xref: /linux-6.15/include/linux/memcontrol.h (revision d34599bc)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 #define MEM_CGROUP_ID_MAX	USHRT_MAX
65 
66 struct mem_cgroup_id {
67 	int id;
68 	refcount_t ref;
69 };
70 
71 /*
72  * Per memcg event counter is incremented at every pagein/pageout. With THP,
73  * it will be incremented by the number of pages. This counter is used
74  * to trigger some periodic events. This is straightforward and better
75  * than using jiffies etc. to handle periodic memcg event.
76  */
77 enum mem_cgroup_events_target {
78 	MEM_CGROUP_TARGET_THRESH,
79 	MEM_CGROUP_TARGET_SOFTLIMIT,
80 	MEM_CGROUP_NTARGETS,
81 };
82 
83 struct memcg_vmstats_percpu;
84 struct memcg_vmstats;
85 
86 struct mem_cgroup_reclaim_iter {
87 	struct mem_cgroup *position;
88 	/* scan generation, increased every round-trip */
89 	unsigned int generation;
90 };
91 
92 /*
93  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94  * shrinkers, which have elements charged to this memcg.
95  */
96 struct shrinker_info {
97 	struct rcu_head rcu;
98 	atomic_long_t *nr_deferred;
99 	unsigned long *map;
100 	int map_nr_max;
101 };
102 
103 struct lruvec_stats_percpu {
104 	/* Local (CPU and cgroup) state */
105 	long state[NR_VM_NODE_STAT_ITEMS];
106 
107 	/* Delta calculation for lockless upward propagation */
108 	long state_prev[NR_VM_NODE_STAT_ITEMS];
109 };
110 
111 struct lruvec_stats {
112 	/* Aggregated (CPU and subtree) state */
113 	long state[NR_VM_NODE_STAT_ITEMS];
114 
115 	/* Pending child counts during tree propagation */
116 	long state_pending[NR_VM_NODE_STAT_ITEMS];
117 };
118 
119 /*
120  * per-node information in memory controller.
121  */
122 struct mem_cgroup_per_node {
123 	struct lruvec		lruvec;
124 
125 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
126 	struct lruvec_stats			lruvec_stats;
127 
128 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
129 
130 	struct mem_cgroup_reclaim_iter	iter;
131 
132 	struct shrinker_info __rcu	*shrinker_info;
133 
134 	struct rb_node		tree_node;	/* RB tree node */
135 	unsigned long		usage_in_excess;/* Set to the value by which */
136 						/* the soft limit is exceeded*/
137 	bool			on_tree;
138 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
139 						/* use container_of	   */
140 };
141 
142 struct mem_cgroup_threshold {
143 	struct eventfd_ctx *eventfd;
144 	unsigned long threshold;
145 };
146 
147 /* For threshold */
148 struct mem_cgroup_threshold_ary {
149 	/* An array index points to threshold just below or equal to usage. */
150 	int current_threshold;
151 	/* Size of entries[] */
152 	unsigned int size;
153 	/* Array of thresholds */
154 	struct mem_cgroup_threshold entries[];
155 };
156 
157 struct mem_cgroup_thresholds {
158 	/* Primary thresholds array */
159 	struct mem_cgroup_threshold_ary *primary;
160 	/*
161 	 * Spare threshold array.
162 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
163 	 * It must be able to store at least primary->size - 1 entries.
164 	 */
165 	struct mem_cgroup_threshold_ary *spare;
166 };
167 
168 /*
169  * Remember four most recent foreign writebacks with dirty pages in this
170  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
171  * one in a given round, we're likely to catch it later if it keeps
172  * foreign-dirtying, so a fairly low count should be enough.
173  *
174  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
175  */
176 #define MEMCG_CGWB_FRN_CNT	4
177 
178 struct memcg_cgwb_frn {
179 	u64 bdi_id;			/* bdi->id of the foreign inode */
180 	int memcg_id;			/* memcg->css.id of foreign inode */
181 	u64 at;				/* jiffies_64 at the time of dirtying */
182 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
183 };
184 
185 /*
186  * Bucket for arbitrarily byte-sized objects charged to a memory
187  * cgroup. The bucket can be reparented in one piece when the cgroup
188  * is destroyed, without having to round up the individual references
189  * of all live memory objects in the wild.
190  */
191 struct obj_cgroup {
192 	struct percpu_ref refcnt;
193 	struct mem_cgroup *memcg;
194 	atomic_t nr_charged_bytes;
195 	union {
196 		struct list_head list; /* protected by objcg_lock */
197 		struct rcu_head rcu;
198 	};
199 };
200 
201 /*
202  * The memory controller data structure. The memory controller controls both
203  * page cache and RSS per cgroup. We would eventually like to provide
204  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
205  * to help the administrator determine what knobs to tune.
206  */
207 struct mem_cgroup {
208 	struct cgroup_subsys_state css;
209 
210 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
211 	struct mem_cgroup_id id;
212 
213 	/* Accounted resources */
214 	struct page_counter memory;		/* Both v1 & v2 */
215 
216 	union {
217 		struct page_counter swap;	/* v2 only */
218 		struct page_counter memsw;	/* v1 only */
219 	};
220 
221 	/* Legacy consumer-oriented counters */
222 	struct page_counter kmem;		/* v1 only */
223 	struct page_counter tcpmem;		/* v1 only */
224 
225 	/* Range enforcement for interrupt charges */
226 	struct work_struct high_work;
227 
228 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
229 	unsigned long zswap_max;
230 #endif
231 
232 	unsigned long soft_limit;
233 
234 	/* vmpressure notifications */
235 	struct vmpressure vmpressure;
236 
237 	/*
238 	 * Should the OOM killer kill all belonging tasks, had it kill one?
239 	 */
240 	bool oom_group;
241 
242 	/* protected by memcg_oom_lock */
243 	bool		oom_lock;
244 	int		under_oom;
245 
246 	int	swappiness;
247 	/* OOM-Killer disable */
248 	int		oom_kill_disable;
249 
250 	/* memory.events and memory.events.local */
251 	struct cgroup_file events_file;
252 	struct cgroup_file events_local_file;
253 
254 	/* handle for "memory.swap.events" */
255 	struct cgroup_file swap_events_file;
256 
257 	/* protect arrays of thresholds */
258 	struct mutex thresholds_lock;
259 
260 	/* thresholds for memory usage. RCU-protected */
261 	struct mem_cgroup_thresholds thresholds;
262 
263 	/* thresholds for mem+swap usage. RCU-protected */
264 	struct mem_cgroup_thresholds memsw_thresholds;
265 
266 	/* For oom notifier event fd */
267 	struct list_head oom_notify;
268 
269 	/*
270 	 * Should we move charges of a task when a task is moved into this
271 	 * mem_cgroup ? And what type of charges should we move ?
272 	 */
273 	unsigned long move_charge_at_immigrate;
274 	/* taken only while moving_account > 0 */
275 	spinlock_t		move_lock;
276 	unsigned long		move_lock_flags;
277 
278 	CACHELINE_PADDING(_pad1_);
279 
280 	/* memory.stat */
281 	struct memcg_vmstats	*vmstats;
282 
283 	/* memory.events */
284 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
285 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
286 
287 	unsigned long		socket_pressure;
288 
289 	/* Legacy tcp memory accounting */
290 	bool			tcpmem_active;
291 	int			tcpmem_pressure;
292 
293 #ifdef CONFIG_MEMCG_KMEM
294 	int kmemcg_id;
295 	struct obj_cgroup __rcu *objcg;
296 	/* list of inherited objcgs, protected by objcg_lock */
297 	struct list_head objcg_list;
298 #endif
299 
300 	CACHELINE_PADDING(_pad2_);
301 
302 	/*
303 	 * set > 0 if pages under this cgroup are moving to other cgroup.
304 	 */
305 	atomic_t		moving_account;
306 	struct task_struct	*move_lock_task;
307 
308 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
309 
310 #ifdef CONFIG_CGROUP_WRITEBACK
311 	struct list_head cgwb_list;
312 	struct wb_domain cgwb_domain;
313 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
314 #endif
315 
316 	/* List of events which userspace want to receive */
317 	struct list_head event_list;
318 	spinlock_t event_list_lock;
319 
320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 	struct deferred_split deferred_split_queue;
322 #endif
323 
324 #ifdef CONFIG_LRU_GEN
325 	/* per-memcg mm_struct list */
326 	struct lru_gen_mm_list mm_list;
327 #endif
328 
329 	struct mem_cgroup_per_node *nodeinfo[];
330 };
331 
332 /*
333  * size of first charge trial.
334  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
335  * workload.
336  */
337 #define MEMCG_CHARGE_BATCH 64U
338 
339 extern struct mem_cgroup *root_mem_cgroup;
340 
341 enum page_memcg_data_flags {
342 	/* page->memcg_data is a pointer to an objcgs vector */
343 	MEMCG_DATA_OBJCGS = (1UL << 0),
344 	/* page has been accounted as a non-slab kernel page */
345 	MEMCG_DATA_KMEM = (1UL << 1),
346 	/* the next bit after the last actual flag */
347 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
348 };
349 
350 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
351 
352 static inline bool folio_memcg_kmem(struct folio *folio);
353 
354 /*
355  * After the initialization objcg->memcg is always pointing at
356  * a valid memcg, but can be atomically swapped to the parent memcg.
357  *
358  * The caller must ensure that the returned memcg won't be released:
359  * e.g. acquire the rcu_read_lock or css_set_lock.
360  */
361 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
362 {
363 	return READ_ONCE(objcg->memcg);
364 }
365 
366 /*
367  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
368  * @folio: Pointer to the folio.
369  *
370  * Returns a pointer to the memory cgroup associated with the folio,
371  * or NULL. This function assumes that the folio is known to have a
372  * proper memory cgroup pointer. It's not safe to call this function
373  * against some type of folios, e.g. slab folios or ex-slab folios or
374  * kmem folios.
375  */
376 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
377 {
378 	unsigned long memcg_data = folio->memcg_data;
379 
380 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
382 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
383 
384 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
385 }
386 
387 /*
388  * __folio_objcg - get the object cgroup associated with a kmem folio.
389  * @folio: Pointer to the folio.
390  *
391  * Returns a pointer to the object cgroup associated with the folio,
392  * or NULL. This function assumes that the folio is known to have a
393  * proper object cgroup pointer. It's not safe to call this function
394  * against some type of folios, e.g. slab folios or ex-slab folios or
395  * LRU folios.
396  */
397 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
398 {
399 	unsigned long memcg_data = folio->memcg_data;
400 
401 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
402 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
403 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
404 
405 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
406 }
407 
408 /*
409  * folio_memcg - Get the memory cgroup associated with a folio.
410  * @folio: Pointer to the folio.
411  *
412  * Returns a pointer to the memory cgroup associated with the folio,
413  * or NULL. This function assumes that the folio is known to have a
414  * proper memory cgroup pointer. It's not safe to call this function
415  * against some type of folios, e.g. slab folios or ex-slab folios.
416  *
417  * For a non-kmem folio any of the following ensures folio and memcg binding
418  * stability:
419  *
420  * - the folio lock
421  * - LRU isolation
422  * - folio_memcg_lock()
423  * - exclusive reference
424  * - mem_cgroup_trylock_pages()
425  *
426  * For a kmem folio a caller should hold an rcu read lock to protect memcg
427  * associated with a kmem folio from being released.
428  */
429 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
430 {
431 	if (folio_memcg_kmem(folio))
432 		return obj_cgroup_memcg(__folio_objcg(folio));
433 	return __folio_memcg(folio);
434 }
435 
436 static inline struct mem_cgroup *page_memcg(struct page *page)
437 {
438 	return folio_memcg(page_folio(page));
439 }
440 
441 /**
442  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
443  * @folio: Pointer to the folio.
444  *
445  * This function assumes that the folio is known to have a
446  * proper memory cgroup pointer. It's not safe to call this function
447  * against some type of folios, e.g. slab folios or ex-slab folios.
448  *
449  * Return: A pointer to the memory cgroup associated with the folio,
450  * or NULL.
451  */
452 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
453 {
454 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
455 
456 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
457 	WARN_ON_ONCE(!rcu_read_lock_held());
458 
459 	if (memcg_data & MEMCG_DATA_KMEM) {
460 		struct obj_cgroup *objcg;
461 
462 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
463 		return obj_cgroup_memcg(objcg);
464 	}
465 
466 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
467 }
468 
469 /*
470  * folio_memcg_check - Get the memory cgroup associated with a folio.
471  * @folio: Pointer to the folio.
472  *
473  * Returns a pointer to the memory cgroup associated with the folio,
474  * or NULL. This function unlike folio_memcg() can take any folio
475  * as an argument. It has to be used in cases when it's not known if a folio
476  * has an associated memory cgroup pointer or an object cgroups vector or
477  * an object cgroup.
478  *
479  * For a non-kmem folio any of the following ensures folio and memcg binding
480  * stability:
481  *
482  * - the folio lock
483  * - LRU isolation
484  * - lock_folio_memcg()
485  * - exclusive reference
486  * - mem_cgroup_trylock_pages()
487  *
488  * For a kmem folio a caller should hold an rcu read lock to protect memcg
489  * associated with a kmem folio from being released.
490  */
491 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
492 {
493 	/*
494 	 * Because folio->memcg_data might be changed asynchronously
495 	 * for slabs, READ_ONCE() should be used here.
496 	 */
497 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
498 
499 	if (memcg_data & MEMCG_DATA_OBJCGS)
500 		return NULL;
501 
502 	if (memcg_data & MEMCG_DATA_KMEM) {
503 		struct obj_cgroup *objcg;
504 
505 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
506 		return obj_cgroup_memcg(objcg);
507 	}
508 
509 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
510 }
511 
512 static inline struct mem_cgroup *page_memcg_check(struct page *page)
513 {
514 	if (PageTail(page))
515 		return NULL;
516 	return folio_memcg_check((struct folio *)page);
517 }
518 
519 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
520 {
521 	struct mem_cgroup *memcg;
522 
523 	rcu_read_lock();
524 retry:
525 	memcg = obj_cgroup_memcg(objcg);
526 	if (unlikely(!css_tryget(&memcg->css)))
527 		goto retry;
528 	rcu_read_unlock();
529 
530 	return memcg;
531 }
532 
533 #ifdef CONFIG_MEMCG_KMEM
534 /*
535  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
536  * @folio: Pointer to the folio.
537  *
538  * Checks if the folio has MemcgKmem flag set. The caller must ensure
539  * that the folio has an associated memory cgroup. It's not safe to call
540  * this function against some types of folios, e.g. slab folios.
541  */
542 static inline bool folio_memcg_kmem(struct folio *folio)
543 {
544 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
545 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
546 	return folio->memcg_data & MEMCG_DATA_KMEM;
547 }
548 
549 
550 #else
551 static inline bool folio_memcg_kmem(struct folio *folio)
552 {
553 	return false;
554 }
555 
556 #endif
557 
558 static inline bool PageMemcgKmem(struct page *page)
559 {
560 	return folio_memcg_kmem(page_folio(page));
561 }
562 
563 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
564 {
565 	return (memcg == root_mem_cgroup);
566 }
567 
568 static inline bool mem_cgroup_disabled(void)
569 {
570 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
571 }
572 
573 static inline void mem_cgroup_protection(struct mem_cgroup *root,
574 					 struct mem_cgroup *memcg,
575 					 unsigned long *min,
576 					 unsigned long *low)
577 {
578 	*min = *low = 0;
579 
580 	if (mem_cgroup_disabled())
581 		return;
582 
583 	/*
584 	 * There is no reclaim protection applied to a targeted reclaim.
585 	 * We are special casing this specific case here because
586 	 * mem_cgroup_protected calculation is not robust enough to keep
587 	 * the protection invariant for calculated effective values for
588 	 * parallel reclaimers with different reclaim target. This is
589 	 * especially a problem for tail memcgs (as they have pages on LRU)
590 	 * which would want to have effective values 0 for targeted reclaim
591 	 * but a different value for external reclaim.
592 	 *
593 	 * Example
594 	 * Let's have global and A's reclaim in parallel:
595 	 *  |
596 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
597 	 *  |\
598 	 *  | C (low = 1G, usage = 2.5G)
599 	 *  B (low = 1G, usage = 0.5G)
600 	 *
601 	 * For the global reclaim
602 	 * A.elow = A.low
603 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
604 	 * C.elow = min(C.usage, C.low)
605 	 *
606 	 * With the effective values resetting we have A reclaim
607 	 * A.elow = 0
608 	 * B.elow = B.low
609 	 * C.elow = C.low
610 	 *
611 	 * If the global reclaim races with A's reclaim then
612 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
613 	 * is possible and reclaiming B would be violating the protection.
614 	 *
615 	 */
616 	if (root == memcg)
617 		return;
618 
619 	*min = READ_ONCE(memcg->memory.emin);
620 	*low = READ_ONCE(memcg->memory.elow);
621 }
622 
623 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
624 				     struct mem_cgroup *memcg);
625 
626 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
627 					  struct mem_cgroup *memcg)
628 {
629 	/*
630 	 * The root memcg doesn't account charges, and doesn't support
631 	 * protection. The target memcg's protection is ignored, see
632 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
633 	 */
634 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
635 		memcg == target;
636 }
637 
638 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
639 					struct mem_cgroup *memcg)
640 {
641 	if (mem_cgroup_unprotected(target, memcg))
642 		return false;
643 
644 	return READ_ONCE(memcg->memory.elow) >=
645 		page_counter_read(&memcg->memory);
646 }
647 
648 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
649 					struct mem_cgroup *memcg)
650 {
651 	if (mem_cgroup_unprotected(target, memcg))
652 		return false;
653 
654 	return READ_ONCE(memcg->memory.emin) >=
655 		page_counter_read(&memcg->memory);
656 }
657 
658 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
659 
660 /**
661  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
662  * @folio: Folio to charge.
663  * @mm: mm context of the allocating task.
664  * @gfp: Reclaim mode.
665  *
666  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
667  * pages according to @gfp if necessary.  If @mm is NULL, try to
668  * charge to the active memcg.
669  *
670  * Do not use this for folios allocated for swapin.
671  *
672  * Return: 0 on success. Otherwise, an error code is returned.
673  */
674 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
675 				    gfp_t gfp)
676 {
677 	if (mem_cgroup_disabled())
678 		return 0;
679 	return __mem_cgroup_charge(folio, mm, gfp);
680 }
681 
682 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
683 				  gfp_t gfp, swp_entry_t entry);
684 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
685 
686 void __mem_cgroup_uncharge(struct folio *folio);
687 
688 /**
689  * mem_cgroup_uncharge - Uncharge a folio.
690  * @folio: Folio to uncharge.
691  *
692  * Uncharge a folio previously charged with mem_cgroup_charge().
693  */
694 static inline void mem_cgroup_uncharge(struct folio *folio)
695 {
696 	if (mem_cgroup_disabled())
697 		return;
698 	__mem_cgroup_uncharge(folio);
699 }
700 
701 void __mem_cgroup_uncharge_list(struct list_head *page_list);
702 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
703 {
704 	if (mem_cgroup_disabled())
705 		return;
706 	__mem_cgroup_uncharge_list(page_list);
707 }
708 
709 void mem_cgroup_migrate(struct folio *old, struct folio *new);
710 
711 /**
712  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
713  * @memcg: memcg of the wanted lruvec
714  * @pgdat: pglist_data
715  *
716  * Returns the lru list vector holding pages for a given @memcg &
717  * @pgdat combination. This can be the node lruvec, if the memory
718  * controller is disabled.
719  */
720 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
721 					       struct pglist_data *pgdat)
722 {
723 	struct mem_cgroup_per_node *mz;
724 	struct lruvec *lruvec;
725 
726 	if (mem_cgroup_disabled()) {
727 		lruvec = &pgdat->__lruvec;
728 		goto out;
729 	}
730 
731 	if (!memcg)
732 		memcg = root_mem_cgroup;
733 
734 	mz = memcg->nodeinfo[pgdat->node_id];
735 	lruvec = &mz->lruvec;
736 out:
737 	/*
738 	 * Since a node can be onlined after the mem_cgroup was created,
739 	 * we have to be prepared to initialize lruvec->pgdat here;
740 	 * and if offlined then reonlined, we need to reinitialize it.
741 	 */
742 	if (unlikely(lruvec->pgdat != pgdat))
743 		lruvec->pgdat = pgdat;
744 	return lruvec;
745 }
746 
747 /**
748  * folio_lruvec - return lruvec for isolating/putting an LRU folio
749  * @folio: Pointer to the folio.
750  *
751  * This function relies on folio->mem_cgroup being stable.
752  */
753 static inline struct lruvec *folio_lruvec(struct folio *folio)
754 {
755 	struct mem_cgroup *memcg = folio_memcg(folio);
756 
757 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
758 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
759 }
760 
761 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
762 
763 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
764 
765 struct lruvec *folio_lruvec_lock(struct folio *folio);
766 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
767 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
768 						unsigned long *flags);
769 
770 #ifdef CONFIG_DEBUG_VM
771 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
772 #else
773 static inline
774 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
775 {
776 }
777 #endif
778 
779 static inline
780 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
781 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
782 }
783 
784 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
785 {
786 	return percpu_ref_tryget(&objcg->refcnt);
787 }
788 
789 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
790 {
791 	percpu_ref_get(&objcg->refcnt);
792 }
793 
794 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
795 				       unsigned long nr)
796 {
797 	percpu_ref_get_many(&objcg->refcnt, nr);
798 }
799 
800 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
801 {
802 	percpu_ref_put(&objcg->refcnt);
803 }
804 
805 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
806 {
807 	return !memcg || css_tryget(&memcg->css);
808 }
809 
810 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
811 {
812 	if (memcg)
813 		css_put(&memcg->css);
814 }
815 
816 #define mem_cgroup_from_counter(counter, member)	\
817 	container_of(counter, struct mem_cgroup, member)
818 
819 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
820 				   struct mem_cgroup *,
821 				   struct mem_cgroup_reclaim_cookie *);
822 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
823 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
824 			   int (*)(struct task_struct *, void *), void *arg);
825 
826 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
827 {
828 	if (mem_cgroup_disabled())
829 		return 0;
830 
831 	return memcg->id.id;
832 }
833 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
834 
835 #ifdef CONFIG_SHRINKER_DEBUG
836 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
837 {
838 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
839 }
840 
841 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
842 #endif
843 
844 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
845 {
846 	return mem_cgroup_from_css(seq_css(m));
847 }
848 
849 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
850 {
851 	struct mem_cgroup_per_node *mz;
852 
853 	if (mem_cgroup_disabled())
854 		return NULL;
855 
856 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
857 	return mz->memcg;
858 }
859 
860 /**
861  * parent_mem_cgroup - find the accounting parent of a memcg
862  * @memcg: memcg whose parent to find
863  *
864  * Returns the parent memcg, or NULL if this is the root or the memory
865  * controller is in legacy no-hierarchy mode.
866  */
867 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
868 {
869 	return mem_cgroup_from_css(memcg->css.parent);
870 }
871 
872 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
873 			      struct mem_cgroup *root)
874 {
875 	if (root == memcg)
876 		return true;
877 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
878 }
879 
880 static inline bool mm_match_cgroup(struct mm_struct *mm,
881 				   struct mem_cgroup *memcg)
882 {
883 	struct mem_cgroup *task_memcg;
884 	bool match = false;
885 
886 	rcu_read_lock();
887 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
888 	if (task_memcg)
889 		match = mem_cgroup_is_descendant(task_memcg, memcg);
890 	rcu_read_unlock();
891 	return match;
892 }
893 
894 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
895 ino_t page_cgroup_ino(struct page *page);
896 
897 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
898 {
899 	if (mem_cgroup_disabled())
900 		return true;
901 	return !!(memcg->css.flags & CSS_ONLINE);
902 }
903 
904 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
905 		int zid, int nr_pages);
906 
907 static inline
908 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
909 		enum lru_list lru, int zone_idx)
910 {
911 	struct mem_cgroup_per_node *mz;
912 
913 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
914 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
915 }
916 
917 void mem_cgroup_handle_over_high(void);
918 
919 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
920 
921 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
922 
923 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
924 				struct task_struct *p);
925 
926 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
927 
928 static inline void mem_cgroup_enter_user_fault(void)
929 {
930 	WARN_ON(current->in_user_fault);
931 	current->in_user_fault = 1;
932 }
933 
934 static inline void mem_cgroup_exit_user_fault(void)
935 {
936 	WARN_ON(!current->in_user_fault);
937 	current->in_user_fault = 0;
938 }
939 
940 static inline bool task_in_memcg_oom(struct task_struct *p)
941 {
942 	return p->memcg_in_oom;
943 }
944 
945 bool mem_cgroup_oom_synchronize(bool wait);
946 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
947 					    struct mem_cgroup *oom_domain);
948 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
949 
950 void folio_memcg_lock(struct folio *folio);
951 void folio_memcg_unlock(struct folio *folio);
952 
953 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
954 
955 /* try to stablize folio_memcg() for all the pages in a memcg */
956 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
957 {
958 	rcu_read_lock();
959 
960 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
961 		return true;
962 
963 	rcu_read_unlock();
964 	return false;
965 }
966 
967 static inline void mem_cgroup_unlock_pages(void)
968 {
969 	rcu_read_unlock();
970 }
971 
972 /* idx can be of type enum memcg_stat_item or node_stat_item */
973 static inline void mod_memcg_state(struct mem_cgroup *memcg,
974 				   int idx, int val)
975 {
976 	unsigned long flags;
977 
978 	local_irq_save(flags);
979 	__mod_memcg_state(memcg, idx, val);
980 	local_irq_restore(flags);
981 }
982 
983 static inline void mod_memcg_page_state(struct page *page,
984 					int idx, int val)
985 {
986 	struct mem_cgroup *memcg;
987 
988 	if (mem_cgroup_disabled())
989 		return;
990 
991 	rcu_read_lock();
992 	memcg = page_memcg(page);
993 	if (memcg)
994 		mod_memcg_state(memcg, idx, val);
995 	rcu_read_unlock();
996 }
997 
998 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
999 
1000 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1001 					      enum node_stat_item idx)
1002 {
1003 	struct mem_cgroup_per_node *pn;
1004 	long x;
1005 
1006 	if (mem_cgroup_disabled())
1007 		return node_page_state(lruvec_pgdat(lruvec), idx);
1008 
1009 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1010 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1011 #ifdef CONFIG_SMP
1012 	if (x < 0)
1013 		x = 0;
1014 #endif
1015 	return x;
1016 }
1017 
1018 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1019 						    enum node_stat_item idx)
1020 {
1021 	struct mem_cgroup_per_node *pn;
1022 	long x = 0;
1023 	int cpu;
1024 
1025 	if (mem_cgroup_disabled())
1026 		return node_page_state(lruvec_pgdat(lruvec), idx);
1027 
1028 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1029 	for_each_possible_cpu(cpu)
1030 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1031 #ifdef CONFIG_SMP
1032 	if (x < 0)
1033 		x = 0;
1034 #endif
1035 	return x;
1036 }
1037 
1038 void mem_cgroup_flush_stats(void);
1039 void mem_cgroup_flush_stats_ratelimited(void);
1040 
1041 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1042 			      int val);
1043 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1044 
1045 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1046 					 int val)
1047 {
1048 	unsigned long flags;
1049 
1050 	local_irq_save(flags);
1051 	__mod_lruvec_kmem_state(p, idx, val);
1052 	local_irq_restore(flags);
1053 }
1054 
1055 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1056 					  enum node_stat_item idx, int val)
1057 {
1058 	unsigned long flags;
1059 
1060 	local_irq_save(flags);
1061 	__mod_memcg_lruvec_state(lruvec, idx, val);
1062 	local_irq_restore(flags);
1063 }
1064 
1065 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1066 			  unsigned long count);
1067 
1068 static inline void count_memcg_events(struct mem_cgroup *memcg,
1069 				      enum vm_event_item idx,
1070 				      unsigned long count)
1071 {
1072 	unsigned long flags;
1073 
1074 	local_irq_save(flags);
1075 	__count_memcg_events(memcg, idx, count);
1076 	local_irq_restore(flags);
1077 }
1078 
1079 static inline void count_memcg_page_event(struct page *page,
1080 					  enum vm_event_item idx)
1081 {
1082 	struct mem_cgroup *memcg = page_memcg(page);
1083 
1084 	if (memcg)
1085 		count_memcg_events(memcg, idx, 1);
1086 }
1087 
1088 static inline void count_memcg_folio_events(struct folio *folio,
1089 		enum vm_event_item idx, unsigned long nr)
1090 {
1091 	struct mem_cgroup *memcg = folio_memcg(folio);
1092 
1093 	if (memcg)
1094 		count_memcg_events(memcg, idx, nr);
1095 }
1096 
1097 static inline void count_memcg_event_mm(struct mm_struct *mm,
1098 					enum vm_event_item idx)
1099 {
1100 	struct mem_cgroup *memcg;
1101 
1102 	if (mem_cgroup_disabled())
1103 		return;
1104 
1105 	rcu_read_lock();
1106 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1107 	if (likely(memcg))
1108 		count_memcg_events(memcg, idx, 1);
1109 	rcu_read_unlock();
1110 }
1111 
1112 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1113 				      enum memcg_memory_event event)
1114 {
1115 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1116 			  event == MEMCG_SWAP_FAIL;
1117 
1118 	atomic_long_inc(&memcg->memory_events_local[event]);
1119 	if (!swap_event)
1120 		cgroup_file_notify(&memcg->events_local_file);
1121 
1122 	do {
1123 		atomic_long_inc(&memcg->memory_events[event]);
1124 		if (swap_event)
1125 			cgroup_file_notify(&memcg->swap_events_file);
1126 		else
1127 			cgroup_file_notify(&memcg->events_file);
1128 
1129 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1130 			break;
1131 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1132 			break;
1133 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1134 		 !mem_cgroup_is_root(memcg));
1135 }
1136 
1137 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1138 					 enum memcg_memory_event event)
1139 {
1140 	struct mem_cgroup *memcg;
1141 
1142 	if (mem_cgroup_disabled())
1143 		return;
1144 
1145 	rcu_read_lock();
1146 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1147 	if (likely(memcg))
1148 		memcg_memory_event(memcg, event);
1149 	rcu_read_unlock();
1150 }
1151 
1152 void split_page_memcg(struct page *head, unsigned int nr);
1153 
1154 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1155 						gfp_t gfp_mask,
1156 						unsigned long *total_scanned);
1157 
1158 #else /* CONFIG_MEMCG */
1159 
1160 #define MEM_CGROUP_ID_SHIFT	0
1161 #define MEM_CGROUP_ID_MAX	0
1162 
1163 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1164 {
1165 	return NULL;
1166 }
1167 
1168 static inline struct mem_cgroup *page_memcg(struct page *page)
1169 {
1170 	return NULL;
1171 }
1172 
1173 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1174 {
1175 	WARN_ON_ONCE(!rcu_read_lock_held());
1176 	return NULL;
1177 }
1178 
1179 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1180 {
1181 	return NULL;
1182 }
1183 
1184 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1185 {
1186 	return NULL;
1187 }
1188 
1189 static inline bool folio_memcg_kmem(struct folio *folio)
1190 {
1191 	return false;
1192 }
1193 
1194 static inline bool PageMemcgKmem(struct page *page)
1195 {
1196 	return false;
1197 }
1198 
1199 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1200 {
1201 	return true;
1202 }
1203 
1204 static inline bool mem_cgroup_disabled(void)
1205 {
1206 	return true;
1207 }
1208 
1209 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1210 				      enum memcg_memory_event event)
1211 {
1212 }
1213 
1214 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1215 					 enum memcg_memory_event event)
1216 {
1217 }
1218 
1219 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1220 					 struct mem_cgroup *memcg,
1221 					 unsigned long *min,
1222 					 unsigned long *low)
1223 {
1224 	*min = *low = 0;
1225 }
1226 
1227 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1228 						   struct mem_cgroup *memcg)
1229 {
1230 }
1231 
1232 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1233 					  struct mem_cgroup *memcg)
1234 {
1235 	return true;
1236 }
1237 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1238 					struct mem_cgroup *memcg)
1239 {
1240 	return false;
1241 }
1242 
1243 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1244 					struct mem_cgroup *memcg)
1245 {
1246 	return false;
1247 }
1248 
1249 static inline int mem_cgroup_charge(struct folio *folio,
1250 		struct mm_struct *mm, gfp_t gfp)
1251 {
1252 	return 0;
1253 }
1254 
1255 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1256 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1257 {
1258 	return 0;
1259 }
1260 
1261 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1262 {
1263 }
1264 
1265 static inline void mem_cgroup_uncharge(struct folio *folio)
1266 {
1267 }
1268 
1269 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1270 {
1271 }
1272 
1273 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1274 {
1275 }
1276 
1277 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1278 					       struct pglist_data *pgdat)
1279 {
1280 	return &pgdat->__lruvec;
1281 }
1282 
1283 static inline struct lruvec *folio_lruvec(struct folio *folio)
1284 {
1285 	struct pglist_data *pgdat = folio_pgdat(folio);
1286 	return &pgdat->__lruvec;
1287 }
1288 
1289 static inline
1290 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1291 {
1292 }
1293 
1294 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1295 {
1296 	return NULL;
1297 }
1298 
1299 static inline bool mm_match_cgroup(struct mm_struct *mm,
1300 		struct mem_cgroup *memcg)
1301 {
1302 	return true;
1303 }
1304 
1305 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1306 {
1307 	return NULL;
1308 }
1309 
1310 static inline
1311 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1312 {
1313 	return NULL;
1314 }
1315 
1316 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1317 {
1318 }
1319 
1320 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1321 {
1322 	return true;
1323 }
1324 
1325 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1326 {
1327 }
1328 
1329 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1330 {
1331 	struct pglist_data *pgdat = folio_pgdat(folio);
1332 
1333 	spin_lock(&pgdat->__lruvec.lru_lock);
1334 	return &pgdat->__lruvec;
1335 }
1336 
1337 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1338 {
1339 	struct pglist_data *pgdat = folio_pgdat(folio);
1340 
1341 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1342 	return &pgdat->__lruvec;
1343 }
1344 
1345 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1346 		unsigned long *flagsp)
1347 {
1348 	struct pglist_data *pgdat = folio_pgdat(folio);
1349 
1350 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1351 	return &pgdat->__lruvec;
1352 }
1353 
1354 static inline struct mem_cgroup *
1355 mem_cgroup_iter(struct mem_cgroup *root,
1356 		struct mem_cgroup *prev,
1357 		struct mem_cgroup_reclaim_cookie *reclaim)
1358 {
1359 	return NULL;
1360 }
1361 
1362 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1363 					 struct mem_cgroup *prev)
1364 {
1365 }
1366 
1367 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1368 		int (*fn)(struct task_struct *, void *), void *arg)
1369 {
1370 }
1371 
1372 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1373 {
1374 	return 0;
1375 }
1376 
1377 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1378 {
1379 	WARN_ON_ONCE(id);
1380 	/* XXX: This should always return root_mem_cgroup */
1381 	return NULL;
1382 }
1383 
1384 #ifdef CONFIG_SHRINKER_DEBUG
1385 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1386 {
1387 	return 0;
1388 }
1389 
1390 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1391 {
1392 	return NULL;
1393 }
1394 #endif
1395 
1396 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1397 {
1398 	return NULL;
1399 }
1400 
1401 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1402 {
1403 	return NULL;
1404 }
1405 
1406 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1407 {
1408 	return true;
1409 }
1410 
1411 static inline
1412 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1413 		enum lru_list lru, int zone_idx)
1414 {
1415 	return 0;
1416 }
1417 
1418 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1419 {
1420 	return 0;
1421 }
1422 
1423 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1424 {
1425 	return 0;
1426 }
1427 
1428 static inline void
1429 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1430 {
1431 }
1432 
1433 static inline void
1434 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1435 {
1436 }
1437 
1438 static inline void folio_memcg_lock(struct folio *folio)
1439 {
1440 }
1441 
1442 static inline void folio_memcg_unlock(struct folio *folio)
1443 {
1444 }
1445 
1446 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1447 {
1448 	/* to match folio_memcg_rcu() */
1449 	rcu_read_lock();
1450 	return true;
1451 }
1452 
1453 static inline void mem_cgroup_unlock_pages(void)
1454 {
1455 	rcu_read_unlock();
1456 }
1457 
1458 static inline void mem_cgroup_handle_over_high(void)
1459 {
1460 }
1461 
1462 static inline void mem_cgroup_enter_user_fault(void)
1463 {
1464 }
1465 
1466 static inline void mem_cgroup_exit_user_fault(void)
1467 {
1468 }
1469 
1470 static inline bool task_in_memcg_oom(struct task_struct *p)
1471 {
1472 	return false;
1473 }
1474 
1475 static inline bool mem_cgroup_oom_synchronize(bool wait)
1476 {
1477 	return false;
1478 }
1479 
1480 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1481 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1482 {
1483 	return NULL;
1484 }
1485 
1486 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1487 {
1488 }
1489 
1490 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1491 				     int idx,
1492 				     int nr)
1493 {
1494 }
1495 
1496 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1497 				   int idx,
1498 				   int nr)
1499 {
1500 }
1501 
1502 static inline void mod_memcg_page_state(struct page *page,
1503 					int idx, int val)
1504 {
1505 }
1506 
1507 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1508 {
1509 	return 0;
1510 }
1511 
1512 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1513 					      enum node_stat_item idx)
1514 {
1515 	return node_page_state(lruvec_pgdat(lruvec), idx);
1516 }
1517 
1518 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1519 						    enum node_stat_item idx)
1520 {
1521 	return node_page_state(lruvec_pgdat(lruvec), idx);
1522 }
1523 
1524 static inline void mem_cgroup_flush_stats(void)
1525 {
1526 }
1527 
1528 static inline void mem_cgroup_flush_stats_ratelimited(void)
1529 {
1530 }
1531 
1532 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1533 					    enum node_stat_item idx, int val)
1534 {
1535 }
1536 
1537 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1538 					   int val)
1539 {
1540 	struct page *page = virt_to_head_page(p);
1541 
1542 	__mod_node_page_state(page_pgdat(page), idx, val);
1543 }
1544 
1545 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1546 					 int val)
1547 {
1548 	struct page *page = virt_to_head_page(p);
1549 
1550 	mod_node_page_state(page_pgdat(page), idx, val);
1551 }
1552 
1553 static inline void count_memcg_events(struct mem_cgroup *memcg,
1554 				      enum vm_event_item idx,
1555 				      unsigned long count)
1556 {
1557 }
1558 
1559 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1560 					enum vm_event_item idx,
1561 					unsigned long count)
1562 {
1563 }
1564 
1565 static inline void count_memcg_page_event(struct page *page,
1566 					  int idx)
1567 {
1568 }
1569 
1570 static inline void count_memcg_folio_events(struct folio *folio,
1571 		enum vm_event_item idx, unsigned long nr)
1572 {
1573 }
1574 
1575 static inline
1576 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1577 {
1578 }
1579 
1580 static inline void split_page_memcg(struct page *head, unsigned int nr)
1581 {
1582 }
1583 
1584 static inline
1585 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1586 					    gfp_t gfp_mask,
1587 					    unsigned long *total_scanned)
1588 {
1589 	return 0;
1590 }
1591 #endif /* CONFIG_MEMCG */
1592 
1593 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1594 {
1595 	__mod_lruvec_kmem_state(p, idx, 1);
1596 }
1597 
1598 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1599 {
1600 	__mod_lruvec_kmem_state(p, idx, -1);
1601 }
1602 
1603 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1604 {
1605 	struct mem_cgroup *memcg;
1606 
1607 	memcg = lruvec_memcg(lruvec);
1608 	if (!memcg)
1609 		return NULL;
1610 	memcg = parent_mem_cgroup(memcg);
1611 	if (!memcg)
1612 		return NULL;
1613 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1614 }
1615 
1616 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1617 {
1618 	spin_unlock(&lruvec->lru_lock);
1619 }
1620 
1621 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1622 {
1623 	spin_unlock_irq(&lruvec->lru_lock);
1624 }
1625 
1626 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1627 		unsigned long flags)
1628 {
1629 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1630 }
1631 
1632 /* Test requires a stable page->memcg binding, see page_memcg() */
1633 static inline bool folio_matches_lruvec(struct folio *folio,
1634 		struct lruvec *lruvec)
1635 {
1636 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1637 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1638 }
1639 
1640 /* Don't lock again iff page's lruvec locked */
1641 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1642 		struct lruvec *locked_lruvec)
1643 {
1644 	if (locked_lruvec) {
1645 		if (folio_matches_lruvec(folio, locked_lruvec))
1646 			return locked_lruvec;
1647 
1648 		unlock_page_lruvec_irq(locked_lruvec);
1649 	}
1650 
1651 	return folio_lruvec_lock_irq(folio);
1652 }
1653 
1654 /* Don't lock again iff page's lruvec locked */
1655 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1656 		struct lruvec *locked_lruvec, unsigned long *flags)
1657 {
1658 	if (locked_lruvec) {
1659 		if (folio_matches_lruvec(folio, locked_lruvec))
1660 			return locked_lruvec;
1661 
1662 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1663 	}
1664 
1665 	return folio_lruvec_lock_irqsave(folio, flags);
1666 }
1667 
1668 #ifdef CONFIG_CGROUP_WRITEBACK
1669 
1670 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1671 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1672 			 unsigned long *pheadroom, unsigned long *pdirty,
1673 			 unsigned long *pwriteback);
1674 
1675 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1676 					     struct bdi_writeback *wb);
1677 
1678 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1679 						  struct bdi_writeback *wb)
1680 {
1681 	struct mem_cgroup *memcg;
1682 
1683 	if (mem_cgroup_disabled())
1684 		return;
1685 
1686 	memcg = folio_memcg(folio);
1687 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1688 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1689 }
1690 
1691 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1692 
1693 #else	/* CONFIG_CGROUP_WRITEBACK */
1694 
1695 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1696 {
1697 	return NULL;
1698 }
1699 
1700 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1701 				       unsigned long *pfilepages,
1702 				       unsigned long *pheadroom,
1703 				       unsigned long *pdirty,
1704 				       unsigned long *pwriteback)
1705 {
1706 }
1707 
1708 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1709 						  struct bdi_writeback *wb)
1710 {
1711 }
1712 
1713 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1714 {
1715 }
1716 
1717 #endif	/* CONFIG_CGROUP_WRITEBACK */
1718 
1719 struct sock;
1720 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1721 			     gfp_t gfp_mask);
1722 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1723 #ifdef CONFIG_MEMCG
1724 extern struct static_key_false memcg_sockets_enabled_key;
1725 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1726 void mem_cgroup_sk_alloc(struct sock *sk);
1727 void mem_cgroup_sk_free(struct sock *sk);
1728 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1729 {
1730 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1731 		return true;
1732 	do {
1733 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1734 			return true;
1735 	} while ((memcg = parent_mem_cgroup(memcg)));
1736 	return false;
1737 }
1738 
1739 int alloc_shrinker_info(struct mem_cgroup *memcg);
1740 void free_shrinker_info(struct mem_cgroup *memcg);
1741 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1742 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1743 #else
1744 #define mem_cgroup_sockets_enabled 0
1745 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1746 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1747 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1748 {
1749 	return false;
1750 }
1751 
1752 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1753 				    int nid, int shrinker_id)
1754 {
1755 }
1756 #endif
1757 
1758 #ifdef CONFIG_MEMCG_KMEM
1759 bool mem_cgroup_kmem_disabled(void);
1760 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1761 void __memcg_kmem_uncharge_page(struct page *page, int order);
1762 
1763 struct obj_cgroup *get_obj_cgroup_from_current(void);
1764 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1765 
1766 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1767 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1768 
1769 extern struct static_key_false memcg_bpf_enabled_key;
1770 static inline bool memcg_bpf_enabled(void)
1771 {
1772 	return static_branch_likely(&memcg_bpf_enabled_key);
1773 }
1774 
1775 extern struct static_key_false memcg_kmem_online_key;
1776 
1777 static inline bool memcg_kmem_online(void)
1778 {
1779 	return static_branch_likely(&memcg_kmem_online_key);
1780 }
1781 
1782 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1783 					 int order)
1784 {
1785 	if (memcg_kmem_online())
1786 		return __memcg_kmem_charge_page(page, gfp, order);
1787 	return 0;
1788 }
1789 
1790 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1791 {
1792 	if (memcg_kmem_online())
1793 		__memcg_kmem_uncharge_page(page, order);
1794 }
1795 
1796 /*
1797  * A helper for accessing memcg's kmem_id, used for getting
1798  * corresponding LRU lists.
1799  */
1800 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1801 {
1802 	return memcg ? memcg->kmemcg_id : -1;
1803 }
1804 
1805 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1806 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1807 
1808 static inline void count_objcg_event(struct obj_cgroup *objcg,
1809 				     enum vm_event_item idx)
1810 {
1811 	struct mem_cgroup *memcg;
1812 
1813 	if (!memcg_kmem_online())
1814 		return;
1815 
1816 	rcu_read_lock();
1817 	memcg = obj_cgroup_memcg(objcg);
1818 	count_memcg_events(memcg, idx, 1);
1819 	rcu_read_unlock();
1820 }
1821 
1822 #else
1823 static inline bool mem_cgroup_kmem_disabled(void)
1824 {
1825 	return true;
1826 }
1827 
1828 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1829 					 int order)
1830 {
1831 	return 0;
1832 }
1833 
1834 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1835 {
1836 }
1837 
1838 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1839 					   int order)
1840 {
1841 	return 0;
1842 }
1843 
1844 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1845 {
1846 }
1847 
1848 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1849 {
1850 	return NULL;
1851 }
1852 
1853 static inline bool memcg_bpf_enabled(void)
1854 {
1855 	return false;
1856 }
1857 
1858 static inline bool memcg_kmem_online(void)
1859 {
1860 	return false;
1861 }
1862 
1863 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1864 {
1865 	return -1;
1866 }
1867 
1868 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1869 {
1870 	return NULL;
1871 }
1872 
1873 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1874 {
1875 	return NULL;
1876 }
1877 
1878 static inline void count_objcg_event(struct obj_cgroup *objcg,
1879 				     enum vm_event_item idx)
1880 {
1881 }
1882 
1883 #endif /* CONFIG_MEMCG_KMEM */
1884 
1885 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1886 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1887 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1888 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1889 #else
1890 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1891 {
1892 	return true;
1893 }
1894 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1895 					   size_t size)
1896 {
1897 }
1898 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1899 					     size_t size)
1900 {
1901 }
1902 #endif
1903 
1904 #endif /* _LINUX_MEMCONTROL_H */
1905