xref: /linux-6.15/include/linux/memcontrol.h (revision eef8abda)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	long stat[MEMCG_NR_STAT];
80 	unsigned long events[NR_VM_EVENT_ITEMS];
81 	unsigned long nr_page_events;
82 	unsigned long targets[MEM_CGROUP_NTARGETS];
83 };
84 
85 struct mem_cgroup_reclaim_iter {
86 	struct mem_cgroup *position;
87 	/* scan generation, increased every round-trip */
88 	unsigned int generation;
89 };
90 
91 struct lruvec_stat {
92 	long count[NR_VM_NODE_STAT_ITEMS];
93 };
94 
95 struct batched_lruvec_stat {
96 	s32 count[NR_VM_NODE_STAT_ITEMS];
97 };
98 
99 /*
100  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
101  * which have elements charged to this memcg.
102  */
103 struct memcg_shrinker_map {
104 	struct rcu_head rcu;
105 	unsigned long map[];
106 };
107 
108 /*
109  * per-node information in memory controller.
110  */
111 struct mem_cgroup_per_node {
112 	struct lruvec		lruvec;
113 
114 	/*
115 	 * Legacy local VM stats. This should be struct lruvec_stat and
116 	 * cannot be optimized to struct batched_lruvec_stat. Because
117 	 * the threshold of the lruvec_stat_cpu can be as big as
118 	 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
119 	 * filed has no upper limit.
120 	 */
121 	struct lruvec_stat __percpu *lruvec_stat_local;
122 
123 	/* Subtree VM stats (batched updates) */
124 	struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
125 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126 
127 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 
129 	struct mem_cgroup_reclaim_iter	iter;
130 
131 	struct memcg_shrinker_map __rcu	*shrinker_map;
132 
133 	struct rb_node		tree_node;	/* RB tree node */
134 	unsigned long		usage_in_excess;/* Set to the value by which */
135 						/* the soft limit is exceeded*/
136 	bool			on_tree;
137 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
138 						/* use container_of	   */
139 };
140 
141 struct mem_cgroup_threshold {
142 	struct eventfd_ctx *eventfd;
143 	unsigned long threshold;
144 };
145 
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148 	/* An array index points to threshold just below or equal to usage. */
149 	int current_threshold;
150 	/* Size of entries[] */
151 	unsigned int size;
152 	/* Array of thresholds */
153 	struct mem_cgroup_threshold entries[];
154 };
155 
156 struct mem_cgroup_thresholds {
157 	/* Primary thresholds array */
158 	struct mem_cgroup_threshold_ary *primary;
159 	/*
160 	 * Spare threshold array.
161 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 	 * It must be able to store at least primary->size - 1 entries.
163 	 */
164 	struct mem_cgroup_threshold_ary *spare;
165 };
166 
167 enum memcg_kmem_state {
168 	KMEM_NONE,
169 	KMEM_ALLOCATED,
170 	KMEM_ONLINE,
171 };
172 
173 #if defined(CONFIG_SMP)
174 struct memcg_padding {
175 	char x[0];
176 } ____cacheline_internodealigned_in_smp;
177 #define MEMCG_PADDING(name)      struct memcg_padding name;
178 #else
179 #define MEMCG_PADDING(name)
180 #endif
181 
182 /*
183  * Remember four most recent foreign writebacks with dirty pages in this
184  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
185  * one in a given round, we're likely to catch it later if it keeps
186  * foreign-dirtying, so a fairly low count should be enough.
187  *
188  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
189  */
190 #define MEMCG_CGWB_FRN_CNT	4
191 
192 struct memcg_cgwb_frn {
193 	u64 bdi_id;			/* bdi->id of the foreign inode */
194 	int memcg_id;			/* memcg->css.id of foreign inode */
195 	u64 at;				/* jiffies_64 at the time of dirtying */
196 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
197 };
198 
199 /*
200  * Bucket for arbitrarily byte-sized objects charged to a memory
201  * cgroup. The bucket can be reparented in one piece when the cgroup
202  * is destroyed, without having to round up the individual references
203  * of all live memory objects in the wild.
204  */
205 struct obj_cgroup {
206 	struct percpu_ref refcnt;
207 	struct mem_cgroup *memcg;
208 	atomic_t nr_charged_bytes;
209 	union {
210 		struct list_head list;
211 		struct rcu_head rcu;
212 	};
213 };
214 
215 /*
216  * The memory controller data structure. The memory controller controls both
217  * page cache and RSS per cgroup. We would eventually like to provide
218  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
219  * to help the administrator determine what knobs to tune.
220  */
221 struct mem_cgroup {
222 	struct cgroup_subsys_state css;
223 
224 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
225 	struct mem_cgroup_id id;
226 
227 	/* Accounted resources */
228 	struct page_counter memory;		/* Both v1 & v2 */
229 
230 	union {
231 		struct page_counter swap;	/* v2 only */
232 		struct page_counter memsw;	/* v1 only */
233 	};
234 
235 	/* Legacy consumer-oriented counters */
236 	struct page_counter kmem;		/* v1 only */
237 	struct page_counter tcpmem;		/* v1 only */
238 
239 	/* Range enforcement for interrupt charges */
240 	struct work_struct high_work;
241 
242 	unsigned long soft_limit;
243 
244 	/* vmpressure notifications */
245 	struct vmpressure vmpressure;
246 
247 	/*
248 	 * Should the OOM killer kill all belonging tasks, had it kill one?
249 	 */
250 	bool oom_group;
251 
252 	/* protected by memcg_oom_lock */
253 	bool		oom_lock;
254 	int		under_oom;
255 
256 	int	swappiness;
257 	/* OOM-Killer disable */
258 	int		oom_kill_disable;
259 
260 	/* memory.events and memory.events.local */
261 	struct cgroup_file events_file;
262 	struct cgroup_file events_local_file;
263 
264 	/* handle for "memory.swap.events" */
265 	struct cgroup_file swap_events_file;
266 
267 	/* protect arrays of thresholds */
268 	struct mutex thresholds_lock;
269 
270 	/* thresholds for memory usage. RCU-protected */
271 	struct mem_cgroup_thresholds thresholds;
272 
273 	/* thresholds for mem+swap usage. RCU-protected */
274 	struct mem_cgroup_thresholds memsw_thresholds;
275 
276 	/* For oom notifier event fd */
277 	struct list_head oom_notify;
278 
279 	/*
280 	 * Should we move charges of a task when a task is moved into this
281 	 * mem_cgroup ? And what type of charges should we move ?
282 	 */
283 	unsigned long move_charge_at_immigrate;
284 	/* taken only while moving_account > 0 */
285 	spinlock_t		move_lock;
286 	unsigned long		move_lock_flags;
287 
288 	MEMCG_PADDING(_pad1_);
289 
290 	atomic_long_t		vmstats[MEMCG_NR_STAT];
291 	atomic_long_t		vmevents[NR_VM_EVENT_ITEMS];
292 
293 	/* memory.events */
294 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
295 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
296 
297 	unsigned long		socket_pressure;
298 
299 	/* Legacy tcp memory accounting */
300 	bool			tcpmem_active;
301 	int			tcpmem_pressure;
302 
303 #ifdef CONFIG_MEMCG_KMEM
304 	int kmemcg_id;
305 	enum memcg_kmem_state kmem_state;
306 	struct obj_cgroup __rcu *objcg;
307 	struct list_head objcg_list; /* list of inherited objcgs */
308 #endif
309 
310 	MEMCG_PADDING(_pad2_);
311 
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t		moving_account;
316 	struct task_struct	*move_lock_task;
317 
318 	/* Legacy local VM stats and events */
319 	struct memcg_vmstats_percpu __percpu *vmstats_local;
320 
321 	/* Subtree VM stats and events (batched updates) */
322 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
323 
324 #ifdef CONFIG_CGROUP_WRITEBACK
325 	struct list_head cgwb_list;
326 	struct wb_domain cgwb_domain;
327 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
328 #endif
329 
330 	/* List of events which userspace want to receive */
331 	struct list_head event_list;
332 	spinlock_t event_list_lock;
333 
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 	struct deferred_split deferred_split_queue;
336 #endif
337 
338 	struct mem_cgroup_per_node *nodeinfo[0];
339 	/* WARNING: nodeinfo must be the last member here */
340 };
341 
342 /*
343  * size of first charge trial. "32" comes from vmscan.c's magic value.
344  * TODO: maybe necessary to use big numbers in big irons.
345  */
346 #define MEMCG_CHARGE_BATCH 32U
347 
348 extern struct mem_cgroup *root_mem_cgroup;
349 
350 enum page_memcg_data_flags {
351 	/* page->memcg_data is a pointer to an objcgs vector */
352 	MEMCG_DATA_OBJCGS = (1UL << 0),
353 	/* page has been accounted as a non-slab kernel page */
354 	MEMCG_DATA_KMEM = (1UL << 1),
355 	/* the next bit after the last actual flag */
356 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
357 };
358 
359 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
360 
361 /*
362  * page_memcg - get the memory cgroup associated with a page
363  * @page: a pointer to the page struct
364  *
365  * Returns a pointer to the memory cgroup associated with the page,
366  * or NULL. This function assumes that the page is known to have a
367  * proper memory cgroup pointer. It's not safe to call this function
368  * against some type of pages, e.g. slab pages or ex-slab pages.
369  *
370  * Any of the following ensures page and memcg binding stability:
371  * - the page lock
372  * - LRU isolation
373  * - lock_page_memcg()
374  * - exclusive reference
375  */
376 static inline struct mem_cgroup *page_memcg(struct page *page)
377 {
378 	unsigned long memcg_data = page->memcg_data;
379 
380 	VM_BUG_ON_PAGE(PageSlab(page), page);
381 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 }
385 
386 /*
387  * page_memcg_rcu - locklessly get the memory cgroup associated with a page
388  * @page: a pointer to the page struct
389  *
390  * Returns a pointer to the memory cgroup associated with the page,
391  * or NULL. This function assumes that the page is known to have a
392  * proper memory cgroup pointer. It's not safe to call this function
393  * against some type of pages, e.g. slab pages or ex-slab pages.
394  */
395 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
396 {
397 	VM_BUG_ON_PAGE(PageSlab(page), page);
398 	WARN_ON_ONCE(!rcu_read_lock_held());
399 
400 	return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
401 				     ~MEMCG_DATA_FLAGS_MASK);
402 }
403 
404 /*
405  * page_memcg_check - get the memory cgroup associated with a page
406  * @page: a pointer to the page struct
407  *
408  * Returns a pointer to the memory cgroup associated with the page,
409  * or NULL. This function unlike page_memcg() can take any  page
410  * as an argument. It has to be used in cases when it's not known if a page
411  * has an associated memory cgroup pointer or an object cgroups vector.
412  *
413  * Any of the following ensures page and memcg binding stability:
414  * - the page lock
415  * - LRU isolation
416  * - lock_page_memcg()
417  * - exclusive reference
418  */
419 static inline struct mem_cgroup *page_memcg_check(struct page *page)
420 {
421 	/*
422 	 * Because page->memcg_data might be changed asynchronously
423 	 * for slab pages, READ_ONCE() should be used here.
424 	 */
425 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
426 
427 	if (memcg_data & MEMCG_DATA_OBJCGS)
428 		return NULL;
429 
430 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
431 }
432 
433 /*
434  * PageMemcgKmem - check if the page has MemcgKmem flag set
435  * @page: a pointer to the page struct
436  *
437  * Checks if the page has MemcgKmem flag set. The caller must ensure that
438  * the page has an associated memory cgroup. It's not safe to call this function
439  * against some types of pages, e.g. slab pages.
440  */
441 static inline bool PageMemcgKmem(struct page *page)
442 {
443 	VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
444 	return page->memcg_data & MEMCG_DATA_KMEM;
445 }
446 
447 #ifdef CONFIG_MEMCG_KMEM
448 /*
449  * page_objcgs - get the object cgroups vector associated with a page
450  * @page: a pointer to the page struct
451  *
452  * Returns a pointer to the object cgroups vector associated with the page,
453  * or NULL. This function assumes that the page is known to have an
454  * associated object cgroups vector. It's not safe to call this function
455  * against pages, which might have an associated memory cgroup: e.g.
456  * kernel stack pages.
457  */
458 static inline struct obj_cgroup **page_objcgs(struct page *page)
459 {
460 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
461 
462 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
463 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
464 
465 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 }
467 
468 /*
469  * page_objcgs_check - get the object cgroups vector associated with a page
470  * @page: a pointer to the page struct
471  *
472  * Returns a pointer to the object cgroups vector associated with the page,
473  * or NULL. This function is safe to use if the page can be directly associated
474  * with a memory cgroup.
475  */
476 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
477 {
478 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
479 
480 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
481 		return NULL;
482 
483 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
484 
485 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
486 }
487 
488 #else
489 static inline struct obj_cgroup **page_objcgs(struct page *page)
490 {
491 	return NULL;
492 }
493 
494 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
495 {
496 	return NULL;
497 }
498 #endif
499 
500 static __always_inline bool memcg_stat_item_in_bytes(int idx)
501 {
502 	if (idx == MEMCG_PERCPU_B)
503 		return true;
504 	return vmstat_item_in_bytes(idx);
505 }
506 
507 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
508 {
509 	return (memcg == root_mem_cgroup);
510 }
511 
512 static inline bool mem_cgroup_disabled(void)
513 {
514 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
515 }
516 
517 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
518 						  struct mem_cgroup *memcg,
519 						  bool in_low_reclaim)
520 {
521 	if (mem_cgroup_disabled())
522 		return 0;
523 
524 	/*
525 	 * There is no reclaim protection applied to a targeted reclaim.
526 	 * We are special casing this specific case here because
527 	 * mem_cgroup_protected calculation is not robust enough to keep
528 	 * the protection invariant for calculated effective values for
529 	 * parallel reclaimers with different reclaim target. This is
530 	 * especially a problem for tail memcgs (as they have pages on LRU)
531 	 * which would want to have effective values 0 for targeted reclaim
532 	 * but a different value for external reclaim.
533 	 *
534 	 * Example
535 	 * Let's have global and A's reclaim in parallel:
536 	 *  |
537 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
538 	 *  |\
539 	 *  | C (low = 1G, usage = 2.5G)
540 	 *  B (low = 1G, usage = 0.5G)
541 	 *
542 	 * For the global reclaim
543 	 * A.elow = A.low
544 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
545 	 * C.elow = min(C.usage, C.low)
546 	 *
547 	 * With the effective values resetting we have A reclaim
548 	 * A.elow = 0
549 	 * B.elow = B.low
550 	 * C.elow = C.low
551 	 *
552 	 * If the global reclaim races with A's reclaim then
553 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
554 	 * is possible and reclaiming B would be violating the protection.
555 	 *
556 	 */
557 	if (root == memcg)
558 		return 0;
559 
560 	if (in_low_reclaim)
561 		return READ_ONCE(memcg->memory.emin);
562 
563 	return max(READ_ONCE(memcg->memory.emin),
564 		   READ_ONCE(memcg->memory.elow));
565 }
566 
567 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
568 				     struct mem_cgroup *memcg);
569 
570 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
571 {
572 	/*
573 	 * The root memcg doesn't account charges, and doesn't support
574 	 * protection.
575 	 */
576 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
577 
578 }
579 
580 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
581 {
582 	if (!mem_cgroup_supports_protection(memcg))
583 		return false;
584 
585 	return READ_ONCE(memcg->memory.elow) >=
586 		page_counter_read(&memcg->memory);
587 }
588 
589 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
590 {
591 	if (!mem_cgroup_supports_protection(memcg))
592 		return false;
593 
594 	return READ_ONCE(memcg->memory.emin) >=
595 		page_counter_read(&memcg->memory);
596 }
597 
598 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
599 
600 void mem_cgroup_uncharge(struct page *page);
601 void mem_cgroup_uncharge_list(struct list_head *page_list);
602 
603 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
604 
605 static struct mem_cgroup_per_node *
606 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
607 {
608 	return memcg->nodeinfo[nid];
609 }
610 
611 /**
612  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
613  * @memcg: memcg of the wanted lruvec
614  * @pgdat: pglist_data
615  *
616  * Returns the lru list vector holding pages for a given @memcg &
617  * @pgdat combination. This can be the node lruvec, if the memory
618  * controller is disabled.
619  */
620 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
621 					       struct pglist_data *pgdat)
622 {
623 	struct mem_cgroup_per_node *mz;
624 	struct lruvec *lruvec;
625 
626 	if (mem_cgroup_disabled()) {
627 		lruvec = &pgdat->__lruvec;
628 		goto out;
629 	}
630 
631 	if (!memcg)
632 		memcg = root_mem_cgroup;
633 
634 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
635 	lruvec = &mz->lruvec;
636 out:
637 	/*
638 	 * Since a node can be onlined after the mem_cgroup was created,
639 	 * we have to be prepared to initialize lruvec->pgdat here;
640 	 * and if offlined then reonlined, we need to reinitialize it.
641 	 */
642 	if (unlikely(lruvec->pgdat != pgdat))
643 		lruvec->pgdat = pgdat;
644 	return lruvec;
645 }
646 
647 /**
648  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
649  * @page: the page
650  * @pgdat: pgdat of the page
651  *
652  * This function relies on page->mem_cgroup being stable.
653  */
654 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
655 						struct pglist_data *pgdat)
656 {
657 	struct mem_cgroup *memcg = page_memcg(page);
658 
659 	VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
660 	return mem_cgroup_lruvec(memcg, pgdat);
661 }
662 
663 static inline bool lruvec_holds_page_lru_lock(struct page *page,
664 					      struct lruvec *lruvec)
665 {
666 	pg_data_t *pgdat = page_pgdat(page);
667 	const struct mem_cgroup *memcg;
668 	struct mem_cgroup_per_node *mz;
669 
670 	if (mem_cgroup_disabled())
671 		return lruvec == &pgdat->__lruvec;
672 
673 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
674 	memcg = page_memcg(page) ? : root_mem_cgroup;
675 
676 	return lruvec->pgdat == pgdat && mz->memcg == memcg;
677 }
678 
679 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
680 
681 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
682 
683 struct lruvec *lock_page_lruvec(struct page *page);
684 struct lruvec *lock_page_lruvec_irq(struct page *page);
685 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
686 						unsigned long *flags);
687 
688 #ifdef CONFIG_DEBUG_VM
689 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
690 #else
691 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
692 {
693 }
694 #endif
695 
696 static inline
697 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
698 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
699 }
700 
701 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
702 {
703 	return percpu_ref_tryget(&objcg->refcnt);
704 }
705 
706 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
707 {
708 	percpu_ref_get(&objcg->refcnt);
709 }
710 
711 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
712 {
713 	percpu_ref_put(&objcg->refcnt);
714 }
715 
716 /*
717  * After the initialization objcg->memcg is always pointing at
718  * a valid memcg, but can be atomically swapped to the parent memcg.
719  *
720  * The caller must ensure that the returned memcg won't be released:
721  * e.g. acquire the rcu_read_lock or css_set_lock.
722  */
723 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
724 {
725 	return READ_ONCE(objcg->memcg);
726 }
727 
728 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
729 {
730 	if (memcg)
731 		css_put(&memcg->css);
732 }
733 
734 #define mem_cgroup_from_counter(counter, member)	\
735 	container_of(counter, struct mem_cgroup, member)
736 
737 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
738 				   struct mem_cgroup *,
739 				   struct mem_cgroup_reclaim_cookie *);
740 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
741 int mem_cgroup_scan_tasks(struct mem_cgroup *,
742 			  int (*)(struct task_struct *, void *), void *);
743 
744 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
745 {
746 	if (mem_cgroup_disabled())
747 		return 0;
748 
749 	return memcg->id.id;
750 }
751 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
752 
753 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
754 {
755 	return mem_cgroup_from_css(seq_css(m));
756 }
757 
758 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
759 {
760 	struct mem_cgroup_per_node *mz;
761 
762 	if (mem_cgroup_disabled())
763 		return NULL;
764 
765 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
766 	return mz->memcg;
767 }
768 
769 /**
770  * parent_mem_cgroup - find the accounting parent of a memcg
771  * @memcg: memcg whose parent to find
772  *
773  * Returns the parent memcg, or NULL if this is the root or the memory
774  * controller is in legacy no-hierarchy mode.
775  */
776 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
777 {
778 	if (!memcg->memory.parent)
779 		return NULL;
780 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
781 }
782 
783 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
784 			      struct mem_cgroup *root)
785 {
786 	if (root == memcg)
787 		return true;
788 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
789 }
790 
791 static inline bool mm_match_cgroup(struct mm_struct *mm,
792 				   struct mem_cgroup *memcg)
793 {
794 	struct mem_cgroup *task_memcg;
795 	bool match = false;
796 
797 	rcu_read_lock();
798 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 	if (task_memcg)
800 		match = mem_cgroup_is_descendant(task_memcg, memcg);
801 	rcu_read_unlock();
802 	return match;
803 }
804 
805 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
806 ino_t page_cgroup_ino(struct page *page);
807 
808 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
809 {
810 	if (mem_cgroup_disabled())
811 		return true;
812 	return !!(memcg->css.flags & CSS_ONLINE);
813 }
814 
815 /*
816  * For memory reclaim.
817  */
818 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
819 
820 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
821 		int zid, int nr_pages);
822 
823 static inline
824 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
825 		enum lru_list lru, int zone_idx)
826 {
827 	struct mem_cgroup_per_node *mz;
828 
829 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
830 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
831 }
832 
833 void mem_cgroup_handle_over_high(void);
834 
835 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
836 
837 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
838 
839 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
840 				struct task_struct *p);
841 
842 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
843 
844 static inline void mem_cgroup_enter_user_fault(void)
845 {
846 	WARN_ON(current->in_user_fault);
847 	current->in_user_fault = 1;
848 }
849 
850 static inline void mem_cgroup_exit_user_fault(void)
851 {
852 	WARN_ON(!current->in_user_fault);
853 	current->in_user_fault = 0;
854 }
855 
856 static inline bool task_in_memcg_oom(struct task_struct *p)
857 {
858 	return p->memcg_in_oom;
859 }
860 
861 bool mem_cgroup_oom_synchronize(bool wait);
862 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
863 					    struct mem_cgroup *oom_domain);
864 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
865 
866 #ifdef CONFIG_MEMCG_SWAP
867 extern bool cgroup_memory_noswap;
868 #endif
869 
870 struct mem_cgroup *lock_page_memcg(struct page *page);
871 void __unlock_page_memcg(struct mem_cgroup *memcg);
872 void unlock_page_memcg(struct page *page);
873 
874 /*
875  * idx can be of type enum memcg_stat_item or node_stat_item.
876  * Keep in sync with memcg_exact_page_state().
877  */
878 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
879 {
880 	long x = atomic_long_read(&memcg->vmstats[idx]);
881 #ifdef CONFIG_SMP
882 	if (x < 0)
883 		x = 0;
884 #endif
885 	return x;
886 }
887 
888 /*
889  * idx can be of type enum memcg_stat_item or node_stat_item.
890  * Keep in sync with memcg_exact_page_state().
891  */
892 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
893 						   int idx)
894 {
895 	long x = 0;
896 	int cpu;
897 
898 	for_each_possible_cpu(cpu)
899 		x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
900 #ifdef CONFIG_SMP
901 	if (x < 0)
902 		x = 0;
903 #endif
904 	return x;
905 }
906 
907 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
908 
909 /* idx can be of type enum memcg_stat_item or node_stat_item */
910 static inline void mod_memcg_state(struct mem_cgroup *memcg,
911 				   int idx, int val)
912 {
913 	unsigned long flags;
914 
915 	local_irq_save(flags);
916 	__mod_memcg_state(memcg, idx, val);
917 	local_irq_restore(flags);
918 }
919 
920 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
921 					      enum node_stat_item idx)
922 {
923 	struct mem_cgroup_per_node *pn;
924 	long x;
925 
926 	if (mem_cgroup_disabled())
927 		return node_page_state(lruvec_pgdat(lruvec), idx);
928 
929 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
930 	x = atomic_long_read(&pn->lruvec_stat[idx]);
931 #ifdef CONFIG_SMP
932 	if (x < 0)
933 		x = 0;
934 #endif
935 	return x;
936 }
937 
938 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
939 						    enum node_stat_item idx)
940 {
941 	struct mem_cgroup_per_node *pn;
942 	long x = 0;
943 	int cpu;
944 
945 	if (mem_cgroup_disabled())
946 		return node_page_state(lruvec_pgdat(lruvec), idx);
947 
948 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
949 	for_each_possible_cpu(cpu)
950 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
951 #ifdef CONFIG_SMP
952 	if (x < 0)
953 		x = 0;
954 #endif
955 	return x;
956 }
957 
958 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
959 			      int val);
960 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
961 
962 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
963 					 int val)
964 {
965 	unsigned long flags;
966 
967 	local_irq_save(flags);
968 	__mod_lruvec_kmem_state(p, idx, val);
969 	local_irq_restore(flags);
970 }
971 
972 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
973 					  enum node_stat_item idx, int val)
974 {
975 	unsigned long flags;
976 
977 	local_irq_save(flags);
978 	__mod_memcg_lruvec_state(lruvec, idx, val);
979 	local_irq_restore(flags);
980 }
981 
982 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
983 						gfp_t gfp_mask,
984 						unsigned long *total_scanned);
985 
986 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
987 			  unsigned long count);
988 
989 static inline void count_memcg_events(struct mem_cgroup *memcg,
990 				      enum vm_event_item idx,
991 				      unsigned long count)
992 {
993 	unsigned long flags;
994 
995 	local_irq_save(flags);
996 	__count_memcg_events(memcg, idx, count);
997 	local_irq_restore(flags);
998 }
999 
1000 static inline void count_memcg_page_event(struct page *page,
1001 					  enum vm_event_item idx)
1002 {
1003 	struct mem_cgroup *memcg = page_memcg(page);
1004 
1005 	if (memcg)
1006 		count_memcg_events(memcg, idx, 1);
1007 }
1008 
1009 static inline void count_memcg_event_mm(struct mm_struct *mm,
1010 					enum vm_event_item idx)
1011 {
1012 	struct mem_cgroup *memcg;
1013 
1014 	if (mem_cgroup_disabled())
1015 		return;
1016 
1017 	rcu_read_lock();
1018 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1019 	if (likely(memcg))
1020 		count_memcg_events(memcg, idx, 1);
1021 	rcu_read_unlock();
1022 }
1023 
1024 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1025 				      enum memcg_memory_event event)
1026 {
1027 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1028 			  event == MEMCG_SWAP_FAIL;
1029 
1030 	atomic_long_inc(&memcg->memory_events_local[event]);
1031 	if (!swap_event)
1032 		cgroup_file_notify(&memcg->events_local_file);
1033 
1034 	do {
1035 		atomic_long_inc(&memcg->memory_events[event]);
1036 		if (swap_event)
1037 			cgroup_file_notify(&memcg->swap_events_file);
1038 		else
1039 			cgroup_file_notify(&memcg->events_file);
1040 
1041 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1042 			break;
1043 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1044 			break;
1045 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1046 		 !mem_cgroup_is_root(memcg));
1047 }
1048 
1049 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1050 					 enum memcg_memory_event event)
1051 {
1052 	struct mem_cgroup *memcg;
1053 
1054 	if (mem_cgroup_disabled())
1055 		return;
1056 
1057 	rcu_read_lock();
1058 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1059 	if (likely(memcg))
1060 		memcg_memory_event(memcg, event);
1061 	rcu_read_unlock();
1062 }
1063 
1064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1065 void mem_cgroup_split_huge_fixup(struct page *head);
1066 #endif
1067 
1068 #else /* CONFIG_MEMCG */
1069 
1070 #define MEM_CGROUP_ID_SHIFT	0
1071 #define MEM_CGROUP_ID_MAX	0
1072 
1073 struct mem_cgroup;
1074 
1075 static inline struct mem_cgroup *page_memcg(struct page *page)
1076 {
1077 	return NULL;
1078 }
1079 
1080 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1081 {
1082 	WARN_ON_ONCE(!rcu_read_lock_held());
1083 	return NULL;
1084 }
1085 
1086 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1087 {
1088 	return NULL;
1089 }
1090 
1091 static inline bool PageMemcgKmem(struct page *page)
1092 {
1093 	return false;
1094 }
1095 
1096 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1097 {
1098 	return true;
1099 }
1100 
1101 static inline bool mem_cgroup_disabled(void)
1102 {
1103 	return true;
1104 }
1105 
1106 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1107 				      enum memcg_memory_event event)
1108 {
1109 }
1110 
1111 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1112 					 enum memcg_memory_event event)
1113 {
1114 }
1115 
1116 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1117 						  struct mem_cgroup *memcg,
1118 						  bool in_low_reclaim)
1119 {
1120 	return 0;
1121 }
1122 
1123 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1124 						   struct mem_cgroup *memcg)
1125 {
1126 }
1127 
1128 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1129 {
1130 	return false;
1131 }
1132 
1133 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1134 {
1135 	return false;
1136 }
1137 
1138 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1139 				    gfp_t gfp_mask)
1140 {
1141 	return 0;
1142 }
1143 
1144 static inline void mem_cgroup_uncharge(struct page *page)
1145 {
1146 }
1147 
1148 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1149 {
1150 }
1151 
1152 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1153 {
1154 }
1155 
1156 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1157 					       struct pglist_data *pgdat)
1158 {
1159 	return &pgdat->__lruvec;
1160 }
1161 
1162 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1163 						    struct pglist_data *pgdat)
1164 {
1165 	return &pgdat->__lruvec;
1166 }
1167 
1168 static inline bool lruvec_holds_page_lru_lock(struct page *page,
1169 					      struct lruvec *lruvec)
1170 {
1171 	pg_data_t *pgdat = page_pgdat(page);
1172 
1173 	return lruvec == &pgdat->__lruvec;
1174 }
1175 
1176 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1177 {
1178 	return NULL;
1179 }
1180 
1181 static inline bool mm_match_cgroup(struct mm_struct *mm,
1182 		struct mem_cgroup *memcg)
1183 {
1184 	return true;
1185 }
1186 
1187 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1188 {
1189 	return NULL;
1190 }
1191 
1192 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1193 {
1194 }
1195 
1196 static inline struct lruvec *lock_page_lruvec(struct page *page)
1197 {
1198 	struct pglist_data *pgdat = page_pgdat(page);
1199 
1200 	spin_lock(&pgdat->__lruvec.lru_lock);
1201 	return &pgdat->__lruvec;
1202 }
1203 
1204 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1205 {
1206 	struct pglist_data *pgdat = page_pgdat(page);
1207 
1208 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1209 	return &pgdat->__lruvec;
1210 }
1211 
1212 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1213 		unsigned long *flagsp)
1214 {
1215 	struct pglist_data *pgdat = page_pgdat(page);
1216 
1217 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1218 	return &pgdat->__lruvec;
1219 }
1220 
1221 static inline struct mem_cgroup *
1222 mem_cgroup_iter(struct mem_cgroup *root,
1223 		struct mem_cgroup *prev,
1224 		struct mem_cgroup_reclaim_cookie *reclaim)
1225 {
1226 	return NULL;
1227 }
1228 
1229 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1230 					 struct mem_cgroup *prev)
1231 {
1232 }
1233 
1234 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1235 		int (*fn)(struct task_struct *, void *), void *arg)
1236 {
1237 	return 0;
1238 }
1239 
1240 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1241 {
1242 	return 0;
1243 }
1244 
1245 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1246 {
1247 	WARN_ON_ONCE(id);
1248 	/* XXX: This should always return root_mem_cgroup */
1249 	return NULL;
1250 }
1251 
1252 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1253 {
1254 	return NULL;
1255 }
1256 
1257 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1258 {
1259 	return NULL;
1260 }
1261 
1262 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1263 {
1264 	return true;
1265 }
1266 
1267 static inline
1268 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1269 		enum lru_list lru, int zone_idx)
1270 {
1271 	return 0;
1272 }
1273 
1274 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1275 {
1276 	return 0;
1277 }
1278 
1279 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1280 {
1281 	return 0;
1282 }
1283 
1284 static inline void
1285 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1286 {
1287 }
1288 
1289 static inline void
1290 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1291 {
1292 }
1293 
1294 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1295 {
1296 	return NULL;
1297 }
1298 
1299 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1300 {
1301 }
1302 
1303 static inline void unlock_page_memcg(struct page *page)
1304 {
1305 }
1306 
1307 static inline void mem_cgroup_handle_over_high(void)
1308 {
1309 }
1310 
1311 static inline void mem_cgroup_enter_user_fault(void)
1312 {
1313 }
1314 
1315 static inline void mem_cgroup_exit_user_fault(void)
1316 {
1317 }
1318 
1319 static inline bool task_in_memcg_oom(struct task_struct *p)
1320 {
1321 	return false;
1322 }
1323 
1324 static inline bool mem_cgroup_oom_synchronize(bool wait)
1325 {
1326 	return false;
1327 }
1328 
1329 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1330 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1331 {
1332 	return NULL;
1333 }
1334 
1335 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1336 {
1337 }
1338 
1339 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1340 {
1341 	return 0;
1342 }
1343 
1344 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1345 						   int idx)
1346 {
1347 	return 0;
1348 }
1349 
1350 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1351 				     int idx,
1352 				     int nr)
1353 {
1354 }
1355 
1356 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1357 				   int idx,
1358 				   int nr)
1359 {
1360 }
1361 
1362 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1363 					      enum node_stat_item idx)
1364 {
1365 	return node_page_state(lruvec_pgdat(lruvec), idx);
1366 }
1367 
1368 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1369 						    enum node_stat_item idx)
1370 {
1371 	return node_page_state(lruvec_pgdat(lruvec), idx);
1372 }
1373 
1374 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1375 					    enum node_stat_item idx, int val)
1376 {
1377 }
1378 
1379 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1380 					   int val)
1381 {
1382 	struct page *page = virt_to_head_page(p);
1383 
1384 	__mod_node_page_state(page_pgdat(page), idx, val);
1385 }
1386 
1387 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1388 					 int val)
1389 {
1390 	struct page *page = virt_to_head_page(p);
1391 
1392 	mod_node_page_state(page_pgdat(page), idx, val);
1393 }
1394 
1395 static inline
1396 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1397 					    gfp_t gfp_mask,
1398 					    unsigned long *total_scanned)
1399 {
1400 	return 0;
1401 }
1402 
1403 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1404 {
1405 }
1406 
1407 static inline void count_memcg_events(struct mem_cgroup *memcg,
1408 				      enum vm_event_item idx,
1409 				      unsigned long count)
1410 {
1411 }
1412 
1413 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1414 					enum vm_event_item idx,
1415 					unsigned long count)
1416 {
1417 }
1418 
1419 static inline void count_memcg_page_event(struct page *page,
1420 					  int idx)
1421 {
1422 }
1423 
1424 static inline
1425 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1426 {
1427 }
1428 
1429 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1430 {
1431 }
1432 #endif /* CONFIG_MEMCG */
1433 
1434 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1435 {
1436 	__mod_lruvec_kmem_state(p, idx, 1);
1437 }
1438 
1439 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1440 {
1441 	__mod_lruvec_kmem_state(p, idx, -1);
1442 }
1443 
1444 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1445 {
1446 	struct mem_cgroup *memcg;
1447 
1448 	memcg = lruvec_memcg(lruvec);
1449 	if (!memcg)
1450 		return NULL;
1451 	memcg = parent_mem_cgroup(memcg);
1452 	if (!memcg)
1453 		return NULL;
1454 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1455 }
1456 
1457 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1458 {
1459 	spin_unlock(&lruvec->lru_lock);
1460 }
1461 
1462 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1463 {
1464 	spin_unlock_irq(&lruvec->lru_lock);
1465 }
1466 
1467 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1468 		unsigned long flags)
1469 {
1470 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1471 }
1472 
1473 /* Don't lock again iff page's lruvec locked */
1474 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1475 		struct lruvec *locked_lruvec)
1476 {
1477 	if (locked_lruvec) {
1478 		if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1479 			return locked_lruvec;
1480 
1481 		unlock_page_lruvec_irq(locked_lruvec);
1482 	}
1483 
1484 	return lock_page_lruvec_irq(page);
1485 }
1486 
1487 /* Don't lock again iff page's lruvec locked */
1488 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1489 		struct lruvec *locked_lruvec, unsigned long *flags)
1490 {
1491 	if (locked_lruvec) {
1492 		if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1493 			return locked_lruvec;
1494 
1495 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1496 	}
1497 
1498 	return lock_page_lruvec_irqsave(page, flags);
1499 }
1500 
1501 #ifdef CONFIG_CGROUP_WRITEBACK
1502 
1503 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1504 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1505 			 unsigned long *pheadroom, unsigned long *pdirty,
1506 			 unsigned long *pwriteback);
1507 
1508 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1509 					     struct bdi_writeback *wb);
1510 
1511 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1512 						  struct bdi_writeback *wb)
1513 {
1514 	if (mem_cgroup_disabled())
1515 		return;
1516 
1517 	if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1518 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1519 }
1520 
1521 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1522 
1523 #else	/* CONFIG_CGROUP_WRITEBACK */
1524 
1525 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1526 {
1527 	return NULL;
1528 }
1529 
1530 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1531 				       unsigned long *pfilepages,
1532 				       unsigned long *pheadroom,
1533 				       unsigned long *pdirty,
1534 				       unsigned long *pwriteback)
1535 {
1536 }
1537 
1538 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1539 						  struct bdi_writeback *wb)
1540 {
1541 }
1542 
1543 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1544 {
1545 }
1546 
1547 #endif	/* CONFIG_CGROUP_WRITEBACK */
1548 
1549 struct sock;
1550 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1551 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1552 #ifdef CONFIG_MEMCG
1553 extern struct static_key_false memcg_sockets_enabled_key;
1554 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1555 void mem_cgroup_sk_alloc(struct sock *sk);
1556 void mem_cgroup_sk_free(struct sock *sk);
1557 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1558 {
1559 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1560 		return true;
1561 	do {
1562 		if (time_before(jiffies, memcg->socket_pressure))
1563 			return true;
1564 	} while ((memcg = parent_mem_cgroup(memcg)));
1565 	return false;
1566 }
1567 
1568 extern int memcg_expand_shrinker_maps(int new_id);
1569 
1570 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1571 				   int nid, int shrinker_id);
1572 #else
1573 #define mem_cgroup_sockets_enabled 0
1574 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1575 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1576 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1577 {
1578 	return false;
1579 }
1580 
1581 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1582 					  int nid, int shrinker_id)
1583 {
1584 }
1585 #endif
1586 
1587 #ifdef CONFIG_MEMCG_KMEM
1588 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1589 void __memcg_kmem_uncharge_page(struct page *page, int order);
1590 
1591 struct obj_cgroup *get_obj_cgroup_from_current(void);
1592 
1593 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1594 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1595 
1596 extern struct static_key_false memcg_kmem_enabled_key;
1597 
1598 extern int memcg_nr_cache_ids;
1599 void memcg_get_cache_ids(void);
1600 void memcg_put_cache_ids(void);
1601 
1602 /*
1603  * Helper macro to loop through all memcg-specific caches. Callers must still
1604  * check if the cache is valid (it is either valid or NULL).
1605  * the slab_mutex must be held when looping through those caches
1606  */
1607 #define for_each_memcg_cache_index(_idx)	\
1608 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1609 
1610 static inline bool memcg_kmem_enabled(void)
1611 {
1612 	return static_branch_likely(&memcg_kmem_enabled_key);
1613 }
1614 
1615 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1616 					 int order)
1617 {
1618 	if (memcg_kmem_enabled())
1619 		return __memcg_kmem_charge_page(page, gfp, order);
1620 	return 0;
1621 }
1622 
1623 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1624 {
1625 	if (memcg_kmem_enabled())
1626 		__memcg_kmem_uncharge_page(page, order);
1627 }
1628 
1629 /*
1630  * A helper for accessing memcg's kmem_id, used for getting
1631  * corresponding LRU lists.
1632  */
1633 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1634 {
1635 	return memcg ? memcg->kmemcg_id : -1;
1636 }
1637 
1638 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1639 
1640 #else
1641 
1642 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1643 					 int order)
1644 {
1645 	return 0;
1646 }
1647 
1648 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1649 {
1650 }
1651 
1652 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1653 					   int order)
1654 {
1655 	return 0;
1656 }
1657 
1658 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1659 {
1660 }
1661 
1662 #define for_each_memcg_cache_index(_idx)	\
1663 	for (; NULL; )
1664 
1665 static inline bool memcg_kmem_enabled(void)
1666 {
1667 	return false;
1668 }
1669 
1670 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1671 {
1672 	return -1;
1673 }
1674 
1675 static inline void memcg_get_cache_ids(void)
1676 {
1677 }
1678 
1679 static inline void memcg_put_cache_ids(void)
1680 {
1681 }
1682 
1683 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1684 {
1685        return NULL;
1686 }
1687 
1688 #endif /* CONFIG_MEMCG_KMEM */
1689 
1690 #endif /* _LINUX_MEMCONTROL_H */
1691