1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 27 struct mem_cgroup; 28 struct page_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* 34 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 35 * These two lists should keep in accord with each other. 36 */ 37 enum mem_cgroup_stat_index { 38 /* 39 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 40 */ 41 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 42 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 43 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 44 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 45 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 46 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 47 MEM_CGROUP_STAT_NSTATS, 48 }; 49 50 struct mem_cgroup_reclaim_cookie { 51 struct zone *zone; 52 int priority; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 /* 58 * All "charge" functions with gfp_mask should use GFP_KERNEL or 59 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't 60 * alloc memory but reclaims memory from all available zones. So, "where I want 61 * memory from" bits of gfp_mask has no meaning. So any bits of that field is 62 * available but adding a rule is better. charge functions' gfp_mask should 63 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous 64 * codes. 65 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.) 66 */ 67 68 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm, 69 gfp_t gfp_mask); 70 /* for swap handling */ 71 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 72 struct page *page, gfp_t mask, struct mem_cgroup **memcgp); 73 extern void mem_cgroup_commit_charge_swapin(struct page *page, 74 struct mem_cgroup *memcg); 75 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg); 76 77 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 78 gfp_t gfp_mask); 79 80 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 81 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 82 83 /* For coalescing uncharge for reducing memcg' overhead*/ 84 extern void mem_cgroup_uncharge_start(void); 85 extern void mem_cgroup_uncharge_end(void); 86 87 extern void mem_cgroup_uncharge_page(struct page *page); 88 extern void mem_cgroup_uncharge_cache_page(struct page *page); 89 90 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 91 struct mem_cgroup *memcg); 92 bool task_in_mem_cgroup(struct task_struct *task, 93 const struct mem_cgroup *memcg); 94 95 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 96 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 97 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm); 98 99 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 100 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); 101 102 static inline 103 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) 104 { 105 struct mem_cgroup *task_memcg; 106 bool match; 107 108 rcu_read_lock(); 109 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 110 match = __mem_cgroup_same_or_subtree(memcg, task_memcg); 111 rcu_read_unlock(); 112 return match; 113 } 114 115 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 116 117 extern void 118 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 119 struct mem_cgroup **memcgp); 120 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg, 121 struct page *oldpage, struct page *newpage, bool migration_ok); 122 123 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 124 struct mem_cgroup *, 125 struct mem_cgroup_reclaim_cookie *); 126 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 127 128 /* 129 * For memory reclaim. 130 */ 131 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 132 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 133 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 134 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 135 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 136 struct task_struct *p); 137 extern void mem_cgroup_replace_page_cache(struct page *oldpage, 138 struct page *newpage); 139 140 static inline void mem_cgroup_oom_enable(void) 141 { 142 WARN_ON(current->memcg_oom.may_oom); 143 current->memcg_oom.may_oom = 1; 144 } 145 146 static inline void mem_cgroup_oom_disable(void) 147 { 148 WARN_ON(!current->memcg_oom.may_oom); 149 current->memcg_oom.may_oom = 0; 150 } 151 152 static inline bool task_in_memcg_oom(struct task_struct *p) 153 { 154 return p->memcg_oom.memcg; 155 } 156 157 bool mem_cgroup_oom_synchronize(bool wait); 158 159 #ifdef CONFIG_MEMCG_SWAP 160 extern int do_swap_account; 161 #endif 162 163 static inline bool mem_cgroup_disabled(void) 164 { 165 if (mem_cgroup_subsys.disabled) 166 return true; 167 return false; 168 } 169 170 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, 171 unsigned long *flags); 172 173 extern atomic_t memcg_moving; 174 175 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 176 bool *locked, unsigned long *flags) 177 { 178 if (mem_cgroup_disabled()) 179 return; 180 rcu_read_lock(); 181 *locked = false; 182 if (atomic_read(&memcg_moving)) 183 __mem_cgroup_begin_update_page_stat(page, locked, flags); 184 } 185 186 void __mem_cgroup_end_update_page_stat(struct page *page, 187 unsigned long *flags); 188 static inline void mem_cgroup_end_update_page_stat(struct page *page, 189 bool *locked, unsigned long *flags) 190 { 191 if (mem_cgroup_disabled()) 192 return; 193 if (*locked) 194 __mem_cgroup_end_update_page_stat(page, flags); 195 rcu_read_unlock(); 196 } 197 198 void mem_cgroup_update_page_stat(struct page *page, 199 enum mem_cgroup_stat_index idx, 200 int val); 201 202 static inline void mem_cgroup_inc_page_stat(struct page *page, 203 enum mem_cgroup_stat_index idx) 204 { 205 mem_cgroup_update_page_stat(page, idx, 1); 206 } 207 208 static inline void mem_cgroup_dec_page_stat(struct page *page, 209 enum mem_cgroup_stat_index idx) 210 { 211 mem_cgroup_update_page_stat(page, idx, -1); 212 } 213 214 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 215 gfp_t gfp_mask, 216 unsigned long *total_scanned); 217 218 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 219 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 220 enum vm_event_item idx) 221 { 222 if (mem_cgroup_disabled()) 223 return; 224 __mem_cgroup_count_vm_event(mm, idx); 225 } 226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 227 void mem_cgroup_split_huge_fixup(struct page *head); 228 #endif 229 230 #ifdef CONFIG_DEBUG_VM 231 bool mem_cgroup_bad_page_check(struct page *page); 232 void mem_cgroup_print_bad_page(struct page *page); 233 #endif 234 #else /* CONFIG_MEMCG */ 235 struct mem_cgroup; 236 237 static inline int mem_cgroup_newpage_charge(struct page *page, 238 struct mm_struct *mm, gfp_t gfp_mask) 239 { 240 return 0; 241 } 242 243 static inline int mem_cgroup_cache_charge(struct page *page, 244 struct mm_struct *mm, gfp_t gfp_mask) 245 { 246 return 0; 247 } 248 249 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 250 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp) 251 { 252 return 0; 253 } 254 255 static inline void mem_cgroup_commit_charge_swapin(struct page *page, 256 struct mem_cgroup *memcg) 257 { 258 } 259 260 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 261 { 262 } 263 264 static inline void mem_cgroup_uncharge_start(void) 265 { 266 } 267 268 static inline void mem_cgroup_uncharge_end(void) 269 { 270 } 271 272 static inline void mem_cgroup_uncharge_page(struct page *page) 273 { 274 } 275 276 static inline void mem_cgroup_uncharge_cache_page(struct page *page) 277 { 278 } 279 280 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 281 struct mem_cgroup *memcg) 282 { 283 return &zone->lruvec; 284 } 285 286 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 287 struct zone *zone) 288 { 289 return &zone->lruvec; 290 } 291 292 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 293 { 294 return NULL; 295 } 296 297 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 298 { 299 return NULL; 300 } 301 302 static inline bool mm_match_cgroup(struct mm_struct *mm, 303 struct mem_cgroup *memcg) 304 { 305 return true; 306 } 307 308 static inline bool task_in_mem_cgroup(struct task_struct *task, 309 const struct mem_cgroup *memcg) 310 { 311 return true; 312 } 313 314 static inline struct cgroup_subsys_state 315 *mem_cgroup_css(struct mem_cgroup *memcg) 316 { 317 return NULL; 318 } 319 320 static inline void 321 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 322 struct mem_cgroup **memcgp) 323 { 324 } 325 326 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg, 327 struct page *oldpage, struct page *newpage, bool migration_ok) 328 { 329 } 330 331 static inline struct mem_cgroup * 332 mem_cgroup_iter(struct mem_cgroup *root, 333 struct mem_cgroup *prev, 334 struct mem_cgroup_reclaim_cookie *reclaim) 335 { 336 return NULL; 337 } 338 339 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 340 struct mem_cgroup *prev) 341 { 342 } 343 344 static inline bool mem_cgroup_disabled(void) 345 { 346 return true; 347 } 348 349 static inline int 350 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 351 { 352 return 1; 353 } 354 355 static inline unsigned long 356 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 357 { 358 return 0; 359 } 360 361 static inline void 362 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 363 int increment) 364 { 365 } 366 367 static inline void 368 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 369 { 370 } 371 372 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 373 bool *locked, unsigned long *flags) 374 { 375 } 376 377 static inline void mem_cgroup_end_update_page_stat(struct page *page, 378 bool *locked, unsigned long *flags) 379 { 380 } 381 382 static inline void mem_cgroup_oom_enable(void) 383 { 384 } 385 386 static inline void mem_cgroup_oom_disable(void) 387 { 388 } 389 390 static inline bool task_in_memcg_oom(struct task_struct *p) 391 { 392 return false; 393 } 394 395 static inline bool mem_cgroup_oom_synchronize(bool wait) 396 { 397 return false; 398 } 399 400 static inline void mem_cgroup_inc_page_stat(struct page *page, 401 enum mem_cgroup_stat_index idx) 402 { 403 } 404 405 static inline void mem_cgroup_dec_page_stat(struct page *page, 406 enum mem_cgroup_stat_index idx) 407 { 408 } 409 410 static inline 411 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 412 gfp_t gfp_mask, 413 unsigned long *total_scanned) 414 { 415 return 0; 416 } 417 418 static inline void mem_cgroup_split_huge_fixup(struct page *head) 419 { 420 } 421 422 static inline 423 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 424 { 425 } 426 static inline void mem_cgroup_replace_page_cache(struct page *oldpage, 427 struct page *newpage) 428 { 429 } 430 #endif /* CONFIG_MEMCG */ 431 432 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) 433 static inline bool 434 mem_cgroup_bad_page_check(struct page *page) 435 { 436 return false; 437 } 438 439 static inline void 440 mem_cgroup_print_bad_page(struct page *page) 441 { 442 } 443 #endif 444 445 enum { 446 UNDER_LIMIT, 447 SOFT_LIMIT, 448 OVER_LIMIT, 449 }; 450 451 struct sock; 452 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 453 void sock_update_memcg(struct sock *sk); 454 void sock_release_memcg(struct sock *sk); 455 #else 456 static inline void sock_update_memcg(struct sock *sk) 457 { 458 } 459 static inline void sock_release_memcg(struct sock *sk) 460 { 461 } 462 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 463 464 #ifdef CONFIG_MEMCG_KMEM 465 extern struct static_key memcg_kmem_enabled_key; 466 467 extern int memcg_limited_groups_array_size; 468 469 /* 470 * Helper macro to loop through all memcg-specific caches. Callers must still 471 * check if the cache is valid (it is either valid or NULL). 472 * the slab_mutex must be held when looping through those caches 473 */ 474 #define for_each_memcg_cache_index(_idx) \ 475 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 476 477 static inline bool memcg_kmem_enabled(void) 478 { 479 return static_key_false(&memcg_kmem_enabled_key); 480 } 481 482 /* 483 * In general, we'll do everything in our power to not incur in any overhead 484 * for non-memcg users for the kmem functions. Not even a function call, if we 485 * can avoid it. 486 * 487 * Therefore, we'll inline all those functions so that in the best case, we'll 488 * see that kmemcg is off for everybody and proceed quickly. If it is on, 489 * we'll still do most of the flag checking inline. We check a lot of 490 * conditions, but because they are pretty simple, they are expected to be 491 * fast. 492 */ 493 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 494 int order); 495 void __memcg_kmem_commit_charge(struct page *page, 496 struct mem_cgroup *memcg, int order); 497 void __memcg_kmem_uncharge_pages(struct page *page, int order); 498 499 int memcg_cache_id(struct mem_cgroup *memcg); 500 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 501 struct kmem_cache *root_cache); 502 void memcg_release_cache(struct kmem_cache *cachep); 503 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep); 504 505 int memcg_update_cache_size(struct kmem_cache *s, int num_groups); 506 void memcg_update_array_size(int num_groups); 507 508 struct kmem_cache * 509 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 510 511 void mem_cgroup_destroy_cache(struct kmem_cache *cachep); 512 void kmem_cache_destroy_memcg_children(struct kmem_cache *s); 513 514 /** 515 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 516 * @gfp: the gfp allocation flags. 517 * @memcg: a pointer to the memcg this was charged against. 518 * @order: allocation order. 519 * 520 * returns true if the memcg where the current task belongs can hold this 521 * allocation. 522 * 523 * We return true automatically if this allocation is not to be accounted to 524 * any memcg. 525 */ 526 static inline bool 527 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 528 { 529 if (!memcg_kmem_enabled()) 530 return true; 531 532 /* 533 * __GFP_NOFAIL allocations will move on even if charging is not 534 * possible. Therefore we don't even try, and have this allocation 535 * unaccounted. We could in theory charge it with 536 * res_counter_charge_nofail, but we hope those allocations are rare, 537 * and won't be worth the trouble. 538 */ 539 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL)) 540 return true; 541 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 542 return true; 543 544 /* If the test is dying, just let it go. */ 545 if (unlikely(fatal_signal_pending(current))) 546 return true; 547 548 return __memcg_kmem_newpage_charge(gfp, memcg, order); 549 } 550 551 /** 552 * memcg_kmem_uncharge_pages: uncharge pages from memcg 553 * @page: pointer to struct page being freed 554 * @order: allocation order. 555 * 556 * there is no need to specify memcg here, since it is embedded in page_cgroup 557 */ 558 static inline void 559 memcg_kmem_uncharge_pages(struct page *page, int order) 560 { 561 if (memcg_kmem_enabled()) 562 __memcg_kmem_uncharge_pages(page, order); 563 } 564 565 /** 566 * memcg_kmem_commit_charge: embeds correct memcg in a page 567 * @page: pointer to struct page recently allocated 568 * @memcg: the memcg structure we charged against 569 * @order: allocation order. 570 * 571 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 572 * failure of the allocation. if @page is NULL, this function will revert the 573 * charges. Otherwise, it will commit the memcg given by @memcg to the 574 * corresponding page_cgroup. 575 */ 576 static inline void 577 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 578 { 579 if (memcg_kmem_enabled() && memcg) 580 __memcg_kmem_commit_charge(page, memcg, order); 581 } 582 583 /** 584 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 585 * @cachep: the original global kmem cache 586 * @gfp: allocation flags. 587 * 588 * This function assumes that the task allocating, which determines the memcg 589 * in the page allocator, belongs to the same cgroup throughout the whole 590 * process. Misacounting can happen if the task calls memcg_kmem_get_cache() 591 * while belonging to a cgroup, and later on changes. This is considered 592 * acceptable, and should only happen upon task migration. 593 * 594 * Before the cache is created by the memcg core, there is also a possible 595 * imbalance: the task belongs to a memcg, but the cache being allocated from 596 * is the global cache, since the child cache is not yet guaranteed to be 597 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be 598 * passed and the page allocator will not attempt any cgroup accounting. 599 */ 600 static __always_inline struct kmem_cache * 601 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 602 { 603 if (!memcg_kmem_enabled()) 604 return cachep; 605 if (gfp & __GFP_NOFAIL) 606 return cachep; 607 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 608 return cachep; 609 if (unlikely(fatal_signal_pending(current))) 610 return cachep; 611 612 return __memcg_kmem_get_cache(cachep, gfp); 613 } 614 #else 615 #define for_each_memcg_cache_index(_idx) \ 616 for (; NULL; ) 617 618 static inline bool memcg_kmem_enabled(void) 619 { 620 return false; 621 } 622 623 static inline bool 624 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 625 { 626 return true; 627 } 628 629 static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 630 { 631 } 632 633 static inline void 634 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 635 { 636 } 637 638 static inline int memcg_cache_id(struct mem_cgroup *memcg) 639 { 640 return -1; 641 } 642 643 static inline int 644 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 645 struct kmem_cache *root_cache) 646 { 647 return 0; 648 } 649 650 static inline void memcg_release_cache(struct kmem_cache *cachep) 651 { 652 } 653 654 static inline void memcg_cache_list_add(struct mem_cgroup *memcg, 655 struct kmem_cache *s) 656 { 657 } 658 659 static inline struct kmem_cache * 660 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 661 { 662 return cachep; 663 } 664 665 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 666 { 667 } 668 #endif /* CONFIG_MEMCG_KMEM */ 669 #endif /* _LINUX_MEMCONTROL_H */ 670 671