xref: /linux-6.15/include/linux/memcontrol.h (revision dec102aa)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 
27 struct mem_cgroup;
28 struct page_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /*
34  * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
35  * These two lists should keep in accord with each other.
36  */
37 enum mem_cgroup_stat_index {
38 	/*
39 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
40 	 */
41 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
42 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
43 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
44 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
45 	MEM_CGROUP_STAT_WRITEBACK,	/* # of pages under writeback */
46 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
47 	MEM_CGROUP_STAT_NSTATS,
48 };
49 
50 struct mem_cgroup_reclaim_cookie {
51 	struct zone *zone;
52 	int priority;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 /*
58  * All "charge" functions with gfp_mask should use GFP_KERNEL or
59  * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
60  * alloc memory but reclaims memory from all available zones. So, "where I want
61  * memory from" bits of gfp_mask has no meaning. So any bits of that field is
62  * available but adding a rule is better. charge functions' gfp_mask should
63  * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
64  * codes.
65  * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
66  */
67 
68 extern int mem_cgroup_charge_anon(struct page *page, struct mm_struct *mm,
69 				gfp_t gfp_mask);
70 /* for swap handling */
71 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
72 		struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
73 extern void mem_cgroup_commit_charge_swapin(struct page *page,
74 					struct mem_cgroup *memcg);
75 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
76 
77 extern int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
78 					gfp_t gfp_mask);
79 
80 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
81 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
82 
83 /* For coalescing uncharge for reducing memcg' overhead*/
84 extern void mem_cgroup_uncharge_start(void);
85 extern void mem_cgroup_uncharge_end(void);
86 
87 extern void mem_cgroup_uncharge_page(struct page *page);
88 extern void mem_cgroup_uncharge_cache_page(struct page *page);
89 
90 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
91 				  struct mem_cgroup *memcg);
92 bool task_in_mem_cgroup(struct task_struct *task,
93 			const struct mem_cgroup *memcg);
94 
95 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
96 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
97 
98 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
99 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
100 
101 static inline
102 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
103 {
104 	struct mem_cgroup *task_memcg;
105 	bool match;
106 
107 	rcu_read_lock();
108 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
109 	match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
110 	rcu_read_unlock();
111 	return match;
112 }
113 
114 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
115 
116 extern void
117 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
118 			     struct mem_cgroup **memcgp);
119 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
120 	struct page *oldpage, struct page *newpage, bool migration_ok);
121 
122 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
123 				   struct mem_cgroup *,
124 				   struct mem_cgroup_reclaim_cookie *);
125 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
126 
127 /*
128  * For memory reclaim.
129  */
130 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
131 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
132 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
133 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
134 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
135 					struct task_struct *p);
136 extern void mem_cgroup_replace_page_cache(struct page *oldpage,
137 					struct page *newpage);
138 
139 static inline void mem_cgroup_oom_enable(void)
140 {
141 	WARN_ON(current->memcg_oom.may_oom);
142 	current->memcg_oom.may_oom = 1;
143 }
144 
145 static inline void mem_cgroup_oom_disable(void)
146 {
147 	WARN_ON(!current->memcg_oom.may_oom);
148 	current->memcg_oom.may_oom = 0;
149 }
150 
151 static inline bool task_in_memcg_oom(struct task_struct *p)
152 {
153 	return p->memcg_oom.memcg;
154 }
155 
156 bool mem_cgroup_oom_synchronize(bool wait);
157 
158 #ifdef CONFIG_MEMCG_SWAP
159 extern int do_swap_account;
160 #endif
161 
162 static inline bool mem_cgroup_disabled(void)
163 {
164 	if (memory_cgrp_subsys.disabled)
165 		return true;
166 	return false;
167 }
168 
169 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
170 					 unsigned long *flags);
171 
172 extern atomic_t memcg_moving;
173 
174 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
175 					bool *locked, unsigned long *flags)
176 {
177 	if (mem_cgroup_disabled())
178 		return;
179 	rcu_read_lock();
180 	*locked = false;
181 	if (atomic_read(&memcg_moving))
182 		__mem_cgroup_begin_update_page_stat(page, locked, flags);
183 }
184 
185 void __mem_cgroup_end_update_page_stat(struct page *page,
186 				unsigned long *flags);
187 static inline void mem_cgroup_end_update_page_stat(struct page *page,
188 					bool *locked, unsigned long *flags)
189 {
190 	if (mem_cgroup_disabled())
191 		return;
192 	if (*locked)
193 		__mem_cgroup_end_update_page_stat(page, flags);
194 	rcu_read_unlock();
195 }
196 
197 void mem_cgroup_update_page_stat(struct page *page,
198 				 enum mem_cgroup_stat_index idx,
199 				 int val);
200 
201 static inline void mem_cgroup_inc_page_stat(struct page *page,
202 					    enum mem_cgroup_stat_index idx)
203 {
204 	mem_cgroup_update_page_stat(page, idx, 1);
205 }
206 
207 static inline void mem_cgroup_dec_page_stat(struct page *page,
208 					    enum mem_cgroup_stat_index idx)
209 {
210 	mem_cgroup_update_page_stat(page, idx, -1);
211 }
212 
213 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
214 						gfp_t gfp_mask,
215 						unsigned long *total_scanned);
216 
217 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
218 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
219 					     enum vm_event_item idx)
220 {
221 	if (mem_cgroup_disabled())
222 		return;
223 	__mem_cgroup_count_vm_event(mm, idx);
224 }
225 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
226 void mem_cgroup_split_huge_fixup(struct page *head);
227 #endif
228 
229 #ifdef CONFIG_DEBUG_VM
230 bool mem_cgroup_bad_page_check(struct page *page);
231 void mem_cgroup_print_bad_page(struct page *page);
232 #endif
233 #else /* CONFIG_MEMCG */
234 struct mem_cgroup;
235 
236 static inline int mem_cgroup_charge_anon(struct page *page,
237 					struct mm_struct *mm, gfp_t gfp_mask)
238 {
239 	return 0;
240 }
241 
242 static inline int mem_cgroup_charge_file(struct page *page,
243 					struct mm_struct *mm, gfp_t gfp_mask)
244 {
245 	return 0;
246 }
247 
248 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
249 		struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
250 {
251 	return 0;
252 }
253 
254 static inline void mem_cgroup_commit_charge_swapin(struct page *page,
255 					  struct mem_cgroup *memcg)
256 {
257 }
258 
259 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
260 {
261 }
262 
263 static inline void mem_cgroup_uncharge_start(void)
264 {
265 }
266 
267 static inline void mem_cgroup_uncharge_end(void)
268 {
269 }
270 
271 static inline void mem_cgroup_uncharge_page(struct page *page)
272 {
273 }
274 
275 static inline void mem_cgroup_uncharge_cache_page(struct page *page)
276 {
277 }
278 
279 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
280 						    struct mem_cgroup *memcg)
281 {
282 	return &zone->lruvec;
283 }
284 
285 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
286 						    struct zone *zone)
287 {
288 	return &zone->lruvec;
289 }
290 
291 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
292 {
293 	return NULL;
294 }
295 
296 static inline bool mm_match_cgroup(struct mm_struct *mm,
297 		struct mem_cgroup *memcg)
298 {
299 	return true;
300 }
301 
302 static inline bool task_in_mem_cgroup(struct task_struct *task,
303 				      const struct mem_cgroup *memcg)
304 {
305 	return true;
306 }
307 
308 static inline struct cgroup_subsys_state
309 		*mem_cgroup_css(struct mem_cgroup *memcg)
310 {
311 	return NULL;
312 }
313 
314 static inline void
315 mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
316 			     struct mem_cgroup **memcgp)
317 {
318 }
319 
320 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
321 		struct page *oldpage, struct page *newpage, bool migration_ok)
322 {
323 }
324 
325 static inline struct mem_cgroup *
326 mem_cgroup_iter(struct mem_cgroup *root,
327 		struct mem_cgroup *prev,
328 		struct mem_cgroup_reclaim_cookie *reclaim)
329 {
330 	return NULL;
331 }
332 
333 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
334 					 struct mem_cgroup *prev)
335 {
336 }
337 
338 static inline bool mem_cgroup_disabled(void)
339 {
340 	return true;
341 }
342 
343 static inline int
344 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
345 {
346 	return 1;
347 }
348 
349 static inline unsigned long
350 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
351 {
352 	return 0;
353 }
354 
355 static inline void
356 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
357 			      int increment)
358 {
359 }
360 
361 static inline void
362 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
363 {
364 }
365 
366 static inline void mem_cgroup_begin_update_page_stat(struct page *page,
367 					bool *locked, unsigned long *flags)
368 {
369 }
370 
371 static inline void mem_cgroup_end_update_page_stat(struct page *page,
372 					bool *locked, unsigned long *flags)
373 {
374 }
375 
376 static inline void mem_cgroup_oom_enable(void)
377 {
378 }
379 
380 static inline void mem_cgroup_oom_disable(void)
381 {
382 }
383 
384 static inline bool task_in_memcg_oom(struct task_struct *p)
385 {
386 	return false;
387 }
388 
389 static inline bool mem_cgroup_oom_synchronize(bool wait)
390 {
391 	return false;
392 }
393 
394 static inline void mem_cgroup_inc_page_stat(struct page *page,
395 					    enum mem_cgroup_stat_index idx)
396 {
397 }
398 
399 static inline void mem_cgroup_dec_page_stat(struct page *page,
400 					    enum mem_cgroup_stat_index idx)
401 {
402 }
403 
404 static inline
405 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
406 					    gfp_t gfp_mask,
407 					    unsigned long *total_scanned)
408 {
409 	return 0;
410 }
411 
412 static inline void mem_cgroup_split_huge_fixup(struct page *head)
413 {
414 }
415 
416 static inline
417 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
418 {
419 }
420 static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
421 				struct page *newpage)
422 {
423 }
424 #endif /* CONFIG_MEMCG */
425 
426 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
427 static inline bool
428 mem_cgroup_bad_page_check(struct page *page)
429 {
430 	return false;
431 }
432 
433 static inline void
434 mem_cgroup_print_bad_page(struct page *page)
435 {
436 }
437 #endif
438 
439 enum {
440 	UNDER_LIMIT,
441 	SOFT_LIMIT,
442 	OVER_LIMIT,
443 };
444 
445 struct sock;
446 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
447 void sock_update_memcg(struct sock *sk);
448 void sock_release_memcg(struct sock *sk);
449 #else
450 static inline void sock_update_memcg(struct sock *sk)
451 {
452 }
453 static inline void sock_release_memcg(struct sock *sk)
454 {
455 }
456 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
457 
458 #ifdef CONFIG_MEMCG_KMEM
459 extern struct static_key memcg_kmem_enabled_key;
460 
461 extern int memcg_limited_groups_array_size;
462 
463 /*
464  * Helper macro to loop through all memcg-specific caches. Callers must still
465  * check if the cache is valid (it is either valid or NULL).
466  * the slab_mutex must be held when looping through those caches
467  */
468 #define for_each_memcg_cache_index(_idx)	\
469 	for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
470 
471 static inline bool memcg_kmem_enabled(void)
472 {
473 	return static_key_false(&memcg_kmem_enabled_key);
474 }
475 
476 /*
477  * In general, we'll do everything in our power to not incur in any overhead
478  * for non-memcg users for the kmem functions. Not even a function call, if we
479  * can avoid it.
480  *
481  * Therefore, we'll inline all those functions so that in the best case, we'll
482  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
483  * we'll still do most of the flag checking inline. We check a lot of
484  * conditions, but because they are pretty simple, they are expected to be
485  * fast.
486  */
487 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
488 					int order);
489 void __memcg_kmem_commit_charge(struct page *page,
490 				       struct mem_cgroup *memcg, int order);
491 void __memcg_kmem_uncharge_pages(struct page *page, int order);
492 
493 int memcg_cache_id(struct mem_cgroup *memcg);
494 
495 char *memcg_create_cache_name(struct mem_cgroup *memcg,
496 			      struct kmem_cache *root_cache);
497 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
498 			     struct kmem_cache *root_cache);
499 void memcg_free_cache_params(struct kmem_cache *s);
500 void memcg_register_cache(struct kmem_cache *s);
501 void memcg_unregister_cache(struct kmem_cache *s);
502 
503 int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
504 void memcg_update_array_size(int num_groups);
505 
506 struct kmem_cache *
507 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
508 
509 void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
510 int __kmem_cache_destroy_memcg_children(struct kmem_cache *s);
511 
512 /**
513  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
514  * @gfp: the gfp allocation flags.
515  * @memcg: a pointer to the memcg this was charged against.
516  * @order: allocation order.
517  *
518  * returns true if the memcg where the current task belongs can hold this
519  * allocation.
520  *
521  * We return true automatically if this allocation is not to be accounted to
522  * any memcg.
523  */
524 static inline bool
525 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
526 {
527 	if (!memcg_kmem_enabled())
528 		return true;
529 
530 	/*
531 	 * __GFP_NOFAIL allocations will move on even if charging is not
532 	 * possible. Therefore we don't even try, and have this allocation
533 	 * unaccounted. We could in theory charge it with
534 	 * res_counter_charge_nofail, but we hope those allocations are rare,
535 	 * and won't be worth the trouble.
536 	 */
537 	if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
538 		return true;
539 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
540 		return true;
541 
542 	/* If the test is dying, just let it go. */
543 	if (unlikely(fatal_signal_pending(current)))
544 		return true;
545 
546 	return __memcg_kmem_newpage_charge(gfp, memcg, order);
547 }
548 
549 /**
550  * memcg_kmem_uncharge_pages: uncharge pages from memcg
551  * @page: pointer to struct page being freed
552  * @order: allocation order.
553  *
554  * there is no need to specify memcg here, since it is embedded in page_cgroup
555  */
556 static inline void
557 memcg_kmem_uncharge_pages(struct page *page, int order)
558 {
559 	if (memcg_kmem_enabled())
560 		__memcg_kmem_uncharge_pages(page, order);
561 }
562 
563 /**
564  * memcg_kmem_commit_charge: embeds correct memcg in a page
565  * @page: pointer to struct page recently allocated
566  * @memcg: the memcg structure we charged against
567  * @order: allocation order.
568  *
569  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
570  * failure of the allocation. if @page is NULL, this function will revert the
571  * charges. Otherwise, it will commit the memcg given by @memcg to the
572  * corresponding page_cgroup.
573  */
574 static inline void
575 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
576 {
577 	if (memcg_kmem_enabled() && memcg)
578 		__memcg_kmem_commit_charge(page, memcg, order);
579 }
580 
581 /**
582  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
583  * @cachep: the original global kmem cache
584  * @gfp: allocation flags.
585  *
586  * This function assumes that the task allocating, which determines the memcg
587  * in the page allocator, belongs to the same cgroup throughout the whole
588  * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
589  * while belonging to a cgroup, and later on changes. This is considered
590  * acceptable, and should only happen upon task migration.
591  *
592  * Before the cache is created by the memcg core, there is also a possible
593  * imbalance: the task belongs to a memcg, but the cache being allocated from
594  * is the global cache, since the child cache is not yet guaranteed to be
595  * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
596  * passed and the page allocator will not attempt any cgroup accounting.
597  */
598 static __always_inline struct kmem_cache *
599 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
600 {
601 	if (!memcg_kmem_enabled())
602 		return cachep;
603 	if (gfp & __GFP_NOFAIL)
604 		return cachep;
605 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
606 		return cachep;
607 	if (unlikely(fatal_signal_pending(current)))
608 		return cachep;
609 
610 	return __memcg_kmem_get_cache(cachep, gfp);
611 }
612 #else
613 #define for_each_memcg_cache_index(_idx)	\
614 	for (; NULL; )
615 
616 static inline bool memcg_kmem_enabled(void)
617 {
618 	return false;
619 }
620 
621 static inline bool
622 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
623 {
624 	return true;
625 }
626 
627 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
628 {
629 }
630 
631 static inline void
632 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
633 {
634 }
635 
636 static inline int memcg_cache_id(struct mem_cgroup *memcg)
637 {
638 	return -1;
639 }
640 
641 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
642 		struct kmem_cache *s, struct kmem_cache *root_cache)
643 {
644 	return 0;
645 }
646 
647 static inline void memcg_free_cache_params(struct kmem_cache *s)
648 {
649 }
650 
651 static inline void memcg_register_cache(struct kmem_cache *s)
652 {
653 }
654 
655 static inline void memcg_unregister_cache(struct kmem_cache *s)
656 {
657 }
658 
659 static inline struct kmem_cache *
660 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
661 {
662 	return cachep;
663 }
664 #endif /* CONFIG_MEMCG_KMEM */
665 #endif /* _LINUX_MEMCONTROL_H */
666 
667