1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 27 struct mem_cgroup; 28 struct page_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Stats that can be updated by kernel. */ 34 enum mem_cgroup_page_stat_item { 35 MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */ 36 }; 37 38 struct mem_cgroup_reclaim_cookie { 39 struct zone *zone; 40 int priority; 41 unsigned int generation; 42 }; 43 44 #ifdef CONFIG_MEMCG 45 /* 46 * All "charge" functions with gfp_mask should use GFP_KERNEL or 47 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't 48 * alloc memory but reclaims memory from all available zones. So, "where I want 49 * memory from" bits of gfp_mask has no meaning. So any bits of that field is 50 * available but adding a rule is better. charge functions' gfp_mask should 51 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous 52 * codes. 53 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.) 54 */ 55 56 extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm, 57 gfp_t gfp_mask); 58 /* for swap handling */ 59 extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 60 struct page *page, gfp_t mask, struct mem_cgroup **memcgp); 61 extern void mem_cgroup_commit_charge_swapin(struct page *page, 62 struct mem_cgroup *memcg); 63 extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg); 64 65 extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 66 gfp_t gfp_mask); 67 68 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 69 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 70 71 /* For coalescing uncharge for reducing memcg' overhead*/ 72 extern void mem_cgroup_uncharge_start(void); 73 extern void mem_cgroup_uncharge_end(void); 74 75 extern void mem_cgroup_uncharge_page(struct page *page); 76 extern void mem_cgroup_uncharge_cache_page(struct page *page); 77 78 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 79 struct mem_cgroup *memcg); 80 bool task_in_mem_cgroup(struct task_struct *task, 81 const struct mem_cgroup *memcg); 82 83 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 84 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 85 extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm); 86 87 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 88 extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont); 89 90 static inline 91 bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg) 92 { 93 struct mem_cgroup *task_memcg; 94 bool match; 95 96 rcu_read_lock(); 97 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 98 match = __mem_cgroup_same_or_subtree(memcg, task_memcg); 99 rcu_read_unlock(); 100 return match; 101 } 102 103 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 104 105 extern void 106 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 107 struct mem_cgroup **memcgp); 108 extern void mem_cgroup_end_migration(struct mem_cgroup *memcg, 109 struct page *oldpage, struct page *newpage, bool migration_ok); 110 111 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 112 struct mem_cgroup *, 113 struct mem_cgroup_reclaim_cookie *); 114 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 115 116 /* 117 * For memory reclaim. 118 */ 119 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 120 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 121 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 122 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 123 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 124 struct task_struct *p); 125 extern void mem_cgroup_replace_page_cache(struct page *oldpage, 126 struct page *newpage); 127 128 #ifdef CONFIG_MEMCG_SWAP 129 extern int do_swap_account; 130 #endif 131 132 static inline bool mem_cgroup_disabled(void) 133 { 134 if (mem_cgroup_subsys.disabled) 135 return true; 136 return false; 137 } 138 139 void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked, 140 unsigned long *flags); 141 142 extern atomic_t memcg_moving; 143 144 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 145 bool *locked, unsigned long *flags) 146 { 147 if (mem_cgroup_disabled()) 148 return; 149 rcu_read_lock(); 150 *locked = false; 151 if (atomic_read(&memcg_moving)) 152 __mem_cgroup_begin_update_page_stat(page, locked, flags); 153 } 154 155 void __mem_cgroup_end_update_page_stat(struct page *page, 156 unsigned long *flags); 157 static inline void mem_cgroup_end_update_page_stat(struct page *page, 158 bool *locked, unsigned long *flags) 159 { 160 if (mem_cgroup_disabled()) 161 return; 162 if (*locked) 163 __mem_cgroup_end_update_page_stat(page, flags); 164 rcu_read_unlock(); 165 } 166 167 void mem_cgroup_update_page_stat(struct page *page, 168 enum mem_cgroup_page_stat_item idx, 169 int val); 170 171 static inline void mem_cgroup_inc_page_stat(struct page *page, 172 enum mem_cgroup_page_stat_item idx) 173 { 174 mem_cgroup_update_page_stat(page, idx, 1); 175 } 176 177 static inline void mem_cgroup_dec_page_stat(struct page *page, 178 enum mem_cgroup_page_stat_item idx) 179 { 180 mem_cgroup_update_page_stat(page, idx, -1); 181 } 182 183 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 184 gfp_t gfp_mask, 185 unsigned long *total_scanned); 186 187 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 188 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 189 enum vm_event_item idx) 190 { 191 if (mem_cgroup_disabled()) 192 return; 193 __mem_cgroup_count_vm_event(mm, idx); 194 } 195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 196 void mem_cgroup_split_huge_fixup(struct page *head); 197 #endif 198 199 #ifdef CONFIG_DEBUG_VM 200 bool mem_cgroup_bad_page_check(struct page *page); 201 void mem_cgroup_print_bad_page(struct page *page); 202 #endif 203 #else /* CONFIG_MEMCG */ 204 struct mem_cgroup; 205 206 static inline int mem_cgroup_newpage_charge(struct page *page, 207 struct mm_struct *mm, gfp_t gfp_mask) 208 { 209 return 0; 210 } 211 212 static inline int mem_cgroup_cache_charge(struct page *page, 213 struct mm_struct *mm, gfp_t gfp_mask) 214 { 215 return 0; 216 } 217 218 static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 219 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp) 220 { 221 return 0; 222 } 223 224 static inline void mem_cgroup_commit_charge_swapin(struct page *page, 225 struct mem_cgroup *memcg) 226 { 227 } 228 229 static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 230 { 231 } 232 233 static inline void mem_cgroup_uncharge_start(void) 234 { 235 } 236 237 static inline void mem_cgroup_uncharge_end(void) 238 { 239 } 240 241 static inline void mem_cgroup_uncharge_page(struct page *page) 242 { 243 } 244 245 static inline void mem_cgroup_uncharge_cache_page(struct page *page) 246 { 247 } 248 249 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 250 struct mem_cgroup *memcg) 251 { 252 return &zone->lruvec; 253 } 254 255 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 256 struct zone *zone) 257 { 258 return &zone->lruvec; 259 } 260 261 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 262 { 263 return NULL; 264 } 265 266 static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 267 { 268 return NULL; 269 } 270 271 static inline bool mm_match_cgroup(struct mm_struct *mm, 272 struct mem_cgroup *memcg) 273 { 274 return true; 275 } 276 277 static inline bool task_in_mem_cgroup(struct task_struct *task, 278 const struct mem_cgroup *memcg) 279 { 280 return true; 281 } 282 283 static inline struct cgroup_subsys_state 284 *mem_cgroup_css(struct mem_cgroup *memcg) 285 { 286 return NULL; 287 } 288 289 static inline void 290 mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 291 struct mem_cgroup **memcgp) 292 { 293 } 294 295 static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg, 296 struct page *oldpage, struct page *newpage, bool migration_ok) 297 { 298 } 299 300 static inline struct mem_cgroup * 301 mem_cgroup_iter(struct mem_cgroup *root, 302 struct mem_cgroup *prev, 303 struct mem_cgroup_reclaim_cookie *reclaim) 304 { 305 return NULL; 306 } 307 308 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 309 struct mem_cgroup *prev) 310 { 311 } 312 313 static inline bool mem_cgroup_disabled(void) 314 { 315 return true; 316 } 317 318 static inline int 319 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 320 { 321 return 1; 322 } 323 324 static inline unsigned long 325 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 326 { 327 return 0; 328 } 329 330 static inline void 331 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 332 int increment) 333 { 334 } 335 336 static inline void 337 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 338 { 339 } 340 341 static inline void mem_cgroup_begin_update_page_stat(struct page *page, 342 bool *locked, unsigned long *flags) 343 { 344 } 345 346 static inline void mem_cgroup_end_update_page_stat(struct page *page, 347 bool *locked, unsigned long *flags) 348 { 349 } 350 351 static inline void mem_cgroup_inc_page_stat(struct page *page, 352 enum mem_cgroup_page_stat_item idx) 353 { 354 } 355 356 static inline void mem_cgroup_dec_page_stat(struct page *page, 357 enum mem_cgroup_page_stat_item idx) 358 { 359 } 360 361 static inline 362 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 363 gfp_t gfp_mask, 364 unsigned long *total_scanned) 365 { 366 return 0; 367 } 368 369 static inline void mem_cgroup_split_huge_fixup(struct page *head) 370 { 371 } 372 373 static inline 374 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 375 { 376 } 377 static inline void mem_cgroup_replace_page_cache(struct page *oldpage, 378 struct page *newpage) 379 { 380 } 381 #endif /* CONFIG_MEMCG */ 382 383 #if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM) 384 static inline bool 385 mem_cgroup_bad_page_check(struct page *page) 386 { 387 return false; 388 } 389 390 static inline void 391 mem_cgroup_print_bad_page(struct page *page) 392 { 393 } 394 #endif 395 396 enum { 397 UNDER_LIMIT, 398 SOFT_LIMIT, 399 OVER_LIMIT, 400 }; 401 402 struct sock; 403 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 404 void sock_update_memcg(struct sock *sk); 405 void sock_release_memcg(struct sock *sk); 406 #else 407 static inline void sock_update_memcg(struct sock *sk) 408 { 409 } 410 static inline void sock_release_memcg(struct sock *sk) 411 { 412 } 413 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 414 415 #ifdef CONFIG_MEMCG_KMEM 416 extern struct static_key memcg_kmem_enabled_key; 417 418 extern int memcg_limited_groups_array_size; 419 420 /* 421 * Helper macro to loop through all memcg-specific caches. Callers must still 422 * check if the cache is valid (it is either valid or NULL). 423 * the slab_mutex must be held when looping through those caches 424 */ 425 #define for_each_memcg_cache_index(_idx) \ 426 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 427 428 static inline bool memcg_kmem_enabled(void) 429 { 430 return static_key_false(&memcg_kmem_enabled_key); 431 } 432 433 /* 434 * In general, we'll do everything in our power to not incur in any overhead 435 * for non-memcg users for the kmem functions. Not even a function call, if we 436 * can avoid it. 437 * 438 * Therefore, we'll inline all those functions so that in the best case, we'll 439 * see that kmemcg is off for everybody and proceed quickly. If it is on, 440 * we'll still do most of the flag checking inline. We check a lot of 441 * conditions, but because they are pretty simple, they are expected to be 442 * fast. 443 */ 444 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 445 int order); 446 void __memcg_kmem_commit_charge(struct page *page, 447 struct mem_cgroup *memcg, int order); 448 void __memcg_kmem_uncharge_pages(struct page *page, int order); 449 450 int memcg_cache_id(struct mem_cgroup *memcg); 451 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 452 struct kmem_cache *root_cache); 453 void memcg_release_cache(struct kmem_cache *cachep); 454 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep); 455 456 int memcg_update_cache_size(struct kmem_cache *s, int num_groups); 457 void memcg_update_array_size(int num_groups); 458 459 struct kmem_cache * 460 __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 461 462 void mem_cgroup_destroy_cache(struct kmem_cache *cachep); 463 void kmem_cache_destroy_memcg_children(struct kmem_cache *s); 464 465 /** 466 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 467 * @gfp: the gfp allocation flags. 468 * @memcg: a pointer to the memcg this was charged against. 469 * @order: allocation order. 470 * 471 * returns true if the memcg where the current task belongs can hold this 472 * allocation. 473 * 474 * We return true automatically if this allocation is not to be accounted to 475 * any memcg. 476 */ 477 static inline bool 478 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 479 { 480 if (!memcg_kmem_enabled()) 481 return true; 482 483 /* 484 * __GFP_NOFAIL allocations will move on even if charging is not 485 * possible. Therefore we don't even try, and have this allocation 486 * unaccounted. We could in theory charge it with 487 * res_counter_charge_nofail, but we hope those allocations are rare, 488 * and won't be worth the trouble. 489 */ 490 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL)) 491 return true; 492 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 493 return true; 494 495 /* If the test is dying, just let it go. */ 496 if (unlikely(fatal_signal_pending(current))) 497 return true; 498 499 return __memcg_kmem_newpage_charge(gfp, memcg, order); 500 } 501 502 /** 503 * memcg_kmem_uncharge_pages: uncharge pages from memcg 504 * @page: pointer to struct page being freed 505 * @order: allocation order. 506 * 507 * there is no need to specify memcg here, since it is embedded in page_cgroup 508 */ 509 static inline void 510 memcg_kmem_uncharge_pages(struct page *page, int order) 511 { 512 if (memcg_kmem_enabled()) 513 __memcg_kmem_uncharge_pages(page, order); 514 } 515 516 /** 517 * memcg_kmem_commit_charge: embeds correct memcg in a page 518 * @page: pointer to struct page recently allocated 519 * @memcg: the memcg structure we charged against 520 * @order: allocation order. 521 * 522 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 523 * failure of the allocation. if @page is NULL, this function will revert the 524 * charges. Otherwise, it will commit the memcg given by @memcg to the 525 * corresponding page_cgroup. 526 */ 527 static inline void 528 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 529 { 530 if (memcg_kmem_enabled() && memcg) 531 __memcg_kmem_commit_charge(page, memcg, order); 532 } 533 534 /** 535 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 536 * @cachep: the original global kmem cache 537 * @gfp: allocation flags. 538 * 539 * This function assumes that the task allocating, which determines the memcg 540 * in the page allocator, belongs to the same cgroup throughout the whole 541 * process. Misacounting can happen if the task calls memcg_kmem_get_cache() 542 * while belonging to a cgroup, and later on changes. This is considered 543 * acceptable, and should only happen upon task migration. 544 * 545 * Before the cache is created by the memcg core, there is also a possible 546 * imbalance: the task belongs to a memcg, but the cache being allocated from 547 * is the global cache, since the child cache is not yet guaranteed to be 548 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be 549 * passed and the page allocator will not attempt any cgroup accounting. 550 */ 551 static __always_inline struct kmem_cache * 552 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 553 { 554 if (!memcg_kmem_enabled()) 555 return cachep; 556 if (gfp & __GFP_NOFAIL) 557 return cachep; 558 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 559 return cachep; 560 if (unlikely(fatal_signal_pending(current))) 561 return cachep; 562 563 return __memcg_kmem_get_cache(cachep, gfp); 564 } 565 #else 566 #define for_each_memcg_cache_index(_idx) \ 567 for (; NULL; ) 568 569 static inline bool memcg_kmem_enabled(void) 570 { 571 return false; 572 } 573 574 static inline bool 575 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 576 { 577 return true; 578 } 579 580 static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 581 { 582 } 583 584 static inline void 585 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 586 { 587 } 588 589 static inline int memcg_cache_id(struct mem_cgroup *memcg) 590 { 591 return -1; 592 } 593 594 static inline int 595 memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 596 struct kmem_cache *root_cache) 597 { 598 return 0; 599 } 600 601 static inline void memcg_release_cache(struct kmem_cache *cachep) 602 { 603 } 604 605 static inline void memcg_cache_list_add(struct mem_cgroup *memcg, 606 struct kmem_cache *s) 607 { 608 } 609 610 static inline struct kmem_cache * 611 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 612 { 613 return cachep; 614 } 615 616 static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 617 { 618 } 619 #endif /* CONFIG_MEMCG_KMEM */ 620 #endif /* _LINUX_MEMCONTROL_H */ 621 622