xref: /linux-6.15/include/linux/memcontrol.h (revision ec0db74b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/*
303 	 * Should we move charges of a task when a task is moved into this
304 	 * mem_cgroup ? And what type of charges should we move ?
305 	 */
306 	unsigned long move_charge_at_immigrate;
307 	/* taken only while moving_account > 0 */
308 	spinlock_t move_lock;
309 	unsigned long move_lock_flags;
310 
311 	/* Legacy tcp memory accounting */
312 	bool tcpmem_active;
313 	int tcpmem_pressure;
314 
315 	/*
316 	 * set > 0 if pages under this cgroup are moving to other cgroup.
317 	 */
318 	atomic_t moving_account;
319 	struct task_struct *move_lock_task;
320 
321 	/* List of events which userspace want to receive */
322 	struct list_head event_list;
323 	spinlock_t event_list_lock;
324 #endif /* CONFIG_MEMCG_V1 */
325 
326 	struct mem_cgroup_per_node *nodeinfo[];
327 };
328 
329 /*
330  * size of first charge trial.
331  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
332  * workload.
333  */
334 #define MEMCG_CHARGE_BATCH 64U
335 
336 extern struct mem_cgroup *root_mem_cgroup;
337 
338 enum page_memcg_data_flags {
339 	/* page->memcg_data is a pointer to an slabobj_ext vector */
340 	MEMCG_DATA_OBJEXTS = (1UL << 0),
341 	/* page has been accounted as a non-slab kernel page */
342 	MEMCG_DATA_KMEM = (1UL << 1),
343 	/* the next bit after the last actual flag */
344 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
345 };
346 
347 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
348 
349 #else /* CONFIG_MEMCG */
350 
351 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
352 
353 #endif /* CONFIG_MEMCG */
354 
355 enum objext_flags {
356 	/* slabobj_ext vector failed to allocate */
357 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
358 	/* the next bit after the last actual flag */
359 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
360 };
361 
362 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
363 
364 #ifdef CONFIG_MEMCG
365 
366 static inline bool folio_memcg_kmem(struct folio *folio);
367 
368 /*
369  * After the initialization objcg->memcg is always pointing at
370  * a valid memcg, but can be atomically swapped to the parent memcg.
371  *
372  * The caller must ensure that the returned memcg won't be released.
373  */
374 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
375 {
376 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
377 	return READ_ONCE(objcg->memcg);
378 }
379 
380 /*
381  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
382  * @folio: Pointer to the folio.
383  *
384  * Returns a pointer to the memory cgroup associated with the folio,
385  * or NULL. This function assumes that the folio is known to have a
386  * proper memory cgroup pointer. It's not safe to call this function
387  * against some type of folios, e.g. slab folios or ex-slab folios or
388  * kmem folios.
389  */
390 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
391 {
392 	unsigned long memcg_data = folio->memcg_data;
393 
394 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
395 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
396 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
397 
398 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
399 }
400 
401 /*
402  * __folio_objcg - get the object cgroup associated with a kmem folio.
403  * @folio: Pointer to the folio.
404  *
405  * Returns a pointer to the object cgroup associated with the folio,
406  * or NULL. This function assumes that the folio is known to have a
407  * proper object cgroup pointer. It's not safe to call this function
408  * against some type of folios, e.g. slab folios or ex-slab folios or
409  * LRU folios.
410  */
411 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
412 {
413 	unsigned long memcg_data = folio->memcg_data;
414 
415 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
416 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
417 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
418 
419 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
420 }
421 
422 /*
423  * folio_memcg - Get the memory cgroup associated with a folio.
424  * @folio: Pointer to the folio.
425  *
426  * Returns a pointer to the memory cgroup associated with the folio,
427  * or NULL. This function assumes that the folio is known to have a
428  * proper memory cgroup pointer. It's not safe to call this function
429  * against some type of folios, e.g. slab folios or ex-slab folios.
430  *
431  * For a non-kmem folio any of the following ensures folio and memcg binding
432  * stability:
433  *
434  * - the folio lock
435  * - LRU isolation
436  * - folio_memcg_lock()
437  * - exclusive reference
438  * - mem_cgroup_trylock_pages()
439  *
440  * For a kmem folio a caller should hold an rcu read lock to protect memcg
441  * associated with a kmem folio from being released.
442  */
443 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
444 {
445 	if (folio_memcg_kmem(folio))
446 		return obj_cgroup_memcg(__folio_objcg(folio));
447 	return __folio_memcg(folio);
448 }
449 
450 /*
451  * folio_memcg_charged - If a folio is charged to a memory cgroup.
452  * @folio: Pointer to the folio.
453  *
454  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
455  */
456 static inline bool folio_memcg_charged(struct folio *folio)
457 {
458 	if (folio_memcg_kmem(folio))
459 		return __folio_objcg(folio) != NULL;
460 	return __folio_memcg(folio) != NULL;
461 }
462 
463 /**
464  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
465  * @folio: Pointer to the folio.
466  *
467  * This function assumes that the folio is known to have a
468  * proper memory cgroup pointer. It's not safe to call this function
469  * against some type of folios, e.g. slab folios or ex-slab folios.
470  *
471  * Return: A pointer to the memory cgroup associated with the folio,
472  * or NULL.
473  */
474 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
475 {
476 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
477 
478 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
479 
480 	if (memcg_data & MEMCG_DATA_KMEM) {
481 		struct obj_cgroup *objcg;
482 
483 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
484 		return obj_cgroup_memcg(objcg);
485 	}
486 
487 	WARN_ON_ONCE(!rcu_read_lock_held());
488 
489 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
490 }
491 
492 /*
493  * folio_memcg_check - Get the memory cgroup associated with a folio.
494  * @folio: Pointer to the folio.
495  *
496  * Returns a pointer to the memory cgroup associated with the folio,
497  * or NULL. This function unlike folio_memcg() can take any folio
498  * as an argument. It has to be used in cases when it's not known if a folio
499  * has an associated memory cgroup pointer or an object cgroups vector or
500  * an object cgroup.
501  *
502  * For a non-kmem folio any of the following ensures folio and memcg binding
503  * stability:
504  *
505  * - the folio lock
506  * - LRU isolation
507  * - lock_folio_memcg()
508  * - exclusive reference
509  * - mem_cgroup_trylock_pages()
510  *
511  * For a kmem folio a caller should hold an rcu read lock to protect memcg
512  * associated with a kmem folio from being released.
513  */
514 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
515 {
516 	/*
517 	 * Because folio->memcg_data might be changed asynchronously
518 	 * for slabs, READ_ONCE() should be used here.
519 	 */
520 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
521 
522 	if (memcg_data & MEMCG_DATA_OBJEXTS)
523 		return NULL;
524 
525 	if (memcg_data & MEMCG_DATA_KMEM) {
526 		struct obj_cgroup *objcg;
527 
528 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
529 		return obj_cgroup_memcg(objcg);
530 	}
531 
532 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
533 }
534 
535 static inline struct mem_cgroup *page_memcg_check(struct page *page)
536 {
537 	if (PageTail(page))
538 		return NULL;
539 	return folio_memcg_check((struct folio *)page);
540 }
541 
542 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
543 {
544 	struct mem_cgroup *memcg;
545 
546 	rcu_read_lock();
547 retry:
548 	memcg = obj_cgroup_memcg(objcg);
549 	if (unlikely(!css_tryget(&memcg->css)))
550 		goto retry;
551 	rcu_read_unlock();
552 
553 	return memcg;
554 }
555 
556 /*
557  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
558  * @folio: Pointer to the folio.
559  *
560  * Checks if the folio has MemcgKmem flag set. The caller must ensure
561  * that the folio has an associated memory cgroup. It's not safe to call
562  * this function against some types of folios, e.g. slab folios.
563  */
564 static inline bool folio_memcg_kmem(struct folio *folio)
565 {
566 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
567 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
568 	return folio->memcg_data & MEMCG_DATA_KMEM;
569 }
570 
571 static inline bool PageMemcgKmem(struct page *page)
572 {
573 	return folio_memcg_kmem(page_folio(page));
574 }
575 
576 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
577 {
578 	return (memcg == root_mem_cgroup);
579 }
580 
581 static inline bool mem_cgroup_disabled(void)
582 {
583 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
584 }
585 
586 static inline void mem_cgroup_protection(struct mem_cgroup *root,
587 					 struct mem_cgroup *memcg,
588 					 unsigned long *min,
589 					 unsigned long *low)
590 {
591 	*min = *low = 0;
592 
593 	if (mem_cgroup_disabled())
594 		return;
595 
596 	/*
597 	 * There is no reclaim protection applied to a targeted reclaim.
598 	 * We are special casing this specific case here because
599 	 * mem_cgroup_calculate_protection is not robust enough to keep
600 	 * the protection invariant for calculated effective values for
601 	 * parallel reclaimers with different reclaim target. This is
602 	 * especially a problem for tail memcgs (as they have pages on LRU)
603 	 * which would want to have effective values 0 for targeted reclaim
604 	 * but a different value for external reclaim.
605 	 *
606 	 * Example
607 	 * Let's have global and A's reclaim in parallel:
608 	 *  |
609 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
610 	 *  |\
611 	 *  | C (low = 1G, usage = 2.5G)
612 	 *  B (low = 1G, usage = 0.5G)
613 	 *
614 	 * For the global reclaim
615 	 * A.elow = A.low
616 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
617 	 * C.elow = min(C.usage, C.low)
618 	 *
619 	 * With the effective values resetting we have A reclaim
620 	 * A.elow = 0
621 	 * B.elow = B.low
622 	 * C.elow = C.low
623 	 *
624 	 * If the global reclaim races with A's reclaim then
625 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
626 	 * is possible and reclaiming B would be violating the protection.
627 	 *
628 	 */
629 	if (root == memcg)
630 		return;
631 
632 	*min = READ_ONCE(memcg->memory.emin);
633 	*low = READ_ONCE(memcg->memory.elow);
634 }
635 
636 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
637 				     struct mem_cgroup *memcg);
638 
639 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
640 					  struct mem_cgroup *memcg)
641 {
642 	/*
643 	 * The root memcg doesn't account charges, and doesn't support
644 	 * protection. The target memcg's protection is ignored, see
645 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
646 	 */
647 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
648 		memcg == target;
649 }
650 
651 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
652 					struct mem_cgroup *memcg)
653 {
654 	if (mem_cgroup_unprotected(target, memcg))
655 		return false;
656 
657 	return READ_ONCE(memcg->memory.elow) >=
658 		page_counter_read(&memcg->memory);
659 }
660 
661 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
662 					struct mem_cgroup *memcg)
663 {
664 	if (mem_cgroup_unprotected(target, memcg))
665 		return false;
666 
667 	return READ_ONCE(memcg->memory.emin) >=
668 		page_counter_read(&memcg->memory);
669 }
670 
671 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
672 
673 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
674 
675 /**
676  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
677  * @folio: Folio to charge.
678  * @mm: mm context of the allocating task.
679  * @gfp: Reclaim mode.
680  *
681  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
682  * pages according to @gfp if necessary.  If @mm is NULL, try to
683  * charge to the active memcg.
684  *
685  * Do not use this for folios allocated for swapin.
686  *
687  * Return: 0 on success. Otherwise, an error code is returned.
688  */
689 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
690 				    gfp_t gfp)
691 {
692 	if (mem_cgroup_disabled())
693 		return 0;
694 	return __mem_cgroup_charge(folio, mm, gfp);
695 }
696 
697 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
698 		long nr_pages);
699 
700 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
701 				  gfp_t gfp, swp_entry_t entry);
702 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
703 
704 void __mem_cgroup_uncharge(struct folio *folio);
705 
706 /**
707  * mem_cgroup_uncharge - Uncharge a folio.
708  * @folio: Folio to uncharge.
709  *
710  * Uncharge a folio previously charged with mem_cgroup_charge().
711  */
712 static inline void mem_cgroup_uncharge(struct folio *folio)
713 {
714 	if (mem_cgroup_disabled())
715 		return;
716 	__mem_cgroup_uncharge(folio);
717 }
718 
719 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
720 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
721 {
722 	if (mem_cgroup_disabled())
723 		return;
724 	__mem_cgroup_uncharge_folios(folios);
725 }
726 
727 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
728 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
729 void mem_cgroup_migrate(struct folio *old, struct folio *new);
730 
731 /**
732  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
733  * @memcg: memcg of the wanted lruvec
734  * @pgdat: pglist_data
735  *
736  * Returns the lru list vector holding pages for a given @memcg &
737  * @pgdat combination. This can be the node lruvec, if the memory
738  * controller is disabled.
739  */
740 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
741 					       struct pglist_data *pgdat)
742 {
743 	struct mem_cgroup_per_node *mz;
744 	struct lruvec *lruvec;
745 
746 	if (mem_cgroup_disabled()) {
747 		lruvec = &pgdat->__lruvec;
748 		goto out;
749 	}
750 
751 	if (!memcg)
752 		memcg = root_mem_cgroup;
753 
754 	mz = memcg->nodeinfo[pgdat->node_id];
755 	lruvec = &mz->lruvec;
756 out:
757 	/*
758 	 * Since a node can be onlined after the mem_cgroup was created,
759 	 * we have to be prepared to initialize lruvec->pgdat here;
760 	 * and if offlined then reonlined, we need to reinitialize it.
761 	 */
762 	if (unlikely(lruvec->pgdat != pgdat))
763 		lruvec->pgdat = pgdat;
764 	return lruvec;
765 }
766 
767 /**
768  * folio_lruvec - return lruvec for isolating/putting an LRU folio
769  * @folio: Pointer to the folio.
770  *
771  * This function relies on folio->mem_cgroup being stable.
772  */
773 static inline struct lruvec *folio_lruvec(struct folio *folio)
774 {
775 	struct mem_cgroup *memcg = folio_memcg(folio);
776 
777 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
778 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
779 }
780 
781 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
782 
783 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
784 
785 struct mem_cgroup *get_mem_cgroup_from_current(void);
786 
787 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
788 
789 struct lruvec *folio_lruvec_lock(struct folio *folio);
790 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
791 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
792 						unsigned long *flags);
793 
794 #ifdef CONFIG_DEBUG_VM
795 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
796 #else
797 static inline
798 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
799 {
800 }
801 #endif
802 
803 static inline
804 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
805 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
806 }
807 
808 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
809 {
810 	return percpu_ref_tryget(&objcg->refcnt);
811 }
812 
813 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
814 {
815 	percpu_ref_get(&objcg->refcnt);
816 }
817 
818 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
819 				       unsigned long nr)
820 {
821 	percpu_ref_get_many(&objcg->refcnt, nr);
822 }
823 
824 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
825 {
826 	if (objcg)
827 		percpu_ref_put(&objcg->refcnt);
828 }
829 
830 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
831 {
832 	return !memcg || css_tryget(&memcg->css);
833 }
834 
835 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
836 {
837 	return !memcg || css_tryget_online(&memcg->css);
838 }
839 
840 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
841 {
842 	if (memcg)
843 		css_put(&memcg->css);
844 }
845 
846 #define mem_cgroup_from_counter(counter, member)	\
847 	container_of(counter, struct mem_cgroup, member)
848 
849 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
850 				   struct mem_cgroup *,
851 				   struct mem_cgroup_reclaim_cookie *);
852 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
853 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
854 			   int (*)(struct task_struct *, void *), void *arg);
855 
856 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
857 {
858 	if (mem_cgroup_disabled())
859 		return 0;
860 
861 	return memcg->id.id;
862 }
863 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
864 
865 #ifdef CONFIG_SHRINKER_DEBUG
866 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
867 {
868 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
869 }
870 
871 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
872 #endif
873 
874 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
875 {
876 	return mem_cgroup_from_css(seq_css(m));
877 }
878 
879 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
880 {
881 	struct mem_cgroup_per_node *mz;
882 
883 	if (mem_cgroup_disabled())
884 		return NULL;
885 
886 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
887 	return mz->memcg;
888 }
889 
890 /**
891  * parent_mem_cgroup - find the accounting parent of a memcg
892  * @memcg: memcg whose parent to find
893  *
894  * Returns the parent memcg, or NULL if this is the root.
895  */
896 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
897 {
898 	return mem_cgroup_from_css(memcg->css.parent);
899 }
900 
901 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
902 			      struct mem_cgroup *root)
903 {
904 	if (root == memcg)
905 		return true;
906 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
907 }
908 
909 static inline bool mm_match_cgroup(struct mm_struct *mm,
910 				   struct mem_cgroup *memcg)
911 {
912 	struct mem_cgroup *task_memcg;
913 	bool match = false;
914 
915 	rcu_read_lock();
916 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
917 	if (task_memcg)
918 		match = mem_cgroup_is_descendant(task_memcg, memcg);
919 	rcu_read_unlock();
920 	return match;
921 }
922 
923 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
924 ino_t page_cgroup_ino(struct page *page);
925 
926 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
927 {
928 	if (mem_cgroup_disabled())
929 		return true;
930 	return !!(memcg->css.flags & CSS_ONLINE);
931 }
932 
933 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
934 		int zid, int nr_pages);
935 
936 static inline
937 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
938 		enum lru_list lru, int zone_idx)
939 {
940 	struct mem_cgroup_per_node *mz;
941 
942 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
943 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
944 }
945 
946 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
947 
948 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
949 
950 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
951 
952 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
953 				struct task_struct *p);
954 
955 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
956 
957 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
958 					    struct mem_cgroup *oom_domain);
959 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
960 
961 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
962 		       int val);
963 
964 /* idx can be of type enum memcg_stat_item or node_stat_item */
965 static inline void mod_memcg_state(struct mem_cgroup *memcg,
966 				   enum memcg_stat_item idx, int val)
967 {
968 	unsigned long flags;
969 
970 	local_irq_save(flags);
971 	__mod_memcg_state(memcg, idx, val);
972 	local_irq_restore(flags);
973 }
974 
975 static inline void mod_memcg_page_state(struct page *page,
976 					enum memcg_stat_item idx, int val)
977 {
978 	struct mem_cgroup *memcg;
979 
980 	if (mem_cgroup_disabled())
981 		return;
982 
983 	rcu_read_lock();
984 	memcg = folio_memcg(page_folio(page));
985 	if (memcg)
986 		mod_memcg_state(memcg, idx, val);
987 	rcu_read_unlock();
988 }
989 
990 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
991 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
992 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
993 				      enum node_stat_item idx);
994 
995 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
996 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
997 
998 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
999 
1000 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1001 					 int val)
1002 {
1003 	unsigned long flags;
1004 
1005 	local_irq_save(flags);
1006 	__mod_lruvec_kmem_state(p, idx, val);
1007 	local_irq_restore(flags);
1008 }
1009 
1010 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1011 			  unsigned long count);
1012 
1013 static inline void count_memcg_events(struct mem_cgroup *memcg,
1014 				      enum vm_event_item idx,
1015 				      unsigned long count)
1016 {
1017 	unsigned long flags;
1018 
1019 	local_irq_save(flags);
1020 	__count_memcg_events(memcg, idx, count);
1021 	local_irq_restore(flags);
1022 }
1023 
1024 static inline void count_memcg_folio_events(struct folio *folio,
1025 		enum vm_event_item idx, unsigned long nr)
1026 {
1027 	struct mem_cgroup *memcg = folio_memcg(folio);
1028 
1029 	if (memcg)
1030 		count_memcg_events(memcg, idx, nr);
1031 }
1032 
1033 static inline void count_memcg_events_mm(struct mm_struct *mm,
1034 					enum vm_event_item idx, unsigned long count)
1035 {
1036 	struct mem_cgroup *memcg;
1037 
1038 	if (mem_cgroup_disabled())
1039 		return;
1040 
1041 	rcu_read_lock();
1042 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1043 	if (likely(memcg))
1044 		count_memcg_events(memcg, idx, count);
1045 	rcu_read_unlock();
1046 }
1047 
1048 static inline void count_memcg_event_mm(struct mm_struct *mm,
1049 					enum vm_event_item idx)
1050 {
1051 	count_memcg_events_mm(mm, idx, 1);
1052 }
1053 
1054 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1055 				      enum memcg_memory_event event)
1056 {
1057 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1058 			  event == MEMCG_SWAP_FAIL;
1059 
1060 	atomic_long_inc(&memcg->memory_events_local[event]);
1061 	if (!swap_event)
1062 		cgroup_file_notify(&memcg->events_local_file);
1063 
1064 	do {
1065 		atomic_long_inc(&memcg->memory_events[event]);
1066 		if (swap_event)
1067 			cgroup_file_notify(&memcg->swap_events_file);
1068 		else
1069 			cgroup_file_notify(&memcg->events_file);
1070 
1071 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1072 			break;
1073 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1074 			break;
1075 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1076 		 !mem_cgroup_is_root(memcg));
1077 }
1078 
1079 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1080 					 enum memcg_memory_event event)
1081 {
1082 	struct mem_cgroup *memcg;
1083 
1084 	if (mem_cgroup_disabled())
1085 		return;
1086 
1087 	rcu_read_lock();
1088 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1089 	if (likely(memcg))
1090 		memcg_memory_event(memcg, event);
1091 	rcu_read_unlock();
1092 }
1093 
1094 void split_page_memcg(struct page *head, int old_order, int new_order);
1095 
1096 #else /* CONFIG_MEMCG */
1097 
1098 #define MEM_CGROUP_ID_SHIFT	0
1099 
1100 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1101 {
1102 	return NULL;
1103 }
1104 
1105 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1106 {
1107 	WARN_ON_ONCE(!rcu_read_lock_held());
1108 	return NULL;
1109 }
1110 
1111 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1112 {
1113 	return NULL;
1114 }
1115 
1116 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1117 {
1118 	return NULL;
1119 }
1120 
1121 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1122 {
1123 	return NULL;
1124 }
1125 
1126 static inline bool folio_memcg_kmem(struct folio *folio)
1127 {
1128 	return false;
1129 }
1130 
1131 static inline bool PageMemcgKmem(struct page *page)
1132 {
1133 	return false;
1134 }
1135 
1136 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1137 {
1138 	return true;
1139 }
1140 
1141 static inline bool mem_cgroup_disabled(void)
1142 {
1143 	return true;
1144 }
1145 
1146 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1147 				      enum memcg_memory_event event)
1148 {
1149 }
1150 
1151 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1152 					 enum memcg_memory_event event)
1153 {
1154 }
1155 
1156 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1157 					 struct mem_cgroup *memcg,
1158 					 unsigned long *min,
1159 					 unsigned long *low)
1160 {
1161 	*min = *low = 0;
1162 }
1163 
1164 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1165 						   struct mem_cgroup *memcg)
1166 {
1167 }
1168 
1169 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1170 					  struct mem_cgroup *memcg)
1171 {
1172 	return true;
1173 }
1174 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1175 					struct mem_cgroup *memcg)
1176 {
1177 	return false;
1178 }
1179 
1180 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1181 					struct mem_cgroup *memcg)
1182 {
1183 	return false;
1184 }
1185 
1186 static inline void mem_cgroup_commit_charge(struct folio *folio,
1187 		struct mem_cgroup *memcg)
1188 {
1189 }
1190 
1191 static inline int mem_cgroup_charge(struct folio *folio,
1192 		struct mm_struct *mm, gfp_t gfp)
1193 {
1194 	return 0;
1195 }
1196 
1197 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1198 		gfp_t gfp, long nr_pages)
1199 {
1200 	return 0;
1201 }
1202 
1203 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1204 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1205 {
1206 	return 0;
1207 }
1208 
1209 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1210 {
1211 }
1212 
1213 static inline void mem_cgroup_uncharge(struct folio *folio)
1214 {
1215 }
1216 
1217 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1218 {
1219 }
1220 
1221 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1222 		unsigned int nr_pages)
1223 {
1224 }
1225 
1226 static inline void mem_cgroup_replace_folio(struct folio *old,
1227 		struct folio *new)
1228 {
1229 }
1230 
1231 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1232 {
1233 }
1234 
1235 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1236 					       struct pglist_data *pgdat)
1237 {
1238 	return &pgdat->__lruvec;
1239 }
1240 
1241 static inline struct lruvec *folio_lruvec(struct folio *folio)
1242 {
1243 	struct pglist_data *pgdat = folio_pgdat(folio);
1244 	return &pgdat->__lruvec;
1245 }
1246 
1247 static inline
1248 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1249 {
1250 }
1251 
1252 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1253 {
1254 	return NULL;
1255 }
1256 
1257 static inline bool mm_match_cgroup(struct mm_struct *mm,
1258 		struct mem_cgroup *memcg)
1259 {
1260 	return true;
1261 }
1262 
1263 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1264 {
1265 	return NULL;
1266 }
1267 
1268 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1269 {
1270 	return NULL;
1271 }
1272 
1273 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1274 {
1275 	return NULL;
1276 }
1277 
1278 static inline
1279 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1280 {
1281 	return NULL;
1282 }
1283 
1284 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1285 {
1286 }
1287 
1288 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1289 {
1290 	return true;
1291 }
1292 
1293 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1294 {
1295 	return true;
1296 }
1297 
1298 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1299 {
1300 }
1301 
1302 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1303 {
1304 	struct pglist_data *pgdat = folio_pgdat(folio);
1305 
1306 	spin_lock(&pgdat->__lruvec.lru_lock);
1307 	return &pgdat->__lruvec;
1308 }
1309 
1310 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1311 {
1312 	struct pglist_data *pgdat = folio_pgdat(folio);
1313 
1314 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1315 	return &pgdat->__lruvec;
1316 }
1317 
1318 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1319 		unsigned long *flagsp)
1320 {
1321 	struct pglist_data *pgdat = folio_pgdat(folio);
1322 
1323 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1324 	return &pgdat->__lruvec;
1325 }
1326 
1327 static inline struct mem_cgroup *
1328 mem_cgroup_iter(struct mem_cgroup *root,
1329 		struct mem_cgroup *prev,
1330 		struct mem_cgroup_reclaim_cookie *reclaim)
1331 {
1332 	return NULL;
1333 }
1334 
1335 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1336 					 struct mem_cgroup *prev)
1337 {
1338 }
1339 
1340 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1341 		int (*fn)(struct task_struct *, void *), void *arg)
1342 {
1343 }
1344 
1345 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1346 {
1347 	return 0;
1348 }
1349 
1350 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1351 {
1352 	WARN_ON_ONCE(id);
1353 	/* XXX: This should always return root_mem_cgroup */
1354 	return NULL;
1355 }
1356 
1357 #ifdef CONFIG_SHRINKER_DEBUG
1358 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1359 {
1360 	return 0;
1361 }
1362 
1363 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1364 {
1365 	return NULL;
1366 }
1367 #endif
1368 
1369 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1370 {
1371 	return NULL;
1372 }
1373 
1374 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1375 {
1376 	return NULL;
1377 }
1378 
1379 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1380 {
1381 	return true;
1382 }
1383 
1384 static inline
1385 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1386 		enum lru_list lru, int zone_idx)
1387 {
1388 	return 0;
1389 }
1390 
1391 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1392 {
1393 	return 0;
1394 }
1395 
1396 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1397 {
1398 	return 0;
1399 }
1400 
1401 static inline void
1402 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1403 {
1404 }
1405 
1406 static inline void
1407 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1408 {
1409 }
1410 
1411 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1412 {
1413 }
1414 
1415 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1416 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1417 {
1418 	return NULL;
1419 }
1420 
1421 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1422 {
1423 }
1424 
1425 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1426 				     enum memcg_stat_item idx,
1427 				     int nr)
1428 {
1429 }
1430 
1431 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1432 				   enum memcg_stat_item idx,
1433 				   int nr)
1434 {
1435 }
1436 
1437 static inline void mod_memcg_page_state(struct page *page,
1438 					enum memcg_stat_item idx, int val)
1439 {
1440 }
1441 
1442 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1443 {
1444 	return 0;
1445 }
1446 
1447 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1448 					      enum node_stat_item idx)
1449 {
1450 	return node_page_state(lruvec_pgdat(lruvec), idx);
1451 }
1452 
1453 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1454 						    enum node_stat_item idx)
1455 {
1456 	return node_page_state(lruvec_pgdat(lruvec), idx);
1457 }
1458 
1459 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1460 {
1461 }
1462 
1463 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1464 {
1465 }
1466 
1467 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1468 					   int val)
1469 {
1470 	struct page *page = virt_to_head_page(p);
1471 
1472 	__mod_node_page_state(page_pgdat(page), idx, val);
1473 }
1474 
1475 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1476 					 int val)
1477 {
1478 	struct page *page = virt_to_head_page(p);
1479 
1480 	mod_node_page_state(page_pgdat(page), idx, val);
1481 }
1482 
1483 static inline void count_memcg_events(struct mem_cgroup *memcg,
1484 				      enum vm_event_item idx,
1485 				      unsigned long count)
1486 {
1487 }
1488 
1489 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1490 					enum vm_event_item idx,
1491 					unsigned long count)
1492 {
1493 }
1494 
1495 static inline void count_memcg_folio_events(struct folio *folio,
1496 		enum vm_event_item idx, unsigned long nr)
1497 {
1498 }
1499 
1500 static inline void count_memcg_events_mm(struct mm_struct *mm,
1501 					enum vm_event_item idx, unsigned long count)
1502 {
1503 }
1504 
1505 static inline
1506 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1507 {
1508 }
1509 
1510 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1511 {
1512 }
1513 #endif /* CONFIG_MEMCG */
1514 
1515 /*
1516  * Extended information for slab objects stored as an array in page->memcg_data
1517  * if MEMCG_DATA_OBJEXTS is set.
1518  */
1519 struct slabobj_ext {
1520 #ifdef CONFIG_MEMCG
1521 	struct obj_cgroup *objcg;
1522 #endif
1523 #ifdef CONFIG_MEM_ALLOC_PROFILING
1524 	union codetag_ref ref;
1525 #endif
1526 } __aligned(8);
1527 
1528 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1529 {
1530 	__mod_lruvec_kmem_state(p, idx, 1);
1531 }
1532 
1533 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1534 {
1535 	__mod_lruvec_kmem_state(p, idx, -1);
1536 }
1537 
1538 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1539 {
1540 	struct mem_cgroup *memcg;
1541 
1542 	memcg = lruvec_memcg(lruvec);
1543 	if (!memcg)
1544 		return NULL;
1545 	memcg = parent_mem_cgroup(memcg);
1546 	if (!memcg)
1547 		return NULL;
1548 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1549 }
1550 
1551 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1552 {
1553 	spin_unlock(&lruvec->lru_lock);
1554 }
1555 
1556 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1557 {
1558 	spin_unlock_irq(&lruvec->lru_lock);
1559 }
1560 
1561 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1562 		unsigned long flags)
1563 {
1564 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1565 }
1566 
1567 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1568 static inline bool folio_matches_lruvec(struct folio *folio,
1569 		struct lruvec *lruvec)
1570 {
1571 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1572 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1573 }
1574 
1575 /* Don't lock again iff page's lruvec locked */
1576 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1577 		struct lruvec *locked_lruvec)
1578 {
1579 	if (locked_lruvec) {
1580 		if (folio_matches_lruvec(folio, locked_lruvec))
1581 			return locked_lruvec;
1582 
1583 		unlock_page_lruvec_irq(locked_lruvec);
1584 	}
1585 
1586 	return folio_lruvec_lock_irq(folio);
1587 }
1588 
1589 /* Don't lock again iff folio's lruvec locked */
1590 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1591 		struct lruvec **lruvecp, unsigned long *flags)
1592 {
1593 	if (*lruvecp) {
1594 		if (folio_matches_lruvec(folio, *lruvecp))
1595 			return;
1596 
1597 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1598 	}
1599 
1600 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1601 }
1602 
1603 #ifdef CONFIG_CGROUP_WRITEBACK
1604 
1605 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1606 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1607 			 unsigned long *pheadroom, unsigned long *pdirty,
1608 			 unsigned long *pwriteback);
1609 
1610 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1611 					     struct bdi_writeback *wb);
1612 
1613 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1614 						  struct bdi_writeback *wb)
1615 {
1616 	struct mem_cgroup *memcg;
1617 
1618 	if (mem_cgroup_disabled())
1619 		return;
1620 
1621 	memcg = folio_memcg(folio);
1622 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1623 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1624 }
1625 
1626 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1627 
1628 #else	/* CONFIG_CGROUP_WRITEBACK */
1629 
1630 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1631 {
1632 	return NULL;
1633 }
1634 
1635 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1636 				       unsigned long *pfilepages,
1637 				       unsigned long *pheadroom,
1638 				       unsigned long *pdirty,
1639 				       unsigned long *pwriteback)
1640 {
1641 }
1642 
1643 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1644 						  struct bdi_writeback *wb)
1645 {
1646 }
1647 
1648 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1649 {
1650 }
1651 
1652 #endif	/* CONFIG_CGROUP_WRITEBACK */
1653 
1654 struct sock;
1655 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1656 			     gfp_t gfp_mask);
1657 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1658 #ifdef CONFIG_MEMCG
1659 extern struct static_key_false memcg_sockets_enabled_key;
1660 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1661 void mem_cgroup_sk_alloc(struct sock *sk);
1662 void mem_cgroup_sk_free(struct sock *sk);
1663 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1664 {
1665 #ifdef CONFIG_MEMCG_V1
1666 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1667 		return !!memcg->tcpmem_pressure;
1668 #endif /* CONFIG_MEMCG_V1 */
1669 	do {
1670 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1671 			return true;
1672 	} while ((memcg = parent_mem_cgroup(memcg)));
1673 	return false;
1674 }
1675 
1676 int alloc_shrinker_info(struct mem_cgroup *memcg);
1677 void free_shrinker_info(struct mem_cgroup *memcg);
1678 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1679 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1680 #else
1681 #define mem_cgroup_sockets_enabled 0
1682 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1683 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1684 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1685 {
1686 	return false;
1687 }
1688 
1689 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1690 				    int nid, int shrinker_id)
1691 {
1692 }
1693 #endif
1694 
1695 #ifdef CONFIG_MEMCG
1696 bool mem_cgroup_kmem_disabled(void);
1697 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1698 void __memcg_kmem_uncharge_page(struct page *page, int order);
1699 
1700 /*
1701  * The returned objcg pointer is safe to use without additional
1702  * protection within a scope. The scope is defined either by
1703  * the current task (similar to the "current" global variable)
1704  * or by set_active_memcg() pair.
1705  * Please, use obj_cgroup_get() to get a reference if the pointer
1706  * needs to be used outside of the local scope.
1707  */
1708 struct obj_cgroup *current_obj_cgroup(void);
1709 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1710 
1711 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1712 {
1713 	struct obj_cgroup *objcg = current_obj_cgroup();
1714 
1715 	if (objcg)
1716 		obj_cgroup_get(objcg);
1717 
1718 	return objcg;
1719 }
1720 
1721 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1722 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1723 
1724 extern struct static_key_false memcg_bpf_enabled_key;
1725 static inline bool memcg_bpf_enabled(void)
1726 {
1727 	return static_branch_likely(&memcg_bpf_enabled_key);
1728 }
1729 
1730 extern struct static_key_false memcg_kmem_online_key;
1731 
1732 static inline bool memcg_kmem_online(void)
1733 {
1734 	return static_branch_likely(&memcg_kmem_online_key);
1735 }
1736 
1737 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1738 					 int order)
1739 {
1740 	if (memcg_kmem_online())
1741 		return __memcg_kmem_charge_page(page, gfp, order);
1742 	return 0;
1743 }
1744 
1745 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1746 {
1747 	if (memcg_kmem_online())
1748 		__memcg_kmem_uncharge_page(page, order);
1749 }
1750 
1751 /*
1752  * A helper for accessing memcg's kmem_id, used for getting
1753  * corresponding LRU lists.
1754  */
1755 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1756 {
1757 	return memcg ? memcg->kmemcg_id : -1;
1758 }
1759 
1760 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1761 
1762 static inline void count_objcg_event(struct obj_cgroup *objcg,
1763 				     enum vm_event_item idx)
1764 {
1765 	struct mem_cgroup *memcg;
1766 
1767 	if (!memcg_kmem_online())
1768 		return;
1769 
1770 	rcu_read_lock();
1771 	memcg = obj_cgroup_memcg(objcg);
1772 	count_memcg_events(memcg, idx, 1);
1773 	rcu_read_unlock();
1774 }
1775 
1776 #else
1777 static inline bool mem_cgroup_kmem_disabled(void)
1778 {
1779 	return true;
1780 }
1781 
1782 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1783 					 int order)
1784 {
1785 	return 0;
1786 }
1787 
1788 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1789 {
1790 }
1791 
1792 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1793 					   int order)
1794 {
1795 	return 0;
1796 }
1797 
1798 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1799 {
1800 }
1801 
1802 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1803 {
1804 	return NULL;
1805 }
1806 
1807 static inline bool memcg_bpf_enabled(void)
1808 {
1809 	return false;
1810 }
1811 
1812 static inline bool memcg_kmem_online(void)
1813 {
1814 	return false;
1815 }
1816 
1817 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1818 {
1819 	return -1;
1820 }
1821 
1822 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1823 {
1824 	return NULL;
1825 }
1826 
1827 static inline void count_objcg_event(struct obj_cgroup *objcg,
1828 				     enum vm_event_item idx)
1829 {
1830 }
1831 
1832 #endif /* CONFIG_MEMCG */
1833 
1834 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1835 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1836 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1837 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1838 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1839 #else
1840 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1841 {
1842 	return true;
1843 }
1844 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1845 					   size_t size)
1846 {
1847 }
1848 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1849 					     size_t size)
1850 {
1851 }
1852 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1853 {
1854 	/* if zswap is disabled, do not block pages going to the swapping device */
1855 	return true;
1856 }
1857 #endif
1858 
1859 
1860 /* Cgroup v1-related declarations */
1861 
1862 #ifdef CONFIG_MEMCG_V1
1863 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1864 					gfp_t gfp_mask,
1865 					unsigned long *total_scanned);
1866 
1867 bool mem_cgroup_oom_synchronize(bool wait);
1868 
1869 static inline bool task_in_memcg_oom(struct task_struct *p)
1870 {
1871 	return p->memcg_in_oom;
1872 }
1873 
1874 void folio_memcg_lock(struct folio *folio);
1875 void folio_memcg_unlock(struct folio *folio);
1876 
1877 /* try to stablize folio_memcg() for all the pages in a memcg */
1878 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1879 {
1880 	rcu_read_lock();
1881 
1882 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
1883 		return true;
1884 
1885 	rcu_read_unlock();
1886 	return false;
1887 }
1888 
1889 static inline void mem_cgroup_unlock_pages(void)
1890 {
1891 	rcu_read_unlock();
1892 }
1893 
1894 static inline void mem_cgroup_enter_user_fault(void)
1895 {
1896 	WARN_ON(current->in_user_fault);
1897 	current->in_user_fault = 1;
1898 }
1899 
1900 static inline void mem_cgroup_exit_user_fault(void)
1901 {
1902 	WARN_ON(!current->in_user_fault);
1903 	current->in_user_fault = 0;
1904 }
1905 
1906 #else /* CONFIG_MEMCG_V1 */
1907 static inline
1908 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1909 					gfp_t gfp_mask,
1910 					unsigned long *total_scanned)
1911 {
1912 	return 0;
1913 }
1914 
1915 static inline void folio_memcg_lock(struct folio *folio)
1916 {
1917 }
1918 
1919 static inline void folio_memcg_unlock(struct folio *folio)
1920 {
1921 }
1922 
1923 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1924 {
1925 	/* to match folio_memcg_rcu() */
1926 	rcu_read_lock();
1927 	return true;
1928 }
1929 
1930 static inline void mem_cgroup_unlock_pages(void)
1931 {
1932 	rcu_read_unlock();
1933 }
1934 
1935 static inline bool task_in_memcg_oom(struct task_struct *p)
1936 {
1937 	return false;
1938 }
1939 
1940 static inline bool mem_cgroup_oom_synchronize(bool wait)
1941 {
1942 	return false;
1943 }
1944 
1945 static inline void mem_cgroup_enter_user_fault(void)
1946 {
1947 }
1948 
1949 static inline void mem_cgroup_exit_user_fault(void)
1950 {
1951 }
1952 
1953 #endif /* CONFIG_MEMCG_V1 */
1954 
1955 #endif /* _LINUX_MEMCONTROL_H */
1956