1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct page; 27 struct mm_struct; 28 struct kmem_cache; 29 30 /* Cgroup-specific page state, on top of universal node page state */ 31 enum memcg_stat_item { 32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_RSS, 34 MEMCG_RSS_HUGE, 35 MEMCG_SWAP, 36 MEMCG_SOCK, 37 /* XXX: why are these zone and not node counters? */ 38 MEMCG_KERNEL_STACK_KB, 39 MEMCG_NR_STAT, 40 }; 41 42 enum memcg_memory_event { 43 MEMCG_LOW, 44 MEMCG_HIGH, 45 MEMCG_MAX, 46 MEMCG_OOM, 47 MEMCG_OOM_KILL, 48 MEMCG_SWAP_MAX, 49 MEMCG_SWAP_FAIL, 50 MEMCG_NR_MEMORY_EVENTS, 51 }; 52 53 enum mem_cgroup_protection { 54 MEMCG_PROT_NONE, 55 MEMCG_PROT_LOW, 56 MEMCG_PROT_MIN, 57 }; 58 59 struct mem_cgroup_reclaim_cookie { 60 pg_data_t *pgdat; 61 int priority; 62 unsigned int generation; 63 }; 64 65 #ifdef CONFIG_MEMCG 66 67 #define MEM_CGROUP_ID_SHIFT 16 68 #define MEM_CGROUP_ID_MAX USHRT_MAX 69 70 struct mem_cgroup_id { 71 int id; 72 refcount_t ref; 73 }; 74 75 /* 76 * Per memcg event counter is incremented at every pagein/pageout. With THP, 77 * it will be incremated by the number of pages. This counter is used for 78 * for trigger some periodic events. This is straightforward and better 79 * than using jiffies etc. to handle periodic memcg event. 80 */ 81 enum mem_cgroup_events_target { 82 MEM_CGROUP_TARGET_THRESH, 83 MEM_CGROUP_TARGET_SOFTLIMIT, 84 MEM_CGROUP_TARGET_NUMAINFO, 85 MEM_CGROUP_NTARGETS, 86 }; 87 88 struct memcg_vmstats_percpu { 89 long stat[MEMCG_NR_STAT]; 90 unsigned long events[NR_VM_EVENT_ITEMS]; 91 unsigned long nr_page_events; 92 unsigned long targets[MEM_CGROUP_NTARGETS]; 93 }; 94 95 struct mem_cgroup_reclaim_iter { 96 struct mem_cgroup *position; 97 /* scan generation, increased every round-trip */ 98 unsigned int generation; 99 }; 100 101 struct lruvec_stat { 102 long count[NR_VM_NODE_STAT_ITEMS]; 103 }; 104 105 /* 106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 107 * which have elements charged to this memcg. 108 */ 109 struct memcg_shrinker_map { 110 struct rcu_head rcu; 111 unsigned long map[0]; 112 }; 113 114 /* 115 * per-zone information in memory controller. 116 */ 117 struct mem_cgroup_per_node { 118 struct lruvec lruvec; 119 120 /* Legacy local VM stats */ 121 struct lruvec_stat __percpu *lruvec_stat_local; 122 123 /* Subtree VM stats (batched updates) */ 124 struct lruvec_stat __percpu *lruvec_stat_cpu; 125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 130 131 #ifdef CONFIG_MEMCG_KMEM 132 struct memcg_shrinker_map __rcu *shrinker_map; 133 #endif 134 struct rb_node tree_node; /* RB tree node */ 135 unsigned long usage_in_excess;/* Set to the value by which */ 136 /* the soft limit is exceeded*/ 137 bool on_tree; 138 bool congested; /* memcg has many dirty pages */ 139 /* backed by a congested BDI */ 140 141 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 142 /* use container_of */ 143 }; 144 145 struct mem_cgroup_threshold { 146 struct eventfd_ctx *eventfd; 147 unsigned long threshold; 148 }; 149 150 /* For threshold */ 151 struct mem_cgroup_threshold_ary { 152 /* An array index points to threshold just below or equal to usage. */ 153 int current_threshold; 154 /* Size of entries[] */ 155 unsigned int size; 156 /* Array of thresholds */ 157 struct mem_cgroup_threshold entries[0]; 158 }; 159 160 struct mem_cgroup_thresholds { 161 /* Primary thresholds array */ 162 struct mem_cgroup_threshold_ary *primary; 163 /* 164 * Spare threshold array. 165 * This is needed to make mem_cgroup_unregister_event() "never fail". 166 * It must be able to store at least primary->size - 1 entries. 167 */ 168 struct mem_cgroup_threshold_ary *spare; 169 }; 170 171 enum memcg_kmem_state { 172 KMEM_NONE, 173 KMEM_ALLOCATED, 174 KMEM_ONLINE, 175 }; 176 177 #if defined(CONFIG_SMP) 178 struct memcg_padding { 179 char x[0]; 180 } ____cacheline_internodealigned_in_smp; 181 #define MEMCG_PADDING(name) struct memcg_padding name; 182 #else 183 #define MEMCG_PADDING(name) 184 #endif 185 186 /* 187 * Remember four most recent foreign writebacks with dirty pages in this 188 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 189 * one in a given round, we're likely to catch it later if it keeps 190 * foreign-dirtying, so a fairly low count should be enough. 191 * 192 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 193 */ 194 #define MEMCG_CGWB_FRN_CNT 4 195 196 struct memcg_cgwb_frn { 197 u64 bdi_id; /* bdi->id of the foreign inode */ 198 int memcg_id; /* memcg->css.id of foreign inode */ 199 u64 at; /* jiffies_64 at the time of dirtying */ 200 struct wb_completion done; /* tracks in-flight foreign writebacks */ 201 }; 202 203 /* 204 * The memory controller data structure. The memory controller controls both 205 * page cache and RSS per cgroup. We would eventually like to provide 206 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 207 * to help the administrator determine what knobs to tune. 208 */ 209 struct mem_cgroup { 210 struct cgroup_subsys_state css; 211 212 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 213 struct mem_cgroup_id id; 214 215 /* Accounted resources */ 216 struct page_counter memory; 217 struct page_counter swap; 218 219 /* Legacy consumer-oriented counters */ 220 struct page_counter memsw; 221 struct page_counter kmem; 222 struct page_counter tcpmem; 223 224 /* Upper bound of normal memory consumption range */ 225 unsigned long high; 226 227 /* Range enforcement for interrupt charges */ 228 struct work_struct high_work; 229 230 unsigned long soft_limit; 231 232 /* vmpressure notifications */ 233 struct vmpressure vmpressure; 234 235 /* 236 * Should the accounting and control be hierarchical, per subtree? 237 */ 238 bool use_hierarchy; 239 240 /* 241 * Should the OOM killer kill all belonging tasks, had it kill one? 242 */ 243 bool oom_group; 244 245 /* protected by memcg_oom_lock */ 246 bool oom_lock; 247 int under_oom; 248 249 int swappiness; 250 /* OOM-Killer disable */ 251 int oom_kill_disable; 252 253 /* memory.events and memory.events.local */ 254 struct cgroup_file events_file; 255 struct cgroup_file events_local_file; 256 257 /* handle for "memory.swap.events" */ 258 struct cgroup_file swap_events_file; 259 260 /* protect arrays of thresholds */ 261 struct mutex thresholds_lock; 262 263 /* thresholds for memory usage. RCU-protected */ 264 struct mem_cgroup_thresholds thresholds; 265 266 /* thresholds for mem+swap usage. RCU-protected */ 267 struct mem_cgroup_thresholds memsw_thresholds; 268 269 /* For oom notifier event fd */ 270 struct list_head oom_notify; 271 272 /* 273 * Should we move charges of a task when a task is moved into this 274 * mem_cgroup ? And what type of charges should we move ? 275 */ 276 unsigned long move_charge_at_immigrate; 277 /* taken only while moving_account > 0 */ 278 spinlock_t move_lock; 279 unsigned long move_lock_flags; 280 281 MEMCG_PADDING(_pad1_); 282 283 /* 284 * set > 0 if pages under this cgroup are moving to other cgroup. 285 */ 286 atomic_t moving_account; 287 struct task_struct *move_lock_task; 288 289 /* Legacy local VM stats and events */ 290 struct memcg_vmstats_percpu __percpu *vmstats_local; 291 292 /* Subtree VM stats and events (batched updates) */ 293 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 294 295 MEMCG_PADDING(_pad2_); 296 297 atomic_long_t vmstats[MEMCG_NR_STAT]; 298 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 299 300 /* memory.events */ 301 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 302 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 303 304 unsigned long socket_pressure; 305 306 /* Legacy tcp memory accounting */ 307 bool tcpmem_active; 308 int tcpmem_pressure; 309 310 #ifdef CONFIG_MEMCG_KMEM 311 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 312 int kmemcg_id; 313 enum memcg_kmem_state kmem_state; 314 struct list_head kmem_caches; 315 #endif 316 317 int last_scanned_node; 318 #if MAX_NUMNODES > 1 319 nodemask_t scan_nodes; 320 atomic_t numainfo_events; 321 atomic_t numainfo_updating; 322 #endif 323 324 #ifdef CONFIG_CGROUP_WRITEBACK 325 struct list_head cgwb_list; 326 struct wb_domain cgwb_domain; 327 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 328 #endif 329 330 /* List of events which userspace want to receive */ 331 struct list_head event_list; 332 spinlock_t event_list_lock; 333 334 struct mem_cgroup_per_node *nodeinfo[0]; 335 /* WARNING: nodeinfo must be the last member here */ 336 }; 337 338 /* 339 * size of first charge trial. "32" comes from vmscan.c's magic value. 340 * TODO: maybe necessary to use big numbers in big irons. 341 */ 342 #define MEMCG_CHARGE_BATCH 32U 343 344 extern struct mem_cgroup *root_mem_cgroup; 345 346 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 347 { 348 return (memcg == root_mem_cgroup); 349 } 350 351 static inline bool mem_cgroup_disabled(void) 352 { 353 return !cgroup_subsys_enabled(memory_cgrp_subsys); 354 } 355 356 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 357 struct mem_cgroup *memcg); 358 359 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 360 gfp_t gfp_mask, struct mem_cgroup **memcgp, 361 bool compound); 362 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 363 gfp_t gfp_mask, struct mem_cgroup **memcgp, 364 bool compound); 365 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 366 bool lrucare, bool compound); 367 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 368 bool compound); 369 void mem_cgroup_uncharge(struct page *page); 370 void mem_cgroup_uncharge_list(struct list_head *page_list); 371 372 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 373 374 static struct mem_cgroup_per_node * 375 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 376 { 377 return memcg->nodeinfo[nid]; 378 } 379 380 /** 381 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 382 * @node: node of the wanted lruvec 383 * @memcg: memcg of the wanted lruvec 384 * 385 * Returns the lru list vector holding pages for a given @node or a given 386 * @memcg and @zone. This can be the node lruvec, if the memory controller 387 * is disabled. 388 */ 389 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 390 struct mem_cgroup *memcg) 391 { 392 struct mem_cgroup_per_node *mz; 393 struct lruvec *lruvec; 394 395 if (mem_cgroup_disabled()) { 396 lruvec = node_lruvec(pgdat); 397 goto out; 398 } 399 400 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 401 lruvec = &mz->lruvec; 402 out: 403 /* 404 * Since a node can be onlined after the mem_cgroup was created, 405 * we have to be prepared to initialize lruvec->pgdat here; 406 * and if offlined then reonlined, we need to reinitialize it. 407 */ 408 if (unlikely(lruvec->pgdat != pgdat)) 409 lruvec->pgdat = pgdat; 410 return lruvec; 411 } 412 413 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 414 415 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 416 417 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 418 419 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 420 421 static inline 422 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 423 return css ? container_of(css, struct mem_cgroup, css) : NULL; 424 } 425 426 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 427 { 428 if (memcg) 429 css_put(&memcg->css); 430 } 431 432 #define mem_cgroup_from_counter(counter, member) \ 433 container_of(counter, struct mem_cgroup, member) 434 435 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 436 struct mem_cgroup *, 437 struct mem_cgroup_reclaim_cookie *); 438 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 439 int mem_cgroup_scan_tasks(struct mem_cgroup *, 440 int (*)(struct task_struct *, void *), void *); 441 442 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 443 { 444 if (mem_cgroup_disabled()) 445 return 0; 446 447 return memcg->id.id; 448 } 449 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 450 451 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 452 { 453 return mem_cgroup_from_css(seq_css(m)); 454 } 455 456 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 457 { 458 struct mem_cgroup_per_node *mz; 459 460 if (mem_cgroup_disabled()) 461 return NULL; 462 463 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 464 return mz->memcg; 465 } 466 467 /** 468 * parent_mem_cgroup - find the accounting parent of a memcg 469 * @memcg: memcg whose parent to find 470 * 471 * Returns the parent memcg, or NULL if this is the root or the memory 472 * controller is in legacy no-hierarchy mode. 473 */ 474 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 475 { 476 if (!memcg->memory.parent) 477 return NULL; 478 return mem_cgroup_from_counter(memcg->memory.parent, memory); 479 } 480 481 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 482 struct mem_cgroup *root) 483 { 484 if (root == memcg) 485 return true; 486 if (!root->use_hierarchy) 487 return false; 488 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 489 } 490 491 static inline bool mm_match_cgroup(struct mm_struct *mm, 492 struct mem_cgroup *memcg) 493 { 494 struct mem_cgroup *task_memcg; 495 bool match = false; 496 497 rcu_read_lock(); 498 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 499 if (task_memcg) 500 match = mem_cgroup_is_descendant(task_memcg, memcg); 501 rcu_read_unlock(); 502 return match; 503 } 504 505 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 506 ino_t page_cgroup_ino(struct page *page); 507 508 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 509 { 510 if (mem_cgroup_disabled()) 511 return true; 512 return !!(memcg->css.flags & CSS_ONLINE); 513 } 514 515 /* 516 * For memory reclaim. 517 */ 518 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 519 520 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 521 int zid, int nr_pages); 522 523 static inline 524 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 525 enum lru_list lru, int zone_idx) 526 { 527 struct mem_cgroup_per_node *mz; 528 529 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 530 return mz->lru_zone_size[zone_idx][lru]; 531 } 532 533 void mem_cgroup_handle_over_high(void); 534 535 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 536 537 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 538 struct task_struct *p); 539 540 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 541 542 static inline void mem_cgroup_enter_user_fault(void) 543 { 544 WARN_ON(current->in_user_fault); 545 current->in_user_fault = 1; 546 } 547 548 static inline void mem_cgroup_exit_user_fault(void) 549 { 550 WARN_ON(!current->in_user_fault); 551 current->in_user_fault = 0; 552 } 553 554 static inline bool task_in_memcg_oom(struct task_struct *p) 555 { 556 return p->memcg_in_oom; 557 } 558 559 bool mem_cgroup_oom_synchronize(bool wait); 560 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 561 struct mem_cgroup *oom_domain); 562 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 563 564 #ifdef CONFIG_MEMCG_SWAP 565 extern int do_swap_account; 566 #endif 567 568 struct mem_cgroup *lock_page_memcg(struct page *page); 569 void __unlock_page_memcg(struct mem_cgroup *memcg); 570 void unlock_page_memcg(struct page *page); 571 572 /* 573 * idx can be of type enum memcg_stat_item or node_stat_item. 574 * Keep in sync with memcg_exact_page_state(). 575 */ 576 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 577 { 578 long x = atomic_long_read(&memcg->vmstats[idx]); 579 #ifdef CONFIG_SMP 580 if (x < 0) 581 x = 0; 582 #endif 583 return x; 584 } 585 586 /* 587 * idx can be of type enum memcg_stat_item or node_stat_item. 588 * Keep in sync with memcg_exact_page_state(). 589 */ 590 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 591 int idx) 592 { 593 long x = 0; 594 int cpu; 595 596 for_each_possible_cpu(cpu) 597 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 598 #ifdef CONFIG_SMP 599 if (x < 0) 600 x = 0; 601 #endif 602 return x; 603 } 604 605 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 606 607 /* idx can be of type enum memcg_stat_item or node_stat_item */ 608 static inline void mod_memcg_state(struct mem_cgroup *memcg, 609 int idx, int val) 610 { 611 unsigned long flags; 612 613 local_irq_save(flags); 614 __mod_memcg_state(memcg, idx, val); 615 local_irq_restore(flags); 616 } 617 618 /** 619 * mod_memcg_page_state - update page state statistics 620 * @page: the page 621 * @idx: page state item to account 622 * @val: number of pages (positive or negative) 623 * 624 * The @page must be locked or the caller must use lock_page_memcg() 625 * to prevent double accounting when the page is concurrently being 626 * moved to another memcg: 627 * 628 * lock_page(page) or lock_page_memcg(page) 629 * if (TestClearPageState(page)) 630 * mod_memcg_page_state(page, state, -1); 631 * unlock_page(page) or unlock_page_memcg(page) 632 * 633 * Kernel pages are an exception to this, since they'll never move. 634 */ 635 static inline void __mod_memcg_page_state(struct page *page, 636 int idx, int val) 637 { 638 if (page->mem_cgroup) 639 __mod_memcg_state(page->mem_cgroup, idx, val); 640 } 641 642 static inline void mod_memcg_page_state(struct page *page, 643 int idx, int val) 644 { 645 if (page->mem_cgroup) 646 mod_memcg_state(page->mem_cgroup, idx, val); 647 } 648 649 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 650 enum node_stat_item idx) 651 { 652 struct mem_cgroup_per_node *pn; 653 long x; 654 655 if (mem_cgroup_disabled()) 656 return node_page_state(lruvec_pgdat(lruvec), idx); 657 658 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 659 x = atomic_long_read(&pn->lruvec_stat[idx]); 660 #ifdef CONFIG_SMP 661 if (x < 0) 662 x = 0; 663 #endif 664 return x; 665 } 666 667 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 668 enum node_stat_item idx) 669 { 670 struct mem_cgroup_per_node *pn; 671 long x = 0; 672 int cpu; 673 674 if (mem_cgroup_disabled()) 675 return node_page_state(lruvec_pgdat(lruvec), idx); 676 677 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 678 for_each_possible_cpu(cpu) 679 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 680 #ifdef CONFIG_SMP 681 if (x < 0) 682 x = 0; 683 #endif 684 return x; 685 } 686 687 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 688 int val); 689 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 690 691 static inline void mod_lruvec_state(struct lruvec *lruvec, 692 enum node_stat_item idx, int val) 693 { 694 unsigned long flags; 695 696 local_irq_save(flags); 697 __mod_lruvec_state(lruvec, idx, val); 698 local_irq_restore(flags); 699 } 700 701 static inline void __mod_lruvec_page_state(struct page *page, 702 enum node_stat_item idx, int val) 703 { 704 pg_data_t *pgdat = page_pgdat(page); 705 struct lruvec *lruvec; 706 707 /* Untracked pages have no memcg, no lruvec. Update only the node */ 708 if (!page->mem_cgroup) { 709 __mod_node_page_state(pgdat, idx, val); 710 return; 711 } 712 713 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 714 __mod_lruvec_state(lruvec, idx, val); 715 } 716 717 static inline void mod_lruvec_page_state(struct page *page, 718 enum node_stat_item idx, int val) 719 { 720 unsigned long flags; 721 722 local_irq_save(flags); 723 __mod_lruvec_page_state(page, idx, val); 724 local_irq_restore(flags); 725 } 726 727 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 728 gfp_t gfp_mask, 729 unsigned long *total_scanned); 730 731 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 732 unsigned long count); 733 734 static inline void count_memcg_events(struct mem_cgroup *memcg, 735 enum vm_event_item idx, 736 unsigned long count) 737 { 738 unsigned long flags; 739 740 local_irq_save(flags); 741 __count_memcg_events(memcg, idx, count); 742 local_irq_restore(flags); 743 } 744 745 static inline void count_memcg_page_event(struct page *page, 746 enum vm_event_item idx) 747 { 748 if (page->mem_cgroup) 749 count_memcg_events(page->mem_cgroup, idx, 1); 750 } 751 752 static inline void count_memcg_event_mm(struct mm_struct *mm, 753 enum vm_event_item idx) 754 { 755 struct mem_cgroup *memcg; 756 757 if (mem_cgroup_disabled()) 758 return; 759 760 rcu_read_lock(); 761 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 762 if (likely(memcg)) 763 count_memcg_events(memcg, idx, 1); 764 rcu_read_unlock(); 765 } 766 767 static inline void memcg_memory_event(struct mem_cgroup *memcg, 768 enum memcg_memory_event event) 769 { 770 atomic_long_inc(&memcg->memory_events_local[event]); 771 cgroup_file_notify(&memcg->events_local_file); 772 773 do { 774 atomic_long_inc(&memcg->memory_events[event]); 775 cgroup_file_notify(&memcg->events_file); 776 777 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 778 break; 779 } while ((memcg = parent_mem_cgroup(memcg)) && 780 !mem_cgroup_is_root(memcg)); 781 } 782 783 static inline void memcg_memory_event_mm(struct mm_struct *mm, 784 enum memcg_memory_event event) 785 { 786 struct mem_cgroup *memcg; 787 788 if (mem_cgroup_disabled()) 789 return; 790 791 rcu_read_lock(); 792 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 793 if (likely(memcg)) 794 memcg_memory_event(memcg, event); 795 rcu_read_unlock(); 796 } 797 798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 799 void mem_cgroup_split_huge_fixup(struct page *head); 800 #endif 801 802 #else /* CONFIG_MEMCG */ 803 804 #define MEM_CGROUP_ID_SHIFT 0 805 #define MEM_CGROUP_ID_MAX 0 806 807 struct mem_cgroup; 808 809 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 810 { 811 return true; 812 } 813 814 static inline bool mem_cgroup_disabled(void) 815 { 816 return true; 817 } 818 819 static inline void memcg_memory_event(struct mem_cgroup *memcg, 820 enum memcg_memory_event event) 821 { 822 } 823 824 static inline void memcg_memory_event_mm(struct mm_struct *mm, 825 enum memcg_memory_event event) 826 { 827 } 828 829 static inline enum mem_cgroup_protection mem_cgroup_protected( 830 struct mem_cgroup *root, struct mem_cgroup *memcg) 831 { 832 return MEMCG_PROT_NONE; 833 } 834 835 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 836 gfp_t gfp_mask, 837 struct mem_cgroup **memcgp, 838 bool compound) 839 { 840 *memcgp = NULL; 841 return 0; 842 } 843 844 static inline int mem_cgroup_try_charge_delay(struct page *page, 845 struct mm_struct *mm, 846 gfp_t gfp_mask, 847 struct mem_cgroup **memcgp, 848 bool compound) 849 { 850 *memcgp = NULL; 851 return 0; 852 } 853 854 static inline void mem_cgroup_commit_charge(struct page *page, 855 struct mem_cgroup *memcg, 856 bool lrucare, bool compound) 857 { 858 } 859 860 static inline void mem_cgroup_cancel_charge(struct page *page, 861 struct mem_cgroup *memcg, 862 bool compound) 863 { 864 } 865 866 static inline void mem_cgroup_uncharge(struct page *page) 867 { 868 } 869 870 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 871 { 872 } 873 874 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 875 { 876 } 877 878 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 879 struct mem_cgroup *memcg) 880 { 881 return node_lruvec(pgdat); 882 } 883 884 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 885 struct pglist_data *pgdat) 886 { 887 return &pgdat->lruvec; 888 } 889 890 static inline bool mm_match_cgroup(struct mm_struct *mm, 891 struct mem_cgroup *memcg) 892 { 893 return true; 894 } 895 896 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 897 { 898 return NULL; 899 } 900 901 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 902 { 903 return NULL; 904 } 905 906 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 907 { 908 } 909 910 static inline struct mem_cgroup * 911 mem_cgroup_iter(struct mem_cgroup *root, 912 struct mem_cgroup *prev, 913 struct mem_cgroup_reclaim_cookie *reclaim) 914 { 915 return NULL; 916 } 917 918 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 919 struct mem_cgroup *prev) 920 { 921 } 922 923 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 924 int (*fn)(struct task_struct *, void *), void *arg) 925 { 926 return 0; 927 } 928 929 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 930 { 931 return 0; 932 } 933 934 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 935 { 936 WARN_ON_ONCE(id); 937 /* XXX: This should always return root_mem_cgroup */ 938 return NULL; 939 } 940 941 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 942 { 943 return NULL; 944 } 945 946 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 947 { 948 return NULL; 949 } 950 951 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 952 { 953 return true; 954 } 955 956 static inline 957 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 958 enum lru_list lru, int zone_idx) 959 { 960 return 0; 961 } 962 963 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 964 { 965 return 0; 966 } 967 968 static inline void 969 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 970 { 971 } 972 973 static inline void 974 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 975 { 976 } 977 978 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 979 { 980 return NULL; 981 } 982 983 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 984 { 985 } 986 987 static inline void unlock_page_memcg(struct page *page) 988 { 989 } 990 991 static inline void mem_cgroup_handle_over_high(void) 992 { 993 } 994 995 static inline void mem_cgroup_enter_user_fault(void) 996 { 997 } 998 999 static inline void mem_cgroup_exit_user_fault(void) 1000 { 1001 } 1002 1003 static inline bool task_in_memcg_oom(struct task_struct *p) 1004 { 1005 return false; 1006 } 1007 1008 static inline bool mem_cgroup_oom_synchronize(bool wait) 1009 { 1010 return false; 1011 } 1012 1013 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1014 struct task_struct *victim, struct mem_cgroup *oom_domain) 1015 { 1016 return NULL; 1017 } 1018 1019 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1020 { 1021 } 1022 1023 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1024 { 1025 return 0; 1026 } 1027 1028 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1029 int idx) 1030 { 1031 return 0; 1032 } 1033 1034 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1035 int idx, 1036 int nr) 1037 { 1038 } 1039 1040 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1041 int idx, 1042 int nr) 1043 { 1044 } 1045 1046 static inline void __mod_memcg_page_state(struct page *page, 1047 int idx, 1048 int nr) 1049 { 1050 } 1051 1052 static inline void mod_memcg_page_state(struct page *page, 1053 int idx, 1054 int nr) 1055 { 1056 } 1057 1058 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1059 enum node_stat_item idx) 1060 { 1061 return node_page_state(lruvec_pgdat(lruvec), idx); 1062 } 1063 1064 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1065 enum node_stat_item idx) 1066 { 1067 return node_page_state(lruvec_pgdat(lruvec), idx); 1068 } 1069 1070 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1071 enum node_stat_item idx, int val) 1072 { 1073 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1074 } 1075 1076 static inline void mod_lruvec_state(struct lruvec *lruvec, 1077 enum node_stat_item idx, int val) 1078 { 1079 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1080 } 1081 1082 static inline void __mod_lruvec_page_state(struct page *page, 1083 enum node_stat_item idx, int val) 1084 { 1085 __mod_node_page_state(page_pgdat(page), idx, val); 1086 } 1087 1088 static inline void mod_lruvec_page_state(struct page *page, 1089 enum node_stat_item idx, int val) 1090 { 1091 mod_node_page_state(page_pgdat(page), idx, val); 1092 } 1093 1094 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1095 int val) 1096 { 1097 struct page *page = virt_to_head_page(p); 1098 1099 __mod_node_page_state(page_pgdat(page), idx, val); 1100 } 1101 1102 static inline 1103 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1104 gfp_t gfp_mask, 1105 unsigned long *total_scanned) 1106 { 1107 return 0; 1108 } 1109 1110 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1111 { 1112 } 1113 1114 static inline void count_memcg_events(struct mem_cgroup *memcg, 1115 enum vm_event_item idx, 1116 unsigned long count) 1117 { 1118 } 1119 1120 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1121 enum vm_event_item idx, 1122 unsigned long count) 1123 { 1124 } 1125 1126 static inline void count_memcg_page_event(struct page *page, 1127 int idx) 1128 { 1129 } 1130 1131 static inline 1132 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1133 { 1134 } 1135 #endif /* CONFIG_MEMCG */ 1136 1137 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1138 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1139 int idx) 1140 { 1141 __mod_memcg_state(memcg, idx, 1); 1142 } 1143 1144 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1145 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1146 int idx) 1147 { 1148 __mod_memcg_state(memcg, idx, -1); 1149 } 1150 1151 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1152 static inline void __inc_memcg_page_state(struct page *page, 1153 int idx) 1154 { 1155 __mod_memcg_page_state(page, idx, 1); 1156 } 1157 1158 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1159 static inline void __dec_memcg_page_state(struct page *page, 1160 int idx) 1161 { 1162 __mod_memcg_page_state(page, idx, -1); 1163 } 1164 1165 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1166 enum node_stat_item idx) 1167 { 1168 __mod_lruvec_state(lruvec, idx, 1); 1169 } 1170 1171 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1172 enum node_stat_item idx) 1173 { 1174 __mod_lruvec_state(lruvec, idx, -1); 1175 } 1176 1177 static inline void __inc_lruvec_page_state(struct page *page, 1178 enum node_stat_item idx) 1179 { 1180 __mod_lruvec_page_state(page, idx, 1); 1181 } 1182 1183 static inline void __dec_lruvec_page_state(struct page *page, 1184 enum node_stat_item idx) 1185 { 1186 __mod_lruvec_page_state(page, idx, -1); 1187 } 1188 1189 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1190 { 1191 __mod_lruvec_slab_state(p, idx, 1); 1192 } 1193 1194 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1195 { 1196 __mod_lruvec_slab_state(p, idx, -1); 1197 } 1198 1199 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1200 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1201 int idx) 1202 { 1203 mod_memcg_state(memcg, idx, 1); 1204 } 1205 1206 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1207 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1208 int idx) 1209 { 1210 mod_memcg_state(memcg, idx, -1); 1211 } 1212 1213 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1214 static inline void inc_memcg_page_state(struct page *page, 1215 int idx) 1216 { 1217 mod_memcg_page_state(page, idx, 1); 1218 } 1219 1220 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1221 static inline void dec_memcg_page_state(struct page *page, 1222 int idx) 1223 { 1224 mod_memcg_page_state(page, idx, -1); 1225 } 1226 1227 static inline void inc_lruvec_state(struct lruvec *lruvec, 1228 enum node_stat_item idx) 1229 { 1230 mod_lruvec_state(lruvec, idx, 1); 1231 } 1232 1233 static inline void dec_lruvec_state(struct lruvec *lruvec, 1234 enum node_stat_item idx) 1235 { 1236 mod_lruvec_state(lruvec, idx, -1); 1237 } 1238 1239 static inline void inc_lruvec_page_state(struct page *page, 1240 enum node_stat_item idx) 1241 { 1242 mod_lruvec_page_state(page, idx, 1); 1243 } 1244 1245 static inline void dec_lruvec_page_state(struct page *page, 1246 enum node_stat_item idx) 1247 { 1248 mod_lruvec_page_state(page, idx, -1); 1249 } 1250 1251 #ifdef CONFIG_CGROUP_WRITEBACK 1252 1253 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1254 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1255 unsigned long *pheadroom, unsigned long *pdirty, 1256 unsigned long *pwriteback); 1257 1258 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1259 struct bdi_writeback *wb); 1260 1261 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1262 struct bdi_writeback *wb) 1263 { 1264 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1265 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1266 } 1267 1268 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1269 1270 #else /* CONFIG_CGROUP_WRITEBACK */ 1271 1272 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1273 { 1274 return NULL; 1275 } 1276 1277 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1278 unsigned long *pfilepages, 1279 unsigned long *pheadroom, 1280 unsigned long *pdirty, 1281 unsigned long *pwriteback) 1282 { 1283 } 1284 1285 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1286 struct bdi_writeback *wb) 1287 { 1288 } 1289 1290 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1291 { 1292 } 1293 1294 #endif /* CONFIG_CGROUP_WRITEBACK */ 1295 1296 struct sock; 1297 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1298 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1299 #ifdef CONFIG_MEMCG 1300 extern struct static_key_false memcg_sockets_enabled_key; 1301 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1302 void mem_cgroup_sk_alloc(struct sock *sk); 1303 void mem_cgroup_sk_free(struct sock *sk); 1304 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1305 { 1306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1307 return true; 1308 do { 1309 if (time_before(jiffies, memcg->socket_pressure)) 1310 return true; 1311 } while ((memcg = parent_mem_cgroup(memcg))); 1312 return false; 1313 } 1314 #else 1315 #define mem_cgroup_sockets_enabled 0 1316 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1317 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1318 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1319 { 1320 return false; 1321 } 1322 #endif 1323 1324 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1325 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1326 1327 #ifdef CONFIG_MEMCG_KMEM 1328 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1329 void __memcg_kmem_uncharge(struct page *page, int order); 1330 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1331 struct mem_cgroup *memcg); 1332 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 1333 unsigned int nr_pages); 1334 1335 extern struct static_key_false memcg_kmem_enabled_key; 1336 extern struct workqueue_struct *memcg_kmem_cache_wq; 1337 1338 extern int memcg_nr_cache_ids; 1339 void memcg_get_cache_ids(void); 1340 void memcg_put_cache_ids(void); 1341 1342 /* 1343 * Helper macro to loop through all memcg-specific caches. Callers must still 1344 * check if the cache is valid (it is either valid or NULL). 1345 * the slab_mutex must be held when looping through those caches 1346 */ 1347 #define for_each_memcg_cache_index(_idx) \ 1348 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1349 1350 static inline bool memcg_kmem_enabled(void) 1351 { 1352 return static_branch_unlikely(&memcg_kmem_enabled_key); 1353 } 1354 1355 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1356 { 1357 if (memcg_kmem_enabled()) 1358 return __memcg_kmem_charge(page, gfp, order); 1359 return 0; 1360 } 1361 1362 static inline void memcg_kmem_uncharge(struct page *page, int order) 1363 { 1364 if (memcg_kmem_enabled()) 1365 __memcg_kmem_uncharge(page, order); 1366 } 1367 1368 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1369 int order, struct mem_cgroup *memcg) 1370 { 1371 if (memcg_kmem_enabled()) 1372 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1373 return 0; 1374 } 1375 1376 static inline void memcg_kmem_uncharge_memcg(struct page *page, int order, 1377 struct mem_cgroup *memcg) 1378 { 1379 if (memcg_kmem_enabled()) 1380 __memcg_kmem_uncharge_memcg(memcg, 1 << order); 1381 } 1382 1383 /* 1384 * helper for accessing a memcg's index. It will be used as an index in the 1385 * child cache array in kmem_cache, and also to derive its name. This function 1386 * will return -1 when this is not a kmem-limited memcg. 1387 */ 1388 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1389 { 1390 return memcg ? memcg->kmemcg_id : -1; 1391 } 1392 1393 extern int memcg_expand_shrinker_maps(int new_id); 1394 1395 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1396 int nid, int shrinker_id); 1397 #else 1398 1399 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1400 { 1401 return 0; 1402 } 1403 1404 static inline void memcg_kmem_uncharge(struct page *page, int order) 1405 { 1406 } 1407 1408 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1409 { 1410 return 0; 1411 } 1412 1413 static inline void __memcg_kmem_uncharge(struct page *page, int order) 1414 { 1415 } 1416 1417 #define for_each_memcg_cache_index(_idx) \ 1418 for (; NULL; ) 1419 1420 static inline bool memcg_kmem_enabled(void) 1421 { 1422 return false; 1423 } 1424 1425 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1426 { 1427 return -1; 1428 } 1429 1430 static inline void memcg_get_cache_ids(void) 1431 { 1432 } 1433 1434 static inline void memcg_put_cache_ids(void) 1435 { 1436 } 1437 1438 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1439 int nid, int shrinker_id) { } 1440 #endif /* CONFIG_MEMCG_KMEM */ 1441 1442 #endif /* _LINUX_MEMCONTROL_H */ 1443