xref: /linux-6.15/include/linux/memcontrol.h (revision ef6c8da7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	/* Local (CPU and cgroup) page state & events */
80 	long			state[MEMCG_NR_STAT];
81 	unsigned long		events[NR_VM_EVENT_ITEMS];
82 
83 	/* Delta calculation for lockless upward propagation */
84 	long			state_prev[MEMCG_NR_STAT];
85 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
86 
87 	/* Cgroup1: threshold notifications & softlimit tree updates */
88 	unsigned long		nr_page_events;
89 	unsigned long		targets[MEM_CGROUP_NTARGETS];
90 };
91 
92 struct memcg_vmstats {
93 	/* Aggregated (CPU and subtree) page state & events */
94 	long			state[MEMCG_NR_STAT];
95 	unsigned long		events[NR_VM_EVENT_ITEMS];
96 
97 	/* Pending child counts during tree propagation */
98 	long			state_pending[MEMCG_NR_STAT];
99 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
100 };
101 
102 struct mem_cgroup_reclaim_iter {
103 	struct mem_cgroup *position;
104 	/* scan generation, increased every round-trip */
105 	unsigned int generation;
106 };
107 
108 struct lruvec_stat {
109 	long count[NR_VM_NODE_STAT_ITEMS];
110 };
111 
112 struct batched_lruvec_stat {
113 	s32 count[NR_VM_NODE_STAT_ITEMS];
114 };
115 
116 /*
117  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
118  * shrinkers, which have elements charged to this memcg.
119  */
120 struct shrinker_info {
121 	struct rcu_head rcu;
122 	atomic_long_t *nr_deferred;
123 	unsigned long *map;
124 };
125 
126 /*
127  * per-node information in memory controller.
128  */
129 struct mem_cgroup_per_node {
130 	struct lruvec		lruvec;
131 
132 	/*
133 	 * Legacy local VM stats. This should be struct lruvec_stat and
134 	 * cannot be optimized to struct batched_lruvec_stat. Because
135 	 * the threshold of the lruvec_stat_cpu can be as big as
136 	 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
137 	 * filed has no upper limit.
138 	 */
139 	struct lruvec_stat __percpu *lruvec_stat_local;
140 
141 	/* Subtree VM stats (batched updates) */
142 	struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
143 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
144 
145 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
146 
147 	struct mem_cgroup_reclaim_iter	iter;
148 
149 	struct shrinker_info __rcu	*shrinker_info;
150 
151 	struct rb_node		tree_node;	/* RB tree node */
152 	unsigned long		usage_in_excess;/* Set to the value by which */
153 						/* the soft limit is exceeded*/
154 	bool			on_tree;
155 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
156 						/* use container_of	   */
157 };
158 
159 struct mem_cgroup_threshold {
160 	struct eventfd_ctx *eventfd;
161 	unsigned long threshold;
162 };
163 
164 /* For threshold */
165 struct mem_cgroup_threshold_ary {
166 	/* An array index points to threshold just below or equal to usage. */
167 	int current_threshold;
168 	/* Size of entries[] */
169 	unsigned int size;
170 	/* Array of thresholds */
171 	struct mem_cgroup_threshold entries[];
172 };
173 
174 struct mem_cgroup_thresholds {
175 	/* Primary thresholds array */
176 	struct mem_cgroup_threshold_ary *primary;
177 	/*
178 	 * Spare threshold array.
179 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
180 	 * It must be able to store at least primary->size - 1 entries.
181 	 */
182 	struct mem_cgroup_threshold_ary *spare;
183 };
184 
185 enum memcg_kmem_state {
186 	KMEM_NONE,
187 	KMEM_ALLOCATED,
188 	KMEM_ONLINE,
189 };
190 
191 #if defined(CONFIG_SMP)
192 struct memcg_padding {
193 	char x[0];
194 } ____cacheline_internodealigned_in_smp;
195 #define MEMCG_PADDING(name)      struct memcg_padding name
196 #else
197 #define MEMCG_PADDING(name)
198 #endif
199 
200 /*
201  * Remember four most recent foreign writebacks with dirty pages in this
202  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
203  * one in a given round, we're likely to catch it later if it keeps
204  * foreign-dirtying, so a fairly low count should be enough.
205  *
206  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
207  */
208 #define MEMCG_CGWB_FRN_CNT	4
209 
210 struct memcg_cgwb_frn {
211 	u64 bdi_id;			/* bdi->id of the foreign inode */
212 	int memcg_id;			/* memcg->css.id of foreign inode */
213 	u64 at;				/* jiffies_64 at the time of dirtying */
214 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
215 };
216 
217 /*
218  * Bucket for arbitrarily byte-sized objects charged to a memory
219  * cgroup. The bucket can be reparented in one piece when the cgroup
220  * is destroyed, without having to round up the individual references
221  * of all live memory objects in the wild.
222  */
223 struct obj_cgroup {
224 	struct percpu_ref refcnt;
225 	struct mem_cgroup *memcg;
226 	atomic_t nr_charged_bytes;
227 	union {
228 		struct list_head list;
229 		struct rcu_head rcu;
230 	};
231 };
232 
233 /*
234  * The memory controller data structure. The memory controller controls both
235  * page cache and RSS per cgroup. We would eventually like to provide
236  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237  * to help the administrator determine what knobs to tune.
238  */
239 struct mem_cgroup {
240 	struct cgroup_subsys_state css;
241 
242 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
243 	struct mem_cgroup_id id;
244 
245 	/* Accounted resources */
246 	struct page_counter memory;		/* Both v1 & v2 */
247 
248 	union {
249 		struct page_counter swap;	/* v2 only */
250 		struct page_counter memsw;	/* v1 only */
251 	};
252 
253 	/* Legacy consumer-oriented counters */
254 	struct page_counter kmem;		/* v1 only */
255 	struct page_counter tcpmem;		/* v1 only */
256 
257 	/* Range enforcement for interrupt charges */
258 	struct work_struct high_work;
259 
260 	unsigned long soft_limit;
261 
262 	/* vmpressure notifications */
263 	struct vmpressure vmpressure;
264 
265 	/*
266 	 * Should the OOM killer kill all belonging tasks, had it kill one?
267 	 */
268 	bool oom_group;
269 
270 	/* protected by memcg_oom_lock */
271 	bool		oom_lock;
272 	int		under_oom;
273 
274 	int	swappiness;
275 	/* OOM-Killer disable */
276 	int		oom_kill_disable;
277 
278 	/* memory.events and memory.events.local */
279 	struct cgroup_file events_file;
280 	struct cgroup_file events_local_file;
281 
282 	/* handle for "memory.swap.events" */
283 	struct cgroup_file swap_events_file;
284 
285 	/* protect arrays of thresholds */
286 	struct mutex thresholds_lock;
287 
288 	/* thresholds for memory usage. RCU-protected */
289 	struct mem_cgroup_thresholds thresholds;
290 
291 	/* thresholds for mem+swap usage. RCU-protected */
292 	struct mem_cgroup_thresholds memsw_thresholds;
293 
294 	/* For oom notifier event fd */
295 	struct list_head oom_notify;
296 
297 	/*
298 	 * Should we move charges of a task when a task is moved into this
299 	 * mem_cgroup ? And what type of charges should we move ?
300 	 */
301 	unsigned long move_charge_at_immigrate;
302 	/* taken only while moving_account > 0 */
303 	spinlock_t		move_lock;
304 	unsigned long		move_lock_flags;
305 
306 	MEMCG_PADDING(_pad1_);
307 
308 	/* memory.stat */
309 	struct memcg_vmstats	vmstats;
310 
311 	/* memory.events */
312 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
313 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
314 
315 	unsigned long		socket_pressure;
316 
317 	/* Legacy tcp memory accounting */
318 	bool			tcpmem_active;
319 	int			tcpmem_pressure;
320 
321 #ifdef CONFIG_MEMCG_KMEM
322 	int kmemcg_id;
323 	enum memcg_kmem_state kmem_state;
324 	struct obj_cgroup __rcu *objcg;
325 	struct list_head objcg_list; /* list of inherited objcgs */
326 #endif
327 
328 	MEMCG_PADDING(_pad2_);
329 
330 	/*
331 	 * set > 0 if pages under this cgroup are moving to other cgroup.
332 	 */
333 	atomic_t		moving_account;
334 	struct task_struct	*move_lock_task;
335 
336 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
337 
338 #ifdef CONFIG_CGROUP_WRITEBACK
339 	struct list_head cgwb_list;
340 	struct wb_domain cgwb_domain;
341 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
342 #endif
343 
344 	/* List of events which userspace want to receive */
345 	struct list_head event_list;
346 	spinlock_t event_list_lock;
347 
348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 	struct deferred_split deferred_split_queue;
350 #endif
351 
352 	struct mem_cgroup_per_node *nodeinfo[];
353 };
354 
355 /*
356  * size of first charge trial. "32" comes from vmscan.c's magic value.
357  * TODO: maybe necessary to use big numbers in big irons.
358  */
359 #define MEMCG_CHARGE_BATCH 32U
360 
361 extern struct mem_cgroup *root_mem_cgroup;
362 
363 enum page_memcg_data_flags {
364 	/* page->memcg_data is a pointer to an objcgs vector */
365 	MEMCG_DATA_OBJCGS = (1UL << 0),
366 	/* page has been accounted as a non-slab kernel page */
367 	MEMCG_DATA_KMEM = (1UL << 1),
368 	/* the next bit after the last actual flag */
369 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
370 };
371 
372 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
373 
374 static inline bool PageMemcgKmem(struct page *page);
375 
376 /*
377  * After the initialization objcg->memcg is always pointing at
378  * a valid memcg, but can be atomically swapped to the parent memcg.
379  *
380  * The caller must ensure that the returned memcg won't be released:
381  * e.g. acquire the rcu_read_lock or css_set_lock.
382  */
383 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
384 {
385 	return READ_ONCE(objcg->memcg);
386 }
387 
388 /*
389  * __page_memcg - get the memory cgroup associated with a non-kmem page
390  * @page: a pointer to the page struct
391  *
392  * Returns a pointer to the memory cgroup associated with the page,
393  * or NULL. This function assumes that the page is known to have a
394  * proper memory cgroup pointer. It's not safe to call this function
395  * against some type of pages, e.g. slab pages or ex-slab pages or
396  * kmem pages.
397  */
398 static inline struct mem_cgroup *__page_memcg(struct page *page)
399 {
400 	unsigned long memcg_data = page->memcg_data;
401 
402 	VM_BUG_ON_PAGE(PageSlab(page), page);
403 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
404 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
405 
406 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
407 }
408 
409 /*
410  * __page_objcg - get the object cgroup associated with a kmem page
411  * @page: a pointer to the page struct
412  *
413  * Returns a pointer to the object cgroup associated with the page,
414  * or NULL. This function assumes that the page is known to have a
415  * proper object cgroup pointer. It's not safe to call this function
416  * against some type of pages, e.g. slab pages or ex-slab pages or
417  * LRU pages.
418  */
419 static inline struct obj_cgroup *__page_objcg(struct page *page)
420 {
421 	unsigned long memcg_data = page->memcg_data;
422 
423 	VM_BUG_ON_PAGE(PageSlab(page), page);
424 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
425 	VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
426 
427 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
428 }
429 
430 /*
431  * page_memcg - get the memory cgroup associated with a page
432  * @page: a pointer to the page struct
433  *
434  * Returns a pointer to the memory cgroup associated with the page,
435  * or NULL. This function assumes that the page is known to have a
436  * proper memory cgroup pointer. It's not safe to call this function
437  * against some type of pages, e.g. slab pages or ex-slab pages.
438  *
439  * For a non-kmem page any of the following ensures page and memcg binding
440  * stability:
441  *
442  * - the page lock
443  * - LRU isolation
444  * - lock_page_memcg()
445  * - exclusive reference
446  *
447  * For a kmem page a caller should hold an rcu read lock to protect memcg
448  * associated with a kmem page from being released.
449  */
450 static inline struct mem_cgroup *page_memcg(struct page *page)
451 {
452 	if (PageMemcgKmem(page))
453 		return obj_cgroup_memcg(__page_objcg(page));
454 	else
455 		return __page_memcg(page);
456 }
457 
458 /*
459  * page_memcg_rcu - locklessly get the memory cgroup associated with a page
460  * @page: a pointer to the page struct
461  *
462  * Returns a pointer to the memory cgroup associated with the page,
463  * or NULL. This function assumes that the page is known to have a
464  * proper memory cgroup pointer. It's not safe to call this function
465  * against some type of pages, e.g. slab pages or ex-slab pages.
466  */
467 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
468 {
469 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
470 
471 	VM_BUG_ON_PAGE(PageSlab(page), page);
472 	WARN_ON_ONCE(!rcu_read_lock_held());
473 
474 	if (memcg_data & MEMCG_DATA_KMEM) {
475 		struct obj_cgroup *objcg;
476 
477 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
478 		return obj_cgroup_memcg(objcg);
479 	}
480 
481 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
482 }
483 
484 /*
485  * page_memcg_check - get the memory cgroup associated with a page
486  * @page: a pointer to the page struct
487  *
488  * Returns a pointer to the memory cgroup associated with the page,
489  * or NULL. This function unlike page_memcg() can take any page
490  * as an argument. It has to be used in cases when it's not known if a page
491  * has an associated memory cgroup pointer or an object cgroups vector or
492  * an object cgroup.
493  *
494  * For a non-kmem page any of the following ensures page and memcg binding
495  * stability:
496  *
497  * - the page lock
498  * - LRU isolation
499  * - lock_page_memcg()
500  * - exclusive reference
501  *
502  * For a kmem page a caller should hold an rcu read lock to protect memcg
503  * associated with a kmem page from being released.
504  */
505 static inline struct mem_cgroup *page_memcg_check(struct page *page)
506 {
507 	/*
508 	 * Because page->memcg_data might be changed asynchronously
509 	 * for slab pages, READ_ONCE() should be used here.
510 	 */
511 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
512 
513 	if (memcg_data & MEMCG_DATA_OBJCGS)
514 		return NULL;
515 
516 	if (memcg_data & MEMCG_DATA_KMEM) {
517 		struct obj_cgroup *objcg;
518 
519 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
520 		return obj_cgroup_memcg(objcg);
521 	}
522 
523 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
524 }
525 
526 #ifdef CONFIG_MEMCG_KMEM
527 /*
528  * PageMemcgKmem - check if the page has MemcgKmem flag set
529  * @page: a pointer to the page struct
530  *
531  * Checks if the page has MemcgKmem flag set. The caller must ensure that
532  * the page has an associated memory cgroup. It's not safe to call this function
533  * against some types of pages, e.g. slab pages.
534  */
535 static inline bool PageMemcgKmem(struct page *page)
536 {
537 	VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
538 	return page->memcg_data & MEMCG_DATA_KMEM;
539 }
540 
541 /*
542  * page_objcgs - get the object cgroups vector associated with a page
543  * @page: a pointer to the page struct
544  *
545  * Returns a pointer to the object cgroups vector associated with the page,
546  * or NULL. This function assumes that the page is known to have an
547  * associated object cgroups vector. It's not safe to call this function
548  * against pages, which might have an associated memory cgroup: e.g.
549  * kernel stack pages.
550  */
551 static inline struct obj_cgroup **page_objcgs(struct page *page)
552 {
553 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
554 
555 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
556 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
557 
558 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
559 }
560 
561 /*
562  * page_objcgs_check - get the object cgroups vector associated with a page
563  * @page: a pointer to the page struct
564  *
565  * Returns a pointer to the object cgroups vector associated with the page,
566  * or NULL. This function is safe to use if the page can be directly associated
567  * with a memory cgroup.
568  */
569 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
570 {
571 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
572 
573 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
574 		return NULL;
575 
576 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
577 
578 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
579 }
580 
581 #else
582 static inline bool PageMemcgKmem(struct page *page)
583 {
584 	return false;
585 }
586 
587 static inline struct obj_cgroup **page_objcgs(struct page *page)
588 {
589 	return NULL;
590 }
591 
592 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
593 {
594 	return NULL;
595 }
596 #endif
597 
598 static __always_inline bool memcg_stat_item_in_bytes(int idx)
599 {
600 	if (idx == MEMCG_PERCPU_B)
601 		return true;
602 	return vmstat_item_in_bytes(idx);
603 }
604 
605 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
606 {
607 	return (memcg == root_mem_cgroup);
608 }
609 
610 static inline bool mem_cgroup_disabled(void)
611 {
612 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
613 }
614 
615 static inline void mem_cgroup_protection(struct mem_cgroup *root,
616 					 struct mem_cgroup *memcg,
617 					 unsigned long *min,
618 					 unsigned long *low)
619 {
620 	*min = *low = 0;
621 
622 	if (mem_cgroup_disabled())
623 		return;
624 
625 	/*
626 	 * There is no reclaim protection applied to a targeted reclaim.
627 	 * We are special casing this specific case here because
628 	 * mem_cgroup_protected calculation is not robust enough to keep
629 	 * the protection invariant for calculated effective values for
630 	 * parallel reclaimers with different reclaim target. This is
631 	 * especially a problem for tail memcgs (as they have pages on LRU)
632 	 * which would want to have effective values 0 for targeted reclaim
633 	 * but a different value for external reclaim.
634 	 *
635 	 * Example
636 	 * Let's have global and A's reclaim in parallel:
637 	 *  |
638 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
639 	 *  |\
640 	 *  | C (low = 1G, usage = 2.5G)
641 	 *  B (low = 1G, usage = 0.5G)
642 	 *
643 	 * For the global reclaim
644 	 * A.elow = A.low
645 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
646 	 * C.elow = min(C.usage, C.low)
647 	 *
648 	 * With the effective values resetting we have A reclaim
649 	 * A.elow = 0
650 	 * B.elow = B.low
651 	 * C.elow = C.low
652 	 *
653 	 * If the global reclaim races with A's reclaim then
654 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
655 	 * is possible and reclaiming B would be violating the protection.
656 	 *
657 	 */
658 	if (root == memcg)
659 		return;
660 
661 	*min = READ_ONCE(memcg->memory.emin);
662 	*low = READ_ONCE(memcg->memory.elow);
663 }
664 
665 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
666 				     struct mem_cgroup *memcg);
667 
668 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
669 {
670 	/*
671 	 * The root memcg doesn't account charges, and doesn't support
672 	 * protection.
673 	 */
674 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
675 
676 }
677 
678 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
679 {
680 	if (!mem_cgroup_supports_protection(memcg))
681 		return false;
682 
683 	return READ_ONCE(memcg->memory.elow) >=
684 		page_counter_read(&memcg->memory);
685 }
686 
687 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
688 {
689 	if (!mem_cgroup_supports_protection(memcg))
690 		return false;
691 
692 	return READ_ONCE(memcg->memory.emin) >=
693 		page_counter_read(&memcg->memory);
694 }
695 
696 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
697 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
698 				  gfp_t gfp, swp_entry_t entry);
699 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700 
701 void mem_cgroup_uncharge(struct page *page);
702 void mem_cgroup_uncharge_list(struct list_head *page_list);
703 
704 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
705 
706 /**
707  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
708  * @memcg: memcg of the wanted lruvec
709  * @pgdat: pglist_data
710  *
711  * Returns the lru list vector holding pages for a given @memcg &
712  * @pgdat combination. This can be the node lruvec, if the memory
713  * controller is disabled.
714  */
715 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
716 					       struct pglist_data *pgdat)
717 {
718 	struct mem_cgroup_per_node *mz;
719 	struct lruvec *lruvec;
720 
721 	if (mem_cgroup_disabled()) {
722 		lruvec = &pgdat->__lruvec;
723 		goto out;
724 	}
725 
726 	if (!memcg)
727 		memcg = root_mem_cgroup;
728 
729 	mz = memcg->nodeinfo[pgdat->node_id];
730 	lruvec = &mz->lruvec;
731 out:
732 	/*
733 	 * Since a node can be onlined after the mem_cgroup was created,
734 	 * we have to be prepared to initialize lruvec->pgdat here;
735 	 * and if offlined then reonlined, we need to reinitialize it.
736 	 */
737 	if (unlikely(lruvec->pgdat != pgdat))
738 		lruvec->pgdat = pgdat;
739 	return lruvec;
740 }
741 
742 /**
743  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
744  * @page: the page
745  *
746  * This function relies on page->mem_cgroup being stable.
747  */
748 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
749 {
750 	pg_data_t *pgdat = page_pgdat(page);
751 	struct mem_cgroup *memcg = page_memcg(page);
752 
753 	VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
754 	return mem_cgroup_lruvec(memcg, pgdat);
755 }
756 
757 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
758 
759 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
760 
761 struct lruvec *lock_page_lruvec(struct page *page);
762 struct lruvec *lock_page_lruvec_irq(struct page *page);
763 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
764 						unsigned long *flags);
765 
766 #ifdef CONFIG_DEBUG_VM
767 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
768 #else
769 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
770 {
771 }
772 #endif
773 
774 static inline
775 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
776 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
777 }
778 
779 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
780 {
781 	return percpu_ref_tryget(&objcg->refcnt);
782 }
783 
784 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
785 {
786 	percpu_ref_get(&objcg->refcnt);
787 }
788 
789 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
790 				       unsigned long nr)
791 {
792 	percpu_ref_get_many(&objcg->refcnt, nr);
793 }
794 
795 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
796 {
797 	percpu_ref_put(&objcg->refcnt);
798 }
799 
800 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
801 {
802 	if (memcg)
803 		css_put(&memcg->css);
804 }
805 
806 #define mem_cgroup_from_counter(counter, member)	\
807 	container_of(counter, struct mem_cgroup, member)
808 
809 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
810 				   struct mem_cgroup *,
811 				   struct mem_cgroup_reclaim_cookie *);
812 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
813 int mem_cgroup_scan_tasks(struct mem_cgroup *,
814 			  int (*)(struct task_struct *, void *), void *);
815 
816 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
817 {
818 	if (mem_cgroup_disabled())
819 		return 0;
820 
821 	return memcg->id.id;
822 }
823 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
824 
825 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
826 {
827 	return mem_cgroup_from_css(seq_css(m));
828 }
829 
830 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
831 {
832 	struct mem_cgroup_per_node *mz;
833 
834 	if (mem_cgroup_disabled())
835 		return NULL;
836 
837 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
838 	return mz->memcg;
839 }
840 
841 /**
842  * parent_mem_cgroup - find the accounting parent of a memcg
843  * @memcg: memcg whose parent to find
844  *
845  * Returns the parent memcg, or NULL if this is the root or the memory
846  * controller is in legacy no-hierarchy mode.
847  */
848 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
849 {
850 	if (!memcg->memory.parent)
851 		return NULL;
852 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
853 }
854 
855 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
856 			      struct mem_cgroup *root)
857 {
858 	if (root == memcg)
859 		return true;
860 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
861 }
862 
863 static inline bool mm_match_cgroup(struct mm_struct *mm,
864 				   struct mem_cgroup *memcg)
865 {
866 	struct mem_cgroup *task_memcg;
867 	bool match = false;
868 
869 	rcu_read_lock();
870 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 	if (task_memcg)
872 		match = mem_cgroup_is_descendant(task_memcg, memcg);
873 	rcu_read_unlock();
874 	return match;
875 }
876 
877 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
878 ino_t page_cgroup_ino(struct page *page);
879 
880 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
881 {
882 	if (mem_cgroup_disabled())
883 		return true;
884 	return !!(memcg->css.flags & CSS_ONLINE);
885 }
886 
887 /*
888  * For memory reclaim.
889  */
890 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
891 
892 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
893 		int zid, int nr_pages);
894 
895 static inline
896 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
897 		enum lru_list lru, int zone_idx)
898 {
899 	struct mem_cgroup_per_node *mz;
900 
901 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
902 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
903 }
904 
905 void mem_cgroup_handle_over_high(void);
906 
907 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
908 
909 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
910 
911 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
912 				struct task_struct *p);
913 
914 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
915 
916 static inline void mem_cgroup_enter_user_fault(void)
917 {
918 	WARN_ON(current->in_user_fault);
919 	current->in_user_fault = 1;
920 }
921 
922 static inline void mem_cgroup_exit_user_fault(void)
923 {
924 	WARN_ON(!current->in_user_fault);
925 	current->in_user_fault = 0;
926 }
927 
928 static inline bool task_in_memcg_oom(struct task_struct *p)
929 {
930 	return p->memcg_in_oom;
931 }
932 
933 bool mem_cgroup_oom_synchronize(bool wait);
934 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
935 					    struct mem_cgroup *oom_domain);
936 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
937 
938 #ifdef CONFIG_MEMCG_SWAP
939 extern bool cgroup_memory_noswap;
940 #endif
941 
942 void lock_page_memcg(struct page *page);
943 void unlock_page_memcg(struct page *page);
944 
945 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
946 
947 /* idx can be of type enum memcg_stat_item or node_stat_item */
948 static inline void mod_memcg_state(struct mem_cgroup *memcg,
949 				   int idx, int val)
950 {
951 	unsigned long flags;
952 
953 	local_irq_save(flags);
954 	__mod_memcg_state(memcg, idx, val);
955 	local_irq_restore(flags);
956 }
957 
958 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
959 					      enum node_stat_item idx)
960 {
961 	struct mem_cgroup_per_node *pn;
962 	long x;
963 
964 	if (mem_cgroup_disabled())
965 		return node_page_state(lruvec_pgdat(lruvec), idx);
966 
967 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
968 	x = atomic_long_read(&pn->lruvec_stat[idx]);
969 #ifdef CONFIG_SMP
970 	if (x < 0)
971 		x = 0;
972 #endif
973 	return x;
974 }
975 
976 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
977 						    enum node_stat_item idx)
978 {
979 	struct mem_cgroup_per_node *pn;
980 	long x = 0;
981 	int cpu;
982 
983 	if (mem_cgroup_disabled())
984 		return node_page_state(lruvec_pgdat(lruvec), idx);
985 
986 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
987 	for_each_possible_cpu(cpu)
988 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
989 #ifdef CONFIG_SMP
990 	if (x < 0)
991 		x = 0;
992 #endif
993 	return x;
994 }
995 
996 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
997 			      int val);
998 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
999 
1000 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1001 					 int val)
1002 {
1003 	unsigned long flags;
1004 
1005 	local_irq_save(flags);
1006 	__mod_lruvec_kmem_state(p, idx, val);
1007 	local_irq_restore(flags);
1008 }
1009 
1010 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1011 					  enum node_stat_item idx, int val)
1012 {
1013 	unsigned long flags;
1014 
1015 	local_irq_save(flags);
1016 	__mod_memcg_lruvec_state(lruvec, idx, val);
1017 	local_irq_restore(flags);
1018 }
1019 
1020 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1021 			  unsigned long count);
1022 
1023 static inline void count_memcg_events(struct mem_cgroup *memcg,
1024 				      enum vm_event_item idx,
1025 				      unsigned long count)
1026 {
1027 	unsigned long flags;
1028 
1029 	local_irq_save(flags);
1030 	__count_memcg_events(memcg, idx, count);
1031 	local_irq_restore(flags);
1032 }
1033 
1034 static inline void count_memcg_page_event(struct page *page,
1035 					  enum vm_event_item idx)
1036 {
1037 	struct mem_cgroup *memcg = page_memcg(page);
1038 
1039 	if (memcg)
1040 		count_memcg_events(memcg, idx, 1);
1041 }
1042 
1043 static inline void count_memcg_event_mm(struct mm_struct *mm,
1044 					enum vm_event_item idx)
1045 {
1046 	struct mem_cgroup *memcg;
1047 
1048 	if (mem_cgroup_disabled())
1049 		return;
1050 
1051 	rcu_read_lock();
1052 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1053 	if (likely(memcg))
1054 		count_memcg_events(memcg, idx, 1);
1055 	rcu_read_unlock();
1056 }
1057 
1058 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1059 				      enum memcg_memory_event event)
1060 {
1061 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1062 			  event == MEMCG_SWAP_FAIL;
1063 
1064 	atomic_long_inc(&memcg->memory_events_local[event]);
1065 	if (!swap_event)
1066 		cgroup_file_notify(&memcg->events_local_file);
1067 
1068 	do {
1069 		atomic_long_inc(&memcg->memory_events[event]);
1070 		if (swap_event)
1071 			cgroup_file_notify(&memcg->swap_events_file);
1072 		else
1073 			cgroup_file_notify(&memcg->events_file);
1074 
1075 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1076 			break;
1077 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1078 			break;
1079 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1080 		 !mem_cgroup_is_root(memcg));
1081 }
1082 
1083 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1084 					 enum memcg_memory_event event)
1085 {
1086 	struct mem_cgroup *memcg;
1087 
1088 	if (mem_cgroup_disabled())
1089 		return;
1090 
1091 	rcu_read_lock();
1092 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1093 	if (likely(memcg))
1094 		memcg_memory_event(memcg, event);
1095 	rcu_read_unlock();
1096 }
1097 
1098 void split_page_memcg(struct page *head, unsigned int nr);
1099 
1100 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1101 						gfp_t gfp_mask,
1102 						unsigned long *total_scanned);
1103 
1104 #else /* CONFIG_MEMCG */
1105 
1106 #define MEM_CGROUP_ID_SHIFT	0
1107 #define MEM_CGROUP_ID_MAX	0
1108 
1109 static inline struct mem_cgroup *page_memcg(struct page *page)
1110 {
1111 	return NULL;
1112 }
1113 
1114 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1115 {
1116 	WARN_ON_ONCE(!rcu_read_lock_held());
1117 	return NULL;
1118 }
1119 
1120 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1121 {
1122 	return NULL;
1123 }
1124 
1125 static inline bool PageMemcgKmem(struct page *page)
1126 {
1127 	return false;
1128 }
1129 
1130 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1131 {
1132 	return true;
1133 }
1134 
1135 static inline bool mem_cgroup_disabled(void)
1136 {
1137 	return true;
1138 }
1139 
1140 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1141 				      enum memcg_memory_event event)
1142 {
1143 }
1144 
1145 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1146 					 enum memcg_memory_event event)
1147 {
1148 }
1149 
1150 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1151 					 struct mem_cgroup *memcg,
1152 					 unsigned long *min,
1153 					 unsigned long *low)
1154 {
1155 	*min = *low = 0;
1156 }
1157 
1158 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1159 						   struct mem_cgroup *memcg)
1160 {
1161 }
1162 
1163 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1164 {
1165 	return false;
1166 }
1167 
1168 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1169 {
1170 	return false;
1171 }
1172 
1173 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1174 				    gfp_t gfp_mask)
1175 {
1176 	return 0;
1177 }
1178 
1179 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1180 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1181 {
1182 	return 0;
1183 }
1184 
1185 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1186 {
1187 }
1188 
1189 static inline void mem_cgroup_uncharge(struct page *page)
1190 {
1191 }
1192 
1193 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1194 {
1195 }
1196 
1197 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1198 {
1199 }
1200 
1201 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1202 					       struct pglist_data *pgdat)
1203 {
1204 	return &pgdat->__lruvec;
1205 }
1206 
1207 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
1208 {
1209 	pg_data_t *pgdat = page_pgdat(page);
1210 
1211 	return &pgdat->__lruvec;
1212 }
1213 
1214 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1215 {
1216 }
1217 
1218 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1219 {
1220 	return NULL;
1221 }
1222 
1223 static inline bool mm_match_cgroup(struct mm_struct *mm,
1224 		struct mem_cgroup *memcg)
1225 {
1226 	return true;
1227 }
1228 
1229 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1230 {
1231 	return NULL;
1232 }
1233 
1234 static inline
1235 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1236 {
1237 	return NULL;
1238 }
1239 
1240 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1241 {
1242 }
1243 
1244 static inline struct lruvec *lock_page_lruvec(struct page *page)
1245 {
1246 	struct pglist_data *pgdat = page_pgdat(page);
1247 
1248 	spin_lock(&pgdat->__lruvec.lru_lock);
1249 	return &pgdat->__lruvec;
1250 }
1251 
1252 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1253 {
1254 	struct pglist_data *pgdat = page_pgdat(page);
1255 
1256 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1257 	return &pgdat->__lruvec;
1258 }
1259 
1260 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1261 		unsigned long *flagsp)
1262 {
1263 	struct pglist_data *pgdat = page_pgdat(page);
1264 
1265 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1266 	return &pgdat->__lruvec;
1267 }
1268 
1269 static inline struct mem_cgroup *
1270 mem_cgroup_iter(struct mem_cgroup *root,
1271 		struct mem_cgroup *prev,
1272 		struct mem_cgroup_reclaim_cookie *reclaim)
1273 {
1274 	return NULL;
1275 }
1276 
1277 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1278 					 struct mem_cgroup *prev)
1279 {
1280 }
1281 
1282 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1283 		int (*fn)(struct task_struct *, void *), void *arg)
1284 {
1285 	return 0;
1286 }
1287 
1288 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1289 {
1290 	return 0;
1291 }
1292 
1293 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1294 {
1295 	WARN_ON_ONCE(id);
1296 	/* XXX: This should always return root_mem_cgroup */
1297 	return NULL;
1298 }
1299 
1300 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1301 {
1302 	return NULL;
1303 }
1304 
1305 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1306 {
1307 	return NULL;
1308 }
1309 
1310 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1311 {
1312 	return true;
1313 }
1314 
1315 static inline
1316 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1317 		enum lru_list lru, int zone_idx)
1318 {
1319 	return 0;
1320 }
1321 
1322 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1323 {
1324 	return 0;
1325 }
1326 
1327 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1328 {
1329 	return 0;
1330 }
1331 
1332 static inline void
1333 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1334 {
1335 }
1336 
1337 static inline void
1338 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1339 {
1340 }
1341 
1342 static inline void lock_page_memcg(struct page *page)
1343 {
1344 }
1345 
1346 static inline void unlock_page_memcg(struct page *page)
1347 {
1348 }
1349 
1350 static inline void mem_cgroup_handle_over_high(void)
1351 {
1352 }
1353 
1354 static inline void mem_cgroup_enter_user_fault(void)
1355 {
1356 }
1357 
1358 static inline void mem_cgroup_exit_user_fault(void)
1359 {
1360 }
1361 
1362 static inline bool task_in_memcg_oom(struct task_struct *p)
1363 {
1364 	return false;
1365 }
1366 
1367 static inline bool mem_cgroup_oom_synchronize(bool wait)
1368 {
1369 	return false;
1370 }
1371 
1372 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1373 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1374 {
1375 	return NULL;
1376 }
1377 
1378 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1379 {
1380 }
1381 
1382 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1383 				     int idx,
1384 				     int nr)
1385 {
1386 }
1387 
1388 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1389 				   int idx,
1390 				   int nr)
1391 {
1392 }
1393 
1394 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1395 					      enum node_stat_item idx)
1396 {
1397 	return node_page_state(lruvec_pgdat(lruvec), idx);
1398 }
1399 
1400 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1401 						    enum node_stat_item idx)
1402 {
1403 	return node_page_state(lruvec_pgdat(lruvec), idx);
1404 }
1405 
1406 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1407 					    enum node_stat_item idx, int val)
1408 {
1409 }
1410 
1411 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1412 					   int val)
1413 {
1414 	struct page *page = virt_to_head_page(p);
1415 
1416 	__mod_node_page_state(page_pgdat(page), idx, val);
1417 }
1418 
1419 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1420 					 int val)
1421 {
1422 	struct page *page = virt_to_head_page(p);
1423 
1424 	mod_node_page_state(page_pgdat(page), idx, val);
1425 }
1426 
1427 static inline void count_memcg_events(struct mem_cgroup *memcg,
1428 				      enum vm_event_item idx,
1429 				      unsigned long count)
1430 {
1431 }
1432 
1433 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1434 					enum vm_event_item idx,
1435 					unsigned long count)
1436 {
1437 }
1438 
1439 static inline void count_memcg_page_event(struct page *page,
1440 					  int idx)
1441 {
1442 }
1443 
1444 static inline
1445 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1446 {
1447 }
1448 
1449 static inline void split_page_memcg(struct page *head, unsigned int nr)
1450 {
1451 }
1452 
1453 static inline
1454 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1455 					    gfp_t gfp_mask,
1456 					    unsigned long *total_scanned)
1457 {
1458 	return 0;
1459 }
1460 #endif /* CONFIG_MEMCG */
1461 
1462 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1463 {
1464 	__mod_lruvec_kmem_state(p, idx, 1);
1465 }
1466 
1467 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1468 {
1469 	__mod_lruvec_kmem_state(p, idx, -1);
1470 }
1471 
1472 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1473 {
1474 	struct mem_cgroup *memcg;
1475 
1476 	memcg = lruvec_memcg(lruvec);
1477 	if (!memcg)
1478 		return NULL;
1479 	memcg = parent_mem_cgroup(memcg);
1480 	if (!memcg)
1481 		return NULL;
1482 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1483 }
1484 
1485 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1486 {
1487 	spin_unlock(&lruvec->lru_lock);
1488 }
1489 
1490 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1491 {
1492 	spin_unlock_irq(&lruvec->lru_lock);
1493 }
1494 
1495 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1496 		unsigned long flags)
1497 {
1498 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1499 }
1500 
1501 /* Test requires a stable page->memcg binding, see page_memcg() */
1502 static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec)
1503 {
1504 	return lruvec_pgdat(lruvec) == page_pgdat(page) &&
1505 	       lruvec_memcg(lruvec) == page_memcg(page);
1506 }
1507 
1508 /* Don't lock again iff page's lruvec locked */
1509 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1510 		struct lruvec *locked_lruvec)
1511 {
1512 	if (locked_lruvec) {
1513 		if (page_matches_lruvec(page, locked_lruvec))
1514 			return locked_lruvec;
1515 
1516 		unlock_page_lruvec_irq(locked_lruvec);
1517 	}
1518 
1519 	return lock_page_lruvec_irq(page);
1520 }
1521 
1522 /* Don't lock again iff page's lruvec locked */
1523 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1524 		struct lruvec *locked_lruvec, unsigned long *flags)
1525 {
1526 	if (locked_lruvec) {
1527 		if (page_matches_lruvec(page, locked_lruvec))
1528 			return locked_lruvec;
1529 
1530 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1531 	}
1532 
1533 	return lock_page_lruvec_irqsave(page, flags);
1534 }
1535 
1536 #ifdef CONFIG_CGROUP_WRITEBACK
1537 
1538 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1539 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1540 			 unsigned long *pheadroom, unsigned long *pdirty,
1541 			 unsigned long *pwriteback);
1542 
1543 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1544 					     struct bdi_writeback *wb);
1545 
1546 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1547 						  struct bdi_writeback *wb)
1548 {
1549 	if (mem_cgroup_disabled())
1550 		return;
1551 
1552 	if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1553 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1554 }
1555 
1556 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1557 
1558 #else	/* CONFIG_CGROUP_WRITEBACK */
1559 
1560 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1561 {
1562 	return NULL;
1563 }
1564 
1565 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1566 				       unsigned long *pfilepages,
1567 				       unsigned long *pheadroom,
1568 				       unsigned long *pdirty,
1569 				       unsigned long *pwriteback)
1570 {
1571 }
1572 
1573 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1574 						  struct bdi_writeback *wb)
1575 {
1576 }
1577 
1578 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1579 {
1580 }
1581 
1582 #endif	/* CONFIG_CGROUP_WRITEBACK */
1583 
1584 struct sock;
1585 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1586 			     gfp_t gfp_mask);
1587 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1588 #ifdef CONFIG_MEMCG
1589 extern struct static_key_false memcg_sockets_enabled_key;
1590 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1591 void mem_cgroup_sk_alloc(struct sock *sk);
1592 void mem_cgroup_sk_free(struct sock *sk);
1593 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1594 {
1595 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1596 		return true;
1597 	do {
1598 		if (time_before(jiffies, memcg->socket_pressure))
1599 			return true;
1600 	} while ((memcg = parent_mem_cgroup(memcg)));
1601 	return false;
1602 }
1603 
1604 int alloc_shrinker_info(struct mem_cgroup *memcg);
1605 void free_shrinker_info(struct mem_cgroup *memcg);
1606 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1607 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1608 #else
1609 #define mem_cgroup_sockets_enabled 0
1610 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1611 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1612 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1613 {
1614 	return false;
1615 }
1616 
1617 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1618 				    int nid, int shrinker_id)
1619 {
1620 }
1621 #endif
1622 
1623 #ifdef CONFIG_MEMCG_KMEM
1624 bool mem_cgroup_kmem_disabled(void);
1625 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1626 void __memcg_kmem_uncharge_page(struct page *page, int order);
1627 
1628 struct obj_cgroup *get_obj_cgroup_from_current(void);
1629 
1630 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1631 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1632 
1633 extern struct static_key_false memcg_kmem_enabled_key;
1634 
1635 extern int memcg_nr_cache_ids;
1636 void memcg_get_cache_ids(void);
1637 void memcg_put_cache_ids(void);
1638 
1639 /*
1640  * Helper macro to loop through all memcg-specific caches. Callers must still
1641  * check if the cache is valid (it is either valid or NULL).
1642  * the slab_mutex must be held when looping through those caches
1643  */
1644 #define for_each_memcg_cache_index(_idx)	\
1645 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1646 
1647 static inline bool memcg_kmem_enabled(void)
1648 {
1649 	return static_branch_likely(&memcg_kmem_enabled_key);
1650 }
1651 
1652 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1653 					 int order)
1654 {
1655 	if (memcg_kmem_enabled())
1656 		return __memcg_kmem_charge_page(page, gfp, order);
1657 	return 0;
1658 }
1659 
1660 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1661 {
1662 	if (memcg_kmem_enabled())
1663 		__memcg_kmem_uncharge_page(page, order);
1664 }
1665 
1666 /*
1667  * A helper for accessing memcg's kmem_id, used for getting
1668  * corresponding LRU lists.
1669  */
1670 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1671 {
1672 	return memcg ? memcg->kmemcg_id : -1;
1673 }
1674 
1675 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1676 
1677 #else
1678 static inline bool mem_cgroup_kmem_disabled(void)
1679 {
1680 	return true;
1681 }
1682 
1683 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1684 					 int order)
1685 {
1686 	return 0;
1687 }
1688 
1689 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1690 {
1691 }
1692 
1693 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1694 					   int order)
1695 {
1696 	return 0;
1697 }
1698 
1699 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1700 {
1701 }
1702 
1703 #define for_each_memcg_cache_index(_idx)	\
1704 	for (; NULL; )
1705 
1706 static inline bool memcg_kmem_enabled(void)
1707 {
1708 	return false;
1709 }
1710 
1711 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1712 {
1713 	return -1;
1714 }
1715 
1716 static inline void memcg_get_cache_ids(void)
1717 {
1718 }
1719 
1720 static inline void memcg_put_cache_ids(void)
1721 {
1722 }
1723 
1724 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1725 {
1726        return NULL;
1727 }
1728 
1729 #endif /* CONFIG_MEMCG_KMEM */
1730 
1731 #endif /* _LINUX_MEMCONTROL_H */
1732