1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct obj_cgroup; 27 struct page; 28 struct mm_struct; 29 struct kmem_cache; 30 31 /* Cgroup-specific page state, on top of universal node page state */ 32 enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37 }; 38 39 enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49 }; 50 51 struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 58 #define MEM_CGROUP_ID_SHIFT 16 59 #define MEM_CGROUP_ID_MAX USHRT_MAX 60 61 struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64 }; 65 66 /* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72 enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76 }; 77 78 struct memcg_vmstats_percpu { 79 long stat[MEMCG_NR_STAT]; 80 unsigned long events[NR_VM_EVENT_ITEMS]; 81 unsigned long nr_page_events; 82 unsigned long targets[MEM_CGROUP_NTARGETS]; 83 }; 84 85 struct mem_cgroup_reclaim_iter { 86 struct mem_cgroup *position; 87 /* scan generation, increased every round-trip */ 88 unsigned int generation; 89 }; 90 91 struct lruvec_stat { 92 long count[NR_VM_NODE_STAT_ITEMS]; 93 }; 94 95 struct batched_lruvec_stat { 96 s32 count[NR_VM_NODE_STAT_ITEMS]; 97 }; 98 99 /* 100 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 101 * which have elements charged to this memcg. 102 */ 103 struct memcg_shrinker_map { 104 struct rcu_head rcu; 105 unsigned long map[]; 106 }; 107 108 /* 109 * per-node information in memory controller. 110 */ 111 struct mem_cgroup_per_node { 112 struct lruvec lruvec; 113 114 /* 115 * Legacy local VM stats. This should be struct lruvec_stat and 116 * cannot be optimized to struct batched_lruvec_stat. Because 117 * the threshold of the lruvec_stat_cpu can be as big as 118 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this 119 * filed has no upper limit. 120 */ 121 struct lruvec_stat __percpu *lruvec_stat_local; 122 123 /* Subtree VM stats (batched updates) */ 124 struct batched_lruvec_stat __percpu *lruvec_stat_cpu; 125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter; 130 131 struct memcg_shrinker_map __rcu *shrinker_map; 132 133 struct rb_node tree_node; /* RB tree node */ 134 unsigned long usage_in_excess;/* Set to the value by which */ 135 /* the soft limit is exceeded*/ 136 bool on_tree; 137 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 138 /* use container_of */ 139 }; 140 141 struct mem_cgroup_threshold { 142 struct eventfd_ctx *eventfd; 143 unsigned long threshold; 144 }; 145 146 /* For threshold */ 147 struct mem_cgroup_threshold_ary { 148 /* An array index points to threshold just below or equal to usage. */ 149 int current_threshold; 150 /* Size of entries[] */ 151 unsigned int size; 152 /* Array of thresholds */ 153 struct mem_cgroup_threshold entries[]; 154 }; 155 156 struct mem_cgroup_thresholds { 157 /* Primary thresholds array */ 158 struct mem_cgroup_threshold_ary *primary; 159 /* 160 * Spare threshold array. 161 * This is needed to make mem_cgroup_unregister_event() "never fail". 162 * It must be able to store at least primary->size - 1 entries. 163 */ 164 struct mem_cgroup_threshold_ary *spare; 165 }; 166 167 enum memcg_kmem_state { 168 KMEM_NONE, 169 KMEM_ALLOCATED, 170 KMEM_ONLINE, 171 }; 172 173 #if defined(CONFIG_SMP) 174 struct memcg_padding { 175 char x[0]; 176 } ____cacheline_internodealigned_in_smp; 177 #define MEMCG_PADDING(name) struct memcg_padding name; 178 #else 179 #define MEMCG_PADDING(name) 180 #endif 181 182 /* 183 * Remember four most recent foreign writebacks with dirty pages in this 184 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 185 * one in a given round, we're likely to catch it later if it keeps 186 * foreign-dirtying, so a fairly low count should be enough. 187 * 188 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 189 */ 190 #define MEMCG_CGWB_FRN_CNT 4 191 192 struct memcg_cgwb_frn { 193 u64 bdi_id; /* bdi->id of the foreign inode */ 194 int memcg_id; /* memcg->css.id of foreign inode */ 195 u64 at; /* jiffies_64 at the time of dirtying */ 196 struct wb_completion done; /* tracks in-flight foreign writebacks */ 197 }; 198 199 /* 200 * Bucket for arbitrarily byte-sized objects charged to a memory 201 * cgroup. The bucket can be reparented in one piece when the cgroup 202 * is destroyed, without having to round up the individual references 203 * of all live memory objects in the wild. 204 */ 205 struct obj_cgroup { 206 struct percpu_ref refcnt; 207 struct mem_cgroup *memcg; 208 atomic_t nr_charged_bytes; 209 union { 210 struct list_head list; 211 struct rcu_head rcu; 212 }; 213 }; 214 215 /* 216 * The memory controller data structure. The memory controller controls both 217 * page cache and RSS per cgroup. We would eventually like to provide 218 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 219 * to help the administrator determine what knobs to tune. 220 */ 221 struct mem_cgroup { 222 struct cgroup_subsys_state css; 223 224 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 225 struct mem_cgroup_id id; 226 227 /* Accounted resources */ 228 struct page_counter memory; /* Both v1 & v2 */ 229 230 union { 231 struct page_counter swap; /* v2 only */ 232 struct page_counter memsw; /* v1 only */ 233 }; 234 235 /* Legacy consumer-oriented counters */ 236 struct page_counter kmem; /* v1 only */ 237 struct page_counter tcpmem; /* v1 only */ 238 239 /* Range enforcement for interrupt charges */ 240 struct work_struct high_work; 241 242 unsigned long soft_limit; 243 244 /* vmpressure notifications */ 245 struct vmpressure vmpressure; 246 247 /* 248 * Should the OOM killer kill all belonging tasks, had it kill one? 249 */ 250 bool oom_group; 251 252 /* protected by memcg_oom_lock */ 253 bool oom_lock; 254 int under_oom; 255 256 int swappiness; 257 /* OOM-Killer disable */ 258 int oom_kill_disable; 259 260 /* memory.events and memory.events.local */ 261 struct cgroup_file events_file; 262 struct cgroup_file events_local_file; 263 264 /* handle for "memory.swap.events" */ 265 struct cgroup_file swap_events_file; 266 267 /* protect arrays of thresholds */ 268 struct mutex thresholds_lock; 269 270 /* thresholds for memory usage. RCU-protected */ 271 struct mem_cgroup_thresholds thresholds; 272 273 /* thresholds for mem+swap usage. RCU-protected */ 274 struct mem_cgroup_thresholds memsw_thresholds; 275 276 /* For oom notifier event fd */ 277 struct list_head oom_notify; 278 279 /* 280 * Should we move charges of a task when a task is moved into this 281 * mem_cgroup ? And what type of charges should we move ? 282 */ 283 unsigned long move_charge_at_immigrate; 284 /* taken only while moving_account > 0 */ 285 spinlock_t move_lock; 286 unsigned long move_lock_flags; 287 288 MEMCG_PADDING(_pad1_); 289 290 atomic_long_t vmstats[MEMCG_NR_STAT]; 291 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 292 293 /* memory.events */ 294 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 295 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 296 297 unsigned long socket_pressure; 298 299 /* Legacy tcp memory accounting */ 300 bool tcpmem_active; 301 int tcpmem_pressure; 302 303 #ifdef CONFIG_MEMCG_KMEM 304 int kmemcg_id; 305 enum memcg_kmem_state kmem_state; 306 struct obj_cgroup __rcu *objcg; 307 struct list_head objcg_list; /* list of inherited objcgs */ 308 #endif 309 310 MEMCG_PADDING(_pad2_); 311 312 /* 313 * set > 0 if pages under this cgroup are moving to other cgroup. 314 */ 315 atomic_t moving_account; 316 struct task_struct *move_lock_task; 317 318 /* Legacy local VM stats and events */ 319 struct memcg_vmstats_percpu __percpu *vmstats_local; 320 321 /* Subtree VM stats and events (batched updates) */ 322 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 323 324 #ifdef CONFIG_CGROUP_WRITEBACK 325 struct list_head cgwb_list; 326 struct wb_domain cgwb_domain; 327 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 328 #endif 329 330 /* List of events which userspace want to receive */ 331 struct list_head event_list; 332 spinlock_t event_list_lock; 333 334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 struct deferred_split deferred_split_queue; 336 #endif 337 338 struct mem_cgroup_per_node *nodeinfo[0]; 339 /* WARNING: nodeinfo must be the last member here */ 340 }; 341 342 /* 343 * size of first charge trial. "32" comes from vmscan.c's magic value. 344 * TODO: maybe necessary to use big numbers in big irons. 345 */ 346 #define MEMCG_CHARGE_BATCH 32U 347 348 extern struct mem_cgroup *root_mem_cgroup; 349 350 enum page_memcg_data_flags { 351 /* page->memcg_data is a pointer to an objcgs vector */ 352 MEMCG_DATA_OBJCGS = (1UL << 0), 353 /* page has been accounted as a non-slab kernel page */ 354 MEMCG_DATA_KMEM = (1UL << 1), 355 /* the next bit after the last actual flag */ 356 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 357 }; 358 359 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 360 361 /* 362 * page_memcg - get the memory cgroup associated with a page 363 * @page: a pointer to the page struct 364 * 365 * Returns a pointer to the memory cgroup associated with the page, 366 * or NULL. This function assumes that the page is known to have a 367 * proper memory cgroup pointer. It's not safe to call this function 368 * against some type of pages, e.g. slab pages or ex-slab pages. 369 * 370 * Any of the following ensures page and memcg binding stability: 371 * - the page lock 372 * - LRU isolation 373 * - lock_page_memcg() 374 * - exclusive reference 375 */ 376 static inline struct mem_cgroup *page_memcg(struct page *page) 377 { 378 unsigned long memcg_data = page->memcg_data; 379 380 VM_BUG_ON_PAGE(PageSlab(page), page); 381 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 382 383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 384 } 385 386 /* 387 * page_memcg_rcu - locklessly get the memory cgroup associated with a page 388 * @page: a pointer to the page struct 389 * 390 * Returns a pointer to the memory cgroup associated with the page, 391 * or NULL. This function assumes that the page is known to have a 392 * proper memory cgroup pointer. It's not safe to call this function 393 * against some type of pages, e.g. slab pages or ex-slab pages. 394 */ 395 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 396 { 397 VM_BUG_ON_PAGE(PageSlab(page), page); 398 WARN_ON_ONCE(!rcu_read_lock_held()); 399 400 return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) & 401 ~MEMCG_DATA_FLAGS_MASK); 402 } 403 404 /* 405 * page_memcg_check - get the memory cgroup associated with a page 406 * @page: a pointer to the page struct 407 * 408 * Returns a pointer to the memory cgroup associated with the page, 409 * or NULL. This function unlike page_memcg() can take any page 410 * as an argument. It has to be used in cases when it's not known if a page 411 * has an associated memory cgroup pointer or an object cgroups vector. 412 * 413 * Any of the following ensures page and memcg binding stability: 414 * - the page lock 415 * - LRU isolation 416 * - lock_page_memcg() 417 * - exclusive reference 418 */ 419 static inline struct mem_cgroup *page_memcg_check(struct page *page) 420 { 421 /* 422 * Because page->memcg_data might be changed asynchronously 423 * for slab pages, READ_ONCE() should be used here. 424 */ 425 unsigned long memcg_data = READ_ONCE(page->memcg_data); 426 427 if (memcg_data & MEMCG_DATA_OBJCGS) 428 return NULL; 429 430 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 431 } 432 433 /* 434 * PageMemcgKmem - check if the page has MemcgKmem flag set 435 * @page: a pointer to the page struct 436 * 437 * Checks if the page has MemcgKmem flag set. The caller must ensure that 438 * the page has an associated memory cgroup. It's not safe to call this function 439 * against some types of pages, e.g. slab pages. 440 */ 441 static inline bool PageMemcgKmem(struct page *page) 442 { 443 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page); 444 return page->memcg_data & MEMCG_DATA_KMEM; 445 } 446 447 #ifdef CONFIG_MEMCG_KMEM 448 /* 449 * page_objcgs - get the object cgroups vector associated with a page 450 * @page: a pointer to the page struct 451 * 452 * Returns a pointer to the object cgroups vector associated with the page, 453 * or NULL. This function assumes that the page is known to have an 454 * associated object cgroups vector. It's not safe to call this function 455 * against pages, which might have an associated memory cgroup: e.g. 456 * kernel stack pages. 457 */ 458 static inline struct obj_cgroup **page_objcgs(struct page *page) 459 { 460 unsigned long memcg_data = READ_ONCE(page->memcg_data); 461 462 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page); 463 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 464 465 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 466 } 467 468 /* 469 * page_objcgs_check - get the object cgroups vector associated with a page 470 * @page: a pointer to the page struct 471 * 472 * Returns a pointer to the object cgroups vector associated with the page, 473 * or NULL. This function is safe to use if the page can be directly associated 474 * with a memory cgroup. 475 */ 476 static inline struct obj_cgroup **page_objcgs_check(struct page *page) 477 { 478 unsigned long memcg_data = READ_ONCE(page->memcg_data); 479 480 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS)) 481 return NULL; 482 483 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 484 485 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 486 } 487 488 #else 489 static inline struct obj_cgroup **page_objcgs(struct page *page) 490 { 491 return NULL; 492 } 493 494 static inline struct obj_cgroup **page_objcgs_check(struct page *page) 495 { 496 return NULL; 497 } 498 #endif 499 500 static __always_inline bool memcg_stat_item_in_bytes(int idx) 501 { 502 if (idx == MEMCG_PERCPU_B) 503 return true; 504 return vmstat_item_in_bytes(idx); 505 } 506 507 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 508 { 509 return (memcg == root_mem_cgroup); 510 } 511 512 static inline bool mem_cgroup_disabled(void) 513 { 514 return !cgroup_subsys_enabled(memory_cgrp_subsys); 515 } 516 517 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 518 struct mem_cgroup *memcg, 519 bool in_low_reclaim) 520 { 521 if (mem_cgroup_disabled()) 522 return 0; 523 524 /* 525 * There is no reclaim protection applied to a targeted reclaim. 526 * We are special casing this specific case here because 527 * mem_cgroup_protected calculation is not robust enough to keep 528 * the protection invariant for calculated effective values for 529 * parallel reclaimers with different reclaim target. This is 530 * especially a problem for tail memcgs (as they have pages on LRU) 531 * which would want to have effective values 0 for targeted reclaim 532 * but a different value for external reclaim. 533 * 534 * Example 535 * Let's have global and A's reclaim in parallel: 536 * | 537 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 538 * |\ 539 * | C (low = 1G, usage = 2.5G) 540 * B (low = 1G, usage = 0.5G) 541 * 542 * For the global reclaim 543 * A.elow = A.low 544 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 545 * C.elow = min(C.usage, C.low) 546 * 547 * With the effective values resetting we have A reclaim 548 * A.elow = 0 549 * B.elow = B.low 550 * C.elow = C.low 551 * 552 * If the global reclaim races with A's reclaim then 553 * B.elow = C.elow = 0 because children_low_usage > A.elow) 554 * is possible and reclaiming B would be violating the protection. 555 * 556 */ 557 if (root == memcg) 558 return 0; 559 560 if (in_low_reclaim) 561 return READ_ONCE(memcg->memory.emin); 562 563 return max(READ_ONCE(memcg->memory.emin), 564 READ_ONCE(memcg->memory.elow)); 565 } 566 567 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 568 struct mem_cgroup *memcg); 569 570 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 571 { 572 /* 573 * The root memcg doesn't account charges, and doesn't support 574 * protection. 575 */ 576 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 577 578 } 579 580 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 581 { 582 if (!mem_cgroup_supports_protection(memcg)) 583 return false; 584 585 return READ_ONCE(memcg->memory.elow) >= 586 page_counter_read(&memcg->memory); 587 } 588 589 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 590 { 591 if (!mem_cgroup_supports_protection(memcg)) 592 return false; 593 594 return READ_ONCE(memcg->memory.emin) >= 595 page_counter_read(&memcg->memory); 596 } 597 598 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 599 600 void mem_cgroup_uncharge(struct page *page); 601 void mem_cgroup_uncharge_list(struct list_head *page_list); 602 603 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 604 605 static struct mem_cgroup_per_node * 606 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 607 { 608 return memcg->nodeinfo[nid]; 609 } 610 611 /** 612 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 613 * @memcg: memcg of the wanted lruvec 614 * @pgdat: pglist_data 615 * 616 * Returns the lru list vector holding pages for a given @memcg & 617 * @pgdat combination. This can be the node lruvec, if the memory 618 * controller is disabled. 619 */ 620 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 621 struct pglist_data *pgdat) 622 { 623 struct mem_cgroup_per_node *mz; 624 struct lruvec *lruvec; 625 626 if (mem_cgroup_disabled()) { 627 lruvec = &pgdat->__lruvec; 628 goto out; 629 } 630 631 if (!memcg) 632 memcg = root_mem_cgroup; 633 634 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 635 lruvec = &mz->lruvec; 636 out: 637 /* 638 * Since a node can be onlined after the mem_cgroup was created, 639 * we have to be prepared to initialize lruvec->pgdat here; 640 * and if offlined then reonlined, we need to reinitialize it. 641 */ 642 if (unlikely(lruvec->pgdat != pgdat)) 643 lruvec->pgdat = pgdat; 644 return lruvec; 645 } 646 647 /** 648 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 649 * @page: the page 650 * @pgdat: pgdat of the page 651 * 652 * This function relies on page->mem_cgroup being stable. 653 */ 654 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 655 struct pglist_data *pgdat) 656 { 657 struct mem_cgroup *memcg = page_memcg(page); 658 659 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page); 660 return mem_cgroup_lruvec(memcg, pgdat); 661 } 662 663 static inline bool lruvec_holds_page_lru_lock(struct page *page, 664 struct lruvec *lruvec) 665 { 666 pg_data_t *pgdat = page_pgdat(page); 667 const struct mem_cgroup *memcg; 668 struct mem_cgroup_per_node *mz; 669 670 if (mem_cgroup_disabled()) 671 return lruvec == &pgdat->__lruvec; 672 673 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 674 memcg = page_memcg(page) ? : root_mem_cgroup; 675 676 return lruvec->pgdat == pgdat && mz->memcg == memcg; 677 } 678 679 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 680 681 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 682 683 struct lruvec *lock_page_lruvec(struct page *page); 684 struct lruvec *lock_page_lruvec_irq(struct page *page); 685 struct lruvec *lock_page_lruvec_irqsave(struct page *page, 686 unsigned long *flags); 687 688 #ifdef CONFIG_DEBUG_VM 689 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page); 690 #else 691 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 692 { 693 } 694 #endif 695 696 static inline 697 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 698 return css ? container_of(css, struct mem_cgroup, css) : NULL; 699 } 700 701 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 702 { 703 return percpu_ref_tryget(&objcg->refcnt); 704 } 705 706 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 707 { 708 percpu_ref_get(&objcg->refcnt); 709 } 710 711 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 712 { 713 percpu_ref_put(&objcg->refcnt); 714 } 715 716 /* 717 * After the initialization objcg->memcg is always pointing at 718 * a valid memcg, but can be atomically swapped to the parent memcg. 719 * 720 * The caller must ensure that the returned memcg won't be released: 721 * e.g. acquire the rcu_read_lock or css_set_lock. 722 */ 723 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 724 { 725 return READ_ONCE(objcg->memcg); 726 } 727 728 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 729 { 730 if (memcg) 731 css_put(&memcg->css); 732 } 733 734 #define mem_cgroup_from_counter(counter, member) \ 735 container_of(counter, struct mem_cgroup, member) 736 737 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 738 struct mem_cgroup *, 739 struct mem_cgroup_reclaim_cookie *); 740 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 741 int mem_cgroup_scan_tasks(struct mem_cgroup *, 742 int (*)(struct task_struct *, void *), void *); 743 744 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 745 { 746 if (mem_cgroup_disabled()) 747 return 0; 748 749 return memcg->id.id; 750 } 751 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 752 753 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 754 { 755 return mem_cgroup_from_css(seq_css(m)); 756 } 757 758 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 759 { 760 struct mem_cgroup_per_node *mz; 761 762 if (mem_cgroup_disabled()) 763 return NULL; 764 765 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 766 return mz->memcg; 767 } 768 769 /** 770 * parent_mem_cgroup - find the accounting parent of a memcg 771 * @memcg: memcg whose parent to find 772 * 773 * Returns the parent memcg, or NULL if this is the root or the memory 774 * controller is in legacy no-hierarchy mode. 775 */ 776 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 777 { 778 if (!memcg->memory.parent) 779 return NULL; 780 return mem_cgroup_from_counter(memcg->memory.parent, memory); 781 } 782 783 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 784 struct mem_cgroup *root) 785 { 786 if (root == memcg) 787 return true; 788 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 789 } 790 791 static inline bool mm_match_cgroup(struct mm_struct *mm, 792 struct mem_cgroup *memcg) 793 { 794 struct mem_cgroup *task_memcg; 795 bool match = false; 796 797 rcu_read_lock(); 798 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 799 if (task_memcg) 800 match = mem_cgroup_is_descendant(task_memcg, memcg); 801 rcu_read_unlock(); 802 return match; 803 } 804 805 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 806 ino_t page_cgroup_ino(struct page *page); 807 808 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 809 { 810 if (mem_cgroup_disabled()) 811 return true; 812 return !!(memcg->css.flags & CSS_ONLINE); 813 } 814 815 /* 816 * For memory reclaim. 817 */ 818 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 819 820 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 821 int zid, int nr_pages); 822 823 static inline 824 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 825 enum lru_list lru, int zone_idx) 826 { 827 struct mem_cgroup_per_node *mz; 828 829 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 830 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 831 } 832 833 void mem_cgroup_handle_over_high(void); 834 835 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 836 837 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 838 839 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 840 struct task_struct *p); 841 842 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 843 844 static inline void mem_cgroup_enter_user_fault(void) 845 { 846 WARN_ON(current->in_user_fault); 847 current->in_user_fault = 1; 848 } 849 850 static inline void mem_cgroup_exit_user_fault(void) 851 { 852 WARN_ON(!current->in_user_fault); 853 current->in_user_fault = 0; 854 } 855 856 static inline bool task_in_memcg_oom(struct task_struct *p) 857 { 858 return p->memcg_in_oom; 859 } 860 861 bool mem_cgroup_oom_synchronize(bool wait); 862 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 863 struct mem_cgroup *oom_domain); 864 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 865 866 #ifdef CONFIG_MEMCG_SWAP 867 extern bool cgroup_memory_noswap; 868 #endif 869 870 struct mem_cgroup *lock_page_memcg(struct page *page); 871 void __unlock_page_memcg(struct mem_cgroup *memcg); 872 void unlock_page_memcg(struct page *page); 873 874 /* 875 * idx can be of type enum memcg_stat_item or node_stat_item. 876 * Keep in sync with memcg_exact_page_state(). 877 */ 878 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 879 { 880 long x = atomic_long_read(&memcg->vmstats[idx]); 881 #ifdef CONFIG_SMP 882 if (x < 0) 883 x = 0; 884 #endif 885 return x; 886 } 887 888 /* 889 * idx can be of type enum memcg_stat_item or node_stat_item. 890 * Keep in sync with memcg_exact_page_state(). 891 */ 892 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 893 int idx) 894 { 895 long x = 0; 896 int cpu; 897 898 for_each_possible_cpu(cpu) 899 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 900 #ifdef CONFIG_SMP 901 if (x < 0) 902 x = 0; 903 #endif 904 return x; 905 } 906 907 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 908 909 /* idx can be of type enum memcg_stat_item or node_stat_item */ 910 static inline void mod_memcg_state(struct mem_cgroup *memcg, 911 int idx, int val) 912 { 913 unsigned long flags; 914 915 local_irq_save(flags); 916 __mod_memcg_state(memcg, idx, val); 917 local_irq_restore(flags); 918 } 919 920 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 921 enum node_stat_item idx) 922 { 923 struct mem_cgroup_per_node *pn; 924 long x; 925 926 if (mem_cgroup_disabled()) 927 return node_page_state(lruvec_pgdat(lruvec), idx); 928 929 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 930 x = atomic_long_read(&pn->lruvec_stat[idx]); 931 #ifdef CONFIG_SMP 932 if (x < 0) 933 x = 0; 934 #endif 935 return x; 936 } 937 938 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 939 enum node_stat_item idx) 940 { 941 struct mem_cgroup_per_node *pn; 942 long x = 0; 943 int cpu; 944 945 if (mem_cgroup_disabled()) 946 return node_page_state(lruvec_pgdat(lruvec), idx); 947 948 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 949 for_each_possible_cpu(cpu) 950 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 951 #ifdef CONFIG_SMP 952 if (x < 0) 953 x = 0; 954 #endif 955 return x; 956 } 957 958 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 959 int val); 960 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 961 962 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 963 int val) 964 { 965 unsigned long flags; 966 967 local_irq_save(flags); 968 __mod_lruvec_kmem_state(p, idx, val); 969 local_irq_restore(flags); 970 } 971 972 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 973 enum node_stat_item idx, int val) 974 { 975 unsigned long flags; 976 977 local_irq_save(flags); 978 __mod_memcg_lruvec_state(lruvec, idx, val); 979 local_irq_restore(flags); 980 } 981 982 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 983 gfp_t gfp_mask, 984 unsigned long *total_scanned); 985 986 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 987 unsigned long count); 988 989 static inline void count_memcg_events(struct mem_cgroup *memcg, 990 enum vm_event_item idx, 991 unsigned long count) 992 { 993 unsigned long flags; 994 995 local_irq_save(flags); 996 __count_memcg_events(memcg, idx, count); 997 local_irq_restore(flags); 998 } 999 1000 static inline void count_memcg_page_event(struct page *page, 1001 enum vm_event_item idx) 1002 { 1003 struct mem_cgroup *memcg = page_memcg(page); 1004 1005 if (memcg) 1006 count_memcg_events(memcg, idx, 1); 1007 } 1008 1009 static inline void count_memcg_event_mm(struct mm_struct *mm, 1010 enum vm_event_item idx) 1011 { 1012 struct mem_cgroup *memcg; 1013 1014 if (mem_cgroup_disabled()) 1015 return; 1016 1017 rcu_read_lock(); 1018 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1019 if (likely(memcg)) 1020 count_memcg_events(memcg, idx, 1); 1021 rcu_read_unlock(); 1022 } 1023 1024 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1025 enum memcg_memory_event event) 1026 { 1027 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1028 event == MEMCG_SWAP_FAIL; 1029 1030 atomic_long_inc(&memcg->memory_events_local[event]); 1031 if (!swap_event) 1032 cgroup_file_notify(&memcg->events_local_file); 1033 1034 do { 1035 atomic_long_inc(&memcg->memory_events[event]); 1036 if (swap_event) 1037 cgroup_file_notify(&memcg->swap_events_file); 1038 else 1039 cgroup_file_notify(&memcg->events_file); 1040 1041 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1042 break; 1043 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1044 break; 1045 } while ((memcg = parent_mem_cgroup(memcg)) && 1046 !mem_cgroup_is_root(memcg)); 1047 } 1048 1049 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1050 enum memcg_memory_event event) 1051 { 1052 struct mem_cgroup *memcg; 1053 1054 if (mem_cgroup_disabled()) 1055 return; 1056 1057 rcu_read_lock(); 1058 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1059 if (likely(memcg)) 1060 memcg_memory_event(memcg, event); 1061 rcu_read_unlock(); 1062 } 1063 1064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1065 void mem_cgroup_split_huge_fixup(struct page *head); 1066 #endif 1067 1068 #else /* CONFIG_MEMCG */ 1069 1070 #define MEM_CGROUP_ID_SHIFT 0 1071 #define MEM_CGROUP_ID_MAX 0 1072 1073 struct mem_cgroup; 1074 1075 static inline struct mem_cgroup *page_memcg(struct page *page) 1076 { 1077 return NULL; 1078 } 1079 1080 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1081 { 1082 WARN_ON_ONCE(!rcu_read_lock_held()); 1083 return NULL; 1084 } 1085 1086 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1087 { 1088 return NULL; 1089 } 1090 1091 static inline bool PageMemcgKmem(struct page *page) 1092 { 1093 return false; 1094 } 1095 1096 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1097 { 1098 return true; 1099 } 1100 1101 static inline bool mem_cgroup_disabled(void) 1102 { 1103 return true; 1104 } 1105 1106 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1107 enum memcg_memory_event event) 1108 { 1109 } 1110 1111 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1112 enum memcg_memory_event event) 1113 { 1114 } 1115 1116 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 1117 struct mem_cgroup *memcg, 1118 bool in_low_reclaim) 1119 { 1120 return 0; 1121 } 1122 1123 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1124 struct mem_cgroup *memcg) 1125 { 1126 } 1127 1128 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1129 { 1130 return false; 1131 } 1132 1133 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1134 { 1135 return false; 1136 } 1137 1138 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 1139 gfp_t gfp_mask) 1140 { 1141 return 0; 1142 } 1143 1144 static inline void mem_cgroup_uncharge(struct page *page) 1145 { 1146 } 1147 1148 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1149 { 1150 } 1151 1152 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 1153 { 1154 } 1155 1156 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1157 struct pglist_data *pgdat) 1158 { 1159 return &pgdat->__lruvec; 1160 } 1161 1162 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 1163 struct pglist_data *pgdat) 1164 { 1165 return &pgdat->__lruvec; 1166 } 1167 1168 static inline bool lruvec_holds_page_lru_lock(struct page *page, 1169 struct lruvec *lruvec) 1170 { 1171 pg_data_t *pgdat = page_pgdat(page); 1172 1173 return lruvec == &pgdat->__lruvec; 1174 } 1175 1176 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1177 { 1178 return NULL; 1179 } 1180 1181 static inline bool mm_match_cgroup(struct mm_struct *mm, 1182 struct mem_cgroup *memcg) 1183 { 1184 return true; 1185 } 1186 1187 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1188 { 1189 return NULL; 1190 } 1191 1192 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1193 { 1194 } 1195 1196 static inline struct lruvec *lock_page_lruvec(struct page *page) 1197 { 1198 struct pglist_data *pgdat = page_pgdat(page); 1199 1200 spin_lock(&pgdat->__lruvec.lru_lock); 1201 return &pgdat->__lruvec; 1202 } 1203 1204 static inline struct lruvec *lock_page_lruvec_irq(struct page *page) 1205 { 1206 struct pglist_data *pgdat = page_pgdat(page); 1207 1208 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1209 return &pgdat->__lruvec; 1210 } 1211 1212 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page, 1213 unsigned long *flagsp) 1214 { 1215 struct pglist_data *pgdat = page_pgdat(page); 1216 1217 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1218 return &pgdat->__lruvec; 1219 } 1220 1221 static inline struct mem_cgroup * 1222 mem_cgroup_iter(struct mem_cgroup *root, 1223 struct mem_cgroup *prev, 1224 struct mem_cgroup_reclaim_cookie *reclaim) 1225 { 1226 return NULL; 1227 } 1228 1229 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1230 struct mem_cgroup *prev) 1231 { 1232 } 1233 1234 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1235 int (*fn)(struct task_struct *, void *), void *arg) 1236 { 1237 return 0; 1238 } 1239 1240 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1241 { 1242 return 0; 1243 } 1244 1245 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1246 { 1247 WARN_ON_ONCE(id); 1248 /* XXX: This should always return root_mem_cgroup */ 1249 return NULL; 1250 } 1251 1252 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1253 { 1254 return NULL; 1255 } 1256 1257 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1258 { 1259 return NULL; 1260 } 1261 1262 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1263 { 1264 return true; 1265 } 1266 1267 static inline 1268 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1269 enum lru_list lru, int zone_idx) 1270 { 1271 return 0; 1272 } 1273 1274 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1275 { 1276 return 0; 1277 } 1278 1279 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1280 { 1281 return 0; 1282 } 1283 1284 static inline void 1285 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1286 { 1287 } 1288 1289 static inline void 1290 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1291 { 1292 } 1293 1294 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1295 { 1296 return NULL; 1297 } 1298 1299 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1300 { 1301 } 1302 1303 static inline void unlock_page_memcg(struct page *page) 1304 { 1305 } 1306 1307 static inline void mem_cgroup_handle_over_high(void) 1308 { 1309 } 1310 1311 static inline void mem_cgroup_enter_user_fault(void) 1312 { 1313 } 1314 1315 static inline void mem_cgroup_exit_user_fault(void) 1316 { 1317 } 1318 1319 static inline bool task_in_memcg_oom(struct task_struct *p) 1320 { 1321 return false; 1322 } 1323 1324 static inline bool mem_cgroup_oom_synchronize(bool wait) 1325 { 1326 return false; 1327 } 1328 1329 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1330 struct task_struct *victim, struct mem_cgroup *oom_domain) 1331 { 1332 return NULL; 1333 } 1334 1335 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1336 { 1337 } 1338 1339 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1340 { 1341 return 0; 1342 } 1343 1344 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1345 int idx) 1346 { 1347 return 0; 1348 } 1349 1350 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1351 int idx, 1352 int nr) 1353 { 1354 } 1355 1356 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1357 int idx, 1358 int nr) 1359 { 1360 } 1361 1362 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1363 enum node_stat_item idx) 1364 { 1365 return node_page_state(lruvec_pgdat(lruvec), idx); 1366 } 1367 1368 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1369 enum node_stat_item idx) 1370 { 1371 return node_page_state(lruvec_pgdat(lruvec), idx); 1372 } 1373 1374 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1375 enum node_stat_item idx, int val) 1376 { 1377 } 1378 1379 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1380 int val) 1381 { 1382 struct page *page = virt_to_head_page(p); 1383 1384 __mod_node_page_state(page_pgdat(page), idx, val); 1385 } 1386 1387 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1388 int val) 1389 { 1390 struct page *page = virt_to_head_page(p); 1391 1392 mod_node_page_state(page_pgdat(page), idx, val); 1393 } 1394 1395 static inline 1396 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1397 gfp_t gfp_mask, 1398 unsigned long *total_scanned) 1399 { 1400 return 0; 1401 } 1402 1403 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1404 { 1405 } 1406 1407 static inline void count_memcg_events(struct mem_cgroup *memcg, 1408 enum vm_event_item idx, 1409 unsigned long count) 1410 { 1411 } 1412 1413 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1414 enum vm_event_item idx, 1415 unsigned long count) 1416 { 1417 } 1418 1419 static inline void count_memcg_page_event(struct page *page, 1420 int idx) 1421 { 1422 } 1423 1424 static inline 1425 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1426 { 1427 } 1428 1429 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1430 { 1431 } 1432 #endif /* CONFIG_MEMCG */ 1433 1434 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1435 { 1436 __mod_lruvec_kmem_state(p, idx, 1); 1437 } 1438 1439 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1440 { 1441 __mod_lruvec_kmem_state(p, idx, -1); 1442 } 1443 1444 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1445 { 1446 struct mem_cgroup *memcg; 1447 1448 memcg = lruvec_memcg(lruvec); 1449 if (!memcg) 1450 return NULL; 1451 memcg = parent_mem_cgroup(memcg); 1452 if (!memcg) 1453 return NULL; 1454 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1455 } 1456 1457 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1458 { 1459 spin_unlock(&lruvec->lru_lock); 1460 } 1461 1462 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1463 { 1464 spin_unlock_irq(&lruvec->lru_lock); 1465 } 1466 1467 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1468 unsigned long flags) 1469 { 1470 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1471 } 1472 1473 /* Don't lock again iff page's lruvec locked */ 1474 static inline struct lruvec *relock_page_lruvec_irq(struct page *page, 1475 struct lruvec *locked_lruvec) 1476 { 1477 if (locked_lruvec) { 1478 if (lruvec_holds_page_lru_lock(page, locked_lruvec)) 1479 return locked_lruvec; 1480 1481 unlock_page_lruvec_irq(locked_lruvec); 1482 } 1483 1484 return lock_page_lruvec_irq(page); 1485 } 1486 1487 /* Don't lock again iff page's lruvec locked */ 1488 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page, 1489 struct lruvec *locked_lruvec, unsigned long *flags) 1490 { 1491 if (locked_lruvec) { 1492 if (lruvec_holds_page_lru_lock(page, locked_lruvec)) 1493 return locked_lruvec; 1494 1495 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1496 } 1497 1498 return lock_page_lruvec_irqsave(page, flags); 1499 } 1500 1501 #ifdef CONFIG_CGROUP_WRITEBACK 1502 1503 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1504 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1505 unsigned long *pheadroom, unsigned long *pdirty, 1506 unsigned long *pwriteback); 1507 1508 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1509 struct bdi_writeback *wb); 1510 1511 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1512 struct bdi_writeback *wb) 1513 { 1514 if (mem_cgroup_disabled()) 1515 return; 1516 1517 if (unlikely(&page_memcg(page)->css != wb->memcg_css)) 1518 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1519 } 1520 1521 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1522 1523 #else /* CONFIG_CGROUP_WRITEBACK */ 1524 1525 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1526 { 1527 return NULL; 1528 } 1529 1530 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1531 unsigned long *pfilepages, 1532 unsigned long *pheadroom, 1533 unsigned long *pdirty, 1534 unsigned long *pwriteback) 1535 { 1536 } 1537 1538 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1539 struct bdi_writeback *wb) 1540 { 1541 } 1542 1543 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1544 { 1545 } 1546 1547 #endif /* CONFIG_CGROUP_WRITEBACK */ 1548 1549 struct sock; 1550 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1551 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1552 #ifdef CONFIG_MEMCG 1553 extern struct static_key_false memcg_sockets_enabled_key; 1554 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1555 void mem_cgroup_sk_alloc(struct sock *sk); 1556 void mem_cgroup_sk_free(struct sock *sk); 1557 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1558 { 1559 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1560 return true; 1561 do { 1562 if (time_before(jiffies, memcg->socket_pressure)) 1563 return true; 1564 } while ((memcg = parent_mem_cgroup(memcg))); 1565 return false; 1566 } 1567 1568 extern int memcg_expand_shrinker_maps(int new_id); 1569 1570 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1571 int nid, int shrinker_id); 1572 #else 1573 #define mem_cgroup_sockets_enabled 0 1574 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1575 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1576 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1577 { 1578 return false; 1579 } 1580 1581 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1582 int nid, int shrinker_id) 1583 { 1584 } 1585 #endif 1586 1587 #ifdef CONFIG_MEMCG_KMEM 1588 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1589 void __memcg_kmem_uncharge_page(struct page *page, int order); 1590 1591 struct obj_cgroup *get_obj_cgroup_from_current(void); 1592 1593 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1594 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1595 1596 extern struct static_key_false memcg_kmem_enabled_key; 1597 1598 extern int memcg_nr_cache_ids; 1599 void memcg_get_cache_ids(void); 1600 void memcg_put_cache_ids(void); 1601 1602 /* 1603 * Helper macro to loop through all memcg-specific caches. Callers must still 1604 * check if the cache is valid (it is either valid or NULL). 1605 * the slab_mutex must be held when looping through those caches 1606 */ 1607 #define for_each_memcg_cache_index(_idx) \ 1608 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1609 1610 static inline bool memcg_kmem_enabled(void) 1611 { 1612 return static_branch_likely(&memcg_kmem_enabled_key); 1613 } 1614 1615 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1616 int order) 1617 { 1618 if (memcg_kmem_enabled()) 1619 return __memcg_kmem_charge_page(page, gfp, order); 1620 return 0; 1621 } 1622 1623 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1624 { 1625 if (memcg_kmem_enabled()) 1626 __memcg_kmem_uncharge_page(page, order); 1627 } 1628 1629 /* 1630 * A helper for accessing memcg's kmem_id, used for getting 1631 * corresponding LRU lists. 1632 */ 1633 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1634 { 1635 return memcg ? memcg->kmemcg_id : -1; 1636 } 1637 1638 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1639 1640 #else 1641 1642 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1643 int order) 1644 { 1645 return 0; 1646 } 1647 1648 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1649 { 1650 } 1651 1652 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1653 int order) 1654 { 1655 return 0; 1656 } 1657 1658 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1659 { 1660 } 1661 1662 #define for_each_memcg_cache_index(_idx) \ 1663 for (; NULL; ) 1664 1665 static inline bool memcg_kmem_enabled(void) 1666 { 1667 return false; 1668 } 1669 1670 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1671 { 1672 return -1; 1673 } 1674 1675 static inline void memcg_get_cache_ids(void) 1676 { 1677 } 1678 1679 static inline void memcg_put_cache_ids(void) 1680 { 1681 } 1682 1683 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1684 { 1685 return NULL; 1686 } 1687 1688 #endif /* CONFIG_MEMCG_KMEM */ 1689 1690 #endif /* _LINUX_MEMCONTROL_H */ 1691