1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 27 struct mem_cgroup; 28 struct page_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* 34 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 35 * These two lists should keep in accord with each other. 36 */ 37 enum mem_cgroup_stat_index { 38 /* 39 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 40 */ 41 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 42 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 43 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 44 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 45 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 46 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 47 MEM_CGROUP_STAT_NSTATS, 48 }; 49 50 struct mem_cgroup_reclaim_cookie { 51 struct zone *zone; 52 int priority; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 /* 58 * All "charge" functions with gfp_mask should use GFP_KERNEL or 59 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't 60 * alloc memory but reclaims memory from all available zones. So, "where I want 61 * memory from" bits of gfp_mask has no meaning. So any bits of that field is 62 * available but adding a rule is better. charge functions' gfp_mask should 63 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous 64 * codes. 65 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.) 66 */ 67 68 extern int mem_cgroup_charge_anon(struct page *page, struct mm_struct *mm, 69 gfp_t gfp_mask); 70 /* for swap handling */ 71 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 72 struct page *page, gfp_t mask, struct mem_cgroup **memcgp); 73 extern void mem_cgroup_commit_charge_swapin(struct page *page, 74 struct mem_cgroup *memcg); 75 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg); 76 77 extern int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm, 78 gfp_t gfp_mask); 79 80 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 81 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 82 83 /* For coalescing uncharge for reducing memcg' overhead*/ 84 extern void mem_cgroup_uncharge_start(void); 85 extern void mem_cgroup_uncharge_end(void); 86 87 extern void mem_cgroup_uncharge_page(struct page *page); 88 extern void mem_cgroup_uncharge_cache_page(struct page *page); 89 90 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 91 struct mem_cgroup *memcg); 92 bool task_in_mem_cgroup(struct task_struct *task, 93 const struct mem_cgroup *memcg); 94 95 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 96 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 97 98 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 99 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); 100 101 static inline 102 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) 103 { 104 struct mem_cgroup *task_memcg; 105 bool match; 106 107 rcu_read_lock(); 108 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 109 match = __mem_cgroup_same_or_subtree(memcg, task_memcg); 110 rcu_read_unlock(); 111 return match; 112 } 113 114 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 115 116 extern void 117 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 118 struct mem_cgroup **memcgp); 119 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg, 120 struct page *oldpage, struct page *newpage, bool migration_ok); 121 122 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 123 struct mem_cgroup *, 124 struct mem_cgroup_reclaim_cookie *); 125 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 126 127 /* 128 * For memory reclaim. 129 */ 130 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 131 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 132 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 133 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 134 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 135 struct task_struct *p); 136 extern void mem_cgroup_replace_page_cache(struct page *oldpage, 137 struct page *newpage); 138 139 static inline void mem_cgroup_oom_enable(void) 140 { 141 WARN_ON(current->memcg_oom.may_oom); 142 current->memcg_oom.may_oom = 1; 143 } 144 145 static inline void mem_cgroup_oom_disable(void) 146 { 147 WARN_ON(!current->memcg_oom.may_oom); 148 current->memcg_oom.may_oom = 0; 149 } 150 151 static inline bool task_in_memcg_oom(struct task_struct *p) 152 { 153 return p->memcg_oom.memcg; 154 } 155 156 bool mem_cgroup_oom_synchronize(bool wait); 157 158 #ifdef CONFIG_MEMCG_SWAP 159 extern int do_swap_account; 160 #endif 161 162 static inline bool mem_cgroup_disabled(void) 163 { 164 if (memory_cgrp_subsys.disabled) 165 return true; 166 return false; 167 } 168 169 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, 170 unsigned long *flags); 171 172 extern atomic_t memcg_moving; 173 174 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 175 bool *locked, unsigned long *flags) 176 { 177 if (mem_cgroup_disabled()) 178 return; 179 rcu_read_lock(); 180 *locked = false; 181 if (atomic_read(&memcg_moving)) 182 __mem_cgroup_begin_update_page_stat(page, locked, flags); 183 } 184 185 void __mem_cgroup_end_update_page_stat(struct page *page, 186 unsigned long *flags); 187 static inline void mem_cgroup_end_update_page_stat(struct page *page, 188 bool *locked, unsigned long *flags) 189 { 190 if (mem_cgroup_disabled()) 191 return; 192 if (*locked) 193 __mem_cgroup_end_update_page_stat(page, flags); 194 rcu_read_unlock(); 195 } 196 197 void mem_cgroup_update_page_stat(struct page *page, 198 enum mem_cgroup_stat_index idx, 199 int val); 200 201 static inline void mem_cgroup_inc_page_stat(struct page *page, 202 enum mem_cgroup_stat_index idx) 203 { 204 mem_cgroup_update_page_stat(page, idx, 1); 205 } 206 207 static inline void mem_cgroup_dec_page_stat(struct page *page, 208 enum mem_cgroup_stat_index idx) 209 { 210 mem_cgroup_update_page_stat(page, idx, -1); 211 } 212 213 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 214 gfp_t gfp_mask, 215 unsigned long *total_scanned); 216 217 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 218 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 219 enum vm_event_item idx) 220 { 221 if (mem_cgroup_disabled()) 222 return; 223 __mem_cgroup_count_vm_event(mm, idx); 224 } 225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 226 void mem_cgroup_split_huge_fixup(struct page *head); 227 #endif 228 229 #ifdef CONFIG_DEBUG_VM 230 bool mem_cgroup_bad_page_check(struct page *page); 231 void mem_cgroup_print_bad_page(struct page *page); 232 #endif 233 #else /* CONFIG_MEMCG */ 234 struct mem_cgroup; 235 236 static inline int mem_cgroup_charge_anon(struct page *page, 237 struct mm_struct *mm, gfp_t gfp_mask) 238 { 239 return 0; 240 } 241 242 static inline int mem_cgroup_charge_file(struct page *page, 243 struct mm_struct *mm, gfp_t gfp_mask) 244 { 245 return 0; 246 } 247 248 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 249 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp) 250 { 251 return 0; 252 } 253 254 static inline void mem_cgroup_commit_charge_swapin(struct page *page, 255 struct mem_cgroup *memcg) 256 { 257 } 258 259 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 260 { 261 } 262 263 static inline void mem_cgroup_uncharge_start(void) 264 { 265 } 266 267 static inline void mem_cgroup_uncharge_end(void) 268 { 269 } 270 271 static inline void mem_cgroup_uncharge_page(struct page *page) 272 { 273 } 274 275 static inline void mem_cgroup_uncharge_cache_page(struct page *page) 276 { 277 } 278 279 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 280 struct mem_cgroup *memcg) 281 { 282 return &zone->lruvec; 283 } 284 285 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 286 struct zone *zone) 287 { 288 return &zone->lruvec; 289 } 290 291 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 292 { 293 return NULL; 294 } 295 296 static inline bool mm_match_cgroup(struct mm_struct *mm, 297 struct mem_cgroup *memcg) 298 { 299 return true; 300 } 301 302 static inline bool task_in_mem_cgroup(struct task_struct *task, 303 const struct mem_cgroup *memcg) 304 { 305 return true; 306 } 307 308 static inline struct cgroup_subsys_state 309 *mem_cgroup_css(struct mem_cgroup *memcg) 310 { 311 return NULL; 312 } 313 314 static inline void 315 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 316 struct mem_cgroup **memcgp) 317 { 318 } 319 320 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg, 321 struct page *oldpage, struct page *newpage, bool migration_ok) 322 { 323 } 324 325 static inline struct mem_cgroup * 326 mem_cgroup_iter(struct mem_cgroup *root, 327 struct mem_cgroup *prev, 328 struct mem_cgroup_reclaim_cookie *reclaim) 329 { 330 return NULL; 331 } 332 333 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 334 struct mem_cgroup *prev) 335 { 336 } 337 338 static inline bool mem_cgroup_disabled(void) 339 { 340 return true; 341 } 342 343 static inline int 344 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 345 { 346 return 1; 347 } 348 349 static inline unsigned long 350 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 351 { 352 return 0; 353 } 354 355 static inline void 356 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 357 int increment) 358 { 359 } 360 361 static inline void 362 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 363 { 364 } 365 366 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 367 bool *locked, unsigned long *flags) 368 { 369 } 370 371 static inline void mem_cgroup_end_update_page_stat(struct page *page, 372 bool *locked, unsigned long *flags) 373 { 374 } 375 376 static inline void mem_cgroup_oom_enable(void) 377 { 378 } 379 380 static inline void mem_cgroup_oom_disable(void) 381 { 382 } 383 384 static inline bool task_in_memcg_oom(struct task_struct *p) 385 { 386 return false; 387 } 388 389 static inline bool mem_cgroup_oom_synchronize(bool wait) 390 { 391 return false; 392 } 393 394 static inline void mem_cgroup_inc_page_stat(struct page *page, 395 enum mem_cgroup_stat_index idx) 396 { 397 } 398 399 static inline void mem_cgroup_dec_page_stat(struct page *page, 400 enum mem_cgroup_stat_index idx) 401 { 402 } 403 404 static inline 405 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 406 gfp_t gfp_mask, 407 unsigned long *total_scanned) 408 { 409 return 0; 410 } 411 412 static inline void mem_cgroup_split_huge_fixup(struct page *head) 413 { 414 } 415 416 static inline 417 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 418 { 419 } 420 static inline void mem_cgroup_replace_page_cache(struct page *oldpage, 421 struct page *newpage) 422 { 423 } 424 #endif /* CONFIG_MEMCG */ 425 426 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) 427 static inline bool 428 mem_cgroup_bad_page_check(struct page *page) 429 { 430 return false; 431 } 432 433 static inline void 434 mem_cgroup_print_bad_page(struct page *page) 435 { 436 } 437 #endif 438 439 enum { 440 UNDER_LIMIT, 441 SOFT_LIMIT, 442 OVER_LIMIT, 443 }; 444 445 struct sock; 446 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 447 void sock_update_memcg(struct sock *sk); 448 void sock_release_memcg(struct sock *sk); 449 #else 450 static inline void sock_update_memcg(struct sock *sk) 451 { 452 } 453 static inline void sock_release_memcg(struct sock *sk) 454 { 455 } 456 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 457 458 #ifdef CONFIG_MEMCG_KMEM 459 extern struct static_key memcg_kmem_enabled_key; 460 461 extern int memcg_limited_groups_array_size; 462 463 /* 464 * Helper macro to loop through all memcg-specific caches. Callers must still 465 * check if the cache is valid (it is either valid or NULL). 466 * the slab_mutex must be held when looping through those caches 467 */ 468 #define for_each_memcg_cache_index(_idx) \ 469 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 470 471 static inline bool memcg_kmem_enabled(void) 472 { 473 return static_key_false(&memcg_kmem_enabled_key); 474 } 475 476 /* 477 * In general, we'll do everything in our power to not incur in any overhead 478 * for non-memcg users for the kmem functions. Not even a function call, if we 479 * can avoid it. 480 * 481 * Therefore, we'll inline all those functions so that in the best case, we'll 482 * see that kmemcg is off for everybody and proceed quickly. If it is on, 483 * we'll still do most of the flag checking inline. We check a lot of 484 * conditions, but because they are pretty simple, they are expected to be 485 * fast. 486 */ 487 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 488 int order); 489 void __memcg_kmem_commit_charge(struct page *page, 490 struct mem_cgroup *memcg, int order); 491 void __memcg_kmem_uncharge_pages(struct page *page, int order); 492 493 int memcg_cache_id(struct mem_cgroup *memcg); 494 495 char *memcg_create_cache_name(struct mem_cgroup *memcg, 496 struct kmem_cache *root_cache); 497 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, 498 struct kmem_cache *root_cache); 499 void memcg_free_cache_params(struct kmem_cache *s); 500 void memcg_register_cache(struct kmem_cache *s); 501 void memcg_unregister_cache(struct kmem_cache *s); 502 503 int memcg_update_cache_size(struct kmem_cache *s, int num_groups); 504 void memcg_update_array_size(int num_groups); 505 506 struct kmem_cache * 507 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 508 509 void mem_cgroup_destroy_cache(struct kmem_cache *cachep); 510 int __kmem_cache_destroy_memcg_children(struct kmem_cache *s); 511 512 /** 513 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 514 * @gfp: the gfp allocation flags. 515 * @memcg: a pointer to the memcg this was charged against. 516 * @order: allocation order. 517 * 518 * returns true if the memcg where the current task belongs can hold this 519 * allocation. 520 * 521 * We return true automatically if this allocation is not to be accounted to 522 * any memcg. 523 */ 524 static inline bool 525 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 526 { 527 if (!memcg_kmem_enabled()) 528 return true; 529 530 /* 531 * __GFP_NOFAIL allocations will move on even if charging is not 532 * possible. Therefore we don't even try, and have this allocation 533 * unaccounted. We could in theory charge it with 534 * res_counter_charge_nofail, but we hope those allocations are rare, 535 * and won't be worth the trouble. 536 */ 537 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL)) 538 return true; 539 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 540 return true; 541 542 /* If the test is dying, just let it go. */ 543 if (unlikely(fatal_signal_pending(current))) 544 return true; 545 546 return __memcg_kmem_newpage_charge(gfp, memcg, order); 547 } 548 549 /** 550 * memcg_kmem_uncharge_pages: uncharge pages from memcg 551 * @page: pointer to struct page being freed 552 * @order: allocation order. 553 * 554 * there is no need to specify memcg here, since it is embedded in page_cgroup 555 */ 556 static inline void 557 memcg_kmem_uncharge_pages(struct page *page, int order) 558 { 559 if (memcg_kmem_enabled()) 560 __memcg_kmem_uncharge_pages(page, order); 561 } 562 563 /** 564 * memcg_kmem_commit_charge: embeds correct memcg in a page 565 * @page: pointer to struct page recently allocated 566 * @memcg: the memcg structure we charged against 567 * @order: allocation order. 568 * 569 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 570 * failure of the allocation. if @page is NULL, this function will revert the 571 * charges. Otherwise, it will commit the memcg given by @memcg to the 572 * corresponding page_cgroup. 573 */ 574 static inline void 575 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 576 { 577 if (memcg_kmem_enabled() && memcg) 578 __memcg_kmem_commit_charge(page, memcg, order); 579 } 580 581 /** 582 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 583 * @cachep: the original global kmem cache 584 * @gfp: allocation flags. 585 * 586 * This function assumes that the task allocating, which determines the memcg 587 * in the page allocator, belongs to the same cgroup throughout the whole 588 * process. Misacounting can happen if the task calls memcg_kmem_get_cache() 589 * while belonging to a cgroup, and later on changes. This is considered 590 * acceptable, and should only happen upon task migration. 591 * 592 * Before the cache is created by the memcg core, there is also a possible 593 * imbalance: the task belongs to a memcg, but the cache being allocated from 594 * is the global cache, since the child cache is not yet guaranteed to be 595 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be 596 * passed and the page allocator will not attempt any cgroup accounting. 597 */ 598 static __always_inline struct kmem_cache * 599 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 600 { 601 if (!memcg_kmem_enabled()) 602 return cachep; 603 if (gfp & __GFP_NOFAIL) 604 return cachep; 605 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 606 return cachep; 607 if (unlikely(fatal_signal_pending(current))) 608 return cachep; 609 610 return __memcg_kmem_get_cache(cachep, gfp); 611 } 612 #else 613 #define for_each_memcg_cache_index(_idx) \ 614 for (; NULL; ) 615 616 static inline bool memcg_kmem_enabled(void) 617 { 618 return false; 619 } 620 621 static inline bool 622 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 623 { 624 return true; 625 } 626 627 static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 628 { 629 } 630 631 static inline void 632 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 633 { 634 } 635 636 static inline int memcg_cache_id(struct mem_cgroup *memcg) 637 { 638 return -1; 639 } 640 641 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg, 642 struct kmem_cache *s, struct kmem_cache *root_cache) 643 { 644 return 0; 645 } 646 647 static inline void memcg_free_cache_params(struct kmem_cache *s) 648 { 649 } 650 651 static inline void memcg_register_cache(struct kmem_cache *s) 652 { 653 } 654 655 static inline void memcg_unregister_cache(struct kmem_cache *s) 656 { 657 } 658 659 static inline struct kmem_cache * 660 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 661 { 662 return cachep; 663 } 664 #endif /* CONFIG_MEMCG_KMEM */ 665 #endif /* _LINUX_MEMCONTROL_H */ 666 667