1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/kernel.h> 18 #include <linux/page_counter.h> 19 #include <linux/vmpressure.h> 20 #include <linux/eventfd.h> 21 #include <linux/mm.h> 22 #include <linux/vmstat.h> 23 #include <linux/writeback.h> 24 #include <linux/page-flags.h> 25 #include <linux/shrinker.h> 26 27 struct mem_cgroup; 28 struct obj_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Cgroup-specific page state, on top of universal node page state */ 34 enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43 }; 44 45 enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56 }; 57 58 struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 int generation; 61 }; 62 63 #ifdef CONFIG_MEMCG 64 65 #define MEM_CGROUP_ID_SHIFT 16 66 67 struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70 }; 71 72 struct memcg_vmstats_percpu; 73 struct memcg1_events_percpu; 74 struct memcg_vmstats; 75 struct lruvec_stats_percpu; 76 struct lruvec_stats; 77 78 struct mem_cgroup_reclaim_iter { 79 struct mem_cgroup *position; 80 /* scan generation, increased every round-trip */ 81 atomic_t generation; 82 }; 83 84 /* 85 * per-node information in memory controller. 86 */ 87 struct mem_cgroup_per_node { 88 /* Keep the read-only fields at the start */ 89 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 90 /* use container_of */ 91 92 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 93 struct lruvec_stats *lruvec_stats; 94 struct shrinker_info __rcu *shrinker_info; 95 96 #ifdef CONFIG_MEMCG_V1 97 /* 98 * Memcg-v1 only stuff in middle as buffer between read mostly fields 99 * and update often fields to avoid false sharing. If v1 stuff is 100 * not present, an explicit padding is needed. 101 */ 102 103 struct rb_node tree_node; /* RB tree node */ 104 unsigned long usage_in_excess;/* Set to the value by which */ 105 /* the soft limit is exceeded*/ 106 bool on_tree; 107 #else 108 CACHELINE_PADDING(_pad1_); 109 #endif 110 111 /* Fields which get updated often at the end. */ 112 struct lruvec lruvec; 113 CACHELINE_PADDING(_pad2_); 114 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 115 struct mem_cgroup_reclaim_iter iter; 116 }; 117 118 struct mem_cgroup_threshold { 119 struct eventfd_ctx *eventfd; 120 unsigned long threshold; 121 }; 122 123 /* For threshold */ 124 struct mem_cgroup_threshold_ary { 125 /* An array index points to threshold just below or equal to usage. */ 126 int current_threshold; 127 /* Size of entries[] */ 128 unsigned int size; 129 /* Array of thresholds */ 130 struct mem_cgroup_threshold entries[] __counted_by(size); 131 }; 132 133 struct mem_cgroup_thresholds { 134 /* Primary thresholds array */ 135 struct mem_cgroup_threshold_ary *primary; 136 /* 137 * Spare threshold array. 138 * This is needed to make mem_cgroup_unregister_event() "never fail". 139 * It must be able to store at least primary->size - 1 entries. 140 */ 141 struct mem_cgroup_threshold_ary *spare; 142 }; 143 144 /* 145 * Remember four most recent foreign writebacks with dirty pages in this 146 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 147 * one in a given round, we're likely to catch it later if it keeps 148 * foreign-dirtying, so a fairly low count should be enough. 149 * 150 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 151 */ 152 #define MEMCG_CGWB_FRN_CNT 4 153 154 struct memcg_cgwb_frn { 155 u64 bdi_id; /* bdi->id of the foreign inode */ 156 int memcg_id; /* memcg->css.id of foreign inode */ 157 u64 at; /* jiffies_64 at the time of dirtying */ 158 struct wb_completion done; /* tracks in-flight foreign writebacks */ 159 }; 160 161 /* 162 * Bucket for arbitrarily byte-sized objects charged to a memory 163 * cgroup. The bucket can be reparented in one piece when the cgroup 164 * is destroyed, without having to round up the individual references 165 * of all live memory objects in the wild. 166 */ 167 struct obj_cgroup { 168 struct percpu_ref refcnt; 169 struct mem_cgroup *memcg; 170 atomic_t nr_charged_bytes; 171 union { 172 struct list_head list; /* protected by objcg_lock */ 173 struct rcu_head rcu; 174 }; 175 }; 176 177 /* 178 * The memory controller data structure. The memory controller controls both 179 * page cache and RSS per cgroup. We would eventually like to provide 180 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 181 * to help the administrator determine what knobs to tune. 182 */ 183 struct mem_cgroup { 184 struct cgroup_subsys_state css; 185 186 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 187 struct mem_cgroup_id id; 188 189 /* Accounted resources */ 190 struct page_counter memory; /* Both v1 & v2 */ 191 192 union { 193 struct page_counter swap; /* v2 only */ 194 struct page_counter memsw; /* v1 only */ 195 }; 196 197 /* registered local peak watchers */ 198 struct list_head memory_peaks; 199 struct list_head swap_peaks; 200 spinlock_t peaks_lock; 201 202 /* Range enforcement for interrupt charges */ 203 struct work_struct high_work; 204 205 #ifdef CONFIG_ZSWAP 206 unsigned long zswap_max; 207 208 /* 209 * Prevent pages from this memcg from being written back from zswap to 210 * swap, and from being swapped out on zswap store failures. 211 */ 212 bool zswap_writeback; 213 #endif 214 215 /* vmpressure notifications */ 216 struct vmpressure vmpressure; 217 218 /* 219 * Should the OOM killer kill all belonging tasks, had it kill one? 220 */ 221 bool oom_group; 222 223 int swappiness; 224 225 /* memory.events and memory.events.local */ 226 struct cgroup_file events_file; 227 struct cgroup_file events_local_file; 228 229 /* handle for "memory.swap.events" */ 230 struct cgroup_file swap_events_file; 231 232 /* memory.stat */ 233 struct memcg_vmstats *vmstats; 234 235 /* memory.events */ 236 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 237 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 238 239 /* 240 * Hint of reclaim pressure for socket memroy management. Note 241 * that this indicator should NOT be used in legacy cgroup mode 242 * where socket memory is accounted/charged separately. 243 */ 244 unsigned long socket_pressure; 245 246 int kmemcg_id; 247 /* 248 * memcg->objcg is wiped out as a part of the objcg repaprenting 249 * process. memcg->orig_objcg preserves a pointer (and a reference) 250 * to the original objcg until the end of live of memcg. 251 */ 252 struct obj_cgroup __rcu *objcg; 253 struct obj_cgroup *orig_objcg; 254 /* list of inherited objcgs, protected by objcg_lock */ 255 struct list_head objcg_list; 256 257 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 258 259 #ifdef CONFIG_CGROUP_WRITEBACK 260 struct list_head cgwb_list; 261 struct wb_domain cgwb_domain; 262 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 263 #endif 264 265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 266 struct deferred_split deferred_split_queue; 267 #endif 268 269 #ifdef CONFIG_LRU_GEN_WALKS_MMU 270 /* per-memcg mm_struct list */ 271 struct lru_gen_mm_list mm_list; 272 #endif 273 274 #ifdef CONFIG_MEMCG_V1 275 /* Legacy consumer-oriented counters */ 276 struct page_counter kmem; /* v1 only */ 277 struct page_counter tcpmem; /* v1 only */ 278 279 struct memcg1_events_percpu __percpu *events_percpu; 280 281 unsigned long soft_limit; 282 283 /* protected by memcg_oom_lock */ 284 bool oom_lock; 285 int under_oom; 286 287 /* OOM-Killer disable */ 288 int oom_kill_disable; 289 290 /* protect arrays of thresholds */ 291 struct mutex thresholds_lock; 292 293 /* thresholds for memory usage. RCU-protected */ 294 struct mem_cgroup_thresholds thresholds; 295 296 /* thresholds for mem+swap usage. RCU-protected */ 297 struct mem_cgroup_thresholds memsw_thresholds; 298 299 /* For oom notifier event fd */ 300 struct list_head oom_notify; 301 302 /* 303 * Should we move charges of a task when a task is moved into this 304 * mem_cgroup ? And what type of charges should we move ? 305 */ 306 unsigned long move_charge_at_immigrate; 307 /* taken only while moving_account > 0 */ 308 spinlock_t move_lock; 309 unsigned long move_lock_flags; 310 311 /* Legacy tcp memory accounting */ 312 bool tcpmem_active; 313 int tcpmem_pressure; 314 315 /* 316 * set > 0 if pages under this cgroup are moving to other cgroup. 317 */ 318 atomic_t moving_account; 319 struct task_struct *move_lock_task; 320 321 /* List of events which userspace want to receive */ 322 struct list_head event_list; 323 spinlock_t event_list_lock; 324 #endif /* CONFIG_MEMCG_V1 */ 325 326 struct mem_cgroup_per_node *nodeinfo[]; 327 }; 328 329 /* 330 * size of first charge trial. 331 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 332 * workload. 333 */ 334 #define MEMCG_CHARGE_BATCH 64U 335 336 extern struct mem_cgroup *root_mem_cgroup; 337 338 enum page_memcg_data_flags { 339 /* page->memcg_data is a pointer to an slabobj_ext vector */ 340 MEMCG_DATA_OBJEXTS = (1UL << 0), 341 /* page has been accounted as a non-slab kernel page */ 342 MEMCG_DATA_KMEM = (1UL << 1), 343 /* the next bit after the last actual flag */ 344 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 345 }; 346 347 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 348 349 #else /* CONFIG_MEMCG */ 350 351 #define __FIRST_OBJEXT_FLAG (1UL << 0) 352 353 #endif /* CONFIG_MEMCG */ 354 355 enum objext_flags { 356 /* slabobj_ext vector failed to allocate */ 357 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG, 358 /* the next bit after the last actual flag */ 359 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 360 }; 361 362 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 363 364 #ifdef CONFIG_MEMCG 365 366 static inline bool folio_memcg_kmem(struct folio *folio); 367 368 /* 369 * After the initialization objcg->memcg is always pointing at 370 * a valid memcg, but can be atomically swapped to the parent memcg. 371 * 372 * The caller must ensure that the returned memcg won't be released. 373 */ 374 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 375 { 376 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex)); 377 return READ_ONCE(objcg->memcg); 378 } 379 380 /* 381 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 382 * @folio: Pointer to the folio. 383 * 384 * Returns a pointer to the memory cgroup associated with the folio, 385 * or NULL. This function assumes that the folio is known to have a 386 * proper memory cgroup pointer. It's not safe to call this function 387 * against some type of folios, e.g. slab folios or ex-slab folios or 388 * kmem folios. 389 */ 390 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 391 { 392 unsigned long memcg_data = folio->memcg_data; 393 394 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 395 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 396 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 397 398 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 399 } 400 401 /* 402 * __folio_objcg - get the object cgroup associated with a kmem folio. 403 * @folio: Pointer to the folio. 404 * 405 * Returns a pointer to the object cgroup associated with the folio, 406 * or NULL. This function assumes that the folio is known to have a 407 * proper object cgroup pointer. It's not safe to call this function 408 * against some type of folios, e.g. slab folios or ex-slab folios or 409 * LRU folios. 410 */ 411 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 412 { 413 unsigned long memcg_data = folio->memcg_data; 414 415 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 416 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 417 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 418 419 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 420 } 421 422 /* 423 * folio_memcg - Get the memory cgroup associated with a folio. 424 * @folio: Pointer to the folio. 425 * 426 * Returns a pointer to the memory cgroup associated with the folio, 427 * or NULL. This function assumes that the folio is known to have a 428 * proper memory cgroup pointer. It's not safe to call this function 429 * against some type of folios, e.g. slab folios or ex-slab folios. 430 * 431 * For a non-kmem folio any of the following ensures folio and memcg binding 432 * stability: 433 * 434 * - the folio lock 435 * - LRU isolation 436 * - folio_memcg_lock() 437 * - exclusive reference 438 * - mem_cgroup_trylock_pages() 439 * 440 * For a kmem folio a caller should hold an rcu read lock to protect memcg 441 * associated with a kmem folio from being released. 442 */ 443 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 444 { 445 if (folio_memcg_kmem(folio)) 446 return obj_cgroup_memcg(__folio_objcg(folio)); 447 return __folio_memcg(folio); 448 } 449 450 /* 451 * folio_memcg_charged - If a folio is charged to a memory cgroup. 452 * @folio: Pointer to the folio. 453 * 454 * Returns true if folio is charged to a memory cgroup, otherwise returns false. 455 */ 456 static inline bool folio_memcg_charged(struct folio *folio) 457 { 458 if (folio_memcg_kmem(folio)) 459 return __folio_objcg(folio) != NULL; 460 return __folio_memcg(folio) != NULL; 461 } 462 463 /** 464 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 465 * @folio: Pointer to the folio. 466 * 467 * This function assumes that the folio is known to have a 468 * proper memory cgroup pointer. It's not safe to call this function 469 * against some type of folios, e.g. slab folios or ex-slab folios. 470 * 471 * Return: A pointer to the memory cgroup associated with the folio, 472 * or NULL. 473 */ 474 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 475 { 476 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 477 478 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 479 480 if (memcg_data & MEMCG_DATA_KMEM) { 481 struct obj_cgroup *objcg; 482 483 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 484 return obj_cgroup_memcg(objcg); 485 } 486 487 WARN_ON_ONCE(!rcu_read_lock_held()); 488 489 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 490 } 491 492 /* 493 * folio_memcg_check - Get the memory cgroup associated with a folio. 494 * @folio: Pointer to the folio. 495 * 496 * Returns a pointer to the memory cgroup associated with the folio, 497 * or NULL. This function unlike folio_memcg() can take any folio 498 * as an argument. It has to be used in cases when it's not known if a folio 499 * has an associated memory cgroup pointer or an object cgroups vector or 500 * an object cgroup. 501 * 502 * For a non-kmem folio any of the following ensures folio and memcg binding 503 * stability: 504 * 505 * - the folio lock 506 * - LRU isolation 507 * - lock_folio_memcg() 508 * - exclusive reference 509 * - mem_cgroup_trylock_pages() 510 * 511 * For a kmem folio a caller should hold an rcu read lock to protect memcg 512 * associated with a kmem folio from being released. 513 */ 514 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 515 { 516 /* 517 * Because folio->memcg_data might be changed asynchronously 518 * for slabs, READ_ONCE() should be used here. 519 */ 520 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 521 522 if (memcg_data & MEMCG_DATA_OBJEXTS) 523 return NULL; 524 525 if (memcg_data & MEMCG_DATA_KMEM) { 526 struct obj_cgroup *objcg; 527 528 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 529 return obj_cgroup_memcg(objcg); 530 } 531 532 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 533 } 534 535 static inline struct mem_cgroup *page_memcg_check(struct page *page) 536 { 537 if (PageTail(page)) 538 return NULL; 539 return folio_memcg_check((struct folio *)page); 540 } 541 542 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 543 { 544 struct mem_cgroup *memcg; 545 546 rcu_read_lock(); 547 retry: 548 memcg = obj_cgroup_memcg(objcg); 549 if (unlikely(!css_tryget(&memcg->css))) 550 goto retry; 551 rcu_read_unlock(); 552 553 return memcg; 554 } 555 556 /* 557 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 558 * @folio: Pointer to the folio. 559 * 560 * Checks if the folio has MemcgKmem flag set. The caller must ensure 561 * that the folio has an associated memory cgroup. It's not safe to call 562 * this function against some types of folios, e.g. slab folios. 563 */ 564 static inline bool folio_memcg_kmem(struct folio *folio) 565 { 566 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 567 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 568 return folio->memcg_data & MEMCG_DATA_KMEM; 569 } 570 571 static inline bool PageMemcgKmem(struct page *page) 572 { 573 return folio_memcg_kmem(page_folio(page)); 574 } 575 576 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 577 { 578 return (memcg == root_mem_cgroup); 579 } 580 581 static inline bool mem_cgroup_disabled(void) 582 { 583 return !cgroup_subsys_enabled(memory_cgrp_subsys); 584 } 585 586 static inline void mem_cgroup_protection(struct mem_cgroup *root, 587 struct mem_cgroup *memcg, 588 unsigned long *min, 589 unsigned long *low) 590 { 591 *min = *low = 0; 592 593 if (mem_cgroup_disabled()) 594 return; 595 596 /* 597 * There is no reclaim protection applied to a targeted reclaim. 598 * We are special casing this specific case here because 599 * mem_cgroup_calculate_protection is not robust enough to keep 600 * the protection invariant for calculated effective values for 601 * parallel reclaimers with different reclaim target. This is 602 * especially a problem for tail memcgs (as they have pages on LRU) 603 * which would want to have effective values 0 for targeted reclaim 604 * but a different value for external reclaim. 605 * 606 * Example 607 * Let's have global and A's reclaim in parallel: 608 * | 609 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 610 * |\ 611 * | C (low = 1G, usage = 2.5G) 612 * B (low = 1G, usage = 0.5G) 613 * 614 * For the global reclaim 615 * A.elow = A.low 616 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 617 * C.elow = min(C.usage, C.low) 618 * 619 * With the effective values resetting we have A reclaim 620 * A.elow = 0 621 * B.elow = B.low 622 * C.elow = C.low 623 * 624 * If the global reclaim races with A's reclaim then 625 * B.elow = C.elow = 0 because children_low_usage > A.elow) 626 * is possible and reclaiming B would be violating the protection. 627 * 628 */ 629 if (root == memcg) 630 return; 631 632 *min = READ_ONCE(memcg->memory.emin); 633 *low = READ_ONCE(memcg->memory.elow); 634 } 635 636 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 637 struct mem_cgroup *memcg); 638 639 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 640 struct mem_cgroup *memcg) 641 { 642 /* 643 * The root memcg doesn't account charges, and doesn't support 644 * protection. The target memcg's protection is ignored, see 645 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 646 */ 647 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 648 memcg == target; 649 } 650 651 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 652 struct mem_cgroup *memcg) 653 { 654 if (mem_cgroup_unprotected(target, memcg)) 655 return false; 656 657 return READ_ONCE(memcg->memory.elow) >= 658 page_counter_read(&memcg->memory); 659 } 660 661 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 662 struct mem_cgroup *memcg) 663 { 664 if (mem_cgroup_unprotected(target, memcg)) 665 return false; 666 667 return READ_ONCE(memcg->memory.emin) >= 668 page_counter_read(&memcg->memory); 669 } 670 671 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 672 673 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 674 675 /** 676 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 677 * @folio: Folio to charge. 678 * @mm: mm context of the allocating task. 679 * @gfp: Reclaim mode. 680 * 681 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 682 * pages according to @gfp if necessary. If @mm is NULL, try to 683 * charge to the active memcg. 684 * 685 * Do not use this for folios allocated for swapin. 686 * 687 * Return: 0 on success. Otherwise, an error code is returned. 688 */ 689 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 690 gfp_t gfp) 691 { 692 if (mem_cgroup_disabled()) 693 return 0; 694 return __mem_cgroup_charge(folio, mm, gfp); 695 } 696 697 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 698 long nr_pages); 699 700 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 701 gfp_t gfp, swp_entry_t entry); 702 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 703 704 void __mem_cgroup_uncharge(struct folio *folio); 705 706 /** 707 * mem_cgroup_uncharge - Uncharge a folio. 708 * @folio: Folio to uncharge. 709 * 710 * Uncharge a folio previously charged with mem_cgroup_charge(). 711 */ 712 static inline void mem_cgroup_uncharge(struct folio *folio) 713 { 714 if (mem_cgroup_disabled()) 715 return; 716 __mem_cgroup_uncharge(folio); 717 } 718 719 void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 720 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 721 { 722 if (mem_cgroup_disabled()) 723 return; 724 __mem_cgroup_uncharge_folios(folios); 725 } 726 727 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 728 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 729 void mem_cgroup_migrate(struct folio *old, struct folio *new); 730 731 /** 732 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 733 * @memcg: memcg of the wanted lruvec 734 * @pgdat: pglist_data 735 * 736 * Returns the lru list vector holding pages for a given @memcg & 737 * @pgdat combination. This can be the node lruvec, if the memory 738 * controller is disabled. 739 */ 740 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 741 struct pglist_data *pgdat) 742 { 743 struct mem_cgroup_per_node *mz; 744 struct lruvec *lruvec; 745 746 if (mem_cgroup_disabled()) { 747 lruvec = &pgdat->__lruvec; 748 goto out; 749 } 750 751 if (!memcg) 752 memcg = root_mem_cgroup; 753 754 mz = memcg->nodeinfo[pgdat->node_id]; 755 lruvec = &mz->lruvec; 756 out: 757 /* 758 * Since a node can be onlined after the mem_cgroup was created, 759 * we have to be prepared to initialize lruvec->pgdat here; 760 * and if offlined then reonlined, we need to reinitialize it. 761 */ 762 if (unlikely(lruvec->pgdat != pgdat)) 763 lruvec->pgdat = pgdat; 764 return lruvec; 765 } 766 767 /** 768 * folio_lruvec - return lruvec for isolating/putting an LRU folio 769 * @folio: Pointer to the folio. 770 * 771 * This function relies on folio->mem_cgroup being stable. 772 */ 773 static inline struct lruvec *folio_lruvec(struct folio *folio) 774 { 775 struct mem_cgroup *memcg = folio_memcg(folio); 776 777 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 778 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 779 } 780 781 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 782 783 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 784 785 struct mem_cgroup *get_mem_cgroup_from_current(void); 786 787 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio); 788 789 struct lruvec *folio_lruvec_lock(struct folio *folio); 790 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 791 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 792 unsigned long *flags); 793 794 #ifdef CONFIG_DEBUG_VM 795 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 796 #else 797 static inline 798 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 799 { 800 } 801 #endif 802 803 static inline 804 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 805 return css ? container_of(css, struct mem_cgroup, css) : NULL; 806 } 807 808 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 809 { 810 return percpu_ref_tryget(&objcg->refcnt); 811 } 812 813 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 814 { 815 percpu_ref_get(&objcg->refcnt); 816 } 817 818 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 819 unsigned long nr) 820 { 821 percpu_ref_get_many(&objcg->refcnt, nr); 822 } 823 824 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 825 { 826 if (objcg) 827 percpu_ref_put(&objcg->refcnt); 828 } 829 830 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 831 { 832 return !memcg || css_tryget(&memcg->css); 833 } 834 835 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 836 { 837 return !memcg || css_tryget_online(&memcg->css); 838 } 839 840 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 841 { 842 if (memcg) 843 css_put(&memcg->css); 844 } 845 846 #define mem_cgroup_from_counter(counter, member) \ 847 container_of(counter, struct mem_cgroup, member) 848 849 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 850 struct mem_cgroup *, 851 struct mem_cgroup_reclaim_cookie *); 852 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 853 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 854 int (*)(struct task_struct *, void *), void *arg); 855 856 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 857 { 858 if (mem_cgroup_disabled()) 859 return 0; 860 861 return memcg->id.id; 862 } 863 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 864 865 #ifdef CONFIG_SHRINKER_DEBUG 866 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 867 { 868 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 869 } 870 871 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 872 #endif 873 874 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 875 { 876 return mem_cgroup_from_css(seq_css(m)); 877 } 878 879 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 880 { 881 struct mem_cgroup_per_node *mz; 882 883 if (mem_cgroup_disabled()) 884 return NULL; 885 886 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 887 return mz->memcg; 888 } 889 890 /** 891 * parent_mem_cgroup - find the accounting parent of a memcg 892 * @memcg: memcg whose parent to find 893 * 894 * Returns the parent memcg, or NULL if this is the root. 895 */ 896 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 897 { 898 return mem_cgroup_from_css(memcg->css.parent); 899 } 900 901 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 902 struct mem_cgroup *root) 903 { 904 if (root == memcg) 905 return true; 906 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 907 } 908 909 static inline bool mm_match_cgroup(struct mm_struct *mm, 910 struct mem_cgroup *memcg) 911 { 912 struct mem_cgroup *task_memcg; 913 bool match = false; 914 915 rcu_read_lock(); 916 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 917 if (task_memcg) 918 match = mem_cgroup_is_descendant(task_memcg, memcg); 919 rcu_read_unlock(); 920 return match; 921 } 922 923 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 924 ino_t page_cgroup_ino(struct page *page); 925 926 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 927 { 928 if (mem_cgroup_disabled()) 929 return true; 930 return !!(memcg->css.flags & CSS_ONLINE); 931 } 932 933 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 934 int zid, int nr_pages); 935 936 static inline 937 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 938 enum lru_list lru, int zone_idx) 939 { 940 struct mem_cgroup_per_node *mz; 941 942 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 943 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 944 } 945 946 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 947 948 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 949 950 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 951 952 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 953 struct task_struct *p); 954 955 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 956 957 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 958 struct mem_cgroup *oom_domain); 959 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 960 961 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 962 int val); 963 964 /* idx can be of type enum memcg_stat_item or node_stat_item */ 965 static inline void mod_memcg_state(struct mem_cgroup *memcg, 966 enum memcg_stat_item idx, int val) 967 { 968 unsigned long flags; 969 970 local_irq_save(flags); 971 __mod_memcg_state(memcg, idx, val); 972 local_irq_restore(flags); 973 } 974 975 static inline void mod_memcg_page_state(struct page *page, 976 enum memcg_stat_item idx, int val) 977 { 978 struct mem_cgroup *memcg; 979 980 if (mem_cgroup_disabled()) 981 return; 982 983 rcu_read_lock(); 984 memcg = folio_memcg(page_folio(page)); 985 if (memcg) 986 mod_memcg_state(memcg, idx, val); 987 rcu_read_unlock(); 988 } 989 990 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 991 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 992 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 993 enum node_stat_item idx); 994 995 void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 996 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 997 998 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 999 1000 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1001 int val) 1002 { 1003 unsigned long flags; 1004 1005 local_irq_save(flags); 1006 __mod_lruvec_kmem_state(p, idx, val); 1007 local_irq_restore(flags); 1008 } 1009 1010 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1011 unsigned long count); 1012 1013 static inline void count_memcg_events(struct mem_cgroup *memcg, 1014 enum vm_event_item idx, 1015 unsigned long count) 1016 { 1017 unsigned long flags; 1018 1019 local_irq_save(flags); 1020 __count_memcg_events(memcg, idx, count); 1021 local_irq_restore(flags); 1022 } 1023 1024 static inline void count_memcg_folio_events(struct folio *folio, 1025 enum vm_event_item idx, unsigned long nr) 1026 { 1027 struct mem_cgroup *memcg = folio_memcg(folio); 1028 1029 if (memcg) 1030 count_memcg_events(memcg, idx, nr); 1031 } 1032 1033 static inline void count_memcg_events_mm(struct mm_struct *mm, 1034 enum vm_event_item idx, unsigned long count) 1035 { 1036 struct mem_cgroup *memcg; 1037 1038 if (mem_cgroup_disabled()) 1039 return; 1040 1041 rcu_read_lock(); 1042 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1043 if (likely(memcg)) 1044 count_memcg_events(memcg, idx, count); 1045 rcu_read_unlock(); 1046 } 1047 1048 static inline void count_memcg_event_mm(struct mm_struct *mm, 1049 enum vm_event_item idx) 1050 { 1051 count_memcg_events_mm(mm, idx, 1); 1052 } 1053 1054 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1055 enum memcg_memory_event event) 1056 { 1057 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1058 event == MEMCG_SWAP_FAIL; 1059 1060 atomic_long_inc(&memcg->memory_events_local[event]); 1061 if (!swap_event) 1062 cgroup_file_notify(&memcg->events_local_file); 1063 1064 do { 1065 atomic_long_inc(&memcg->memory_events[event]); 1066 if (swap_event) 1067 cgroup_file_notify(&memcg->swap_events_file); 1068 else 1069 cgroup_file_notify(&memcg->events_file); 1070 1071 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1072 break; 1073 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1074 break; 1075 } while ((memcg = parent_mem_cgroup(memcg)) && 1076 !mem_cgroup_is_root(memcg)); 1077 } 1078 1079 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1080 enum memcg_memory_event event) 1081 { 1082 struct mem_cgroup *memcg; 1083 1084 if (mem_cgroup_disabled()) 1085 return; 1086 1087 rcu_read_lock(); 1088 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1089 if (likely(memcg)) 1090 memcg_memory_event(memcg, event); 1091 rcu_read_unlock(); 1092 } 1093 1094 void split_page_memcg(struct page *head, int old_order, int new_order); 1095 1096 #else /* CONFIG_MEMCG */ 1097 1098 #define MEM_CGROUP_ID_SHIFT 0 1099 1100 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1101 { 1102 return NULL; 1103 } 1104 1105 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1106 { 1107 WARN_ON_ONCE(!rcu_read_lock_held()); 1108 return NULL; 1109 } 1110 1111 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1112 { 1113 return NULL; 1114 } 1115 1116 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1117 { 1118 return NULL; 1119 } 1120 1121 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1122 { 1123 return NULL; 1124 } 1125 1126 static inline bool folio_memcg_kmem(struct folio *folio) 1127 { 1128 return false; 1129 } 1130 1131 static inline bool PageMemcgKmem(struct page *page) 1132 { 1133 return false; 1134 } 1135 1136 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1137 { 1138 return true; 1139 } 1140 1141 static inline bool mem_cgroup_disabled(void) 1142 { 1143 return true; 1144 } 1145 1146 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1147 enum memcg_memory_event event) 1148 { 1149 } 1150 1151 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1152 enum memcg_memory_event event) 1153 { 1154 } 1155 1156 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1157 struct mem_cgroup *memcg, 1158 unsigned long *min, 1159 unsigned long *low) 1160 { 1161 *min = *low = 0; 1162 } 1163 1164 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1165 struct mem_cgroup *memcg) 1166 { 1167 } 1168 1169 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1170 struct mem_cgroup *memcg) 1171 { 1172 return true; 1173 } 1174 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1175 struct mem_cgroup *memcg) 1176 { 1177 return false; 1178 } 1179 1180 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1181 struct mem_cgroup *memcg) 1182 { 1183 return false; 1184 } 1185 1186 static inline void mem_cgroup_commit_charge(struct folio *folio, 1187 struct mem_cgroup *memcg) 1188 { 1189 } 1190 1191 static inline int mem_cgroup_charge(struct folio *folio, 1192 struct mm_struct *mm, gfp_t gfp) 1193 { 1194 return 0; 1195 } 1196 1197 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1198 gfp_t gfp, long nr_pages) 1199 { 1200 return 0; 1201 } 1202 1203 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1204 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1205 { 1206 return 0; 1207 } 1208 1209 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1210 { 1211 } 1212 1213 static inline void mem_cgroup_uncharge(struct folio *folio) 1214 { 1215 } 1216 1217 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1218 { 1219 } 1220 1221 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1222 unsigned int nr_pages) 1223 { 1224 } 1225 1226 static inline void mem_cgroup_replace_folio(struct folio *old, 1227 struct folio *new) 1228 { 1229 } 1230 1231 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1232 { 1233 } 1234 1235 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1236 struct pglist_data *pgdat) 1237 { 1238 return &pgdat->__lruvec; 1239 } 1240 1241 static inline struct lruvec *folio_lruvec(struct folio *folio) 1242 { 1243 struct pglist_data *pgdat = folio_pgdat(folio); 1244 return &pgdat->__lruvec; 1245 } 1246 1247 static inline 1248 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1249 { 1250 } 1251 1252 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1253 { 1254 return NULL; 1255 } 1256 1257 static inline bool mm_match_cgroup(struct mm_struct *mm, 1258 struct mem_cgroup *memcg) 1259 { 1260 return true; 1261 } 1262 1263 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1264 { 1265 return NULL; 1266 } 1267 1268 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1269 { 1270 return NULL; 1271 } 1272 1273 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 1274 { 1275 return NULL; 1276 } 1277 1278 static inline 1279 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1280 { 1281 return NULL; 1282 } 1283 1284 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1285 { 1286 } 1287 1288 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1289 { 1290 return true; 1291 } 1292 1293 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1294 { 1295 return true; 1296 } 1297 1298 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1299 { 1300 } 1301 1302 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1303 { 1304 struct pglist_data *pgdat = folio_pgdat(folio); 1305 1306 spin_lock(&pgdat->__lruvec.lru_lock); 1307 return &pgdat->__lruvec; 1308 } 1309 1310 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1311 { 1312 struct pglist_data *pgdat = folio_pgdat(folio); 1313 1314 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1315 return &pgdat->__lruvec; 1316 } 1317 1318 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1319 unsigned long *flagsp) 1320 { 1321 struct pglist_data *pgdat = folio_pgdat(folio); 1322 1323 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1324 return &pgdat->__lruvec; 1325 } 1326 1327 static inline struct mem_cgroup * 1328 mem_cgroup_iter(struct mem_cgroup *root, 1329 struct mem_cgroup *prev, 1330 struct mem_cgroup_reclaim_cookie *reclaim) 1331 { 1332 return NULL; 1333 } 1334 1335 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1336 struct mem_cgroup *prev) 1337 { 1338 } 1339 1340 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1341 int (*fn)(struct task_struct *, void *), void *arg) 1342 { 1343 } 1344 1345 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1346 { 1347 return 0; 1348 } 1349 1350 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1351 { 1352 WARN_ON_ONCE(id); 1353 /* XXX: This should always return root_mem_cgroup */ 1354 return NULL; 1355 } 1356 1357 #ifdef CONFIG_SHRINKER_DEBUG 1358 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1359 { 1360 return 0; 1361 } 1362 1363 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1364 { 1365 return NULL; 1366 } 1367 #endif 1368 1369 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1370 { 1371 return NULL; 1372 } 1373 1374 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1375 { 1376 return NULL; 1377 } 1378 1379 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1380 { 1381 return true; 1382 } 1383 1384 static inline 1385 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1386 enum lru_list lru, int zone_idx) 1387 { 1388 return 0; 1389 } 1390 1391 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1392 { 1393 return 0; 1394 } 1395 1396 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1397 { 1398 return 0; 1399 } 1400 1401 static inline void 1402 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1403 { 1404 } 1405 1406 static inline void 1407 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1408 { 1409 } 1410 1411 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1412 { 1413 } 1414 1415 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1416 struct task_struct *victim, struct mem_cgroup *oom_domain) 1417 { 1418 return NULL; 1419 } 1420 1421 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1422 { 1423 } 1424 1425 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1426 enum memcg_stat_item idx, 1427 int nr) 1428 { 1429 } 1430 1431 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1432 enum memcg_stat_item idx, 1433 int nr) 1434 { 1435 } 1436 1437 static inline void mod_memcg_page_state(struct page *page, 1438 enum memcg_stat_item idx, int val) 1439 { 1440 } 1441 1442 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1443 { 1444 return 0; 1445 } 1446 1447 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1448 enum node_stat_item idx) 1449 { 1450 return node_page_state(lruvec_pgdat(lruvec), idx); 1451 } 1452 1453 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1454 enum node_stat_item idx) 1455 { 1456 return node_page_state(lruvec_pgdat(lruvec), idx); 1457 } 1458 1459 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1460 { 1461 } 1462 1463 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1464 { 1465 } 1466 1467 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1468 int val) 1469 { 1470 struct page *page = virt_to_head_page(p); 1471 1472 __mod_node_page_state(page_pgdat(page), idx, val); 1473 } 1474 1475 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1476 int val) 1477 { 1478 struct page *page = virt_to_head_page(p); 1479 1480 mod_node_page_state(page_pgdat(page), idx, val); 1481 } 1482 1483 static inline void count_memcg_events(struct mem_cgroup *memcg, 1484 enum vm_event_item idx, 1485 unsigned long count) 1486 { 1487 } 1488 1489 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1490 enum vm_event_item idx, 1491 unsigned long count) 1492 { 1493 } 1494 1495 static inline void count_memcg_folio_events(struct folio *folio, 1496 enum vm_event_item idx, unsigned long nr) 1497 { 1498 } 1499 1500 static inline void count_memcg_events_mm(struct mm_struct *mm, 1501 enum vm_event_item idx, unsigned long count) 1502 { 1503 } 1504 1505 static inline 1506 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1507 { 1508 } 1509 1510 static inline void split_page_memcg(struct page *head, int old_order, int new_order) 1511 { 1512 } 1513 #endif /* CONFIG_MEMCG */ 1514 1515 /* 1516 * Extended information for slab objects stored as an array in page->memcg_data 1517 * if MEMCG_DATA_OBJEXTS is set. 1518 */ 1519 struct slabobj_ext { 1520 #ifdef CONFIG_MEMCG 1521 struct obj_cgroup *objcg; 1522 #endif 1523 #ifdef CONFIG_MEM_ALLOC_PROFILING 1524 union codetag_ref ref; 1525 #endif 1526 } __aligned(8); 1527 1528 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1529 { 1530 __mod_lruvec_kmem_state(p, idx, 1); 1531 } 1532 1533 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1534 { 1535 __mod_lruvec_kmem_state(p, idx, -1); 1536 } 1537 1538 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1539 { 1540 struct mem_cgroup *memcg; 1541 1542 memcg = lruvec_memcg(lruvec); 1543 if (!memcg) 1544 return NULL; 1545 memcg = parent_mem_cgroup(memcg); 1546 if (!memcg) 1547 return NULL; 1548 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1549 } 1550 1551 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1552 { 1553 spin_unlock(&lruvec->lru_lock); 1554 } 1555 1556 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1557 { 1558 spin_unlock_irq(&lruvec->lru_lock); 1559 } 1560 1561 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1562 unsigned long flags) 1563 { 1564 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1565 } 1566 1567 /* Test requires a stable folio->memcg binding, see folio_memcg() */ 1568 static inline bool folio_matches_lruvec(struct folio *folio, 1569 struct lruvec *lruvec) 1570 { 1571 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1572 lruvec_memcg(lruvec) == folio_memcg(folio); 1573 } 1574 1575 /* Don't lock again iff page's lruvec locked */ 1576 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1577 struct lruvec *locked_lruvec) 1578 { 1579 if (locked_lruvec) { 1580 if (folio_matches_lruvec(folio, locked_lruvec)) 1581 return locked_lruvec; 1582 1583 unlock_page_lruvec_irq(locked_lruvec); 1584 } 1585 1586 return folio_lruvec_lock_irq(folio); 1587 } 1588 1589 /* Don't lock again iff folio's lruvec locked */ 1590 static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1591 struct lruvec **lruvecp, unsigned long *flags) 1592 { 1593 if (*lruvecp) { 1594 if (folio_matches_lruvec(folio, *lruvecp)) 1595 return; 1596 1597 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1598 } 1599 1600 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1601 } 1602 1603 #ifdef CONFIG_CGROUP_WRITEBACK 1604 1605 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1606 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1607 unsigned long *pheadroom, unsigned long *pdirty, 1608 unsigned long *pwriteback); 1609 1610 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1611 struct bdi_writeback *wb); 1612 1613 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1614 struct bdi_writeback *wb) 1615 { 1616 struct mem_cgroup *memcg; 1617 1618 if (mem_cgroup_disabled()) 1619 return; 1620 1621 memcg = folio_memcg(folio); 1622 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1623 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1624 } 1625 1626 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1627 1628 #else /* CONFIG_CGROUP_WRITEBACK */ 1629 1630 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1631 { 1632 return NULL; 1633 } 1634 1635 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1636 unsigned long *pfilepages, 1637 unsigned long *pheadroom, 1638 unsigned long *pdirty, 1639 unsigned long *pwriteback) 1640 { 1641 } 1642 1643 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1644 struct bdi_writeback *wb) 1645 { 1646 } 1647 1648 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1649 { 1650 } 1651 1652 #endif /* CONFIG_CGROUP_WRITEBACK */ 1653 1654 struct sock; 1655 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1656 gfp_t gfp_mask); 1657 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1658 #ifdef CONFIG_MEMCG 1659 extern struct static_key_false memcg_sockets_enabled_key; 1660 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1661 void mem_cgroup_sk_alloc(struct sock *sk); 1662 void mem_cgroup_sk_free(struct sock *sk); 1663 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1664 { 1665 #ifdef CONFIG_MEMCG_V1 1666 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1667 return !!memcg->tcpmem_pressure; 1668 #endif /* CONFIG_MEMCG_V1 */ 1669 do { 1670 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1671 return true; 1672 } while ((memcg = parent_mem_cgroup(memcg))); 1673 return false; 1674 } 1675 1676 int alloc_shrinker_info(struct mem_cgroup *memcg); 1677 void free_shrinker_info(struct mem_cgroup *memcg); 1678 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1679 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1680 #else 1681 #define mem_cgroup_sockets_enabled 0 1682 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1683 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1684 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1685 { 1686 return false; 1687 } 1688 1689 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1690 int nid, int shrinker_id) 1691 { 1692 } 1693 #endif 1694 1695 #ifdef CONFIG_MEMCG 1696 bool mem_cgroup_kmem_disabled(void); 1697 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1698 void __memcg_kmem_uncharge_page(struct page *page, int order); 1699 1700 /* 1701 * The returned objcg pointer is safe to use without additional 1702 * protection within a scope. The scope is defined either by 1703 * the current task (similar to the "current" global variable) 1704 * or by set_active_memcg() pair. 1705 * Please, use obj_cgroup_get() to get a reference if the pointer 1706 * needs to be used outside of the local scope. 1707 */ 1708 struct obj_cgroup *current_obj_cgroup(void); 1709 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1710 1711 static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1712 { 1713 struct obj_cgroup *objcg = current_obj_cgroup(); 1714 1715 if (objcg) 1716 obj_cgroup_get(objcg); 1717 1718 return objcg; 1719 } 1720 1721 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1722 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1723 1724 extern struct static_key_false memcg_bpf_enabled_key; 1725 static inline bool memcg_bpf_enabled(void) 1726 { 1727 return static_branch_likely(&memcg_bpf_enabled_key); 1728 } 1729 1730 extern struct static_key_false memcg_kmem_online_key; 1731 1732 static inline bool memcg_kmem_online(void) 1733 { 1734 return static_branch_likely(&memcg_kmem_online_key); 1735 } 1736 1737 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1738 int order) 1739 { 1740 if (memcg_kmem_online()) 1741 return __memcg_kmem_charge_page(page, gfp, order); 1742 return 0; 1743 } 1744 1745 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1746 { 1747 if (memcg_kmem_online()) 1748 __memcg_kmem_uncharge_page(page, order); 1749 } 1750 1751 /* 1752 * A helper for accessing memcg's kmem_id, used for getting 1753 * corresponding LRU lists. 1754 */ 1755 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1756 { 1757 return memcg ? memcg->kmemcg_id : -1; 1758 } 1759 1760 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1761 1762 static inline void count_objcg_event(struct obj_cgroup *objcg, 1763 enum vm_event_item idx) 1764 { 1765 struct mem_cgroup *memcg; 1766 1767 if (!memcg_kmem_online()) 1768 return; 1769 1770 rcu_read_lock(); 1771 memcg = obj_cgroup_memcg(objcg); 1772 count_memcg_events(memcg, idx, 1); 1773 rcu_read_unlock(); 1774 } 1775 1776 #else 1777 static inline bool mem_cgroup_kmem_disabled(void) 1778 { 1779 return true; 1780 } 1781 1782 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1783 int order) 1784 { 1785 return 0; 1786 } 1787 1788 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1789 { 1790 } 1791 1792 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1793 int order) 1794 { 1795 return 0; 1796 } 1797 1798 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1799 { 1800 } 1801 1802 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1803 { 1804 return NULL; 1805 } 1806 1807 static inline bool memcg_bpf_enabled(void) 1808 { 1809 return false; 1810 } 1811 1812 static inline bool memcg_kmem_online(void) 1813 { 1814 return false; 1815 } 1816 1817 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1818 { 1819 return -1; 1820 } 1821 1822 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1823 { 1824 return NULL; 1825 } 1826 1827 static inline void count_objcg_event(struct obj_cgroup *objcg, 1828 enum vm_event_item idx) 1829 { 1830 } 1831 1832 #endif /* CONFIG_MEMCG */ 1833 1834 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP) 1835 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1836 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1837 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1838 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1839 #else 1840 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1841 { 1842 return true; 1843 } 1844 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1845 size_t size) 1846 { 1847 } 1848 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1849 size_t size) 1850 { 1851 } 1852 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1853 { 1854 /* if zswap is disabled, do not block pages going to the swapping device */ 1855 return true; 1856 } 1857 #endif 1858 1859 1860 /* Cgroup v1-related declarations */ 1861 1862 #ifdef CONFIG_MEMCG_V1 1863 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1864 gfp_t gfp_mask, 1865 unsigned long *total_scanned); 1866 1867 bool mem_cgroup_oom_synchronize(bool wait); 1868 1869 static inline bool task_in_memcg_oom(struct task_struct *p) 1870 { 1871 return p->memcg_in_oom; 1872 } 1873 1874 void folio_memcg_lock(struct folio *folio); 1875 void folio_memcg_unlock(struct folio *folio); 1876 1877 /* try to stablize folio_memcg() for all the pages in a memcg */ 1878 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1879 { 1880 rcu_read_lock(); 1881 1882 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 1883 return true; 1884 1885 rcu_read_unlock(); 1886 return false; 1887 } 1888 1889 static inline void mem_cgroup_unlock_pages(void) 1890 { 1891 rcu_read_unlock(); 1892 } 1893 1894 static inline void mem_cgroup_enter_user_fault(void) 1895 { 1896 WARN_ON(current->in_user_fault); 1897 current->in_user_fault = 1; 1898 } 1899 1900 static inline void mem_cgroup_exit_user_fault(void) 1901 { 1902 WARN_ON(!current->in_user_fault); 1903 current->in_user_fault = 0; 1904 } 1905 1906 #else /* CONFIG_MEMCG_V1 */ 1907 static inline 1908 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1909 gfp_t gfp_mask, 1910 unsigned long *total_scanned) 1911 { 1912 return 0; 1913 } 1914 1915 static inline void folio_memcg_lock(struct folio *folio) 1916 { 1917 } 1918 1919 static inline void folio_memcg_unlock(struct folio *folio) 1920 { 1921 } 1922 1923 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1924 { 1925 /* to match folio_memcg_rcu() */ 1926 rcu_read_lock(); 1927 return true; 1928 } 1929 1930 static inline void mem_cgroup_unlock_pages(void) 1931 { 1932 rcu_read_unlock(); 1933 } 1934 1935 static inline bool task_in_memcg_oom(struct task_struct *p) 1936 { 1937 return false; 1938 } 1939 1940 static inline bool mem_cgroup_oom_synchronize(bool wait) 1941 { 1942 return false; 1943 } 1944 1945 static inline void mem_cgroup_enter_user_fault(void) 1946 { 1947 } 1948 1949 static inline void mem_cgroup_exit_user_fault(void) 1950 { 1951 } 1952 1953 #endif /* CONFIG_MEMCG_V1 */ 1954 1955 #endif /* _LINUX_MEMCONTROL_H */ 1956