xref: /linux-6.15/include/linux/memcontrol.h (revision dee3d0be)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	unsigned int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 /*
73  * Per memcg event counter is incremented at every pagein/pageout. With THP,
74  * it will be incremented by the number of pages. This counter is used
75  * to trigger some periodic events. This is straightforward and better
76  * than using jiffies etc. to handle periodic memcg event.
77  */
78 enum mem_cgroup_events_target {
79 	MEM_CGROUP_TARGET_THRESH,
80 	MEM_CGROUP_TARGET_SOFTLIMIT,
81 	MEM_CGROUP_NTARGETS,
82 };
83 
84 struct memcg_vmstats_percpu;
85 struct memcg_vmstats;
86 
87 struct mem_cgroup_reclaim_iter {
88 	struct mem_cgroup *position;
89 	/* scan generation, increased every round-trip */
90 	unsigned int generation;
91 };
92 
93 struct lruvec_stats_percpu {
94 	/* Local (CPU and cgroup) state */
95 	long state[NR_VM_NODE_STAT_ITEMS];
96 
97 	/* Delta calculation for lockless upward propagation */
98 	long state_prev[NR_VM_NODE_STAT_ITEMS];
99 };
100 
101 struct lruvec_stats {
102 	/* Aggregated (CPU and subtree) state */
103 	long state[NR_VM_NODE_STAT_ITEMS];
104 
105 	/* Non-hierarchical (CPU aggregated) state */
106 	long state_local[NR_VM_NODE_STAT_ITEMS];
107 
108 	/* Pending child counts during tree propagation */
109 	long state_pending[NR_VM_NODE_STAT_ITEMS];
110 };
111 
112 /*
113  * per-node information in memory controller.
114  */
115 struct mem_cgroup_per_node {
116 	struct lruvec		lruvec;
117 
118 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
119 	struct lruvec_stats			lruvec_stats;
120 
121 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
122 
123 	struct mem_cgroup_reclaim_iter	iter;
124 
125 	struct shrinker_info __rcu	*shrinker_info;
126 
127 	struct rb_node		tree_node;	/* RB tree node */
128 	unsigned long		usage_in_excess;/* Set to the value by which */
129 						/* the soft limit is exceeded*/
130 	bool			on_tree;
131 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
132 						/* use container_of	   */
133 };
134 
135 struct mem_cgroup_threshold {
136 	struct eventfd_ctx *eventfd;
137 	unsigned long threshold;
138 };
139 
140 /* For threshold */
141 struct mem_cgroup_threshold_ary {
142 	/* An array index points to threshold just below or equal to usage. */
143 	int current_threshold;
144 	/* Size of entries[] */
145 	unsigned int size;
146 	/* Array of thresholds */
147 	struct mem_cgroup_threshold entries[] __counted_by(size);
148 };
149 
150 struct mem_cgroup_thresholds {
151 	/* Primary thresholds array */
152 	struct mem_cgroup_threshold_ary *primary;
153 	/*
154 	 * Spare threshold array.
155 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
156 	 * It must be able to store at least primary->size - 1 entries.
157 	 */
158 	struct mem_cgroup_threshold_ary *spare;
159 };
160 
161 /*
162  * Remember four most recent foreign writebacks with dirty pages in this
163  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
164  * one in a given round, we're likely to catch it later if it keeps
165  * foreign-dirtying, so a fairly low count should be enough.
166  *
167  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
168  */
169 #define MEMCG_CGWB_FRN_CNT	4
170 
171 struct memcg_cgwb_frn {
172 	u64 bdi_id;			/* bdi->id of the foreign inode */
173 	int memcg_id;			/* memcg->css.id of foreign inode */
174 	u64 at;				/* jiffies_64 at the time of dirtying */
175 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
176 };
177 
178 /*
179  * Bucket for arbitrarily byte-sized objects charged to a memory
180  * cgroup. The bucket can be reparented in one piece when the cgroup
181  * is destroyed, without having to round up the individual references
182  * of all live memory objects in the wild.
183  */
184 struct obj_cgroup {
185 	struct percpu_ref refcnt;
186 	struct mem_cgroup *memcg;
187 	atomic_t nr_charged_bytes;
188 	union {
189 		struct list_head list; /* protected by objcg_lock */
190 		struct rcu_head rcu;
191 	};
192 };
193 
194 /*
195  * The memory controller data structure. The memory controller controls both
196  * page cache and RSS per cgroup. We would eventually like to provide
197  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
198  * to help the administrator determine what knobs to tune.
199  */
200 struct mem_cgroup {
201 	struct cgroup_subsys_state css;
202 
203 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
204 	struct mem_cgroup_id id;
205 
206 	/* Accounted resources */
207 	struct page_counter memory;		/* Both v1 & v2 */
208 
209 	union {
210 		struct page_counter swap;	/* v2 only */
211 		struct page_counter memsw;	/* v1 only */
212 	};
213 
214 	/* Legacy consumer-oriented counters */
215 	struct page_counter kmem;		/* v1 only */
216 	struct page_counter tcpmem;		/* v1 only */
217 
218 	/* Range enforcement for interrupt charges */
219 	struct work_struct high_work;
220 
221 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
222 	unsigned long zswap_max;
223 
224 	/*
225 	 * Prevent pages from this memcg from being written back from zswap to
226 	 * swap, and from being swapped out on zswap store failures.
227 	 */
228 	bool zswap_writeback;
229 #endif
230 
231 	unsigned long soft_limit;
232 
233 	/* vmpressure notifications */
234 	struct vmpressure vmpressure;
235 
236 	/*
237 	 * Should the OOM killer kill all belonging tasks, had it kill one?
238 	 */
239 	bool oom_group;
240 
241 	/* protected by memcg_oom_lock */
242 	bool		oom_lock;
243 	int		under_oom;
244 
245 	int	swappiness;
246 	/* OOM-Killer disable */
247 	int		oom_kill_disable;
248 
249 	/* memory.events and memory.events.local */
250 	struct cgroup_file events_file;
251 	struct cgroup_file events_local_file;
252 
253 	/* handle for "memory.swap.events" */
254 	struct cgroup_file swap_events_file;
255 
256 	/* protect arrays of thresholds */
257 	struct mutex thresholds_lock;
258 
259 	/* thresholds for memory usage. RCU-protected */
260 	struct mem_cgroup_thresholds thresholds;
261 
262 	/* thresholds for mem+swap usage. RCU-protected */
263 	struct mem_cgroup_thresholds memsw_thresholds;
264 
265 	/* For oom notifier event fd */
266 	struct list_head oom_notify;
267 
268 	/*
269 	 * Should we move charges of a task when a task is moved into this
270 	 * mem_cgroup ? And what type of charges should we move ?
271 	 */
272 	unsigned long move_charge_at_immigrate;
273 	/* taken only while moving_account > 0 */
274 	spinlock_t		move_lock;
275 	unsigned long		move_lock_flags;
276 
277 	CACHELINE_PADDING(_pad1_);
278 
279 	/* memory.stat */
280 	struct memcg_vmstats	*vmstats;
281 
282 	/* memory.events */
283 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
284 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285 
286 	/*
287 	 * Hint of reclaim pressure for socket memroy management. Note
288 	 * that this indicator should NOT be used in legacy cgroup mode
289 	 * where socket memory is accounted/charged separately.
290 	 */
291 	unsigned long		socket_pressure;
292 
293 	/* Legacy tcp memory accounting */
294 	bool			tcpmem_active;
295 	int			tcpmem_pressure;
296 
297 #ifdef CONFIG_MEMCG_KMEM
298 	int kmemcg_id;
299 	/*
300 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
301 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
302 	 * to the original objcg until the end of live of memcg.
303 	 */
304 	struct obj_cgroup __rcu	*objcg;
305 	struct obj_cgroup	*orig_objcg;
306 	/* list of inherited objcgs, protected by objcg_lock */
307 	struct list_head objcg_list;
308 #endif
309 
310 	CACHELINE_PADDING(_pad2_);
311 
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t		moving_account;
316 	struct task_struct	*move_lock_task;
317 
318 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
319 
320 #ifdef CONFIG_CGROUP_WRITEBACK
321 	struct list_head cgwb_list;
322 	struct wb_domain cgwb_domain;
323 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
324 #endif
325 
326 	/* List of events which userspace want to receive */
327 	struct list_head event_list;
328 	spinlock_t event_list_lock;
329 
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 	struct deferred_split deferred_split_queue;
332 #endif
333 
334 #ifdef CONFIG_LRU_GEN_WALKS_MMU
335 	/* per-memcg mm_struct list */
336 	struct lru_gen_mm_list mm_list;
337 #endif
338 
339 	struct mem_cgroup_per_node *nodeinfo[];
340 };
341 
342 /*
343  * size of first charge trial.
344  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
345  * workload.
346  */
347 #define MEMCG_CHARGE_BATCH 64U
348 
349 extern struct mem_cgroup *root_mem_cgroup;
350 
351 enum page_memcg_data_flags {
352 	/* page->memcg_data is a pointer to an slabobj_ext vector */
353 	MEMCG_DATA_OBJEXTS = (1UL << 0),
354 	/* page has been accounted as a non-slab kernel page */
355 	MEMCG_DATA_KMEM = (1UL << 1),
356 	/* the next bit after the last actual flag */
357 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
358 };
359 
360 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
361 
362 #else /* CONFIG_MEMCG */
363 
364 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
365 
366 #endif /* CONFIG_MEMCG */
367 
368 enum objext_flags {
369 	/* slabobj_ext vector failed to allocate */
370 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
371 	/* the next bit after the last actual flag */
372 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
373 };
374 
375 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
376 
377 #ifdef CONFIG_MEMCG
378 
379 static inline bool folio_memcg_kmem(struct folio *folio);
380 
381 /*
382  * After the initialization objcg->memcg is always pointing at
383  * a valid memcg, but can be atomically swapped to the parent memcg.
384  *
385  * The caller must ensure that the returned memcg won't be released:
386  * e.g. acquire the rcu_read_lock or css_set_lock.
387  */
388 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
389 {
390 	return READ_ONCE(objcg->memcg);
391 }
392 
393 /*
394  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
395  * @folio: Pointer to the folio.
396  *
397  * Returns a pointer to the memory cgroup associated with the folio,
398  * or NULL. This function assumes that the folio is known to have a
399  * proper memory cgroup pointer. It's not safe to call this function
400  * against some type of folios, e.g. slab folios or ex-slab folios or
401  * kmem folios.
402  */
403 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
404 {
405 	unsigned long memcg_data = folio->memcg_data;
406 
407 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
408 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
409 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
410 
411 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
412 }
413 
414 /*
415  * __folio_objcg - get the object cgroup associated with a kmem folio.
416  * @folio: Pointer to the folio.
417  *
418  * Returns a pointer to the object cgroup associated with the folio,
419  * or NULL. This function assumes that the folio is known to have a
420  * proper object cgroup pointer. It's not safe to call this function
421  * against some type of folios, e.g. slab folios or ex-slab folios or
422  * LRU folios.
423  */
424 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
425 {
426 	unsigned long memcg_data = folio->memcg_data;
427 
428 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
429 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
430 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
431 
432 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
433 }
434 
435 /*
436  * folio_memcg - Get the memory cgroup associated with a folio.
437  * @folio: Pointer to the folio.
438  *
439  * Returns a pointer to the memory cgroup associated with the folio,
440  * or NULL. This function assumes that the folio is known to have a
441  * proper memory cgroup pointer. It's not safe to call this function
442  * against some type of folios, e.g. slab folios or ex-slab folios.
443  *
444  * For a non-kmem folio any of the following ensures folio and memcg binding
445  * stability:
446  *
447  * - the folio lock
448  * - LRU isolation
449  * - folio_memcg_lock()
450  * - exclusive reference
451  * - mem_cgroup_trylock_pages()
452  *
453  * For a kmem folio a caller should hold an rcu read lock to protect memcg
454  * associated with a kmem folio from being released.
455  */
456 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
457 {
458 	if (folio_memcg_kmem(folio))
459 		return obj_cgroup_memcg(__folio_objcg(folio));
460 	return __folio_memcg(folio);
461 }
462 
463 static inline struct mem_cgroup *page_memcg(struct page *page)
464 {
465 	return folio_memcg(page_folio(page));
466 }
467 
468 /**
469  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
470  * @folio: Pointer to the folio.
471  *
472  * This function assumes that the folio is known to have a
473  * proper memory cgroup pointer. It's not safe to call this function
474  * against some type of folios, e.g. slab folios or ex-slab folios.
475  *
476  * Return: A pointer to the memory cgroup associated with the folio,
477  * or NULL.
478  */
479 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
480 {
481 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
482 
483 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
484 	WARN_ON_ONCE(!rcu_read_lock_held());
485 
486 	if (memcg_data & MEMCG_DATA_KMEM) {
487 		struct obj_cgroup *objcg;
488 
489 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
490 		return obj_cgroup_memcg(objcg);
491 	}
492 
493 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
494 }
495 
496 /*
497  * folio_memcg_check - Get the memory cgroup associated with a folio.
498  * @folio: Pointer to the folio.
499  *
500  * Returns a pointer to the memory cgroup associated with the folio,
501  * or NULL. This function unlike folio_memcg() can take any folio
502  * as an argument. It has to be used in cases when it's not known if a folio
503  * has an associated memory cgroup pointer or an object cgroups vector or
504  * an object cgroup.
505  *
506  * For a non-kmem folio any of the following ensures folio and memcg binding
507  * stability:
508  *
509  * - the folio lock
510  * - LRU isolation
511  * - lock_folio_memcg()
512  * - exclusive reference
513  * - mem_cgroup_trylock_pages()
514  *
515  * For a kmem folio a caller should hold an rcu read lock to protect memcg
516  * associated with a kmem folio from being released.
517  */
518 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
519 {
520 	/*
521 	 * Because folio->memcg_data might be changed asynchronously
522 	 * for slabs, READ_ONCE() should be used here.
523 	 */
524 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
525 
526 	if (memcg_data & MEMCG_DATA_OBJEXTS)
527 		return NULL;
528 
529 	if (memcg_data & MEMCG_DATA_KMEM) {
530 		struct obj_cgroup *objcg;
531 
532 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
533 		return obj_cgroup_memcg(objcg);
534 	}
535 
536 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
537 }
538 
539 static inline struct mem_cgroup *page_memcg_check(struct page *page)
540 {
541 	if (PageTail(page))
542 		return NULL;
543 	return folio_memcg_check((struct folio *)page);
544 }
545 
546 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
547 {
548 	struct mem_cgroup *memcg;
549 
550 	rcu_read_lock();
551 retry:
552 	memcg = obj_cgroup_memcg(objcg);
553 	if (unlikely(!css_tryget(&memcg->css)))
554 		goto retry;
555 	rcu_read_unlock();
556 
557 	return memcg;
558 }
559 
560 #ifdef CONFIG_MEMCG_KMEM
561 /*
562  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
563  * @folio: Pointer to the folio.
564  *
565  * Checks if the folio has MemcgKmem flag set. The caller must ensure
566  * that the folio has an associated memory cgroup. It's not safe to call
567  * this function against some types of folios, e.g. slab folios.
568  */
569 static inline bool folio_memcg_kmem(struct folio *folio)
570 {
571 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
572 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
573 	return folio->memcg_data & MEMCG_DATA_KMEM;
574 }
575 
576 
577 #else
578 static inline bool folio_memcg_kmem(struct folio *folio)
579 {
580 	return false;
581 }
582 
583 #endif
584 
585 static inline bool PageMemcgKmem(struct page *page)
586 {
587 	return folio_memcg_kmem(page_folio(page));
588 }
589 
590 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
591 {
592 	return (memcg == root_mem_cgroup);
593 }
594 
595 static inline bool mem_cgroup_disabled(void)
596 {
597 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
598 }
599 
600 static inline void mem_cgroup_protection(struct mem_cgroup *root,
601 					 struct mem_cgroup *memcg,
602 					 unsigned long *min,
603 					 unsigned long *low)
604 {
605 	*min = *low = 0;
606 
607 	if (mem_cgroup_disabled())
608 		return;
609 
610 	/*
611 	 * There is no reclaim protection applied to a targeted reclaim.
612 	 * We are special casing this specific case here because
613 	 * mem_cgroup_calculate_protection is not robust enough to keep
614 	 * the protection invariant for calculated effective values for
615 	 * parallel reclaimers with different reclaim target. This is
616 	 * especially a problem for tail memcgs (as they have pages on LRU)
617 	 * which would want to have effective values 0 for targeted reclaim
618 	 * but a different value for external reclaim.
619 	 *
620 	 * Example
621 	 * Let's have global and A's reclaim in parallel:
622 	 *  |
623 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
624 	 *  |\
625 	 *  | C (low = 1G, usage = 2.5G)
626 	 *  B (low = 1G, usage = 0.5G)
627 	 *
628 	 * For the global reclaim
629 	 * A.elow = A.low
630 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
631 	 * C.elow = min(C.usage, C.low)
632 	 *
633 	 * With the effective values resetting we have A reclaim
634 	 * A.elow = 0
635 	 * B.elow = B.low
636 	 * C.elow = C.low
637 	 *
638 	 * If the global reclaim races with A's reclaim then
639 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
640 	 * is possible and reclaiming B would be violating the protection.
641 	 *
642 	 */
643 	if (root == memcg)
644 		return;
645 
646 	*min = READ_ONCE(memcg->memory.emin);
647 	*low = READ_ONCE(memcg->memory.elow);
648 }
649 
650 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
651 				     struct mem_cgroup *memcg);
652 
653 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
654 					  struct mem_cgroup *memcg)
655 {
656 	/*
657 	 * The root memcg doesn't account charges, and doesn't support
658 	 * protection. The target memcg's protection is ignored, see
659 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
660 	 */
661 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
662 		memcg == target;
663 }
664 
665 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
666 					struct mem_cgroup *memcg)
667 {
668 	if (mem_cgroup_unprotected(target, memcg))
669 		return false;
670 
671 	return READ_ONCE(memcg->memory.elow) >=
672 		page_counter_read(&memcg->memory);
673 }
674 
675 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
676 					struct mem_cgroup *memcg)
677 {
678 	if (mem_cgroup_unprotected(target, memcg))
679 		return false;
680 
681 	return READ_ONCE(memcg->memory.emin) >=
682 		page_counter_read(&memcg->memory);
683 }
684 
685 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
686 
687 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
688 
689 /**
690  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
691  * @folio: Folio to charge.
692  * @mm: mm context of the allocating task.
693  * @gfp: Reclaim mode.
694  *
695  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
696  * pages according to @gfp if necessary.  If @mm is NULL, try to
697  * charge to the active memcg.
698  *
699  * Do not use this for folios allocated for swapin.
700  *
701  * Return: 0 on success. Otherwise, an error code is returned.
702  */
703 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
704 				    gfp_t gfp)
705 {
706 	if (mem_cgroup_disabled())
707 		return 0;
708 	return __mem_cgroup_charge(folio, mm, gfp);
709 }
710 
711 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
712 		long nr_pages);
713 
714 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
715 				  gfp_t gfp, swp_entry_t entry);
716 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
717 
718 void __mem_cgroup_uncharge(struct folio *folio);
719 
720 /**
721  * mem_cgroup_uncharge - Uncharge a folio.
722  * @folio: Folio to uncharge.
723  *
724  * Uncharge a folio previously charged with mem_cgroup_charge().
725  */
726 static inline void mem_cgroup_uncharge(struct folio *folio)
727 {
728 	if (mem_cgroup_disabled())
729 		return;
730 	__mem_cgroup_uncharge(folio);
731 }
732 
733 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
734 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
735 {
736 	if (mem_cgroup_disabled())
737 		return;
738 	__mem_cgroup_uncharge_folios(folios);
739 }
740 
741 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
742 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
743 void mem_cgroup_migrate(struct folio *old, struct folio *new);
744 
745 /**
746  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
747  * @memcg: memcg of the wanted lruvec
748  * @pgdat: pglist_data
749  *
750  * Returns the lru list vector holding pages for a given @memcg &
751  * @pgdat combination. This can be the node lruvec, if the memory
752  * controller is disabled.
753  */
754 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
755 					       struct pglist_data *pgdat)
756 {
757 	struct mem_cgroup_per_node *mz;
758 	struct lruvec *lruvec;
759 
760 	if (mem_cgroup_disabled()) {
761 		lruvec = &pgdat->__lruvec;
762 		goto out;
763 	}
764 
765 	if (!memcg)
766 		memcg = root_mem_cgroup;
767 
768 	mz = memcg->nodeinfo[pgdat->node_id];
769 	lruvec = &mz->lruvec;
770 out:
771 	/*
772 	 * Since a node can be onlined after the mem_cgroup was created,
773 	 * we have to be prepared to initialize lruvec->pgdat here;
774 	 * and if offlined then reonlined, we need to reinitialize it.
775 	 */
776 	if (unlikely(lruvec->pgdat != pgdat))
777 		lruvec->pgdat = pgdat;
778 	return lruvec;
779 }
780 
781 /**
782  * folio_lruvec - return lruvec for isolating/putting an LRU folio
783  * @folio: Pointer to the folio.
784  *
785  * This function relies on folio->mem_cgroup being stable.
786  */
787 static inline struct lruvec *folio_lruvec(struct folio *folio)
788 {
789 	struct mem_cgroup *memcg = folio_memcg(folio);
790 
791 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
792 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
793 }
794 
795 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
796 
797 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
798 
799 struct mem_cgroup *get_mem_cgroup_from_current(void);
800 
801 struct lruvec *folio_lruvec_lock(struct folio *folio);
802 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
803 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
804 						unsigned long *flags);
805 
806 #ifdef CONFIG_DEBUG_VM
807 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
808 #else
809 static inline
810 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
811 {
812 }
813 #endif
814 
815 static inline
816 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
817 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
818 }
819 
820 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
821 {
822 	return percpu_ref_tryget(&objcg->refcnt);
823 }
824 
825 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
826 {
827 	percpu_ref_get(&objcg->refcnt);
828 }
829 
830 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
831 				       unsigned long nr)
832 {
833 	percpu_ref_get_many(&objcg->refcnt, nr);
834 }
835 
836 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
837 {
838 	if (objcg)
839 		percpu_ref_put(&objcg->refcnt);
840 }
841 
842 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
843 {
844 	return !memcg || css_tryget(&memcg->css);
845 }
846 
847 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
848 {
849 	return !memcg || css_tryget_online(&memcg->css);
850 }
851 
852 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
853 {
854 	if (memcg)
855 		css_put(&memcg->css);
856 }
857 
858 #define mem_cgroup_from_counter(counter, member)	\
859 	container_of(counter, struct mem_cgroup, member)
860 
861 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
862 				   struct mem_cgroup *,
863 				   struct mem_cgroup_reclaim_cookie *);
864 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
865 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
866 			   int (*)(struct task_struct *, void *), void *arg);
867 
868 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
869 {
870 	if (mem_cgroup_disabled())
871 		return 0;
872 
873 	return memcg->id.id;
874 }
875 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
876 
877 #ifdef CONFIG_SHRINKER_DEBUG
878 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
879 {
880 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
881 }
882 
883 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
884 #endif
885 
886 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
887 {
888 	return mem_cgroup_from_css(seq_css(m));
889 }
890 
891 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
892 {
893 	struct mem_cgroup_per_node *mz;
894 
895 	if (mem_cgroup_disabled())
896 		return NULL;
897 
898 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
899 	return mz->memcg;
900 }
901 
902 /**
903  * parent_mem_cgroup - find the accounting parent of a memcg
904  * @memcg: memcg whose parent to find
905  *
906  * Returns the parent memcg, or NULL if this is the root.
907  */
908 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
909 {
910 	return mem_cgroup_from_css(memcg->css.parent);
911 }
912 
913 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
914 			      struct mem_cgroup *root)
915 {
916 	if (root == memcg)
917 		return true;
918 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
919 }
920 
921 static inline bool mm_match_cgroup(struct mm_struct *mm,
922 				   struct mem_cgroup *memcg)
923 {
924 	struct mem_cgroup *task_memcg;
925 	bool match = false;
926 
927 	rcu_read_lock();
928 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
929 	if (task_memcg)
930 		match = mem_cgroup_is_descendant(task_memcg, memcg);
931 	rcu_read_unlock();
932 	return match;
933 }
934 
935 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
936 ino_t page_cgroup_ino(struct page *page);
937 
938 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
939 {
940 	if (mem_cgroup_disabled())
941 		return true;
942 	return !!(memcg->css.flags & CSS_ONLINE);
943 }
944 
945 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
946 		int zid, int nr_pages);
947 
948 static inline
949 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
950 		enum lru_list lru, int zone_idx)
951 {
952 	struct mem_cgroup_per_node *mz;
953 
954 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
955 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
956 }
957 
958 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
959 
960 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
961 
962 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
963 
964 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
965 				struct task_struct *p);
966 
967 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
968 
969 static inline void mem_cgroup_enter_user_fault(void)
970 {
971 	WARN_ON(current->in_user_fault);
972 	current->in_user_fault = 1;
973 }
974 
975 static inline void mem_cgroup_exit_user_fault(void)
976 {
977 	WARN_ON(!current->in_user_fault);
978 	current->in_user_fault = 0;
979 }
980 
981 static inline bool task_in_memcg_oom(struct task_struct *p)
982 {
983 	return p->memcg_in_oom;
984 }
985 
986 bool mem_cgroup_oom_synchronize(bool wait);
987 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
988 					    struct mem_cgroup *oom_domain);
989 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
990 
991 void folio_memcg_lock(struct folio *folio);
992 void folio_memcg_unlock(struct folio *folio);
993 
994 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
995 
996 /* try to stablize folio_memcg() for all the pages in a memcg */
997 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
998 {
999 	rcu_read_lock();
1000 
1001 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
1002 		return true;
1003 
1004 	rcu_read_unlock();
1005 	return false;
1006 }
1007 
1008 static inline void mem_cgroup_unlock_pages(void)
1009 {
1010 	rcu_read_unlock();
1011 }
1012 
1013 /* idx can be of type enum memcg_stat_item or node_stat_item */
1014 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1015 				   int idx, int val)
1016 {
1017 	unsigned long flags;
1018 
1019 	local_irq_save(flags);
1020 	__mod_memcg_state(memcg, idx, val);
1021 	local_irq_restore(flags);
1022 }
1023 
1024 static inline void mod_memcg_page_state(struct page *page,
1025 					int idx, int val)
1026 {
1027 	struct mem_cgroup *memcg;
1028 
1029 	if (mem_cgroup_disabled())
1030 		return;
1031 
1032 	rcu_read_lock();
1033 	memcg = page_memcg(page);
1034 	if (memcg)
1035 		mod_memcg_state(memcg, idx, val);
1036 	rcu_read_unlock();
1037 }
1038 
1039 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1040 
1041 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1042 					      enum node_stat_item idx)
1043 {
1044 	struct mem_cgroup_per_node *pn;
1045 	long x;
1046 
1047 	if (mem_cgroup_disabled())
1048 		return node_page_state(lruvec_pgdat(lruvec), idx);
1049 
1050 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1051 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1052 #ifdef CONFIG_SMP
1053 	if (x < 0)
1054 		x = 0;
1055 #endif
1056 	return x;
1057 }
1058 
1059 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1060 						    enum node_stat_item idx)
1061 {
1062 	struct mem_cgroup_per_node *pn;
1063 	long x = 0;
1064 
1065 	if (mem_cgroup_disabled())
1066 		return node_page_state(lruvec_pgdat(lruvec), idx);
1067 
1068 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1069 	x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1070 #ifdef CONFIG_SMP
1071 	if (x < 0)
1072 		x = 0;
1073 #endif
1074 	return x;
1075 }
1076 
1077 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
1078 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
1079 
1080 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1081 			      int val);
1082 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1083 
1084 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1085 					 int val)
1086 {
1087 	unsigned long flags;
1088 
1089 	local_irq_save(flags);
1090 	__mod_lruvec_kmem_state(p, idx, val);
1091 	local_irq_restore(flags);
1092 }
1093 
1094 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1095 					  enum node_stat_item idx, int val)
1096 {
1097 	unsigned long flags;
1098 
1099 	local_irq_save(flags);
1100 	__mod_memcg_lruvec_state(lruvec, idx, val);
1101 	local_irq_restore(flags);
1102 }
1103 
1104 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1105 			  unsigned long count);
1106 
1107 static inline void count_memcg_events(struct mem_cgroup *memcg,
1108 				      enum vm_event_item idx,
1109 				      unsigned long count)
1110 {
1111 	unsigned long flags;
1112 
1113 	local_irq_save(flags);
1114 	__count_memcg_events(memcg, idx, count);
1115 	local_irq_restore(flags);
1116 }
1117 
1118 static inline void count_memcg_folio_events(struct folio *folio,
1119 		enum vm_event_item idx, unsigned long nr)
1120 {
1121 	struct mem_cgroup *memcg = folio_memcg(folio);
1122 
1123 	if (memcg)
1124 		count_memcg_events(memcg, idx, nr);
1125 }
1126 
1127 static inline void count_memcg_event_mm(struct mm_struct *mm,
1128 					enum vm_event_item idx)
1129 {
1130 	struct mem_cgroup *memcg;
1131 
1132 	if (mem_cgroup_disabled())
1133 		return;
1134 
1135 	rcu_read_lock();
1136 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1137 	if (likely(memcg))
1138 		count_memcg_events(memcg, idx, 1);
1139 	rcu_read_unlock();
1140 }
1141 
1142 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1143 				      enum memcg_memory_event event)
1144 {
1145 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1146 			  event == MEMCG_SWAP_FAIL;
1147 
1148 	atomic_long_inc(&memcg->memory_events_local[event]);
1149 	if (!swap_event)
1150 		cgroup_file_notify(&memcg->events_local_file);
1151 
1152 	do {
1153 		atomic_long_inc(&memcg->memory_events[event]);
1154 		if (swap_event)
1155 			cgroup_file_notify(&memcg->swap_events_file);
1156 		else
1157 			cgroup_file_notify(&memcg->events_file);
1158 
1159 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1160 			break;
1161 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1162 			break;
1163 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1164 		 !mem_cgroup_is_root(memcg));
1165 }
1166 
1167 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1168 					 enum memcg_memory_event event)
1169 {
1170 	struct mem_cgroup *memcg;
1171 
1172 	if (mem_cgroup_disabled())
1173 		return;
1174 
1175 	rcu_read_lock();
1176 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1177 	if (likely(memcg))
1178 		memcg_memory_event(memcg, event);
1179 	rcu_read_unlock();
1180 }
1181 
1182 void split_page_memcg(struct page *head, int old_order, int new_order);
1183 
1184 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1185 						gfp_t gfp_mask,
1186 						unsigned long *total_scanned);
1187 
1188 #else /* CONFIG_MEMCG */
1189 
1190 #define MEM_CGROUP_ID_SHIFT	0
1191 
1192 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1193 {
1194 	return NULL;
1195 }
1196 
1197 static inline struct mem_cgroup *page_memcg(struct page *page)
1198 {
1199 	return NULL;
1200 }
1201 
1202 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1203 {
1204 	WARN_ON_ONCE(!rcu_read_lock_held());
1205 	return NULL;
1206 }
1207 
1208 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1209 {
1210 	return NULL;
1211 }
1212 
1213 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1214 {
1215 	return NULL;
1216 }
1217 
1218 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1219 {
1220 	return NULL;
1221 }
1222 
1223 static inline bool folio_memcg_kmem(struct folio *folio)
1224 {
1225 	return false;
1226 }
1227 
1228 static inline bool PageMemcgKmem(struct page *page)
1229 {
1230 	return false;
1231 }
1232 
1233 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1234 {
1235 	return true;
1236 }
1237 
1238 static inline bool mem_cgroup_disabled(void)
1239 {
1240 	return true;
1241 }
1242 
1243 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1244 				      enum memcg_memory_event event)
1245 {
1246 }
1247 
1248 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1249 					 enum memcg_memory_event event)
1250 {
1251 }
1252 
1253 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1254 					 struct mem_cgroup *memcg,
1255 					 unsigned long *min,
1256 					 unsigned long *low)
1257 {
1258 	*min = *low = 0;
1259 }
1260 
1261 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1262 						   struct mem_cgroup *memcg)
1263 {
1264 }
1265 
1266 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1267 					  struct mem_cgroup *memcg)
1268 {
1269 	return true;
1270 }
1271 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1272 					struct mem_cgroup *memcg)
1273 {
1274 	return false;
1275 }
1276 
1277 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1278 					struct mem_cgroup *memcg)
1279 {
1280 	return false;
1281 }
1282 
1283 static inline void mem_cgroup_commit_charge(struct folio *folio,
1284 		struct mem_cgroup *memcg)
1285 {
1286 }
1287 
1288 static inline int mem_cgroup_charge(struct folio *folio,
1289 		struct mm_struct *mm, gfp_t gfp)
1290 {
1291 	return 0;
1292 }
1293 
1294 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1295 		gfp_t gfp, long nr_pages)
1296 {
1297 	return 0;
1298 }
1299 
1300 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1301 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1302 {
1303 	return 0;
1304 }
1305 
1306 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1307 {
1308 }
1309 
1310 static inline void mem_cgroup_uncharge(struct folio *folio)
1311 {
1312 }
1313 
1314 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1315 {
1316 }
1317 
1318 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1319 		unsigned int nr_pages)
1320 {
1321 }
1322 
1323 static inline void mem_cgroup_replace_folio(struct folio *old,
1324 		struct folio *new)
1325 {
1326 }
1327 
1328 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1329 {
1330 }
1331 
1332 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1333 					       struct pglist_data *pgdat)
1334 {
1335 	return &pgdat->__lruvec;
1336 }
1337 
1338 static inline struct lruvec *folio_lruvec(struct folio *folio)
1339 {
1340 	struct pglist_data *pgdat = folio_pgdat(folio);
1341 	return &pgdat->__lruvec;
1342 }
1343 
1344 static inline
1345 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1346 {
1347 }
1348 
1349 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1350 {
1351 	return NULL;
1352 }
1353 
1354 static inline bool mm_match_cgroup(struct mm_struct *mm,
1355 		struct mem_cgroup *memcg)
1356 {
1357 	return true;
1358 }
1359 
1360 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1361 {
1362 	return NULL;
1363 }
1364 
1365 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1366 {
1367 	return NULL;
1368 }
1369 
1370 static inline
1371 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1372 {
1373 	return NULL;
1374 }
1375 
1376 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1377 {
1378 }
1379 
1380 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1381 {
1382 	return true;
1383 }
1384 
1385 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1386 {
1387 	return true;
1388 }
1389 
1390 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1391 {
1392 }
1393 
1394 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1395 {
1396 	struct pglist_data *pgdat = folio_pgdat(folio);
1397 
1398 	spin_lock(&pgdat->__lruvec.lru_lock);
1399 	return &pgdat->__lruvec;
1400 }
1401 
1402 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1403 {
1404 	struct pglist_data *pgdat = folio_pgdat(folio);
1405 
1406 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1407 	return &pgdat->__lruvec;
1408 }
1409 
1410 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1411 		unsigned long *flagsp)
1412 {
1413 	struct pglist_data *pgdat = folio_pgdat(folio);
1414 
1415 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1416 	return &pgdat->__lruvec;
1417 }
1418 
1419 static inline struct mem_cgroup *
1420 mem_cgroup_iter(struct mem_cgroup *root,
1421 		struct mem_cgroup *prev,
1422 		struct mem_cgroup_reclaim_cookie *reclaim)
1423 {
1424 	return NULL;
1425 }
1426 
1427 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1428 					 struct mem_cgroup *prev)
1429 {
1430 }
1431 
1432 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1433 		int (*fn)(struct task_struct *, void *), void *arg)
1434 {
1435 }
1436 
1437 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1438 {
1439 	return 0;
1440 }
1441 
1442 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1443 {
1444 	WARN_ON_ONCE(id);
1445 	/* XXX: This should always return root_mem_cgroup */
1446 	return NULL;
1447 }
1448 
1449 #ifdef CONFIG_SHRINKER_DEBUG
1450 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1451 {
1452 	return 0;
1453 }
1454 
1455 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1456 {
1457 	return NULL;
1458 }
1459 #endif
1460 
1461 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1462 {
1463 	return NULL;
1464 }
1465 
1466 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1467 {
1468 	return NULL;
1469 }
1470 
1471 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1472 {
1473 	return true;
1474 }
1475 
1476 static inline
1477 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1478 		enum lru_list lru, int zone_idx)
1479 {
1480 	return 0;
1481 }
1482 
1483 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1484 {
1485 	return 0;
1486 }
1487 
1488 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1489 {
1490 	return 0;
1491 }
1492 
1493 static inline void
1494 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1495 {
1496 }
1497 
1498 static inline void
1499 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1500 {
1501 }
1502 
1503 static inline void folio_memcg_lock(struct folio *folio)
1504 {
1505 }
1506 
1507 static inline void folio_memcg_unlock(struct folio *folio)
1508 {
1509 }
1510 
1511 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1512 {
1513 	/* to match folio_memcg_rcu() */
1514 	rcu_read_lock();
1515 	return true;
1516 }
1517 
1518 static inline void mem_cgroup_unlock_pages(void)
1519 {
1520 	rcu_read_unlock();
1521 }
1522 
1523 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1524 {
1525 }
1526 
1527 static inline void mem_cgroup_enter_user_fault(void)
1528 {
1529 }
1530 
1531 static inline void mem_cgroup_exit_user_fault(void)
1532 {
1533 }
1534 
1535 static inline bool task_in_memcg_oom(struct task_struct *p)
1536 {
1537 	return false;
1538 }
1539 
1540 static inline bool mem_cgroup_oom_synchronize(bool wait)
1541 {
1542 	return false;
1543 }
1544 
1545 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1546 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1547 {
1548 	return NULL;
1549 }
1550 
1551 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1552 {
1553 }
1554 
1555 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1556 				     int idx,
1557 				     int nr)
1558 {
1559 }
1560 
1561 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1562 				   int idx,
1563 				   int nr)
1564 {
1565 }
1566 
1567 static inline void mod_memcg_page_state(struct page *page,
1568 					int idx, int val)
1569 {
1570 }
1571 
1572 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1573 {
1574 	return 0;
1575 }
1576 
1577 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1578 					      enum node_stat_item idx)
1579 {
1580 	return node_page_state(lruvec_pgdat(lruvec), idx);
1581 }
1582 
1583 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1584 						    enum node_stat_item idx)
1585 {
1586 	return node_page_state(lruvec_pgdat(lruvec), idx);
1587 }
1588 
1589 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1590 {
1591 }
1592 
1593 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1594 {
1595 }
1596 
1597 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1598 					    enum node_stat_item idx, int val)
1599 {
1600 }
1601 
1602 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1603 					   int val)
1604 {
1605 	struct page *page = virt_to_head_page(p);
1606 
1607 	__mod_node_page_state(page_pgdat(page), idx, val);
1608 }
1609 
1610 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1611 					 int val)
1612 {
1613 	struct page *page = virt_to_head_page(p);
1614 
1615 	mod_node_page_state(page_pgdat(page), idx, val);
1616 }
1617 
1618 static inline void count_memcg_events(struct mem_cgroup *memcg,
1619 				      enum vm_event_item idx,
1620 				      unsigned long count)
1621 {
1622 }
1623 
1624 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1625 					enum vm_event_item idx,
1626 					unsigned long count)
1627 {
1628 }
1629 
1630 static inline void count_memcg_folio_events(struct folio *folio,
1631 		enum vm_event_item idx, unsigned long nr)
1632 {
1633 }
1634 
1635 static inline
1636 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1637 {
1638 }
1639 
1640 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1641 {
1642 }
1643 
1644 static inline
1645 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1646 					    gfp_t gfp_mask,
1647 					    unsigned long *total_scanned)
1648 {
1649 	return 0;
1650 }
1651 #endif /* CONFIG_MEMCG */
1652 
1653 /*
1654  * Extended information for slab objects stored as an array in page->memcg_data
1655  * if MEMCG_DATA_OBJEXTS is set.
1656  */
1657 struct slabobj_ext {
1658 #ifdef CONFIG_MEMCG_KMEM
1659 	struct obj_cgroup *objcg;
1660 #endif
1661 #ifdef CONFIG_MEM_ALLOC_PROFILING
1662 	union codetag_ref ref;
1663 #endif
1664 } __aligned(8);
1665 
1666 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1667 {
1668 	__mod_lruvec_kmem_state(p, idx, 1);
1669 }
1670 
1671 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1672 {
1673 	__mod_lruvec_kmem_state(p, idx, -1);
1674 }
1675 
1676 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1677 {
1678 	struct mem_cgroup *memcg;
1679 
1680 	memcg = lruvec_memcg(lruvec);
1681 	if (!memcg)
1682 		return NULL;
1683 	memcg = parent_mem_cgroup(memcg);
1684 	if (!memcg)
1685 		return NULL;
1686 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1687 }
1688 
1689 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1690 {
1691 	spin_unlock(&lruvec->lru_lock);
1692 }
1693 
1694 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1695 {
1696 	spin_unlock_irq(&lruvec->lru_lock);
1697 }
1698 
1699 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1700 		unsigned long flags)
1701 {
1702 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1703 }
1704 
1705 /* Test requires a stable page->memcg binding, see page_memcg() */
1706 static inline bool folio_matches_lruvec(struct folio *folio,
1707 		struct lruvec *lruvec)
1708 {
1709 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1710 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1711 }
1712 
1713 /* Don't lock again iff page's lruvec locked */
1714 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1715 		struct lruvec *locked_lruvec)
1716 {
1717 	if (locked_lruvec) {
1718 		if (folio_matches_lruvec(folio, locked_lruvec))
1719 			return locked_lruvec;
1720 
1721 		unlock_page_lruvec_irq(locked_lruvec);
1722 	}
1723 
1724 	return folio_lruvec_lock_irq(folio);
1725 }
1726 
1727 /* Don't lock again iff folio's lruvec locked */
1728 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1729 		struct lruvec **lruvecp, unsigned long *flags)
1730 {
1731 	if (*lruvecp) {
1732 		if (folio_matches_lruvec(folio, *lruvecp))
1733 			return;
1734 
1735 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1736 	}
1737 
1738 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1739 }
1740 
1741 #ifdef CONFIG_CGROUP_WRITEBACK
1742 
1743 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1744 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1745 			 unsigned long *pheadroom, unsigned long *pdirty,
1746 			 unsigned long *pwriteback);
1747 
1748 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1749 					     struct bdi_writeback *wb);
1750 
1751 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1752 						  struct bdi_writeback *wb)
1753 {
1754 	struct mem_cgroup *memcg;
1755 
1756 	if (mem_cgroup_disabled())
1757 		return;
1758 
1759 	memcg = folio_memcg(folio);
1760 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1761 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1762 }
1763 
1764 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1765 
1766 #else	/* CONFIG_CGROUP_WRITEBACK */
1767 
1768 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1769 {
1770 	return NULL;
1771 }
1772 
1773 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1774 				       unsigned long *pfilepages,
1775 				       unsigned long *pheadroom,
1776 				       unsigned long *pdirty,
1777 				       unsigned long *pwriteback)
1778 {
1779 }
1780 
1781 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1782 						  struct bdi_writeback *wb)
1783 {
1784 }
1785 
1786 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1787 {
1788 }
1789 
1790 #endif	/* CONFIG_CGROUP_WRITEBACK */
1791 
1792 struct sock;
1793 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1794 			     gfp_t gfp_mask);
1795 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1796 #ifdef CONFIG_MEMCG
1797 extern struct static_key_false memcg_sockets_enabled_key;
1798 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1799 void mem_cgroup_sk_alloc(struct sock *sk);
1800 void mem_cgroup_sk_free(struct sock *sk);
1801 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1802 {
1803 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1804 		return !!memcg->tcpmem_pressure;
1805 	do {
1806 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1807 			return true;
1808 	} while ((memcg = parent_mem_cgroup(memcg)));
1809 	return false;
1810 }
1811 
1812 int alloc_shrinker_info(struct mem_cgroup *memcg);
1813 void free_shrinker_info(struct mem_cgroup *memcg);
1814 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1815 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1816 #else
1817 #define mem_cgroup_sockets_enabled 0
1818 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1819 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1820 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1821 {
1822 	return false;
1823 }
1824 
1825 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1826 				    int nid, int shrinker_id)
1827 {
1828 }
1829 #endif
1830 
1831 #ifdef CONFIG_MEMCG_KMEM
1832 bool mem_cgroup_kmem_disabled(void);
1833 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1834 void __memcg_kmem_uncharge_page(struct page *page, int order);
1835 
1836 /*
1837  * The returned objcg pointer is safe to use without additional
1838  * protection within a scope. The scope is defined either by
1839  * the current task (similar to the "current" global variable)
1840  * or by set_active_memcg() pair.
1841  * Please, use obj_cgroup_get() to get a reference if the pointer
1842  * needs to be used outside of the local scope.
1843  */
1844 struct obj_cgroup *current_obj_cgroup(void);
1845 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1846 
1847 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1848 {
1849 	struct obj_cgroup *objcg = current_obj_cgroup();
1850 
1851 	if (objcg)
1852 		obj_cgroup_get(objcg);
1853 
1854 	return objcg;
1855 }
1856 
1857 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1858 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1859 
1860 extern struct static_key_false memcg_bpf_enabled_key;
1861 static inline bool memcg_bpf_enabled(void)
1862 {
1863 	return static_branch_likely(&memcg_bpf_enabled_key);
1864 }
1865 
1866 extern struct static_key_false memcg_kmem_online_key;
1867 
1868 static inline bool memcg_kmem_online(void)
1869 {
1870 	return static_branch_likely(&memcg_kmem_online_key);
1871 }
1872 
1873 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1874 					 int order)
1875 {
1876 	if (memcg_kmem_online())
1877 		return __memcg_kmem_charge_page(page, gfp, order);
1878 	return 0;
1879 }
1880 
1881 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1882 {
1883 	if (memcg_kmem_online())
1884 		__memcg_kmem_uncharge_page(page, order);
1885 }
1886 
1887 /*
1888  * A helper for accessing memcg's kmem_id, used for getting
1889  * corresponding LRU lists.
1890  */
1891 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1892 {
1893 	return memcg ? memcg->kmemcg_id : -1;
1894 }
1895 
1896 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1897 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1898 
1899 static inline void count_objcg_event(struct obj_cgroup *objcg,
1900 				     enum vm_event_item idx)
1901 {
1902 	struct mem_cgroup *memcg;
1903 
1904 	if (!memcg_kmem_online())
1905 		return;
1906 
1907 	rcu_read_lock();
1908 	memcg = obj_cgroup_memcg(objcg);
1909 	count_memcg_events(memcg, idx, 1);
1910 	rcu_read_unlock();
1911 }
1912 
1913 #else
1914 static inline bool mem_cgroup_kmem_disabled(void)
1915 {
1916 	return true;
1917 }
1918 
1919 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1920 					 int order)
1921 {
1922 	return 0;
1923 }
1924 
1925 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1926 {
1927 }
1928 
1929 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1930 					   int order)
1931 {
1932 	return 0;
1933 }
1934 
1935 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1936 {
1937 }
1938 
1939 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1940 {
1941 	return NULL;
1942 }
1943 
1944 static inline bool memcg_bpf_enabled(void)
1945 {
1946 	return false;
1947 }
1948 
1949 static inline bool memcg_kmem_online(void)
1950 {
1951 	return false;
1952 }
1953 
1954 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1955 {
1956 	return -1;
1957 }
1958 
1959 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1960 {
1961 	return NULL;
1962 }
1963 
1964 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1965 {
1966 	return NULL;
1967 }
1968 
1969 static inline void count_objcg_event(struct obj_cgroup *objcg,
1970 				     enum vm_event_item idx)
1971 {
1972 }
1973 
1974 #endif /* CONFIG_MEMCG_KMEM */
1975 
1976 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1977 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1978 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1979 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1980 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1981 #else
1982 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1983 {
1984 	return true;
1985 }
1986 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1987 					   size_t size)
1988 {
1989 }
1990 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1991 					     size_t size)
1992 {
1993 }
1994 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1995 {
1996 	/* if zswap is disabled, do not block pages going to the swapping device */
1997 	return true;
1998 }
1999 #endif
2000 
2001 #endif /* _LINUX_MEMCONTROL_H */
2002