xref: /linux-6.15/include/linux/memcontrol.h (revision dfd32cad)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33 
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38 
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 	MEMCG_RSS,
43 	MEMCG_RSS_HUGE,
44 	MEMCG_SWAP,
45 	MEMCG_SOCK,
46 	/* XXX: why are these zone and not node counters? */
47 	MEMCG_KERNEL_STACK_KB,
48 	MEMCG_NR_STAT,
49 };
50 
51 enum memcg_memory_event {
52 	MEMCG_LOW,
53 	MEMCG_HIGH,
54 	MEMCG_MAX,
55 	MEMCG_OOM,
56 	MEMCG_OOM_KILL,
57 	MEMCG_SWAP_MAX,
58 	MEMCG_SWAP_FAIL,
59 	MEMCG_NR_MEMORY_EVENTS,
60 };
61 
62 enum mem_cgroup_protection {
63 	MEMCG_PROT_NONE,
64 	MEMCG_PROT_LOW,
65 	MEMCG_PROT_MIN,
66 };
67 
68 struct mem_cgroup_reclaim_cookie {
69 	pg_data_t *pgdat;
70 	int priority;
71 	unsigned int generation;
72 };
73 
74 #ifdef CONFIG_MEMCG
75 
76 #define MEM_CGROUP_ID_SHIFT	16
77 #define MEM_CGROUP_ID_MAX	USHRT_MAX
78 
79 struct mem_cgroup_id {
80 	int id;
81 	refcount_t ref;
82 };
83 
84 /*
85  * Per memcg event counter is incremented at every pagein/pageout. With THP,
86  * it will be incremated by the number of pages. This counter is used for
87  * for trigger some periodic events. This is straightforward and better
88  * than using jiffies etc. to handle periodic memcg event.
89  */
90 enum mem_cgroup_events_target {
91 	MEM_CGROUP_TARGET_THRESH,
92 	MEM_CGROUP_TARGET_SOFTLIMIT,
93 	MEM_CGROUP_TARGET_NUMAINFO,
94 	MEM_CGROUP_NTARGETS,
95 };
96 
97 struct mem_cgroup_stat_cpu {
98 	long count[MEMCG_NR_STAT];
99 	unsigned long events[NR_VM_EVENT_ITEMS];
100 	unsigned long nr_page_events;
101 	unsigned long targets[MEM_CGROUP_NTARGETS];
102 };
103 
104 struct mem_cgroup_reclaim_iter {
105 	struct mem_cgroup *position;
106 	/* scan generation, increased every round-trip */
107 	unsigned int generation;
108 };
109 
110 struct lruvec_stat {
111 	long count[NR_VM_NODE_STAT_ITEMS];
112 };
113 
114 /*
115  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116  * which have elements charged to this memcg.
117  */
118 struct memcg_shrinker_map {
119 	struct rcu_head rcu;
120 	unsigned long map[0];
121 };
122 
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_node {
127 	struct lruvec		lruvec;
128 
129 	struct lruvec_stat __percpu *lruvec_stat_cpu;
130 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131 
132 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133 
134 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
135 
136 #ifdef CONFIG_MEMCG_KMEM
137 	struct memcg_shrinker_map __rcu	*shrinker_map;
138 #endif
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long		usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	bool			congested;	/* memcg has many dirty pages */
144 						/* backed by a congested BDI */
145 
146 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147 						/* use container_of	   */
148 };
149 
150 struct mem_cgroup_threshold {
151 	struct eventfd_ctx *eventfd;
152 	unsigned long threshold;
153 };
154 
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157 	/* An array index points to threshold just below or equal to usage. */
158 	int current_threshold;
159 	/* Size of entries[] */
160 	unsigned int size;
161 	/* Array of thresholds */
162 	struct mem_cgroup_threshold entries[0];
163 };
164 
165 struct mem_cgroup_thresholds {
166 	/* Primary thresholds array */
167 	struct mem_cgroup_threshold_ary *primary;
168 	/*
169 	 * Spare threshold array.
170 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 	 * It must be able to store at least primary->size - 1 entries.
172 	 */
173 	struct mem_cgroup_threshold_ary *spare;
174 };
175 
176 enum memcg_kmem_state {
177 	KMEM_NONE,
178 	KMEM_ALLOCATED,
179 	KMEM_ONLINE,
180 };
181 
182 #if defined(CONFIG_SMP)
183 struct memcg_padding {
184 	char x[0];
185 } ____cacheline_internodealigned_in_smp;
186 #define MEMCG_PADDING(name)      struct memcg_padding name;
187 #else
188 #define MEMCG_PADDING(name)
189 #endif
190 
191 /*
192  * The memory controller data structure. The memory controller controls both
193  * page cache and RSS per cgroup. We would eventually like to provide
194  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195  * to help the administrator determine what knobs to tune.
196  */
197 struct mem_cgroup {
198 	struct cgroup_subsys_state css;
199 
200 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
201 	struct mem_cgroup_id id;
202 
203 	/* Accounted resources */
204 	struct page_counter memory;
205 	struct page_counter swap;
206 
207 	/* Legacy consumer-oriented counters */
208 	struct page_counter memsw;
209 	struct page_counter kmem;
210 	struct page_counter tcpmem;
211 
212 	/* Upper bound of normal memory consumption range */
213 	unsigned long high;
214 
215 	/* Range enforcement for interrupt charges */
216 	struct work_struct high_work;
217 
218 	unsigned long soft_limit;
219 
220 	/* vmpressure notifications */
221 	struct vmpressure vmpressure;
222 
223 	/*
224 	 * Should the accounting and control be hierarchical, per subtree?
225 	 */
226 	bool use_hierarchy;
227 
228 	/*
229 	 * Should the OOM killer kill all belonging tasks, had it kill one?
230 	 */
231 	bool oom_group;
232 
233 	/* protected by memcg_oom_lock */
234 	bool		oom_lock;
235 	int		under_oom;
236 
237 	int	swappiness;
238 	/* OOM-Killer disable */
239 	int		oom_kill_disable;
240 
241 	/* memory.events */
242 	struct cgroup_file events_file;
243 
244 	/* handle for "memory.swap.events" */
245 	struct cgroup_file swap_events_file;
246 
247 	/* protect arrays of thresholds */
248 	struct mutex thresholds_lock;
249 
250 	/* thresholds for memory usage. RCU-protected */
251 	struct mem_cgroup_thresholds thresholds;
252 
253 	/* thresholds for mem+swap usage. RCU-protected */
254 	struct mem_cgroup_thresholds memsw_thresholds;
255 
256 	/* For oom notifier event fd */
257 	struct list_head oom_notify;
258 
259 	/*
260 	 * Should we move charges of a task when a task is moved into this
261 	 * mem_cgroup ? And what type of charges should we move ?
262 	 */
263 	unsigned long move_charge_at_immigrate;
264 	/* taken only while moving_account > 0 */
265 	spinlock_t		move_lock;
266 	unsigned long		move_lock_flags;
267 
268 	MEMCG_PADDING(_pad1_);
269 
270 	/*
271 	 * set > 0 if pages under this cgroup are moving to other cgroup.
272 	 */
273 	atomic_t		moving_account;
274 	struct task_struct	*move_lock_task;
275 
276 	/* memory.stat */
277 	struct mem_cgroup_stat_cpu __percpu *stat_cpu;
278 
279 	MEMCG_PADDING(_pad2_);
280 
281 	atomic_long_t		stat[MEMCG_NR_STAT];
282 	atomic_long_t		events[NR_VM_EVENT_ITEMS];
283 	atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 
285 	unsigned long		socket_pressure;
286 
287 	/* Legacy tcp memory accounting */
288 	bool			tcpmem_active;
289 	int			tcpmem_pressure;
290 
291 #ifdef CONFIG_MEMCG_KMEM
292         /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 	int kmemcg_id;
294 	enum memcg_kmem_state kmem_state;
295 	struct list_head kmem_caches;
296 #endif
297 
298 	int last_scanned_node;
299 #if MAX_NUMNODES > 1
300 	nodemask_t	scan_nodes;
301 	atomic_t	numainfo_events;
302 	atomic_t	numainfo_updating;
303 #endif
304 
305 #ifdef CONFIG_CGROUP_WRITEBACK
306 	struct list_head cgwb_list;
307 	struct wb_domain cgwb_domain;
308 #endif
309 
310 	/* List of events which userspace want to receive */
311 	struct list_head event_list;
312 	spinlock_t event_list_lock;
313 
314 	struct mem_cgroup_per_node *nodeinfo[0];
315 	/* WARNING: nodeinfo must be the last member here */
316 };
317 
318 /*
319  * size of first charge trial. "32" comes from vmscan.c's magic value.
320  * TODO: maybe necessary to use big numbers in big irons.
321  */
322 #define MEMCG_CHARGE_BATCH 32U
323 
324 extern struct mem_cgroup *root_mem_cgroup;
325 
326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327 {
328 	return (memcg == root_mem_cgroup);
329 }
330 
331 static inline bool mem_cgroup_disabled(void)
332 {
333 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
334 }
335 
336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 						struct mem_cgroup *memcg);
338 
339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 			  bool compound);
342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 			  bool compound);
345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 			      bool lrucare, bool compound);
347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 		bool compound);
349 void mem_cgroup_uncharge(struct page *page);
350 void mem_cgroup_uncharge_list(struct list_head *page_list);
351 
352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353 
354 static struct mem_cgroup_per_node *
355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356 {
357 	return memcg->nodeinfo[nid];
358 }
359 
360 /**
361  * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362  * @node: node of the wanted lruvec
363  * @memcg: memcg of the wanted lruvec
364  *
365  * Returns the lru list vector holding pages for a given @node or a given
366  * @memcg and @zone. This can be the node lruvec, if the memory controller
367  * is disabled.
368  */
369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 				struct mem_cgroup *memcg)
371 {
372 	struct mem_cgroup_per_node *mz;
373 	struct lruvec *lruvec;
374 
375 	if (mem_cgroup_disabled()) {
376 		lruvec = node_lruvec(pgdat);
377 		goto out;
378 	}
379 
380 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 	lruvec = &mz->lruvec;
382 out:
383 	/*
384 	 * Since a node can be onlined after the mem_cgroup was created,
385 	 * we have to be prepared to initialize lruvec->pgdat here;
386 	 * and if offlined then reonlined, we need to reinitialize it.
387 	 */
388 	if (unlikely(lruvec->pgdat != pgdat))
389 		lruvec->pgdat = pgdat;
390 	return lruvec;
391 }
392 
393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394 
395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397 
398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399 
400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401 
402 static inline
403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
405 }
406 
407 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408 {
409 	if (memcg)
410 		css_put(&memcg->css);
411 }
412 
413 #define mem_cgroup_from_counter(counter, member)	\
414 	container_of(counter, struct mem_cgroup, member)
415 
416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 				   struct mem_cgroup *,
418 				   struct mem_cgroup_reclaim_cookie *);
419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420 int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 			  int (*)(struct task_struct *, void *), void *);
422 
423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424 {
425 	if (mem_cgroup_disabled())
426 		return 0;
427 
428 	return memcg->id.id;
429 }
430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431 
432 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
433 {
434 	struct mem_cgroup_per_node *mz;
435 
436 	if (mem_cgroup_disabled())
437 		return NULL;
438 
439 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
440 	return mz->memcg;
441 }
442 
443 /**
444  * parent_mem_cgroup - find the accounting parent of a memcg
445  * @memcg: memcg whose parent to find
446  *
447  * Returns the parent memcg, or NULL if this is the root or the memory
448  * controller is in legacy no-hierarchy mode.
449  */
450 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
451 {
452 	if (!memcg->memory.parent)
453 		return NULL;
454 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
455 }
456 
457 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
458 			      struct mem_cgroup *root)
459 {
460 	if (root == memcg)
461 		return true;
462 	if (!root->use_hierarchy)
463 		return false;
464 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
465 }
466 
467 static inline bool mm_match_cgroup(struct mm_struct *mm,
468 				   struct mem_cgroup *memcg)
469 {
470 	struct mem_cgroup *task_memcg;
471 	bool match = false;
472 
473 	rcu_read_lock();
474 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
475 	if (task_memcg)
476 		match = mem_cgroup_is_descendant(task_memcg, memcg);
477 	rcu_read_unlock();
478 	return match;
479 }
480 
481 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
482 ino_t page_cgroup_ino(struct page *page);
483 
484 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
485 {
486 	if (mem_cgroup_disabled())
487 		return true;
488 	return !!(memcg->css.flags & CSS_ONLINE);
489 }
490 
491 /*
492  * For memory reclaim.
493  */
494 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
495 
496 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
497 		int zid, int nr_pages);
498 
499 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
500 					   int nid, unsigned int lru_mask);
501 
502 static inline
503 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
504 {
505 	struct mem_cgroup_per_node *mz;
506 	unsigned long nr_pages = 0;
507 	int zid;
508 
509 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
510 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
511 		nr_pages += mz->lru_zone_size[zid][lru];
512 	return nr_pages;
513 }
514 
515 static inline
516 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
517 		enum lru_list lru, int zone_idx)
518 {
519 	struct mem_cgroup_per_node *mz;
520 
521 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
522 	return mz->lru_zone_size[zone_idx][lru];
523 }
524 
525 void mem_cgroup_handle_over_high(void);
526 
527 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
528 
529 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
530 				struct task_struct *p);
531 
532 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
533 
534 static inline void mem_cgroup_enter_user_fault(void)
535 {
536 	WARN_ON(current->in_user_fault);
537 	current->in_user_fault = 1;
538 }
539 
540 static inline void mem_cgroup_exit_user_fault(void)
541 {
542 	WARN_ON(!current->in_user_fault);
543 	current->in_user_fault = 0;
544 }
545 
546 static inline bool task_in_memcg_oom(struct task_struct *p)
547 {
548 	return p->memcg_in_oom;
549 }
550 
551 bool mem_cgroup_oom_synchronize(bool wait);
552 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
553 					    struct mem_cgroup *oom_domain);
554 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
555 
556 #ifdef CONFIG_MEMCG_SWAP
557 extern int do_swap_account;
558 #endif
559 
560 struct mem_cgroup *lock_page_memcg(struct page *page);
561 void __unlock_page_memcg(struct mem_cgroup *memcg);
562 void unlock_page_memcg(struct page *page);
563 
564 /* idx can be of type enum memcg_stat_item or node_stat_item */
565 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
566 					     int idx)
567 {
568 	long x = atomic_long_read(&memcg->stat[idx]);
569 #ifdef CONFIG_SMP
570 	if (x < 0)
571 		x = 0;
572 #endif
573 	return x;
574 }
575 
576 /* idx can be of type enum memcg_stat_item or node_stat_item */
577 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
578 				     int idx, int val)
579 {
580 	long x;
581 
582 	if (mem_cgroup_disabled())
583 		return;
584 
585 	x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
586 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
587 		atomic_long_add(x, &memcg->stat[idx]);
588 		x = 0;
589 	}
590 	__this_cpu_write(memcg->stat_cpu->count[idx], x);
591 }
592 
593 /* idx can be of type enum memcg_stat_item or node_stat_item */
594 static inline void mod_memcg_state(struct mem_cgroup *memcg,
595 				   int idx, int val)
596 {
597 	unsigned long flags;
598 
599 	local_irq_save(flags);
600 	__mod_memcg_state(memcg, idx, val);
601 	local_irq_restore(flags);
602 }
603 
604 /**
605  * mod_memcg_page_state - update page state statistics
606  * @page: the page
607  * @idx: page state item to account
608  * @val: number of pages (positive or negative)
609  *
610  * The @page must be locked or the caller must use lock_page_memcg()
611  * to prevent double accounting when the page is concurrently being
612  * moved to another memcg:
613  *
614  *   lock_page(page) or lock_page_memcg(page)
615  *   if (TestClearPageState(page))
616  *     mod_memcg_page_state(page, state, -1);
617  *   unlock_page(page) or unlock_page_memcg(page)
618  *
619  * Kernel pages are an exception to this, since they'll never move.
620  */
621 static inline void __mod_memcg_page_state(struct page *page,
622 					  int idx, int val)
623 {
624 	if (page->mem_cgroup)
625 		__mod_memcg_state(page->mem_cgroup, idx, val);
626 }
627 
628 static inline void mod_memcg_page_state(struct page *page,
629 					int idx, int val)
630 {
631 	if (page->mem_cgroup)
632 		mod_memcg_state(page->mem_cgroup, idx, val);
633 }
634 
635 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
636 					      enum node_stat_item idx)
637 {
638 	struct mem_cgroup_per_node *pn;
639 	long x;
640 
641 	if (mem_cgroup_disabled())
642 		return node_page_state(lruvec_pgdat(lruvec), idx);
643 
644 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
645 	x = atomic_long_read(&pn->lruvec_stat[idx]);
646 #ifdef CONFIG_SMP
647 	if (x < 0)
648 		x = 0;
649 #endif
650 	return x;
651 }
652 
653 static inline void __mod_lruvec_state(struct lruvec *lruvec,
654 				      enum node_stat_item idx, int val)
655 {
656 	struct mem_cgroup_per_node *pn;
657 	long x;
658 
659 	/* Update node */
660 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
661 
662 	if (mem_cgroup_disabled())
663 		return;
664 
665 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
666 
667 	/* Update memcg */
668 	__mod_memcg_state(pn->memcg, idx, val);
669 
670 	/* Update lruvec */
671 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
672 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
673 		atomic_long_add(x, &pn->lruvec_stat[idx]);
674 		x = 0;
675 	}
676 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
677 }
678 
679 static inline void mod_lruvec_state(struct lruvec *lruvec,
680 				    enum node_stat_item idx, int val)
681 {
682 	unsigned long flags;
683 
684 	local_irq_save(flags);
685 	__mod_lruvec_state(lruvec, idx, val);
686 	local_irq_restore(flags);
687 }
688 
689 static inline void __mod_lruvec_page_state(struct page *page,
690 					   enum node_stat_item idx, int val)
691 {
692 	pg_data_t *pgdat = page_pgdat(page);
693 	struct lruvec *lruvec;
694 
695 	/* Untracked pages have no memcg, no lruvec. Update only the node */
696 	if (!page->mem_cgroup) {
697 		__mod_node_page_state(pgdat, idx, val);
698 		return;
699 	}
700 
701 	lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
702 	__mod_lruvec_state(lruvec, idx, val);
703 }
704 
705 static inline void mod_lruvec_page_state(struct page *page,
706 					 enum node_stat_item idx, int val)
707 {
708 	unsigned long flags;
709 
710 	local_irq_save(flags);
711 	__mod_lruvec_page_state(page, idx, val);
712 	local_irq_restore(flags);
713 }
714 
715 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
716 						gfp_t gfp_mask,
717 						unsigned long *total_scanned);
718 
719 static inline void __count_memcg_events(struct mem_cgroup *memcg,
720 					enum vm_event_item idx,
721 					unsigned long count)
722 {
723 	unsigned long x;
724 
725 	if (mem_cgroup_disabled())
726 		return;
727 
728 	x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
729 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
730 		atomic_long_add(x, &memcg->events[idx]);
731 		x = 0;
732 	}
733 	__this_cpu_write(memcg->stat_cpu->events[idx], x);
734 }
735 
736 static inline void count_memcg_events(struct mem_cgroup *memcg,
737 				      enum vm_event_item idx,
738 				      unsigned long count)
739 {
740 	unsigned long flags;
741 
742 	local_irq_save(flags);
743 	__count_memcg_events(memcg, idx, count);
744 	local_irq_restore(flags);
745 }
746 
747 static inline void count_memcg_page_event(struct page *page,
748 					  enum vm_event_item idx)
749 {
750 	if (page->mem_cgroup)
751 		count_memcg_events(page->mem_cgroup, idx, 1);
752 }
753 
754 static inline void count_memcg_event_mm(struct mm_struct *mm,
755 					enum vm_event_item idx)
756 {
757 	struct mem_cgroup *memcg;
758 
759 	if (mem_cgroup_disabled())
760 		return;
761 
762 	rcu_read_lock();
763 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
764 	if (likely(memcg))
765 		count_memcg_events(memcg, idx, 1);
766 	rcu_read_unlock();
767 }
768 
769 static inline void memcg_memory_event(struct mem_cgroup *memcg,
770 				      enum memcg_memory_event event)
771 {
772 	atomic_long_inc(&memcg->memory_events[event]);
773 	cgroup_file_notify(&memcg->events_file);
774 }
775 
776 static inline void memcg_memory_event_mm(struct mm_struct *mm,
777 					 enum memcg_memory_event event)
778 {
779 	struct mem_cgroup *memcg;
780 
781 	if (mem_cgroup_disabled())
782 		return;
783 
784 	rcu_read_lock();
785 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
786 	if (likely(memcg))
787 		memcg_memory_event(memcg, event);
788 	rcu_read_unlock();
789 }
790 
791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
792 void mem_cgroup_split_huge_fixup(struct page *head);
793 #endif
794 
795 #else /* CONFIG_MEMCG */
796 
797 #define MEM_CGROUP_ID_SHIFT	0
798 #define MEM_CGROUP_ID_MAX	0
799 
800 struct mem_cgroup;
801 
802 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
803 {
804 	return true;
805 }
806 
807 static inline bool mem_cgroup_disabled(void)
808 {
809 	return true;
810 }
811 
812 static inline void memcg_memory_event(struct mem_cgroup *memcg,
813 				      enum memcg_memory_event event)
814 {
815 }
816 
817 static inline void memcg_memory_event_mm(struct mm_struct *mm,
818 					 enum memcg_memory_event event)
819 {
820 }
821 
822 static inline enum mem_cgroup_protection mem_cgroup_protected(
823 	struct mem_cgroup *root, struct mem_cgroup *memcg)
824 {
825 	return MEMCG_PROT_NONE;
826 }
827 
828 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
829 					gfp_t gfp_mask,
830 					struct mem_cgroup **memcgp,
831 					bool compound)
832 {
833 	*memcgp = NULL;
834 	return 0;
835 }
836 
837 static inline int mem_cgroup_try_charge_delay(struct page *page,
838 					      struct mm_struct *mm,
839 					      gfp_t gfp_mask,
840 					      struct mem_cgroup **memcgp,
841 					      bool compound)
842 {
843 	*memcgp = NULL;
844 	return 0;
845 }
846 
847 static inline void mem_cgroup_commit_charge(struct page *page,
848 					    struct mem_cgroup *memcg,
849 					    bool lrucare, bool compound)
850 {
851 }
852 
853 static inline void mem_cgroup_cancel_charge(struct page *page,
854 					    struct mem_cgroup *memcg,
855 					    bool compound)
856 {
857 }
858 
859 static inline void mem_cgroup_uncharge(struct page *page)
860 {
861 }
862 
863 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
864 {
865 }
866 
867 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
868 {
869 }
870 
871 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
872 				struct mem_cgroup *memcg)
873 {
874 	return node_lruvec(pgdat);
875 }
876 
877 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
878 						    struct pglist_data *pgdat)
879 {
880 	return &pgdat->lruvec;
881 }
882 
883 static inline bool mm_match_cgroup(struct mm_struct *mm,
884 		struct mem_cgroup *memcg)
885 {
886 	return true;
887 }
888 
889 static inline bool task_in_mem_cgroup(struct task_struct *task,
890 				      const struct mem_cgroup *memcg)
891 {
892 	return true;
893 }
894 
895 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
896 {
897 	return NULL;
898 }
899 
900 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
901 {
902 	return NULL;
903 }
904 
905 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
906 {
907 }
908 
909 static inline struct mem_cgroup *
910 mem_cgroup_iter(struct mem_cgroup *root,
911 		struct mem_cgroup *prev,
912 		struct mem_cgroup_reclaim_cookie *reclaim)
913 {
914 	return NULL;
915 }
916 
917 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
918 					 struct mem_cgroup *prev)
919 {
920 }
921 
922 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
923 		int (*fn)(struct task_struct *, void *), void *arg)
924 {
925 	return 0;
926 }
927 
928 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
929 {
930 	return 0;
931 }
932 
933 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
934 {
935 	WARN_ON_ONCE(id);
936 	/* XXX: This should always return root_mem_cgroup */
937 	return NULL;
938 }
939 
940 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
941 {
942 	return NULL;
943 }
944 
945 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
946 {
947 	return true;
948 }
949 
950 static inline unsigned long
951 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952 {
953 	return 0;
954 }
955 static inline
956 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
957 		enum lru_list lru, int zone_idx)
958 {
959 	return 0;
960 }
961 
962 static inline unsigned long
963 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
964 			     int nid, unsigned int lru_mask)
965 {
966 	return 0;
967 }
968 
969 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
970 {
971 	return 0;
972 }
973 
974 static inline void
975 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
976 {
977 }
978 
979 static inline void
980 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
981 {
982 }
983 
984 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
985 {
986 	return NULL;
987 }
988 
989 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
990 {
991 }
992 
993 static inline void unlock_page_memcg(struct page *page)
994 {
995 }
996 
997 static inline void mem_cgroup_handle_over_high(void)
998 {
999 }
1000 
1001 static inline void mem_cgroup_enter_user_fault(void)
1002 {
1003 }
1004 
1005 static inline void mem_cgroup_exit_user_fault(void)
1006 {
1007 }
1008 
1009 static inline bool task_in_memcg_oom(struct task_struct *p)
1010 {
1011 	return false;
1012 }
1013 
1014 static inline bool mem_cgroup_oom_synchronize(bool wait)
1015 {
1016 	return false;
1017 }
1018 
1019 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1020 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1021 {
1022 	return NULL;
1023 }
1024 
1025 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1026 {
1027 }
1028 
1029 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1030 					     int idx)
1031 {
1032 	return 0;
1033 }
1034 
1035 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1036 				     int idx,
1037 				     int nr)
1038 {
1039 }
1040 
1041 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1042 				   int idx,
1043 				   int nr)
1044 {
1045 }
1046 
1047 static inline void __mod_memcg_page_state(struct page *page,
1048 					  int idx,
1049 					  int nr)
1050 {
1051 }
1052 
1053 static inline void mod_memcg_page_state(struct page *page,
1054 					int idx,
1055 					int nr)
1056 {
1057 }
1058 
1059 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1060 					      enum node_stat_item idx)
1061 {
1062 	return node_page_state(lruvec_pgdat(lruvec), idx);
1063 }
1064 
1065 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1066 				      enum node_stat_item idx, int val)
1067 {
1068 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1069 }
1070 
1071 static inline void mod_lruvec_state(struct lruvec *lruvec,
1072 				    enum node_stat_item idx, int val)
1073 {
1074 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1075 }
1076 
1077 static inline void __mod_lruvec_page_state(struct page *page,
1078 					   enum node_stat_item idx, int val)
1079 {
1080 	__mod_node_page_state(page_pgdat(page), idx, val);
1081 }
1082 
1083 static inline void mod_lruvec_page_state(struct page *page,
1084 					 enum node_stat_item idx, int val)
1085 {
1086 	mod_node_page_state(page_pgdat(page), idx, val);
1087 }
1088 
1089 static inline
1090 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1091 					    gfp_t gfp_mask,
1092 					    unsigned long *total_scanned)
1093 {
1094 	return 0;
1095 }
1096 
1097 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1098 {
1099 }
1100 
1101 static inline void count_memcg_events(struct mem_cgroup *memcg,
1102 				      enum vm_event_item idx,
1103 				      unsigned long count)
1104 {
1105 }
1106 
1107 static inline void count_memcg_page_event(struct page *page,
1108 					  int idx)
1109 {
1110 }
1111 
1112 static inline
1113 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1114 {
1115 }
1116 #endif /* CONFIG_MEMCG */
1117 
1118 /* idx can be of type enum memcg_stat_item or node_stat_item */
1119 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1120 				     int idx)
1121 {
1122 	__mod_memcg_state(memcg, idx, 1);
1123 }
1124 
1125 /* idx can be of type enum memcg_stat_item or node_stat_item */
1126 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1127 				     int idx)
1128 {
1129 	__mod_memcg_state(memcg, idx, -1);
1130 }
1131 
1132 /* idx can be of type enum memcg_stat_item or node_stat_item */
1133 static inline void __inc_memcg_page_state(struct page *page,
1134 					  int idx)
1135 {
1136 	__mod_memcg_page_state(page, idx, 1);
1137 }
1138 
1139 /* idx can be of type enum memcg_stat_item or node_stat_item */
1140 static inline void __dec_memcg_page_state(struct page *page,
1141 					  int idx)
1142 {
1143 	__mod_memcg_page_state(page, idx, -1);
1144 }
1145 
1146 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1147 				      enum node_stat_item idx)
1148 {
1149 	__mod_lruvec_state(lruvec, idx, 1);
1150 }
1151 
1152 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1153 				      enum node_stat_item idx)
1154 {
1155 	__mod_lruvec_state(lruvec, idx, -1);
1156 }
1157 
1158 static inline void __inc_lruvec_page_state(struct page *page,
1159 					   enum node_stat_item idx)
1160 {
1161 	__mod_lruvec_page_state(page, idx, 1);
1162 }
1163 
1164 static inline void __dec_lruvec_page_state(struct page *page,
1165 					   enum node_stat_item idx)
1166 {
1167 	__mod_lruvec_page_state(page, idx, -1);
1168 }
1169 
1170 /* idx can be of type enum memcg_stat_item or node_stat_item */
1171 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1172 				   int idx)
1173 {
1174 	mod_memcg_state(memcg, idx, 1);
1175 }
1176 
1177 /* idx can be of type enum memcg_stat_item or node_stat_item */
1178 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1179 				   int idx)
1180 {
1181 	mod_memcg_state(memcg, idx, -1);
1182 }
1183 
1184 /* idx can be of type enum memcg_stat_item or node_stat_item */
1185 static inline void inc_memcg_page_state(struct page *page,
1186 					int idx)
1187 {
1188 	mod_memcg_page_state(page, idx, 1);
1189 }
1190 
1191 /* idx can be of type enum memcg_stat_item or node_stat_item */
1192 static inline void dec_memcg_page_state(struct page *page,
1193 					int idx)
1194 {
1195 	mod_memcg_page_state(page, idx, -1);
1196 }
1197 
1198 static inline void inc_lruvec_state(struct lruvec *lruvec,
1199 				    enum node_stat_item idx)
1200 {
1201 	mod_lruvec_state(lruvec, idx, 1);
1202 }
1203 
1204 static inline void dec_lruvec_state(struct lruvec *lruvec,
1205 				    enum node_stat_item idx)
1206 {
1207 	mod_lruvec_state(lruvec, idx, -1);
1208 }
1209 
1210 static inline void inc_lruvec_page_state(struct page *page,
1211 					 enum node_stat_item idx)
1212 {
1213 	mod_lruvec_page_state(page, idx, 1);
1214 }
1215 
1216 static inline void dec_lruvec_page_state(struct page *page,
1217 					 enum node_stat_item idx)
1218 {
1219 	mod_lruvec_page_state(page, idx, -1);
1220 }
1221 
1222 #ifdef CONFIG_CGROUP_WRITEBACK
1223 
1224 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1225 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1226 			 unsigned long *pheadroom, unsigned long *pdirty,
1227 			 unsigned long *pwriteback);
1228 
1229 #else	/* CONFIG_CGROUP_WRITEBACK */
1230 
1231 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1232 {
1233 	return NULL;
1234 }
1235 
1236 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1237 				       unsigned long *pfilepages,
1238 				       unsigned long *pheadroom,
1239 				       unsigned long *pdirty,
1240 				       unsigned long *pwriteback)
1241 {
1242 }
1243 
1244 #endif	/* CONFIG_CGROUP_WRITEBACK */
1245 
1246 struct sock;
1247 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1248 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1249 #ifdef CONFIG_MEMCG
1250 extern struct static_key_false memcg_sockets_enabled_key;
1251 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1252 void mem_cgroup_sk_alloc(struct sock *sk);
1253 void mem_cgroup_sk_free(struct sock *sk);
1254 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1255 {
1256 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1257 		return true;
1258 	do {
1259 		if (time_before(jiffies, memcg->socket_pressure))
1260 			return true;
1261 	} while ((memcg = parent_mem_cgroup(memcg)));
1262 	return false;
1263 }
1264 #else
1265 #define mem_cgroup_sockets_enabled 0
1266 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1267 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1268 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1269 {
1270 	return false;
1271 }
1272 #endif
1273 
1274 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1275 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1276 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1277 			    struct mem_cgroup *memcg);
1278 
1279 #ifdef CONFIG_MEMCG_KMEM
1280 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1281 void memcg_kmem_uncharge(struct page *page, int order);
1282 
1283 extern struct static_key_false memcg_kmem_enabled_key;
1284 extern struct workqueue_struct *memcg_kmem_cache_wq;
1285 
1286 extern int memcg_nr_cache_ids;
1287 void memcg_get_cache_ids(void);
1288 void memcg_put_cache_ids(void);
1289 
1290 /*
1291  * Helper macro to loop through all memcg-specific caches. Callers must still
1292  * check if the cache is valid (it is either valid or NULL).
1293  * the slab_mutex must be held when looping through those caches
1294  */
1295 #define for_each_memcg_cache_index(_idx)	\
1296 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1297 
1298 static inline bool memcg_kmem_enabled(void)
1299 {
1300 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1301 }
1302 
1303 /*
1304  * helper for accessing a memcg's index. It will be used as an index in the
1305  * child cache array in kmem_cache, and also to derive its name. This function
1306  * will return -1 when this is not a kmem-limited memcg.
1307  */
1308 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1309 {
1310 	return memcg ? memcg->kmemcg_id : -1;
1311 }
1312 
1313 extern int memcg_expand_shrinker_maps(int new_id);
1314 
1315 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1316 				   int nid, int shrinker_id);
1317 #else
1318 
1319 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1320 {
1321 	return 0;
1322 }
1323 
1324 static inline void memcg_kmem_uncharge(struct page *page, int order)
1325 {
1326 }
1327 
1328 #define for_each_memcg_cache_index(_idx)	\
1329 	for (; NULL; )
1330 
1331 static inline bool memcg_kmem_enabled(void)
1332 {
1333 	return false;
1334 }
1335 
1336 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1337 {
1338 	return -1;
1339 }
1340 
1341 static inline void memcg_get_cache_ids(void)
1342 {
1343 }
1344 
1345 static inline void memcg_put_cache_ids(void)
1346 {
1347 }
1348 
1349 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1350 					  int nid, int shrinker_id) { }
1351 #endif /* CONFIG_MEMCG_KMEM */
1352 
1353 #endif /* _LINUX_MEMCONTROL_H */
1354