 84 long state_prev[MEMCG_NR_STAT]; 85 unsigned long events_prev[NR_VM_EVENT_ITEMS]; 86 87 /* Cgroup1: threshold notifications & softlimit tree updates */ 88 unsigned long nr_page_events; 89 unsigned long targets[MEM_CGROUP_NTARGETS]; 90 }; 91 92 struct memcg_vmstats { 93 /* Aggregated (CPU and subtree) page state & events */ 94 long state[MEMCG_NR_STAT]; 95 unsigned long events[NR_VM_EVENT_ITEMS]; 96 97 /* Pending child counts during tree propagation */ 98 long state_pending[MEMCG_NR_STAT]; 99 unsigned long events_pending[NR_VM_EVENT_ITEMS]; 100 }; 101 102 struct mem_cgroup_reclaim_iter { 103 struct mem_cgroup *position; 104 /* scan generation, increased every round-trip */ 105 unsigned int generation; 106 }; 107 108 struct lruvec_stat { 109 long count[NR_VM_NODE_STAT_ITEMS]; 110 }; 111 112 struct batched_lruvec_stat { 113 s32 count[NR_VM_NODE_STAT_ITEMS]; 114 }; 115 116 /* 117 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 118 * shrinkers, which have elements charged to this memcg. 119 */ 120 struct shrinker_info { 121 struct rcu_head rcu; 122 atomic_long_t *nr_deferred; 123 unsigned long *map; 124 }; 125 126 /* 127 * per-node information in memory controller. 128 */ 129 struct mem_cgroup_per_node { 130 struct lruvec lruvec; 131 132 /* 133 * Legacy local VM stats. This should be struct lruvec_stat and 134 * cannot be optimized to struct batched_lruvec_stat. Because 135 * the threshold of the lruvec_stat_cpu can be as big as 136 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this 137 * filed has no upper limit. 138 */ 139 struct lruvec_stat __percpu *lruvec_stat_local; 140 141 /* Subtree VM stats (batched updates) */ 142 struct batched_lruvec_stat __percpu *lruvec_stat_cpu; 143 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 144 145 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 146 147 struct mem_cgroup_reclaim_iter iter; 148 149 struct shrinker_info __rcu *shrinker_info; 150 151 struct rb_node tree_node; /* RB tree node */ 152 unsigned long usage_in_excess;/* Set to the value by which */ 153 /* the soft limit is exceeded*/ 154 bool on_tree; 155 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 156 /* use container_of */ 157 }; 158 159 struct mem_cgroup_threshold { 160 struct eventfd_ctx *eventfd; 161 unsigned long threshold; 162 }; 163 164 /* For threshold */ 165 struct mem_cgroup_threshold_ary { 166 /* An array index points to threshold just below or equal to usage. */ 167 int current_threshold; 168 /* Size of entries[] */ 169 unsigned int size; 170 /* Array of thresholds */ 171 struct mem_cgroup_threshold entries[]; 172 }; 173 174 struct mem_cgroup_thresholds { 175 /* Primary thresholds array */ 176 struct mem_cgroup_threshold_ary *primary; 177 /* 178 * Spare threshold array. 179 * This is needed to make mem_cgroup_unregister_event() "never fail". 180 * It must be able to store at least primary->size - 1 entries. 181 */ 182 struct mem_cgroup_threshold_ary *spare; 183 }; 184 185 enum memcg_kmem_state { 186 KMEM_NONE, 187 KMEM_ALLOCATED, 188 KMEM_ONLINE, 189 }; 190 191 #if defined(CONFIG_SMP) 192 struct memcg_padding { 193 char x[0]; 194 } ____cacheline_internodealigned_in_smp; 195 #define MEMCG_PADDING(name) struct memcg_padding name 196 #else 197 #define MEMCG_PADDING(name) 198 #endif 199 200 /* 201 * Remember four most recent foreign writebacks with dirty pages in this 202 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 203 * one in a given round, we're likely to catch it later if it keeps 204 * foreign-dirtying, so a fairly low count should be enough. 205 * 206 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 207 */ 208 #define MEMCG_CGWB_FRN_CNT 4 209 210 struct memcg_cgwb_frn { 211 u64 bdi_id; /* bdi->id of the foreign inode */ 212 int memcg_id; /* memcg->css.id of foreign inode */ 213 u64 at; /* jiffies_64 at the time of dirtying */ 214 struct wb_completion done; /* tracks in-flight foreign writebacks */ 215 }; 216 217 /* 218 * Bucket for arbitrarily byte-sized objects charged to a memory 219 * cgroup. The bucket can be reparented in one piece when the cgroup 220 * is destroyed, without having to round up the individual references 221 * of all live memory objects in the wild. 222 */ 223 struct obj_cgroup { 224 struct percpu_ref refcnt; 225 struct mem_cgroup *memcg; 226 atomic_t nr_charged_bytes; 227 union { 228 struct list_head list; 229 struct rcu_head rcu; 230 }; 231 }; 232 233 /* 234 * The memory controller data structure. The memory controller controls both 235 * page cache and RSS per cgroup. We would eventually like to provide 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 237 * to help the administrator determine what knobs to tune. 238 */ 239 struct mem_cgroup { 240 struct cgroup_subsys_state css; 241 242 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 243 struct mem_cgroup_id id; 244 245 /* Accounted resources */ 246 struct page_counter memory; /* Both v1 & v2 */ 247 248 union { 249 struct page_counter swap; /* v2 only */ 250 struct page_counter memsw; /* v1 only */ 251 }; 252 253 /* Legacy consumer-oriented counters */ 254 struct page_counter kmem; /* v1 only */ 255 struct page_counter tcpmem; /* v1 only */ 256 257 /* Range enforcement for interrupt charges */ 258 struct work_struct high_work; 259 260 unsigned long soft_limit; 261 262 /* vmpressure notifications */ 263 struct vmpressure vmpressure; 264 265 /* 266 * Should the OOM killer kill all belonging tasks, had it kill one? 267 */ 268 bool oom_group; 269 270 /* protected by memcg_oom_lock */ 271 bool oom_lock; 272 int under_oom; 273 274 int swappiness; 275 /* OOM-Killer disable */ 276 int oom_kill_disable; 277 278 /* memory.events and memory.events.local */ 279 struct cgroup_file events_file; 280 struct cgroup_file events_local_file; 281 282 /* handle for "memory.swap.events" */ 283 struct cgroup_file swap_events_file; 284 285 /* protect arrays of thresholds */ 286 struct mutex thresholds_lock; 287 288 /* thresholds for memory usage. RCU-protected */ 289 struct mem_cgroup_thresholds thresholds; 290 291 /* thresholds for mem+swap usage. RCU-protected */ 292 struct mem_cgroup_thresholds memsw_thresholds; 293 294 /* For oom notifier event fd */ 295 struct list_head oom_notify; 296 297 /* 298 * Should we move charges of a task when a task is moved into this 299 * mem_cgroup ? And what type of charges should we move ? 300 */ 301 unsigned long move_charge_at_immigrate; 302 /* taken only while moving_account > 0 */ 303 spinlock_t move_lock; 304 unsigned long move_lock_flags; 305 306 MEMCG_PADDING(_pad1_); 307 308 /* memory.stat */ 309 struct memcg_vmstats vmstats; 310 311 /* memory.events */ 312 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 313 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 314 315 unsigned long socket_pressure; 316 317 /* Legacy tcp memory accounting */ 318 bool tcpmem_active; 319 int tcpmem_pressure; 320 321 #ifdef CONFIG_MEMCG_KMEM 322 int kmemcg_id; 323 enum memcg_kmem_state kmem_state; 324 struct obj_cgroup __rcu *objcg; 325 struct list_head objcg_list; /* list of inherited objcgs */ 326 #endif 327 328 MEMCG_PADDING(_pad2_); 329 330 /* 331 * set > 0 if pages under this cgroup are moving to other cgroup. 332 */ 333 atomic_t moving_account; 334 struct task_struct *move_lock_task; 335 336 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 337 338 #ifdef CONFIG_CGROUP_WRITEBACK 339 struct list_head cgwb_list; 340 struct wb_domain cgwb_domain; 341 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 342 #endif 343 344 /* List of events which userspace want to receive */ 345 struct list_head event_list; 346 spinlock_t event_list_lock; 347 348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 349 struct deferred_split deferred_split_queue; 350 #endif 351 352 struct mem_cgroup_per_node *nodeinfo[]; 353 }; 354 355 /* 356 * size of first charge trial. "32" comes from vmscan.c's magic value. 357 * TODO: maybe necessary to use big numbers in big irons. 358 */ 359 #define MEMCG_CHARGE_BATCH 32U 360 361 extern struct mem_cgroup *root_mem_cgroup; 362 363 enum page_memcg_data_flags { 364 /* page->memcg_data is a pointer to an objcgs vector */ 365 MEMCG_DATA_OBJCGS = (1UL << 0), 366 /* page has been accounted as a non-slab kernel page */ 367 MEMCG_DATA_KMEM = (1UL << 1), 368 /* the next bit after the last actual flag */ 369 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 370 }; 371 372 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 373 374 static inline bool PageMemcgKmem(struct page *page); 375 376 /* 377 * After the initialization objcg->memcg is always pointing at 378 * a valid memcg, but can be atomically swapped to the parent memcg. 379 * 380 * The caller must ensure that the returned memcg won't be released: 381 * e.g. acquire the rcu_read_lock or css_set_lock. 382 */ 383 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 384 { 385 return READ_ONCE(objcg->memcg); 386 } 387 388 /* 389 * __page_memcg - get the memory cgroup associated with a non-kmem page 390 * @page: a pointer to the page struct 391 * 392 * Returns a pointer to the memory cgroup associated with the page, 393 * or NULL. This function assumes that the page is known to have a 394 * proper memory cgroup pointer. It's not safe to call this function 395 * against some type of pages, e.g. slab pages or ex-slab pages or 396 * kmem pages. 397 */ 398 static inline struct mem_cgroup *__page_memcg(struct page *page) 399 { 400 unsigned long memcg_data = page->memcg_data; 401 402 VM_BUG_ON_PAGE(PageSlab(page), page); 403 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 404 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 405 406 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 407 } 408 409 /* 410 * __page_objcg - get the object cgroup associated with a kmem page 411 * @page: a pointer to the page struct 412 * 413 * Returns a pointer to the object cgroup associated with the page, 414 * or NULL. This function assumes that the page is known to have a 415 * proper object cgroup pointer. It's not safe to call this function 416 * against some type of pages, e.g. slab pages or ex-slab pages or 417 * LRU pages. 418 */ 419 static inline struct obj_cgroup *__page_objcg(struct page *page) 420 { 421 unsigned long memcg_data = page->memcg_data; 422 423 VM_BUG_ON_PAGE(PageSlab(page), page); 424 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 425 VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page); 426 427 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 428 } 429 430 /* 431 * page_memcg - get the memory cgroup associated with a page 432 * @page: a pointer to the page struct 433 * 434 * Returns a pointer to the memory cgroup associated with the page, 435 * or NULL. This function assumes that the page is known to have a 436 * proper memory cgroup pointer. It's not safe to call this function 437 * against some type of pages, e.g. slab pages or ex-slab pages. 438 * 439 * For a non-kmem page any of the following ensures page and memcg binding 440 * stability: 441 * 442 * - the page lock 443 * - LRU isolation 444 * - lock_page_memcg() 445 * - exclusive reference 446 * 447 * For a kmem page a caller should hold an rcu read lock to protect memcg 448 * associated with a kmem page from being released. 449 */ 450 static inline struct mem_cgroup *page_memcg(struct page *page) 451 { 452 if (PageMemcgKmem(page)) 453 return obj_cgroup_memcg(__page_objcg(page)); 454 else 455 return __page_memcg(page); 456 } 457 458 /* 459 * page_memcg_rcu - locklessly get the memory cgroup associated with a page 460 * @page: a pointer to the page struct 461 * 462 * Returns a pointer to the memory cgroup associated with the page, 463 * or NULL. This function assumes that the page is known to have a 464 * proper memory cgroup pointer. It's not safe to call this function 465 * against some type of pages, e.g. slab pages or ex-slab pages. 466 */ 467 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 468 { 469 unsigned long memcg_data = READ_ONCE(page->memcg_data); 470 471 VM_BUG_ON_PAGE(PageSlab(page), page); 472 WARN_ON_ONCE(!rcu_read_lock_held()); 473 474 if (memcg_data & MEMCG_DATA_KMEM) { 475 struct obj_cgroup *objcg; 476 477 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 478 return obj_cgroup_memcg(objcg); 479 } 480 481 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 482 } 483 484 /* 485 * page_memcg_check - get the memory cgroup associated with a page 486 * @page: a pointer to the page struct 487 * 488 * Returns a pointer to the memory cgroup associated with the page, 489 * or NULL. This function unlike page_memcg() can take any page 490 * as an argument. It has to be used in cases when it's not known if a page 491 * has an associated memory cgroup pointer or an object cgroups vector or 492 * an object cgroup. 493 * 494 * For a non-kmem page any of the following ensures page and memcg binding 495 * stability: 496 * 497 * - the page lock 498 * - LRU isolation 499 * - lock_page_memcg() 500 * - exclusive reference 501 * 502 * For a kmem page a caller should hold an rcu read lock to protect memcg 503 * associated with a kmem page from being released. 504 */ 505 static inline struct mem_cgroup *page_memcg_check(struct page *page) 506 { 507 /* 508 * Because page->memcg_data might be changed asynchronously 509 * for slab pages, READ_ONCE() should be used here. 510 */ 511 unsigned long memcg_data = READ_ONCE(page->memcg_data); 512 513 if (memcg_data & MEMCG_DATA_OBJCGS) 514 return NULL; 515 516 if (memcg_data & MEMCG_DATA_KMEM) { 517 struct obj_cgroup *objcg; 518 519 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 520 return obj_cgroup_memcg(objcg); 521 } 522 523 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 524 } 525 526 #ifdef CONFIG_MEMCG_KMEM 527 /* 528 * PageMemcgKmem - check if the page has MemcgKmem flag set 529 * @page: a pointer to the page struct 530 * 531 * Checks if the page has MemcgKmem flag set. The caller must ensure that 532 * the page has an associated memory cgroup. It's not safe to call this function 533 * against some types of pages, e.g. slab pages. 534 */ 535 static inline bool PageMemcgKmem(struct page *page) 536 { 537 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page); 538 return page->memcg_data & MEMCG_DATA_KMEM; 539 } 540 541 /* 542 * page_objcgs - get the object cgroups vector associated with a page 543 * @page: a pointer to the page struct 544 * 545 * Returns a pointer to the object cgroups vector associated with the page, 546 * or NULL. This function assumes that the page is known to have an 547 * associated object cgroups vector. It's not safe to call this function 548 * against pages, which might have an associated memory cgroup: e.g. 549 * kernel stack pages. 550 */ 551 static inline struct obj_cgroup **page_objcgs(struct page *page) 552 { 553 unsigned long memcg_data = READ_ONCE(page->memcg_data); 554 555 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page); 556 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 557 558 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 559 } 560 561 /* 562 * page_objcgs_check - get the object cgroups vector associated with a page 563 * @page: a pointer to the page struct 564 * 565 * Returns a pointer to the object cgroups vector associated with the page, 566 * or NULL. This function is safe to use if the page can be directly associated 567 * with a memory cgroup. 568 */ 569 static inline struct obj_cgroup **page_objcgs_check(struct page *page) 570 { 571 unsigned long memcg_data = READ_ONCE(page->memcg_data); 572 573 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS)) 574 return NULL; 575 576 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 577 578 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 579 } 580 581 #else 582 static inline bool PageMemcgKmem(struct page *page) 583 { 584 return false; 585 } 586 587 static inline struct obj_cgroup **page_objcgs(struct page *page) 588 { 589 return NULL; 590 } 591 592 static inline struct obj_cgroup **page_objcgs_check(struct page *page) 593 { 594 return NULL; 595 } 596 #endif 597 598 static __always_inline bool memcg_stat_item_in_bytes(int idx) 599 { 600 if (idx == MEMCG_PERCPU_B) 601 return true; 602 return vmstat_item_in_bytes(idx); 603 } 604 605 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 606 { 607 return (memcg == root_mem_cgroup); 608 } 609 610 static inline bool mem_cgroup_disabled(void) 611 { 612 return !cgroup_subsys_enabled(memory_cgrp_subsys); 613 } 614 615 static inline void mem_cgroup_protection(struct mem_cgroup *root, 616 struct mem_cgroup *memcg, 617 unsigned long *min, 618 unsigned long *low) 619 { 620 *min = *low = 0; 621 622 if (mem_cgroup_disabled()) 623 return; 624 625 /* 626 * There is no reclaim protection applied to a targeted reclaim. 627 * We are special casing this specific case here because 628 * mem_cgroup_protected calculation is not robust enough to keep 629 * the protection invariant for calculated effective values for 630 * parallel reclaimers with different reclaim target. This is 631 * especially a problem for tail memcgs (as they have pages on LRU) 632 * which would want to have effective values 0 for targeted reclaim 633 * but a different value for external reclaim. 634 * 635 * Example 636 * Let's have global and A's reclaim in parallel: 637 * | 638 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 639 * |\ 640 * | C (low = 1G, usage = 2.5G) 641 * B (low = 1G, usage = 0.5G) 642 * 643 * For the global reclaim 644 * A.elow = A.low 645 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 646 * C.elow = min(C.usage, C.low) 647 * 648 * With the effective values resetting we have A reclaim 649 * A.elow = 0 650 * B.elow = B.low 651 * C.elow = C.low 652 * 653 * If the global reclaim races with A's reclaim then 654 * B.elow = C.elow = 0 because children_low_usage > A.elow) 655 * is possible and reclaiming B would be violating the protection. 656 * 657 */ 658 if (root == memcg) 659 return; 660 661 *min = READ_ONCE(memcg->memory.emin); 662 *low = READ_ONCE(memcg->memory.elow); 663 } 664 665 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 666 struct mem_cgroup *memcg); 667 668 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 669 { 670 /* 671 * The root memcg doesn't account charges, and doesn't support 672 * protection. 673 */ 674 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 675 676 } 677 678 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 679 { 680 if (!mem_cgroup_supports_protection(memcg)) 681 return false; 682 683 return READ_ONCE(memcg->memory.elow) >= 684 page_counter_read(&memcg->memory); 685 } 686 687 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 688 { 689 if (!mem_cgroup_supports_protection(memcg)) 690 return false; 691 692 return READ_ONCE(memcg->memory.emin) >= 693 page_counter_read(&memcg->memory); 694 } 695 696 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 697 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 698 gfp_t gfp, swp_entry_t entry); 699 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 700 701 void mem_cgroup_uncharge(struct page *page); 702 void mem_cgroup_uncharge_list(struct list_head *page_list); 703 704 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 705 706 /** 707 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 708 * @memcg: memcg of the wanted lruvec 709 * @pgdat: pglist_data 710 * 711 * Returns the lru list vector holding pages for a given @memcg & 712 * @pgdat combination. This can be the node lruvec, if the memory 713 * controller is disabled. 714 */ 715 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 716 struct pglist_data *pgdat) 717 { 718 struct mem_cgroup_per_node *mz; 719 struct lruvec *lruvec; 720 721 if (mem_cgroup_disabled()) { 722 lruvec = &pgdat->__lruvec; 723 goto out; 724 } 725 726 if (!memcg) 727 memcg = root_mem_cgroup; 728 729 mz = memcg->nodeinfo[pgdat->node_id]; 730 lruvec = &mz->lruvec; 731 out: 732 /* 733 * Since a node can be onlined after the mem_cgroup was created, 734 * we have to be prepared to initialize lruvec->pgdat here; 735 * and if offlined then reonlined, we need to reinitialize it. 736 */ 737 if (unlikely(lruvec->pgdat != pgdat)) 738 lruvec->pgdat = pgdat; 739 return lruvec; 740 } 741 742 /** 743 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 744 * @page: the page 745 * 746 * This function relies on page->mem_cgroup being stable. 747 */ 748 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) 749 { 750 pg_data_t *pgdat = page_pgdat(page); 751 struct mem_cgroup *memcg = page_memcg(page); 752 753 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page); 754 return mem_cgroup_lruvec(memcg, pgdat); 755 } 756 757 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 758 759 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 760 761 struct lruvec *lock_page_lruvec(struct page *page); 762 struct lruvec *lock_page_lruvec_irq(struct page *page); 763 struct lruvec *lock_page_lruvec_irqsave(struct page *page, 764 unsigned long *flags); 765 766 #ifdef CONFIG_DEBUG_VM 767 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page); 768 #else 769 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 770 { 771 } 772 #endif 773 774 static inline 775 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 776 return css ? container_of(css, struct mem_cgroup, css) : NULL; 777 } 778 779 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 780 { 781 return percpu_ref_tryget(&objcg->refcnt); 782 } 783 784 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 785 { 786 percpu_ref_get(&objcg->refcnt); 787 } 788 789 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 790 unsigned long nr) 791 { 792 percpu_ref_get_many(&objcg->refcnt, nr); 793 } 794 795 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 796 { 797 percpu_ref_put(&objcg->refcnt); 798 } 799 800 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 801 { 802 if (memcg) 803 css_put(&memcg->css); 804 } 805 806 #define mem_cgroup_from_counter(counter, member) \ 807 container_of(counter, struct mem_cgroup, member) 808 809 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 810 struct mem_cgroup *, 811 struct mem_cgroup_reclaim_cookie *); 812 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 813 int mem_cgroup_scan_tasks(struct mem_cgroup *, 814 int (*)(struct task_struct *, void *), void *); 815 816 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 817 { 818 if (mem_cgroup_disabled()) 819 return 0; 820 821 return memcg->id.id; 822 } 823 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 824 825 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 826 { 827 return mem_cgroup_from_css(seq_css(m)); 828 } 829 830 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 831 { 832 struct mem_cgroup_per_node *mz; 833 834 if (mem_cgroup_disabled()) 835 return NULL; 836 837 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 838 return mz->memcg; 839 } 840 841 /** 842 * parent_mem_cgroup - find the accounting parent of a memcg 843 * @memcg: memcg whose parent to find 844 * 845 * Returns the parent memcg, or NULL if this is the root or the memory 846 * controller is in legacy no-hierarchy mode. 847 */ 848 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 849 { 850 if (!memcg->memory.parent) 851 return NULL; 852 return mem_cgroup_from_counter(memcg->memory.parent, memory); 853 } 854 855 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 856 struct mem_cgroup *root) 857 { 858 if (root == memcg) 859 return true; 860 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 861 } 862 863 static inline bool mm_match_cgroup(struct mm_struct *mm, 864 struct mem_cgroup *memcg) 865 { 866 struct mem_cgroup *task_memcg; 867 bool match = false; 868 869 rcu_read_lock(); 870 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 871 if (task_memcg) 872 match = mem_cgroup_is_descendant(task_memcg, memcg); 873 rcu_read_unlock(); 874 return match; 875 } 876 877 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 878 ino_t page_cgroup_ino(struct page *page); 879 880 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 881 { 882 if (mem_cgroup_disabled()) 883 return true; 884 return !!(memcg->css.flags & CSS_ONLINE); 885 } 886 887 /* 888 * For memory reclaim. 889 */ 890 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 891 892 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 893 int zid, int nr_pages); 894 895 static inline 896 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 897 enum lru_list lru, int zone_idx) 898 { 899 struct mem_cgroup_per_node *mz; 900 901 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 902 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 903 } 904 905 void mem_cgroup_handle_over_high(void); 906 907 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 908 909 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 910 911 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 912 struct task_struct *p); 913 914 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 915 916 static inline void mem_cgroup_enter_user_fault(void) 917 { 918 WARN_ON(current->in_user_fault); 919 current->in_user_fault = 1; 920 } 921 922 static inline void mem_cgroup_exit_user_fault(void) 923 { 924 WARN_ON(!current->in_user_fault); 925 current->in_user_fault = 0; 926 } 927 928 static inline bool task_in_memcg_oom(struct task_struct *p) 929 { 930 return p->memcg_in_oom; 931 } 932 933 bool mem_cgroup_oom_synchronize(bool wait); 934 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 935 struct mem_cgroup *oom_domain); 936 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 937 938 #ifdef CONFIG_MEMCG_SWAP 939 extern bool cgroup_memory_noswap; 940 #endif 941 942 void lock_page_memcg(struct page *page); 943 void unlock_page_memcg(struct page *page); 944 945 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 946 947 /* idx can be of type enum memcg_stat_item or node_stat_item */ 948 static inline void mod_memcg_state(struct mem_cgroup *memcg, 949 int idx, int val) 950 { 951 unsigned long flags; 952 953 local_irq_save(flags); 954 __mod_memcg_state(memcg, idx, val); 955 local_irq_restore(flags); 956 } 957 958 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 959 enum node_stat_item idx) 960 { 961 struct mem_cgroup_per_node *pn; 962 long x; 963 964 if (mem_cgroup_disabled()) 965 return node_page_state(lruvec_pgdat(lruvec), idx); 966 967 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 968 x = atomic_long_read(&pn->lruvec_stat[idx]); 969 #ifdef CONFIG_SMP 970 if (x < 0) 971 x = 0; 972 #endif 973 return x; 974 } 975 976 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 977 enum node_stat_item idx) 978 { 979 struct mem_cgroup_per_node *pn; 980 long x = 0; 981 int cpu; 982 983 if (mem_cgroup_disabled()) 984 return node_page_state(lruvec_pgdat(lruvec), idx); 985 986 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 987 for_each_possible_cpu(cpu) 988 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 989 #ifdef CONFIG_SMP 990 if (x < 0) 991 x = 0; 992 #endif 993 return x; 994 } 995 996 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 997 int val); 998 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 999 1000 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1001 int val) 1002 { 1003 unsigned long flags; 1004 1005 local_irq_save(flags); 1006 __mod_lruvec_kmem_state(p, idx, val); 1007 local_irq_restore(flags); 1008 } 1009 1010 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1011 enum node_stat_item idx, int val) 1012 { 1013 unsigned long flags; 1014 1015 local_irq_save(flags); 1016 __mod_memcg_lruvec_state(lruvec, idx, val); 1017 local_irq_restore(flags); 1018 } 1019 1020 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1021 unsigned long count); 1022 1023 static inline void count_memcg_events(struct mem_cgroup *memcg, 1024 enum vm_event_item idx, 1025 unsigned long count) 1026 { 1027 unsigned long flags; 1028 1029 local_irq_save(flags); 1030 __count_memcg_events(memcg, idx, count); 1031 local_irq_restore(flags); 1032 } 1033 1034 static inline void count_memcg_page_event(struct page *page, 1035 enum vm_event_item idx) 1036 { 1037 struct mem_cgroup *memcg = page_memcg(page); 1038 1039 if (memcg) 1040 count_memcg_events(memcg, idx, 1); 1041 } 1042 1043 static inline void count_memcg_event_mm(struct mm_struct *mm, 1044 enum vm_event_item idx) 1045 { 1046 struct mem_cgroup *memcg; 1047 1048 if (mem_cgroup_disabled()) 1049 return; 1050 1051 rcu_read_lock(); 1052 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1053 if (likely(memcg)) 1054 count_memcg_events(memcg, idx, 1); 1055 rcu_read_unlock(); 1056 } 1057 1058 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1059 enum memcg_memory_event event) 1060 { 1061 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1062 event == MEMCG_SWAP_FAIL; 1063 1064 atomic_long_inc(&memcg->memory_events_local[event]); 1065 if (!swap_event) 1066 cgroup_file_notify(&memcg->events_local_file); 1067 1068 do { 1069 atomic_long_inc(&memcg->memory_events[event]); 1070 if (swap_event) 1071 cgroup_file_notify(&memcg->swap_events_file); 1072 else 1073 cgroup_file_notify(&memcg->events_file); 1074 1075 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1076 break; 1077 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1078 break; 1079 } while ((memcg = parent_mem_cgroup(memcg)) && 1080 !mem_cgroup_is_root(memcg)); 1081 } 1082 1083 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1084 enum memcg_memory_event event) 1085 { 1086 struct mem_cgroup *memcg; 1087 1088 if (mem_cgroup_disabled()) 1089 return; 1090 1091 rcu_read_lock(); 1092 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1093 if (likely(memcg)) 1094 memcg_memory_event(memcg, event); 1095 rcu_read_unlock(); 1096 } 1097 1098 void split_page_memcg(struct page *head, unsigned int nr); 1099 1100 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1101 gfp_t gfp_mask, 1102 unsigned long *total_scanned); 1103 1104 #else /* CONFIG_MEMCG */ 1105 1106 #define MEM_CGROUP_ID_SHIFT 0 1107 #define MEM_CGROUP_ID_MAX 0 1108 1109 static inline struct mem_cgroup *page_memcg(struct page *page) 1110 { 1111 return NULL; 1112 } 1113 1114 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1115 { 1116 WARN_ON_ONCE(!rcu_read_lock_held()); 1117 return NULL; 1118 } 1119 1120 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1121 { 1122 return NULL; 1123 } 1124 1125 static inline bool PageMemcgKmem(struct page *page) 1126 { 1127 return false; 1128 } 1129 1130 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1131 { 1132 return true; 1133 } 1134 1135 static inline bool mem_cgroup_disabled(void) 1136 { 1137 return true; 1138 } 1139 1140 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1141 enum memcg_memory_event event) 1142 { 1143 } 1144 1145 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1146 enum memcg_memory_event event) 1147 { 1148 } 1149 1150 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1151 struct mem_cgroup *memcg, 1152 unsigned long *min, 1153 unsigned long *low) 1154 { 1155 *min = *low = 0; 1156 } 1157 1158 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1159 struct mem_cgroup *memcg) 1160 { 1161 } 1162 1163 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1164 { 1165 return false; 1166 } 1167 1168 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1169 { 1170 return false; 1171 } 1172 1173 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 1174 gfp_t gfp_mask) 1175 { 1176 return 0; 1177 } 1178 1179 static inline int mem_cgroup_swapin_charge_page(struct page *page, 1180 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1181 { 1182 return 0; 1183 } 1184 1185 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1186 { 1187 } 1188 1189 static inline void mem_cgroup_uncharge(struct page *page) 1190 { 1191 } 1192 1193 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1194 { 1195 } 1196 1197 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 1198 { 1199 } 1200 1201 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1202 struct pglist_data *pgdat) 1203 { 1204 return &pgdat->__lruvec; 1205 } 1206 1207 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) 1208 { 1209 pg_data_t *pgdat = page_pgdat(page); 1210 1211 return &pgdat->__lruvec; 1212 } 1213 1214 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1215 { 1216 } 1217 1218 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1219 { 1220 return NULL; 1221 } 1222 1223 static inline bool mm_match_cgroup(struct mm_struct *mm, 1224 struct mem_cgroup *memcg) 1225 { 1226 return true; 1227 } 1228 1229 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1230 { 1231 return NULL; 1232 } 1233 1234 static inline 1235 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1236 { 1237 return NULL; 1238 } 1239 1240 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1241 { 1242 } 1243 1244 static inline struct lruvec *lock_page_lruvec(struct page *page) 1245 { 1246 struct pglist_data *pgdat = page_pgdat(page); 1247 1248 spin_lock(&pgdat->__lruvec.lru_lock); 1249 return &pgdat->__lruvec; 1250 } 1251 1252 static inline struct lruvec *lock_page_lruvec_irq(struct page *page) 1253 { 1254 struct pglist_data *pgdat = page_pgdat(page); 1255 1256 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1257 return &pgdat->__lruvec; 1258 } 1259 1260 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page, 1261 unsigned long *flagsp) 1262 { 1263 struct pglist_data *pgdat = page_pgdat(page); 1264 1265 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1266 return &pgdat->__lruvec; 1267 } 1268 1269 static inline struct mem_cgroup * 1270 mem_cgroup_iter(struct mem_cgroup *root, 1271 struct mem_cgroup *prev, 1272 struct mem_cgroup_reclaim_cookie *reclaim) 1273 { 1274 return NULL; 1275 } 1276 1277 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1278 struct mem_cgroup *prev) 1279 { 1280 } 1281 1282 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1283 int (*fn)(struct task_struct *, void *), void *arg) 1284 { 1285 return 0; 1286 } 1287 1288 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1289 { 1290 return 0; 1291 } 1292 1293 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1294 { 1295 WARN_ON_ONCE(id); 1296 /* XXX: This should always return root_mem_cgroup */ 1297 return NULL; 1298 } 1299 1300 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1301 { 1302 return NULL; 1303 } 1304 1305 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1306 { 1307 return NULL; 1308 } 1309 1310 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1311 { 1312 return true; 1313 } 1314 1315 static inline 1316 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1317 enum lru_list lru, int zone_idx) 1318 { 1319 return 0; 1320 } 1321 1322 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1323 { 1324 return 0; 1325 } 1326 1327 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1328 { 1329 return 0; 1330 } 1331 1332 static inline void 1333 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1334 { 1335 } 1336 1337 static inline void 1338 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1339 { 1340 } 1341 1342 static inline void lock_page_memcg(struct page *page) 1343 { 1344 } 1345 1346 static inline void unlock_page_memcg(struct page *page) 1347 { 1348 } 1349 1350 static inline void mem_cgroup_handle_over_high(void) 1351 { 1352 } 1353 1354 static inline void mem_cgroup_enter_user_fault(void) 1355 { 1356 } 1357 1358 static inline void mem_cgroup_exit_user_fault(void) 1359 { 1360 } 1361 1362 static inline bool task_in_memcg_oom(struct task_struct *p) 1363 { 1364 return false; 1365 } 1366 1367 static inline bool mem_cgroup_oom_synchronize(bool wait) 1368 { 1369 return false; 1370 } 1371 1372 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1373 struct task_struct *victim, struct mem_cgroup *oom_domain) 1374 { 1375 return NULL; 1376 } 1377 1378 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1379 { 1380 } 1381 1382 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1383 int idx, 1384 int nr) 1385 { 1386 } 1387 1388 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1389 int idx, 1390 int nr) 1391 { 1392 } 1393 1394 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1395 enum node_stat_item idx) 1396 { 1397 return node_page_state(lruvec_pgdat(lruvec), idx); 1398 } 1399 1400 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1401 enum node_stat_item idx) 1402 { 1403 return node_page_state(lruvec_pgdat(lruvec), idx); 1404 } 1405 1406 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1407 enum node_stat_item idx, int val) 1408 { 1409 } 1410 1411 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1412 int val) 1413 { 1414 struct page *page = virt_to_head_page(p); 1415 1416 __mod_node_page_state(page_pgdat(page), idx, val); 1417 } 1418 1419 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1420 int val) 1421 { 1422 struct page *page = virt_to_head_page(p); 1423 1424 mod_node_page_state(page_pgdat(page), idx, val); 1425 } 1426 1427 static inline void count_memcg_events(struct mem_cgroup *memcg, 1428 enum vm_event_item idx, 1429 unsigned long count) 1430 { 1431 } 1432 1433 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1434 enum vm_event_item idx, 1435 unsigned long count) 1436 { 1437 } 1438 1439 static inline void count_memcg_page_event(struct page *page, 1440 int idx) 1441 { 1442 } 1443 1444 static inline 1445 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1446 { 1447 } 1448 1449 static inline void split_page_memcg(struct page *head, unsigned int nr) 1450 { 1451 } 1452 1453 static inline 1454 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1455 gfp_t gfp_mask, 1456 unsigned long *total_scanned) 1457 { 1458 return 0; 1459 } 1460 #endif /* CONFIG_MEMCG */ 1461 1462 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1463 { 1464 __mod_lruvec_kmem_state(p, idx, 1); 1465 } 1466 1467 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1468 { 1469 __mod_lruvec_kmem_state(p, idx, -1); 1470 } 1471 1472 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1473 { 1474 struct mem_cgroup *memcg; 1475 1476 memcg = lruvec_memcg(lruvec); 1477 if (!memcg) 1478 return NULL; 1479 memcg = parent_mem_cgroup(memcg); 1480 if (!memcg) 1481 return NULL; 1482 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1483 } 1484 1485 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1486 { 1487 spin_unlock(&lruvec->lru_lock); 1488 } 1489 1490 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1491 { 1492 spin_unlock_irq(&lruvec->lru_lock); 1493 } 1494 1495 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1496 unsigned long flags) 1497 { 1498 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1499 } 1500 1501 /* Test requires a stable page->memcg binding, see page_memcg() */ 1502 static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec) 1503 { 1504 return lruvec_pgdat(lruvec) == page_pgdat(page) && 1505 lruvec_memcg(lruvec) == page_memcg(page); 1506 } 1507 1508 /* Don't lock again iff page's lruvec locked */ 1509 static inline struct lruvec *relock_page_lruvec_irq(struct page *page, 1510 struct lruvec *locked_lruvec) 1511 { 1512 if (locked_lruvec) { 1513 if (page_matches_lruvec(page, locked_lruvec)) 1514 return locked_lruvec; 1515 1516 unlock_page_lruvec_irq(locked_lruvec); 1517 } 1518 1519 return lock_page_lruvec_irq(page); 1520 } 1521 1522 /* Don't lock again iff page's lruvec locked */ 1523 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page, 1524 struct lruvec *locked_lruvec, unsigned long *flags) 1525 { 1526 if (locked_lruvec) { 1527 if (page_matches_lruvec(page, locked_lruvec)) 1528 return locked_lruvec; 1529 1530 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1531 } 1532 1533 return lock_page_lruvec_irqsave(page, flags); 1534 } 1535 1536 #ifdef CONFIG_CGROUP_WRITEBACK 1537 1538 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1539 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1540 unsigned long *pheadroom, unsigned long *pdirty, 1541 unsigned long *pwriteback); 1542 1543 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1544 struct bdi_writeback *wb); 1545 1546 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1547 struct bdi_writeback *wb) 1548 { 1549 if (mem_cgroup_disabled()) 1550 return; 1551 1552 if (unlikely(&page_memcg(page)->css != wb->memcg_css)) 1553 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1554 } 1555 1556 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1557 1558 #else /* CONFIG_CGROUP_WRITEBACK */ 1559 1560 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1561 { 1562 return NULL; 1563 } 1564 1565 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1566 unsigned long *pfilepages, 1567 unsigned long *pheadroom, 1568 unsigned long *pdirty, 1569 unsigned long *pwriteback) 1570 { 1571 } 1572 1573 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1574 struct bdi_writeback *wb) 1575 { 1576 } 1577 1578 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1579 { 1580 } 1581 1582 #endif /* CONFIG_CGROUP_WRITEBACK */ 1583 1584 struct sock; 1585 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1586 gfp_t gfp_mask); 1587 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1588 #ifdef CONFIG_MEMCG 1589 extern struct static_key_false memcg_sockets_enabled_key; 1590 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1591 void mem_cgroup_sk_alloc(struct sock *sk); 1592 void mem_cgroup_sk_free(struct sock *sk); 1593 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1594 { 1595 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1596 return true; 1597 do { 1598 if (time_before(jiffies, memcg->socket_pressure)) 1599 return true; 1600 } while ((memcg = parent_mem_cgroup(memcg))); 1601 return false; 1602 } 1603 1604 int alloc_shrinker_info(struct mem_cgroup *memcg); 1605 void free_shrinker_info(struct mem_cgroup *memcg); 1606 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1607 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1608 #else 1609 #define mem_cgroup_sockets_enabled 0 1610 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1611 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1612 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1613 { 1614 return false; 1615 } 1616 1617 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1618 int nid, int shrinker_id) 1619 { 1620 } 1621 #endif 1622 1623 #ifdef CONFIG_MEMCG_KMEM 1624 bool mem_cgroup_kmem_disabled(void); 1625 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1626 void __memcg_kmem_uncharge_page(struct page *page, int order); 1627 1628 struct obj_cgroup *get_obj_cgroup_from_current(void); 1629 1630 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1631 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1632 1633 extern struct static_key_false memcg_kmem_enabled_key; 1634 1635 extern int memcg_nr_cache_ids; 1636 void memcg_get_cache_ids(void); 1637 void memcg_put_cache_ids(void); 1638 1639 /* 1640 * Helper macro to loop through all memcg-specific caches. Callers must still 1641 * check if the cache is valid (it is either valid or NULL). 1642 * the slab_mutex must be held when looping through those caches 1643 */ 1644 #define for_each_memcg_cache_index(_idx) \ 1645 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1646 1647 static inline bool memcg_kmem_enabled(void) 1648 { 1649 return static_branch_likely(&memcg_kmem_enabled_key); 1650 } 1651 1652 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1653 int order) 1654 { 1655 if (memcg_kmem_enabled()) 1656 return __memcg_kmem_charge_page(page, gfp, order); 1657 return 0; 1658 } 1659 1660 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1661 { 1662 if (memcg_kmem_enabled()) 1663 __memcg_kmem_uncharge_page(page, order); 1664 } 1665 1666 /* 1667 * A helper for accessing memcg's kmem_id, used for getting 1668 * corresponding LRU lists. 1669 */ 1670 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1671 { 1672 return memcg ? memcg->kmemcg_id : -1; 1673 } 1674 1675 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1676 1677 #else 1678 static inline bool mem_cgroup_kmem_disabled(void) 1679 { 1680 return true; 1681 } 1682 1683 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1684 int order) 1685 { 1686 return 0; 1687 } 1688 1689 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1690 { 1691 } 1692 1693 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1694 int order) 1695 { 1696 return 0; 1697 } 1698 1699 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1700 { 1701 } 1702 1703 #define for_each_memcg_cache_index(_idx) \ 1704 for (; NULL; ) 1705 1706 static inline bool memcg_kmem_enabled(void) 1707 { 1708 return false; 1709 } 1710 1711 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1712 { 1713 return -1; 1714 } 1715 1716 static inline void memcg_get_cache_ids(void) 1717 { 1718 } 1719 1720 static inline void memcg_put_cache_ids(void) 1721 { 1722 } 1723 1724 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1725 { 1726 return NULL; 1727 } 1728 1729 #endif /* CONFIG_MEMCG_KMEM */ 1730 1731 #endif /* _LINUX_MEMCONTROL_H */ 1732