xref: /linux-6.15/include/linux/memcontrol.h (revision cc937dad)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	unsigned int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg_vmstats;
74 struct lruvec_stats_percpu;
75 struct lruvec_stats;
76 
77 struct mem_cgroup_reclaim_iter {
78 	struct mem_cgroup *position;
79 	/* scan generation, increased every round-trip */
80 	unsigned int generation;
81 };
82 
83 /*
84  * per-node information in memory controller.
85  */
86 struct mem_cgroup_per_node {
87 	/* Keep the read-only fields at the start */
88 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
89 						/* use container_of	   */
90 
91 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
92 	struct lruvec_stats			*lruvec_stats;
93 	struct shrinker_info __rcu	*shrinker_info;
94 
95 #ifdef CONFIG_MEMCG_V1
96 	/*
97 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
98 	 * and update often fields to avoid false sharing. Once v1 stuff is
99 	 * moved in a separate struct, an explicit padding is needed.
100 	 */
101 
102 	struct rb_node		tree_node;	/* RB tree node */
103 	unsigned long		usage_in_excess;/* Set to the value by which */
104 						/* the soft limit is exceeded*/
105 	bool			on_tree;
106 #endif
107 
108 	/* Fields which get updated often at the end. */
109 	struct lruvec		lruvec;
110 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
111 	struct mem_cgroup_reclaim_iter	iter;
112 };
113 
114 struct mem_cgroup_threshold {
115 	struct eventfd_ctx *eventfd;
116 	unsigned long threshold;
117 };
118 
119 /* For threshold */
120 struct mem_cgroup_threshold_ary {
121 	/* An array index points to threshold just below or equal to usage. */
122 	int current_threshold;
123 	/* Size of entries[] */
124 	unsigned int size;
125 	/* Array of thresholds */
126 	struct mem_cgroup_threshold entries[] __counted_by(size);
127 };
128 
129 struct mem_cgroup_thresholds {
130 	/* Primary thresholds array */
131 	struct mem_cgroup_threshold_ary *primary;
132 	/*
133 	 * Spare threshold array.
134 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
135 	 * It must be able to store at least primary->size - 1 entries.
136 	 */
137 	struct mem_cgroup_threshold_ary *spare;
138 };
139 
140 /*
141  * Remember four most recent foreign writebacks with dirty pages in this
142  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
143  * one in a given round, we're likely to catch it later if it keeps
144  * foreign-dirtying, so a fairly low count should be enough.
145  *
146  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
147  */
148 #define MEMCG_CGWB_FRN_CNT	4
149 
150 struct memcg_cgwb_frn {
151 	u64 bdi_id;			/* bdi->id of the foreign inode */
152 	int memcg_id;			/* memcg->css.id of foreign inode */
153 	u64 at;				/* jiffies_64 at the time of dirtying */
154 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
155 };
156 
157 /*
158  * Bucket for arbitrarily byte-sized objects charged to a memory
159  * cgroup. The bucket can be reparented in one piece when the cgroup
160  * is destroyed, without having to round up the individual references
161  * of all live memory objects in the wild.
162  */
163 struct obj_cgroup {
164 	struct percpu_ref refcnt;
165 	struct mem_cgroup *memcg;
166 	atomic_t nr_charged_bytes;
167 	union {
168 		struct list_head list; /* protected by objcg_lock */
169 		struct rcu_head rcu;
170 	};
171 };
172 
173 /*
174  * The memory controller data structure. The memory controller controls both
175  * page cache and RSS per cgroup. We would eventually like to provide
176  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
177  * to help the administrator determine what knobs to tune.
178  */
179 struct mem_cgroup {
180 	struct cgroup_subsys_state css;
181 
182 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
183 	struct mem_cgroup_id id;
184 
185 	/* Accounted resources */
186 	struct page_counter memory;		/* Both v1 & v2 */
187 
188 	union {
189 		struct page_counter swap;	/* v2 only */
190 		struct page_counter memsw;	/* v1 only */
191 	};
192 
193 	/* Range enforcement for interrupt charges */
194 	struct work_struct high_work;
195 
196 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
197 	unsigned long zswap_max;
198 
199 	/*
200 	 * Prevent pages from this memcg from being written back from zswap to
201 	 * swap, and from being swapped out on zswap store failures.
202 	 */
203 	bool zswap_writeback;
204 #endif
205 
206 	/* vmpressure notifications */
207 	struct vmpressure vmpressure;
208 
209 	/*
210 	 * Should the OOM killer kill all belonging tasks, had it kill one?
211 	 */
212 	bool oom_group;
213 
214 	int swappiness;
215 
216 	/* memory.events and memory.events.local */
217 	struct cgroup_file events_file;
218 	struct cgroup_file events_local_file;
219 
220 	/* handle for "memory.swap.events" */
221 	struct cgroup_file swap_events_file;
222 
223 	CACHELINE_PADDING(_pad1_);
224 
225 	/* memory.stat */
226 	struct memcg_vmstats	*vmstats;
227 
228 	/* memory.events */
229 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
230 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
231 
232 	/*
233 	 * Hint of reclaim pressure for socket memroy management. Note
234 	 * that this indicator should NOT be used in legacy cgroup mode
235 	 * where socket memory is accounted/charged separately.
236 	 */
237 	unsigned long		socket_pressure;
238 
239 #ifdef CONFIG_MEMCG_KMEM
240 	int kmemcg_id;
241 	/*
242 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
243 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
244 	 * to the original objcg until the end of live of memcg.
245 	 */
246 	struct obj_cgroup __rcu	*objcg;
247 	struct obj_cgroup	*orig_objcg;
248 	/* list of inherited objcgs, protected by objcg_lock */
249 	struct list_head objcg_list;
250 #endif
251 
252 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
253 
254 #ifdef CONFIG_CGROUP_WRITEBACK
255 	struct list_head cgwb_list;
256 	struct wb_domain cgwb_domain;
257 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
258 #endif
259 
260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 	struct deferred_split deferred_split_queue;
262 #endif
263 
264 #ifdef CONFIG_LRU_GEN_WALKS_MMU
265 	/* per-memcg mm_struct list */
266 	struct lru_gen_mm_list mm_list;
267 #endif
268 
269 #ifdef CONFIG_MEMCG_V1
270 	/* Legacy consumer-oriented counters */
271 	struct page_counter kmem;		/* v1 only */
272 	struct page_counter tcpmem;		/* v1 only */
273 
274 	unsigned long soft_limit;
275 
276 	/* protected by memcg_oom_lock */
277 	bool oom_lock;
278 	int under_oom;
279 
280 	/* OOM-Killer disable */
281 	int oom_kill_disable;
282 
283 	/* protect arrays of thresholds */
284 	struct mutex thresholds_lock;
285 
286 	/* thresholds for memory usage. RCU-protected */
287 	struct mem_cgroup_thresholds thresholds;
288 
289 	/* thresholds for mem+swap usage. RCU-protected */
290 	struct mem_cgroup_thresholds memsw_thresholds;
291 
292 	/* For oom notifier event fd */
293 	struct list_head oom_notify;
294 
295 	/*
296 	 * Should we move charges of a task when a task is moved into this
297 	 * mem_cgroup ? And what type of charges should we move ?
298 	 */
299 	unsigned long move_charge_at_immigrate;
300 	/* taken only while moving_account > 0 */
301 	spinlock_t move_lock;
302 	unsigned long move_lock_flags;
303 
304 	/* Legacy tcp memory accounting */
305 	bool tcpmem_active;
306 	int tcpmem_pressure;
307 
308 	CACHELINE_PADDING(_pad2_);
309 
310 	/*
311 	 * set > 0 if pages under this cgroup are moving to other cgroup.
312 	 */
313 	atomic_t moving_account;
314 	struct task_struct *move_lock_task;
315 
316 	/* List of events which userspace want to receive */
317 	struct list_head event_list;
318 	spinlock_t event_list_lock;
319 #endif /* CONFIG_MEMCG_V1 */
320 
321 	struct mem_cgroup_per_node *nodeinfo[];
322 };
323 
324 /*
325  * size of first charge trial.
326  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
327  * workload.
328  */
329 #define MEMCG_CHARGE_BATCH 64U
330 
331 extern struct mem_cgroup *root_mem_cgroup;
332 
333 enum page_memcg_data_flags {
334 	/* page->memcg_data is a pointer to an slabobj_ext vector */
335 	MEMCG_DATA_OBJEXTS = (1UL << 0),
336 	/* page has been accounted as a non-slab kernel page */
337 	MEMCG_DATA_KMEM = (1UL << 1),
338 	/* the next bit after the last actual flag */
339 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
340 };
341 
342 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
343 
344 #else /* CONFIG_MEMCG */
345 
346 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
347 
348 #endif /* CONFIG_MEMCG */
349 
350 enum objext_flags {
351 	/* slabobj_ext vector failed to allocate */
352 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
353 	/* the next bit after the last actual flag */
354 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
355 };
356 
357 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
358 
359 #ifdef CONFIG_MEMCG
360 
361 static inline bool folio_memcg_kmem(struct folio *folio);
362 
363 /*
364  * After the initialization objcg->memcg is always pointing at
365  * a valid memcg, but can be atomically swapped to the parent memcg.
366  *
367  * The caller must ensure that the returned memcg won't be released:
368  * e.g. acquire the rcu_read_lock or css_set_lock.
369  */
370 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
371 {
372 	return READ_ONCE(objcg->memcg);
373 }
374 
375 /*
376  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
377  * @folio: Pointer to the folio.
378  *
379  * Returns a pointer to the memory cgroup associated with the folio,
380  * or NULL. This function assumes that the folio is known to have a
381  * proper memory cgroup pointer. It's not safe to call this function
382  * against some type of folios, e.g. slab folios or ex-slab folios or
383  * kmem folios.
384  */
385 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
386 {
387 	unsigned long memcg_data = folio->memcg_data;
388 
389 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
390 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
391 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
392 
393 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
394 }
395 
396 /*
397  * __folio_objcg - get the object cgroup associated with a kmem folio.
398  * @folio: Pointer to the folio.
399  *
400  * Returns a pointer to the object cgroup associated with the folio,
401  * or NULL. This function assumes that the folio is known to have a
402  * proper object cgroup pointer. It's not safe to call this function
403  * against some type of folios, e.g. slab folios or ex-slab folios or
404  * LRU folios.
405  */
406 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
407 {
408 	unsigned long memcg_data = folio->memcg_data;
409 
410 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
411 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
412 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
413 
414 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
415 }
416 
417 /*
418  * folio_memcg - Get the memory cgroup associated with a folio.
419  * @folio: Pointer to the folio.
420  *
421  * Returns a pointer to the memory cgroup associated with the folio,
422  * or NULL. This function assumes that the folio is known to have a
423  * proper memory cgroup pointer. It's not safe to call this function
424  * against some type of folios, e.g. slab folios or ex-slab folios.
425  *
426  * For a non-kmem folio any of the following ensures folio and memcg binding
427  * stability:
428  *
429  * - the folio lock
430  * - LRU isolation
431  * - folio_memcg_lock()
432  * - exclusive reference
433  * - mem_cgroup_trylock_pages()
434  *
435  * For a kmem folio a caller should hold an rcu read lock to protect memcg
436  * associated with a kmem folio from being released.
437  */
438 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
439 {
440 	if (folio_memcg_kmem(folio))
441 		return obj_cgroup_memcg(__folio_objcg(folio));
442 	return __folio_memcg(folio);
443 }
444 
445 /**
446  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
447  * @folio: Pointer to the folio.
448  *
449  * This function assumes that the folio is known to have a
450  * proper memory cgroup pointer. It's not safe to call this function
451  * against some type of folios, e.g. slab folios or ex-slab folios.
452  *
453  * Return: A pointer to the memory cgroup associated with the folio,
454  * or NULL.
455  */
456 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
457 {
458 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
459 
460 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
461 	WARN_ON_ONCE(!rcu_read_lock_held());
462 
463 	if (memcg_data & MEMCG_DATA_KMEM) {
464 		struct obj_cgroup *objcg;
465 
466 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
467 		return obj_cgroup_memcg(objcg);
468 	}
469 
470 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
471 }
472 
473 /*
474  * folio_memcg_check - Get the memory cgroup associated with a folio.
475  * @folio: Pointer to the folio.
476  *
477  * Returns a pointer to the memory cgroup associated with the folio,
478  * or NULL. This function unlike folio_memcg() can take any folio
479  * as an argument. It has to be used in cases when it's not known if a folio
480  * has an associated memory cgroup pointer or an object cgroups vector or
481  * an object cgroup.
482  *
483  * For a non-kmem folio any of the following ensures folio and memcg binding
484  * stability:
485  *
486  * - the folio lock
487  * - LRU isolation
488  * - lock_folio_memcg()
489  * - exclusive reference
490  * - mem_cgroup_trylock_pages()
491  *
492  * For a kmem folio a caller should hold an rcu read lock to protect memcg
493  * associated with a kmem folio from being released.
494  */
495 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
496 {
497 	/*
498 	 * Because folio->memcg_data might be changed asynchronously
499 	 * for slabs, READ_ONCE() should be used here.
500 	 */
501 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
502 
503 	if (memcg_data & MEMCG_DATA_OBJEXTS)
504 		return NULL;
505 
506 	if (memcg_data & MEMCG_DATA_KMEM) {
507 		struct obj_cgroup *objcg;
508 
509 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
510 		return obj_cgroup_memcg(objcg);
511 	}
512 
513 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
514 }
515 
516 static inline struct mem_cgroup *page_memcg_check(struct page *page)
517 {
518 	if (PageTail(page))
519 		return NULL;
520 	return folio_memcg_check((struct folio *)page);
521 }
522 
523 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
524 {
525 	struct mem_cgroup *memcg;
526 
527 	rcu_read_lock();
528 retry:
529 	memcg = obj_cgroup_memcg(objcg);
530 	if (unlikely(!css_tryget(&memcg->css)))
531 		goto retry;
532 	rcu_read_unlock();
533 
534 	return memcg;
535 }
536 
537 #ifdef CONFIG_MEMCG_KMEM
538 /*
539  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
540  * @folio: Pointer to the folio.
541  *
542  * Checks if the folio has MemcgKmem flag set. The caller must ensure
543  * that the folio has an associated memory cgroup. It's not safe to call
544  * this function against some types of folios, e.g. slab folios.
545  */
546 static inline bool folio_memcg_kmem(struct folio *folio)
547 {
548 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
549 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
550 	return folio->memcg_data & MEMCG_DATA_KMEM;
551 }
552 
553 
554 #else
555 static inline bool folio_memcg_kmem(struct folio *folio)
556 {
557 	return false;
558 }
559 
560 #endif
561 
562 static inline bool PageMemcgKmem(struct page *page)
563 {
564 	return folio_memcg_kmem(page_folio(page));
565 }
566 
567 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
568 {
569 	return (memcg == root_mem_cgroup);
570 }
571 
572 static inline bool mem_cgroup_disabled(void)
573 {
574 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
575 }
576 
577 static inline void mem_cgroup_protection(struct mem_cgroup *root,
578 					 struct mem_cgroup *memcg,
579 					 unsigned long *min,
580 					 unsigned long *low)
581 {
582 	*min = *low = 0;
583 
584 	if (mem_cgroup_disabled())
585 		return;
586 
587 	/*
588 	 * There is no reclaim protection applied to a targeted reclaim.
589 	 * We are special casing this specific case here because
590 	 * mem_cgroup_calculate_protection is not robust enough to keep
591 	 * the protection invariant for calculated effective values for
592 	 * parallel reclaimers with different reclaim target. This is
593 	 * especially a problem for tail memcgs (as they have pages on LRU)
594 	 * which would want to have effective values 0 for targeted reclaim
595 	 * but a different value for external reclaim.
596 	 *
597 	 * Example
598 	 * Let's have global and A's reclaim in parallel:
599 	 *  |
600 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
601 	 *  |\
602 	 *  | C (low = 1G, usage = 2.5G)
603 	 *  B (low = 1G, usage = 0.5G)
604 	 *
605 	 * For the global reclaim
606 	 * A.elow = A.low
607 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
608 	 * C.elow = min(C.usage, C.low)
609 	 *
610 	 * With the effective values resetting we have A reclaim
611 	 * A.elow = 0
612 	 * B.elow = B.low
613 	 * C.elow = C.low
614 	 *
615 	 * If the global reclaim races with A's reclaim then
616 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
617 	 * is possible and reclaiming B would be violating the protection.
618 	 *
619 	 */
620 	if (root == memcg)
621 		return;
622 
623 	*min = READ_ONCE(memcg->memory.emin);
624 	*low = READ_ONCE(memcg->memory.elow);
625 }
626 
627 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
628 				     struct mem_cgroup *memcg);
629 
630 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
631 					  struct mem_cgroup *memcg)
632 {
633 	/*
634 	 * The root memcg doesn't account charges, and doesn't support
635 	 * protection. The target memcg's protection is ignored, see
636 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
637 	 */
638 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
639 		memcg == target;
640 }
641 
642 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
643 					struct mem_cgroup *memcg)
644 {
645 	if (mem_cgroup_unprotected(target, memcg))
646 		return false;
647 
648 	return READ_ONCE(memcg->memory.elow) >=
649 		page_counter_read(&memcg->memory);
650 }
651 
652 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
653 					struct mem_cgroup *memcg)
654 {
655 	if (mem_cgroup_unprotected(target, memcg))
656 		return false;
657 
658 	return READ_ONCE(memcg->memory.emin) >=
659 		page_counter_read(&memcg->memory);
660 }
661 
662 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
663 
664 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
665 
666 /**
667  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
668  * @folio: Folio to charge.
669  * @mm: mm context of the allocating task.
670  * @gfp: Reclaim mode.
671  *
672  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
673  * pages according to @gfp if necessary.  If @mm is NULL, try to
674  * charge to the active memcg.
675  *
676  * Do not use this for folios allocated for swapin.
677  *
678  * Return: 0 on success. Otherwise, an error code is returned.
679  */
680 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
681 				    gfp_t gfp)
682 {
683 	if (mem_cgroup_disabled())
684 		return 0;
685 	return __mem_cgroup_charge(folio, mm, gfp);
686 }
687 
688 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
689 		long nr_pages);
690 
691 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
692 				  gfp_t gfp, swp_entry_t entry);
693 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
694 
695 void __mem_cgroup_uncharge(struct folio *folio);
696 
697 /**
698  * mem_cgroup_uncharge - Uncharge a folio.
699  * @folio: Folio to uncharge.
700  *
701  * Uncharge a folio previously charged with mem_cgroup_charge().
702  */
703 static inline void mem_cgroup_uncharge(struct folio *folio)
704 {
705 	if (mem_cgroup_disabled())
706 		return;
707 	__mem_cgroup_uncharge(folio);
708 }
709 
710 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
711 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
712 {
713 	if (mem_cgroup_disabled())
714 		return;
715 	__mem_cgroup_uncharge_folios(folios);
716 }
717 
718 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
719 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
720 void mem_cgroup_migrate(struct folio *old, struct folio *new);
721 
722 /**
723  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
724  * @memcg: memcg of the wanted lruvec
725  * @pgdat: pglist_data
726  *
727  * Returns the lru list vector holding pages for a given @memcg &
728  * @pgdat combination. This can be the node lruvec, if the memory
729  * controller is disabled.
730  */
731 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
732 					       struct pglist_data *pgdat)
733 {
734 	struct mem_cgroup_per_node *mz;
735 	struct lruvec *lruvec;
736 
737 	if (mem_cgroup_disabled()) {
738 		lruvec = &pgdat->__lruvec;
739 		goto out;
740 	}
741 
742 	if (!memcg)
743 		memcg = root_mem_cgroup;
744 
745 	mz = memcg->nodeinfo[pgdat->node_id];
746 	lruvec = &mz->lruvec;
747 out:
748 	/*
749 	 * Since a node can be onlined after the mem_cgroup was created,
750 	 * we have to be prepared to initialize lruvec->pgdat here;
751 	 * and if offlined then reonlined, we need to reinitialize it.
752 	 */
753 	if (unlikely(lruvec->pgdat != pgdat))
754 		lruvec->pgdat = pgdat;
755 	return lruvec;
756 }
757 
758 /**
759  * folio_lruvec - return lruvec for isolating/putting an LRU folio
760  * @folio: Pointer to the folio.
761  *
762  * This function relies on folio->mem_cgroup being stable.
763  */
764 static inline struct lruvec *folio_lruvec(struct folio *folio)
765 {
766 	struct mem_cgroup *memcg = folio_memcg(folio);
767 
768 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
769 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
770 }
771 
772 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
773 
774 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
775 
776 struct mem_cgroup *get_mem_cgroup_from_current(void);
777 
778 struct lruvec *folio_lruvec_lock(struct folio *folio);
779 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
780 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
781 						unsigned long *flags);
782 
783 #ifdef CONFIG_DEBUG_VM
784 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
785 #else
786 static inline
787 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
788 {
789 }
790 #endif
791 
792 static inline
793 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
794 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
795 }
796 
797 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
798 {
799 	return percpu_ref_tryget(&objcg->refcnt);
800 }
801 
802 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
803 {
804 	percpu_ref_get(&objcg->refcnt);
805 }
806 
807 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
808 				       unsigned long nr)
809 {
810 	percpu_ref_get_many(&objcg->refcnt, nr);
811 }
812 
813 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
814 {
815 	if (objcg)
816 		percpu_ref_put(&objcg->refcnt);
817 }
818 
819 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
820 {
821 	return !memcg || css_tryget(&memcg->css);
822 }
823 
824 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
825 {
826 	return !memcg || css_tryget_online(&memcg->css);
827 }
828 
829 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
830 {
831 	if (memcg)
832 		css_put(&memcg->css);
833 }
834 
835 #define mem_cgroup_from_counter(counter, member)	\
836 	container_of(counter, struct mem_cgroup, member)
837 
838 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
839 				   struct mem_cgroup *,
840 				   struct mem_cgroup_reclaim_cookie *);
841 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
842 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
843 			   int (*)(struct task_struct *, void *), void *arg);
844 
845 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
846 {
847 	if (mem_cgroup_disabled())
848 		return 0;
849 
850 	return memcg->id.id;
851 }
852 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
853 
854 #ifdef CONFIG_SHRINKER_DEBUG
855 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
856 {
857 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
858 }
859 
860 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
861 #endif
862 
863 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
864 {
865 	return mem_cgroup_from_css(seq_css(m));
866 }
867 
868 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
869 {
870 	struct mem_cgroup_per_node *mz;
871 
872 	if (mem_cgroup_disabled())
873 		return NULL;
874 
875 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
876 	return mz->memcg;
877 }
878 
879 /**
880  * parent_mem_cgroup - find the accounting parent of a memcg
881  * @memcg: memcg whose parent to find
882  *
883  * Returns the parent memcg, or NULL if this is the root.
884  */
885 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
886 {
887 	return mem_cgroup_from_css(memcg->css.parent);
888 }
889 
890 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
891 			      struct mem_cgroup *root)
892 {
893 	if (root == memcg)
894 		return true;
895 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
896 }
897 
898 static inline bool mm_match_cgroup(struct mm_struct *mm,
899 				   struct mem_cgroup *memcg)
900 {
901 	struct mem_cgroup *task_memcg;
902 	bool match = false;
903 
904 	rcu_read_lock();
905 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
906 	if (task_memcg)
907 		match = mem_cgroup_is_descendant(task_memcg, memcg);
908 	rcu_read_unlock();
909 	return match;
910 }
911 
912 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
913 ino_t page_cgroup_ino(struct page *page);
914 
915 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
916 {
917 	if (mem_cgroup_disabled())
918 		return true;
919 	return !!(memcg->css.flags & CSS_ONLINE);
920 }
921 
922 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
923 		int zid, int nr_pages);
924 
925 static inline
926 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
927 		enum lru_list lru, int zone_idx)
928 {
929 	struct mem_cgroup_per_node *mz;
930 
931 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
932 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
933 }
934 
935 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
936 
937 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
938 
939 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
940 
941 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
942 				struct task_struct *p);
943 
944 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
945 
946 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
947 					    struct mem_cgroup *oom_domain);
948 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
949 
950 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
951 		       int val);
952 
953 /* idx can be of type enum memcg_stat_item or node_stat_item */
954 static inline void mod_memcg_state(struct mem_cgroup *memcg,
955 				   enum memcg_stat_item idx, int val)
956 {
957 	unsigned long flags;
958 
959 	local_irq_save(flags);
960 	__mod_memcg_state(memcg, idx, val);
961 	local_irq_restore(flags);
962 }
963 
964 static inline void mod_memcg_page_state(struct page *page,
965 					enum memcg_stat_item idx, int val)
966 {
967 	struct mem_cgroup *memcg;
968 
969 	if (mem_cgroup_disabled())
970 		return;
971 
972 	rcu_read_lock();
973 	memcg = folio_memcg(page_folio(page));
974 	if (memcg)
975 		mod_memcg_state(memcg, idx, val);
976 	rcu_read_unlock();
977 }
978 
979 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
980 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
981 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
982 				      enum node_stat_item idx);
983 
984 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
985 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
986 
987 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
988 
989 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
990 					 int val)
991 {
992 	unsigned long flags;
993 
994 	local_irq_save(flags);
995 	__mod_lruvec_kmem_state(p, idx, val);
996 	local_irq_restore(flags);
997 }
998 
999 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1000 			  unsigned long count);
1001 
1002 static inline void count_memcg_events(struct mem_cgroup *memcg,
1003 				      enum vm_event_item idx,
1004 				      unsigned long count)
1005 {
1006 	unsigned long flags;
1007 
1008 	local_irq_save(flags);
1009 	__count_memcg_events(memcg, idx, count);
1010 	local_irq_restore(flags);
1011 }
1012 
1013 static inline void count_memcg_folio_events(struct folio *folio,
1014 		enum vm_event_item idx, unsigned long nr)
1015 {
1016 	struct mem_cgroup *memcg = folio_memcg(folio);
1017 
1018 	if (memcg)
1019 		count_memcg_events(memcg, idx, nr);
1020 }
1021 
1022 static inline void count_memcg_event_mm(struct mm_struct *mm,
1023 					enum vm_event_item idx)
1024 {
1025 	struct mem_cgroup *memcg;
1026 
1027 	if (mem_cgroup_disabled())
1028 		return;
1029 
1030 	rcu_read_lock();
1031 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1032 	if (likely(memcg))
1033 		count_memcg_events(memcg, idx, 1);
1034 	rcu_read_unlock();
1035 }
1036 
1037 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1038 				      enum memcg_memory_event event)
1039 {
1040 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1041 			  event == MEMCG_SWAP_FAIL;
1042 
1043 	atomic_long_inc(&memcg->memory_events_local[event]);
1044 	if (!swap_event)
1045 		cgroup_file_notify(&memcg->events_local_file);
1046 
1047 	do {
1048 		atomic_long_inc(&memcg->memory_events[event]);
1049 		if (swap_event)
1050 			cgroup_file_notify(&memcg->swap_events_file);
1051 		else
1052 			cgroup_file_notify(&memcg->events_file);
1053 
1054 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1055 			break;
1056 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1057 			break;
1058 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1059 		 !mem_cgroup_is_root(memcg));
1060 }
1061 
1062 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1063 					 enum memcg_memory_event event)
1064 {
1065 	struct mem_cgroup *memcg;
1066 
1067 	if (mem_cgroup_disabled())
1068 		return;
1069 
1070 	rcu_read_lock();
1071 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1072 	if (likely(memcg))
1073 		memcg_memory_event(memcg, event);
1074 	rcu_read_unlock();
1075 }
1076 
1077 void split_page_memcg(struct page *head, int old_order, int new_order);
1078 
1079 #else /* CONFIG_MEMCG */
1080 
1081 #define MEM_CGROUP_ID_SHIFT	0
1082 
1083 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1084 {
1085 	return NULL;
1086 }
1087 
1088 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1089 {
1090 	WARN_ON_ONCE(!rcu_read_lock_held());
1091 	return NULL;
1092 }
1093 
1094 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1095 {
1096 	return NULL;
1097 }
1098 
1099 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1100 {
1101 	return NULL;
1102 }
1103 
1104 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1105 {
1106 	return NULL;
1107 }
1108 
1109 static inline bool folio_memcg_kmem(struct folio *folio)
1110 {
1111 	return false;
1112 }
1113 
1114 static inline bool PageMemcgKmem(struct page *page)
1115 {
1116 	return false;
1117 }
1118 
1119 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1120 {
1121 	return true;
1122 }
1123 
1124 static inline bool mem_cgroup_disabled(void)
1125 {
1126 	return true;
1127 }
1128 
1129 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1130 				      enum memcg_memory_event event)
1131 {
1132 }
1133 
1134 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1135 					 enum memcg_memory_event event)
1136 {
1137 }
1138 
1139 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1140 					 struct mem_cgroup *memcg,
1141 					 unsigned long *min,
1142 					 unsigned long *low)
1143 {
1144 	*min = *low = 0;
1145 }
1146 
1147 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1148 						   struct mem_cgroup *memcg)
1149 {
1150 }
1151 
1152 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1153 					  struct mem_cgroup *memcg)
1154 {
1155 	return true;
1156 }
1157 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1158 					struct mem_cgroup *memcg)
1159 {
1160 	return false;
1161 }
1162 
1163 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1164 					struct mem_cgroup *memcg)
1165 {
1166 	return false;
1167 }
1168 
1169 static inline void mem_cgroup_commit_charge(struct folio *folio,
1170 		struct mem_cgroup *memcg)
1171 {
1172 }
1173 
1174 static inline int mem_cgroup_charge(struct folio *folio,
1175 		struct mm_struct *mm, gfp_t gfp)
1176 {
1177 	return 0;
1178 }
1179 
1180 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1181 		gfp_t gfp, long nr_pages)
1182 {
1183 	return 0;
1184 }
1185 
1186 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1187 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1188 {
1189 	return 0;
1190 }
1191 
1192 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1193 {
1194 }
1195 
1196 static inline void mem_cgroup_uncharge(struct folio *folio)
1197 {
1198 }
1199 
1200 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1201 {
1202 }
1203 
1204 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1205 		unsigned int nr_pages)
1206 {
1207 }
1208 
1209 static inline void mem_cgroup_replace_folio(struct folio *old,
1210 		struct folio *new)
1211 {
1212 }
1213 
1214 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1215 {
1216 }
1217 
1218 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1219 					       struct pglist_data *pgdat)
1220 {
1221 	return &pgdat->__lruvec;
1222 }
1223 
1224 static inline struct lruvec *folio_lruvec(struct folio *folio)
1225 {
1226 	struct pglist_data *pgdat = folio_pgdat(folio);
1227 	return &pgdat->__lruvec;
1228 }
1229 
1230 static inline
1231 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1232 {
1233 }
1234 
1235 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1236 {
1237 	return NULL;
1238 }
1239 
1240 static inline bool mm_match_cgroup(struct mm_struct *mm,
1241 		struct mem_cgroup *memcg)
1242 {
1243 	return true;
1244 }
1245 
1246 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1247 {
1248 	return NULL;
1249 }
1250 
1251 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1252 {
1253 	return NULL;
1254 }
1255 
1256 static inline
1257 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1258 {
1259 	return NULL;
1260 }
1261 
1262 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1263 {
1264 }
1265 
1266 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1267 {
1268 	return true;
1269 }
1270 
1271 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1272 {
1273 	return true;
1274 }
1275 
1276 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1277 {
1278 }
1279 
1280 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1281 {
1282 	struct pglist_data *pgdat = folio_pgdat(folio);
1283 
1284 	spin_lock(&pgdat->__lruvec.lru_lock);
1285 	return &pgdat->__lruvec;
1286 }
1287 
1288 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1289 {
1290 	struct pglist_data *pgdat = folio_pgdat(folio);
1291 
1292 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1293 	return &pgdat->__lruvec;
1294 }
1295 
1296 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1297 		unsigned long *flagsp)
1298 {
1299 	struct pglist_data *pgdat = folio_pgdat(folio);
1300 
1301 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1302 	return &pgdat->__lruvec;
1303 }
1304 
1305 static inline struct mem_cgroup *
1306 mem_cgroup_iter(struct mem_cgroup *root,
1307 		struct mem_cgroup *prev,
1308 		struct mem_cgroup_reclaim_cookie *reclaim)
1309 {
1310 	return NULL;
1311 }
1312 
1313 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1314 					 struct mem_cgroup *prev)
1315 {
1316 }
1317 
1318 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1319 		int (*fn)(struct task_struct *, void *), void *arg)
1320 {
1321 }
1322 
1323 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1324 {
1325 	return 0;
1326 }
1327 
1328 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1329 {
1330 	WARN_ON_ONCE(id);
1331 	/* XXX: This should always return root_mem_cgroup */
1332 	return NULL;
1333 }
1334 
1335 #ifdef CONFIG_SHRINKER_DEBUG
1336 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1337 {
1338 	return 0;
1339 }
1340 
1341 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1342 {
1343 	return NULL;
1344 }
1345 #endif
1346 
1347 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1348 {
1349 	return NULL;
1350 }
1351 
1352 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1353 {
1354 	return NULL;
1355 }
1356 
1357 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1358 {
1359 	return true;
1360 }
1361 
1362 static inline
1363 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1364 		enum lru_list lru, int zone_idx)
1365 {
1366 	return 0;
1367 }
1368 
1369 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1370 {
1371 	return 0;
1372 }
1373 
1374 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1375 {
1376 	return 0;
1377 }
1378 
1379 static inline void
1380 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1381 {
1382 }
1383 
1384 static inline void
1385 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1386 {
1387 }
1388 
1389 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1390 {
1391 }
1392 
1393 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1394 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1395 {
1396 	return NULL;
1397 }
1398 
1399 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1400 {
1401 }
1402 
1403 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1404 				     enum memcg_stat_item idx,
1405 				     int nr)
1406 {
1407 }
1408 
1409 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1410 				   enum memcg_stat_item idx,
1411 				   int nr)
1412 {
1413 }
1414 
1415 static inline void mod_memcg_page_state(struct page *page,
1416 					enum memcg_stat_item idx, int val)
1417 {
1418 }
1419 
1420 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1421 {
1422 	return 0;
1423 }
1424 
1425 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1426 					      enum node_stat_item idx)
1427 {
1428 	return node_page_state(lruvec_pgdat(lruvec), idx);
1429 }
1430 
1431 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1432 						    enum node_stat_item idx)
1433 {
1434 	return node_page_state(lruvec_pgdat(lruvec), idx);
1435 }
1436 
1437 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1438 {
1439 }
1440 
1441 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1442 {
1443 }
1444 
1445 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1446 					   int val)
1447 {
1448 	struct page *page = virt_to_head_page(p);
1449 
1450 	__mod_node_page_state(page_pgdat(page), idx, val);
1451 }
1452 
1453 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1454 					 int val)
1455 {
1456 	struct page *page = virt_to_head_page(p);
1457 
1458 	mod_node_page_state(page_pgdat(page), idx, val);
1459 }
1460 
1461 static inline void count_memcg_events(struct mem_cgroup *memcg,
1462 				      enum vm_event_item idx,
1463 				      unsigned long count)
1464 {
1465 }
1466 
1467 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1468 					enum vm_event_item idx,
1469 					unsigned long count)
1470 {
1471 }
1472 
1473 static inline void count_memcg_folio_events(struct folio *folio,
1474 		enum vm_event_item idx, unsigned long nr)
1475 {
1476 }
1477 
1478 static inline
1479 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1480 {
1481 }
1482 
1483 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1484 {
1485 }
1486 #endif /* CONFIG_MEMCG */
1487 
1488 /*
1489  * Extended information for slab objects stored as an array in page->memcg_data
1490  * if MEMCG_DATA_OBJEXTS is set.
1491  */
1492 struct slabobj_ext {
1493 #ifdef CONFIG_MEMCG_KMEM
1494 	struct obj_cgroup *objcg;
1495 #endif
1496 #ifdef CONFIG_MEM_ALLOC_PROFILING
1497 	union codetag_ref ref;
1498 #endif
1499 } __aligned(8);
1500 
1501 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1502 {
1503 	__mod_lruvec_kmem_state(p, idx, 1);
1504 }
1505 
1506 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1507 {
1508 	__mod_lruvec_kmem_state(p, idx, -1);
1509 }
1510 
1511 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1512 {
1513 	struct mem_cgroup *memcg;
1514 
1515 	memcg = lruvec_memcg(lruvec);
1516 	if (!memcg)
1517 		return NULL;
1518 	memcg = parent_mem_cgroup(memcg);
1519 	if (!memcg)
1520 		return NULL;
1521 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1522 }
1523 
1524 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1525 {
1526 	spin_unlock(&lruvec->lru_lock);
1527 }
1528 
1529 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1530 {
1531 	spin_unlock_irq(&lruvec->lru_lock);
1532 }
1533 
1534 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1535 		unsigned long flags)
1536 {
1537 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1538 }
1539 
1540 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1541 static inline bool folio_matches_lruvec(struct folio *folio,
1542 		struct lruvec *lruvec)
1543 {
1544 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1545 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1546 }
1547 
1548 /* Don't lock again iff page's lruvec locked */
1549 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1550 		struct lruvec *locked_lruvec)
1551 {
1552 	if (locked_lruvec) {
1553 		if (folio_matches_lruvec(folio, locked_lruvec))
1554 			return locked_lruvec;
1555 
1556 		unlock_page_lruvec_irq(locked_lruvec);
1557 	}
1558 
1559 	return folio_lruvec_lock_irq(folio);
1560 }
1561 
1562 /* Don't lock again iff folio's lruvec locked */
1563 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1564 		struct lruvec **lruvecp, unsigned long *flags)
1565 {
1566 	if (*lruvecp) {
1567 		if (folio_matches_lruvec(folio, *lruvecp))
1568 			return;
1569 
1570 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1571 	}
1572 
1573 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1574 }
1575 
1576 #ifdef CONFIG_CGROUP_WRITEBACK
1577 
1578 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1579 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1580 			 unsigned long *pheadroom, unsigned long *pdirty,
1581 			 unsigned long *pwriteback);
1582 
1583 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1584 					     struct bdi_writeback *wb);
1585 
1586 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1587 						  struct bdi_writeback *wb)
1588 {
1589 	struct mem_cgroup *memcg;
1590 
1591 	if (mem_cgroup_disabled())
1592 		return;
1593 
1594 	memcg = folio_memcg(folio);
1595 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1596 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1597 }
1598 
1599 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1600 
1601 #else	/* CONFIG_CGROUP_WRITEBACK */
1602 
1603 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1604 {
1605 	return NULL;
1606 }
1607 
1608 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1609 				       unsigned long *pfilepages,
1610 				       unsigned long *pheadroom,
1611 				       unsigned long *pdirty,
1612 				       unsigned long *pwriteback)
1613 {
1614 }
1615 
1616 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1617 						  struct bdi_writeback *wb)
1618 {
1619 }
1620 
1621 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1622 {
1623 }
1624 
1625 #endif	/* CONFIG_CGROUP_WRITEBACK */
1626 
1627 struct sock;
1628 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1629 			     gfp_t gfp_mask);
1630 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1631 #ifdef CONFIG_MEMCG
1632 extern struct static_key_false memcg_sockets_enabled_key;
1633 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1634 void mem_cgroup_sk_alloc(struct sock *sk);
1635 void mem_cgroup_sk_free(struct sock *sk);
1636 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1637 {
1638 #ifdef CONFIG_MEMCG_V1
1639 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1640 		return !!memcg->tcpmem_pressure;
1641 #endif /* CONFIG_MEMCG_V1 */
1642 	do {
1643 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1644 			return true;
1645 	} while ((memcg = parent_mem_cgroup(memcg)));
1646 	return false;
1647 }
1648 
1649 int alloc_shrinker_info(struct mem_cgroup *memcg);
1650 void free_shrinker_info(struct mem_cgroup *memcg);
1651 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1652 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1653 #else
1654 #define mem_cgroup_sockets_enabled 0
1655 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1656 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1657 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1658 {
1659 	return false;
1660 }
1661 
1662 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1663 				    int nid, int shrinker_id)
1664 {
1665 }
1666 #endif
1667 
1668 #ifdef CONFIG_MEMCG_KMEM
1669 bool mem_cgroup_kmem_disabled(void);
1670 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1671 void __memcg_kmem_uncharge_page(struct page *page, int order);
1672 
1673 /*
1674  * The returned objcg pointer is safe to use without additional
1675  * protection within a scope. The scope is defined either by
1676  * the current task (similar to the "current" global variable)
1677  * or by set_active_memcg() pair.
1678  * Please, use obj_cgroup_get() to get a reference if the pointer
1679  * needs to be used outside of the local scope.
1680  */
1681 struct obj_cgroup *current_obj_cgroup(void);
1682 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1683 
1684 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1685 {
1686 	struct obj_cgroup *objcg = current_obj_cgroup();
1687 
1688 	if (objcg)
1689 		obj_cgroup_get(objcg);
1690 
1691 	return objcg;
1692 }
1693 
1694 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1695 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1696 
1697 extern struct static_key_false memcg_bpf_enabled_key;
1698 static inline bool memcg_bpf_enabled(void)
1699 {
1700 	return static_branch_likely(&memcg_bpf_enabled_key);
1701 }
1702 
1703 extern struct static_key_false memcg_kmem_online_key;
1704 
1705 static inline bool memcg_kmem_online(void)
1706 {
1707 	return static_branch_likely(&memcg_kmem_online_key);
1708 }
1709 
1710 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1711 					 int order)
1712 {
1713 	if (memcg_kmem_online())
1714 		return __memcg_kmem_charge_page(page, gfp, order);
1715 	return 0;
1716 }
1717 
1718 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1719 {
1720 	if (memcg_kmem_online())
1721 		__memcg_kmem_uncharge_page(page, order);
1722 }
1723 
1724 /*
1725  * A helper for accessing memcg's kmem_id, used for getting
1726  * corresponding LRU lists.
1727  */
1728 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1729 {
1730 	return memcg ? memcg->kmemcg_id : -1;
1731 }
1732 
1733 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1734 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1735 
1736 static inline void count_objcg_event(struct obj_cgroup *objcg,
1737 				     enum vm_event_item idx)
1738 {
1739 	struct mem_cgroup *memcg;
1740 
1741 	if (!memcg_kmem_online())
1742 		return;
1743 
1744 	rcu_read_lock();
1745 	memcg = obj_cgroup_memcg(objcg);
1746 	count_memcg_events(memcg, idx, 1);
1747 	rcu_read_unlock();
1748 }
1749 
1750 #else
1751 static inline bool mem_cgroup_kmem_disabled(void)
1752 {
1753 	return true;
1754 }
1755 
1756 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1757 					 int order)
1758 {
1759 	return 0;
1760 }
1761 
1762 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1763 {
1764 }
1765 
1766 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1767 					   int order)
1768 {
1769 	return 0;
1770 }
1771 
1772 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1773 {
1774 }
1775 
1776 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1777 {
1778 	return NULL;
1779 }
1780 
1781 static inline bool memcg_bpf_enabled(void)
1782 {
1783 	return false;
1784 }
1785 
1786 static inline bool memcg_kmem_online(void)
1787 {
1788 	return false;
1789 }
1790 
1791 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1792 {
1793 	return -1;
1794 }
1795 
1796 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1797 {
1798 	return NULL;
1799 }
1800 
1801 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1802 {
1803 	return NULL;
1804 }
1805 
1806 static inline void count_objcg_event(struct obj_cgroup *objcg,
1807 				     enum vm_event_item idx)
1808 {
1809 }
1810 
1811 #endif /* CONFIG_MEMCG_KMEM */
1812 
1813 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1814 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1815 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1816 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1817 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1818 #else
1819 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1820 {
1821 	return true;
1822 }
1823 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1824 					   size_t size)
1825 {
1826 }
1827 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1828 					     size_t size)
1829 {
1830 }
1831 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1832 {
1833 	/* if zswap is disabled, do not block pages going to the swapping device */
1834 	return true;
1835 }
1836 #endif
1837 
1838 
1839 /* Cgroup v1-related declarations */
1840 
1841 #ifdef CONFIG_MEMCG_V1
1842 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1843 					gfp_t gfp_mask,
1844 					unsigned long *total_scanned);
1845 
1846 bool mem_cgroup_oom_synchronize(bool wait);
1847 
1848 static inline bool task_in_memcg_oom(struct task_struct *p)
1849 {
1850 	return p->memcg_in_oom;
1851 }
1852 
1853 void folio_memcg_lock(struct folio *folio);
1854 void folio_memcg_unlock(struct folio *folio);
1855 
1856 /* try to stablize folio_memcg() for all the pages in a memcg */
1857 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1858 {
1859 	rcu_read_lock();
1860 
1861 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
1862 		return true;
1863 
1864 	rcu_read_unlock();
1865 	return false;
1866 }
1867 
1868 static inline void mem_cgroup_unlock_pages(void)
1869 {
1870 	rcu_read_unlock();
1871 }
1872 
1873 static inline void mem_cgroup_enter_user_fault(void)
1874 {
1875 	WARN_ON(current->in_user_fault);
1876 	current->in_user_fault = 1;
1877 }
1878 
1879 static inline void mem_cgroup_exit_user_fault(void)
1880 {
1881 	WARN_ON(!current->in_user_fault);
1882 	current->in_user_fault = 0;
1883 }
1884 
1885 #else /* CONFIG_MEMCG_V1 */
1886 static inline
1887 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1888 					gfp_t gfp_mask,
1889 					unsigned long *total_scanned)
1890 {
1891 	return 0;
1892 }
1893 
1894 static inline void folio_memcg_lock(struct folio *folio)
1895 {
1896 }
1897 
1898 static inline void folio_memcg_unlock(struct folio *folio)
1899 {
1900 }
1901 
1902 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1903 {
1904 	/* to match folio_memcg_rcu() */
1905 	rcu_read_lock();
1906 	return true;
1907 }
1908 
1909 static inline void mem_cgroup_unlock_pages(void)
1910 {
1911 	rcu_read_unlock();
1912 }
1913 
1914 static inline bool task_in_memcg_oom(struct task_struct *p)
1915 {
1916 	return false;
1917 }
1918 
1919 static inline bool mem_cgroup_oom_synchronize(bool wait)
1920 {
1921 	return false;
1922 }
1923 
1924 static inline void mem_cgroup_enter_user_fault(void)
1925 {
1926 }
1927 
1928 static inline void mem_cgroup_exit_user_fault(void)
1929 {
1930 }
1931 
1932 #endif /* CONFIG_MEMCG_V1 */
1933 
1934 #endif /* _LINUX_MEMCONTROL_H */
1935