xref: /linux-6.15/include/linux/memcontrol.h (revision c9fdc4d5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_NR_STAT,
38 };
39 
40 enum memcg_memory_event {
41 	MEMCG_LOW,
42 	MEMCG_HIGH,
43 	MEMCG_MAX,
44 	MEMCG_OOM,
45 	MEMCG_OOM_KILL,
46 	MEMCG_OOM_GROUP_KILL,
47 	MEMCG_SWAP_HIGH,
48 	MEMCG_SWAP_MAX,
49 	MEMCG_SWAP_FAIL,
50 	MEMCG_NR_MEMORY_EVENTS,
51 };
52 
53 struct mem_cgroup_reclaim_cookie {
54 	pg_data_t *pgdat;
55 	unsigned int generation;
56 };
57 
58 #ifdef CONFIG_MEMCG
59 
60 #define MEM_CGROUP_ID_SHIFT	16
61 #define MEM_CGROUP_ID_MAX	USHRT_MAX
62 
63 struct mem_cgroup_id {
64 	int id;
65 	refcount_t ref;
66 };
67 
68 /*
69  * Per memcg event counter is incremented at every pagein/pageout. With THP,
70  * it will be incremented by the number of pages. This counter is used
71  * to trigger some periodic events. This is straightforward and better
72  * than using jiffies etc. to handle periodic memcg event.
73  */
74 enum mem_cgroup_events_target {
75 	MEM_CGROUP_TARGET_THRESH,
76 	MEM_CGROUP_TARGET_SOFTLIMIT,
77 	MEM_CGROUP_NTARGETS,
78 };
79 
80 struct memcg_vmstats_percpu {
81 	/* Local (CPU and cgroup) page state & events */
82 	long			state[MEMCG_NR_STAT];
83 	unsigned long		events[NR_VM_EVENT_ITEMS];
84 
85 	/* Delta calculation for lockless upward propagation */
86 	long			state_prev[MEMCG_NR_STAT];
87 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
88 
89 	/* Cgroup1: threshold notifications & softlimit tree updates */
90 	unsigned long		nr_page_events;
91 	unsigned long		targets[MEM_CGROUP_NTARGETS];
92 };
93 
94 struct memcg_vmstats {
95 	/* Aggregated (CPU and subtree) page state & events */
96 	long			state[MEMCG_NR_STAT];
97 	unsigned long		events[NR_VM_EVENT_ITEMS];
98 
99 	/* Pending child counts during tree propagation */
100 	long			state_pending[MEMCG_NR_STAT];
101 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
102 };
103 
104 struct mem_cgroup_reclaim_iter {
105 	struct mem_cgroup *position;
106 	/* scan generation, increased every round-trip */
107 	unsigned int generation;
108 };
109 
110 /*
111  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
112  * shrinkers, which have elements charged to this memcg.
113  */
114 struct shrinker_info {
115 	struct rcu_head rcu;
116 	atomic_long_t *nr_deferred;
117 	unsigned long *map;
118 };
119 
120 struct lruvec_stats_percpu {
121 	/* Local (CPU and cgroup) state */
122 	long state[NR_VM_NODE_STAT_ITEMS];
123 
124 	/* Delta calculation for lockless upward propagation */
125 	long state_prev[NR_VM_NODE_STAT_ITEMS];
126 };
127 
128 struct lruvec_stats {
129 	/* Aggregated (CPU and subtree) state */
130 	long state[NR_VM_NODE_STAT_ITEMS];
131 
132 	/* Pending child counts during tree propagation */
133 	long state_pending[NR_VM_NODE_STAT_ITEMS];
134 };
135 
136 /*
137  * per-node information in memory controller.
138  */
139 struct mem_cgroup_per_node {
140 	struct lruvec		lruvec;
141 
142 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
143 	struct lruvec_stats			lruvec_stats;
144 
145 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
146 
147 	struct mem_cgroup_reclaim_iter	iter;
148 
149 	struct shrinker_info __rcu	*shrinker_info;
150 
151 	struct rb_node		tree_node;	/* RB tree node */
152 	unsigned long		usage_in_excess;/* Set to the value by which */
153 						/* the soft limit is exceeded*/
154 	bool			on_tree;
155 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
156 						/* use container_of	   */
157 };
158 
159 struct mem_cgroup_threshold {
160 	struct eventfd_ctx *eventfd;
161 	unsigned long threshold;
162 };
163 
164 /* For threshold */
165 struct mem_cgroup_threshold_ary {
166 	/* An array index points to threshold just below or equal to usage. */
167 	int current_threshold;
168 	/* Size of entries[] */
169 	unsigned int size;
170 	/* Array of thresholds */
171 	struct mem_cgroup_threshold entries[];
172 };
173 
174 struct mem_cgroup_thresholds {
175 	/* Primary thresholds array */
176 	struct mem_cgroup_threshold_ary *primary;
177 	/*
178 	 * Spare threshold array.
179 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
180 	 * It must be able to store at least primary->size - 1 entries.
181 	 */
182 	struct mem_cgroup_threshold_ary *spare;
183 };
184 
185 #if defined(CONFIG_SMP)
186 struct memcg_padding {
187 	char x[0];
188 } ____cacheline_internodealigned_in_smp;
189 #define MEMCG_PADDING(name)      struct memcg_padding name
190 #else
191 #define MEMCG_PADDING(name)
192 #endif
193 
194 /*
195  * Remember four most recent foreign writebacks with dirty pages in this
196  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
197  * one in a given round, we're likely to catch it later if it keeps
198  * foreign-dirtying, so a fairly low count should be enough.
199  *
200  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
201  */
202 #define MEMCG_CGWB_FRN_CNT	4
203 
204 struct memcg_cgwb_frn {
205 	u64 bdi_id;			/* bdi->id of the foreign inode */
206 	int memcg_id;			/* memcg->css.id of foreign inode */
207 	u64 at;				/* jiffies_64 at the time of dirtying */
208 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
209 };
210 
211 /*
212  * Bucket for arbitrarily byte-sized objects charged to a memory
213  * cgroup. The bucket can be reparented in one piece when the cgroup
214  * is destroyed, without having to round up the individual references
215  * of all live memory objects in the wild.
216  */
217 struct obj_cgroup {
218 	struct percpu_ref refcnt;
219 	struct mem_cgroup *memcg;
220 	atomic_t nr_charged_bytes;
221 	union {
222 		struct list_head list;
223 		struct rcu_head rcu;
224 	};
225 };
226 
227 /*
228  * The memory controller data structure. The memory controller controls both
229  * page cache and RSS per cgroup. We would eventually like to provide
230  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231  * to help the administrator determine what knobs to tune.
232  */
233 struct mem_cgroup {
234 	struct cgroup_subsys_state css;
235 
236 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
237 	struct mem_cgroup_id id;
238 
239 	/* Accounted resources */
240 	struct page_counter memory;		/* Both v1 & v2 */
241 
242 	union {
243 		struct page_counter swap;	/* v2 only */
244 		struct page_counter memsw;	/* v1 only */
245 	};
246 
247 	/* Legacy consumer-oriented counters */
248 	struct page_counter kmem;		/* v1 only */
249 	struct page_counter tcpmem;		/* v1 only */
250 
251 	/* Range enforcement for interrupt charges */
252 	struct work_struct high_work;
253 
254 	unsigned long soft_limit;
255 
256 	/* vmpressure notifications */
257 	struct vmpressure vmpressure;
258 
259 	/*
260 	 * Should the OOM killer kill all belonging tasks, had it kill one?
261 	 */
262 	bool oom_group;
263 
264 	/* protected by memcg_oom_lock */
265 	bool		oom_lock;
266 	int		under_oom;
267 
268 	int	swappiness;
269 	/* OOM-Killer disable */
270 	int		oom_kill_disable;
271 
272 	/* memory.events and memory.events.local */
273 	struct cgroup_file events_file;
274 	struct cgroup_file events_local_file;
275 
276 	/* handle for "memory.swap.events" */
277 	struct cgroup_file swap_events_file;
278 
279 	/* protect arrays of thresholds */
280 	struct mutex thresholds_lock;
281 
282 	/* thresholds for memory usage. RCU-protected */
283 	struct mem_cgroup_thresholds thresholds;
284 
285 	/* thresholds for mem+swap usage. RCU-protected */
286 	struct mem_cgroup_thresholds memsw_thresholds;
287 
288 	/* For oom notifier event fd */
289 	struct list_head oom_notify;
290 
291 	/*
292 	 * Should we move charges of a task when a task is moved into this
293 	 * mem_cgroup ? And what type of charges should we move ?
294 	 */
295 	unsigned long move_charge_at_immigrate;
296 	/* taken only while moving_account > 0 */
297 	spinlock_t		move_lock;
298 	unsigned long		move_lock_flags;
299 
300 	MEMCG_PADDING(_pad1_);
301 
302 	/* memory.stat */
303 	struct memcg_vmstats	vmstats;
304 
305 	/* memory.events */
306 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
307 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
308 
309 	unsigned long		socket_pressure;
310 
311 	/* Legacy tcp memory accounting */
312 	bool			tcpmem_active;
313 	int			tcpmem_pressure;
314 
315 #ifdef CONFIG_MEMCG_KMEM
316 	int kmemcg_id;
317 	struct obj_cgroup __rcu *objcg;
318 	struct list_head objcg_list; /* list of inherited objcgs */
319 #endif
320 
321 	MEMCG_PADDING(_pad2_);
322 
323 	/*
324 	 * set > 0 if pages under this cgroup are moving to other cgroup.
325 	 */
326 	atomic_t		moving_account;
327 	struct task_struct	*move_lock_task;
328 
329 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
330 
331 #ifdef CONFIG_CGROUP_WRITEBACK
332 	struct list_head cgwb_list;
333 	struct wb_domain cgwb_domain;
334 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
335 #endif
336 
337 	/* List of events which userspace want to receive */
338 	struct list_head event_list;
339 	spinlock_t event_list_lock;
340 
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 	struct deferred_split deferred_split_queue;
343 #endif
344 
345 	struct mem_cgroup_per_node *nodeinfo[];
346 };
347 
348 /*
349  * size of first charge trial. "32" comes from vmscan.c's magic value.
350  * TODO: maybe necessary to use big numbers in big irons.
351  */
352 #define MEMCG_CHARGE_BATCH 32U
353 
354 extern struct mem_cgroup *root_mem_cgroup;
355 
356 enum page_memcg_data_flags {
357 	/* page->memcg_data is a pointer to an objcgs vector */
358 	MEMCG_DATA_OBJCGS = (1UL << 0),
359 	/* page has been accounted as a non-slab kernel page */
360 	MEMCG_DATA_KMEM = (1UL << 1),
361 	/* the next bit after the last actual flag */
362 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
363 };
364 
365 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
366 
367 static inline bool folio_memcg_kmem(struct folio *folio);
368 
369 /*
370  * After the initialization objcg->memcg is always pointing at
371  * a valid memcg, but can be atomically swapped to the parent memcg.
372  *
373  * The caller must ensure that the returned memcg won't be released:
374  * e.g. acquire the rcu_read_lock or css_set_lock.
375  */
376 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
377 {
378 	return READ_ONCE(objcg->memcg);
379 }
380 
381 /*
382  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
383  * @folio: Pointer to the folio.
384  *
385  * Returns a pointer to the memory cgroup associated with the folio,
386  * or NULL. This function assumes that the folio is known to have a
387  * proper memory cgroup pointer. It's not safe to call this function
388  * against some type of folios, e.g. slab folios or ex-slab folios or
389  * kmem folios.
390  */
391 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
392 {
393 	unsigned long memcg_data = folio->memcg_data;
394 
395 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
396 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
397 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
398 
399 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
400 }
401 
402 /*
403  * __folio_objcg - get the object cgroup associated with a kmem folio.
404  * @folio: Pointer to the folio.
405  *
406  * Returns a pointer to the object cgroup associated with the folio,
407  * or NULL. This function assumes that the folio is known to have a
408  * proper object cgroup pointer. It's not safe to call this function
409  * against some type of folios, e.g. slab folios or ex-slab folios or
410  * LRU folios.
411  */
412 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
413 {
414 	unsigned long memcg_data = folio->memcg_data;
415 
416 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
417 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
418 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
419 
420 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
421 }
422 
423 /*
424  * folio_memcg - Get the memory cgroup associated with a folio.
425  * @folio: Pointer to the folio.
426  *
427  * Returns a pointer to the memory cgroup associated with the folio,
428  * or NULL. This function assumes that the folio is known to have a
429  * proper memory cgroup pointer. It's not safe to call this function
430  * against some type of folios, e.g. slab folios or ex-slab folios.
431  *
432  * For a non-kmem folio any of the following ensures folio and memcg binding
433  * stability:
434  *
435  * - the folio lock
436  * - LRU isolation
437  * - lock_page_memcg()
438  * - exclusive reference
439  *
440  * For a kmem folio a caller should hold an rcu read lock to protect memcg
441  * associated with a kmem folio from being released.
442  */
443 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
444 {
445 	if (folio_memcg_kmem(folio))
446 		return obj_cgroup_memcg(__folio_objcg(folio));
447 	return __folio_memcg(folio);
448 }
449 
450 static inline struct mem_cgroup *page_memcg(struct page *page)
451 {
452 	return folio_memcg(page_folio(page));
453 }
454 
455 /**
456  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
457  * @folio: Pointer to the folio.
458  *
459  * This function assumes that the folio is known to have a
460  * proper memory cgroup pointer. It's not safe to call this function
461  * against some type of folios, e.g. slab folios or ex-slab folios.
462  *
463  * Return: A pointer to the memory cgroup associated with the folio,
464  * or NULL.
465  */
466 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
467 {
468 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
469 
470 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
471 	WARN_ON_ONCE(!rcu_read_lock_held());
472 
473 	if (memcg_data & MEMCG_DATA_KMEM) {
474 		struct obj_cgroup *objcg;
475 
476 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
477 		return obj_cgroup_memcg(objcg);
478 	}
479 
480 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
481 }
482 
483 /*
484  * page_memcg_check - get the memory cgroup associated with a page
485  * @page: a pointer to the page struct
486  *
487  * Returns a pointer to the memory cgroup associated with the page,
488  * or NULL. This function unlike page_memcg() can take any page
489  * as an argument. It has to be used in cases when it's not known if a page
490  * has an associated memory cgroup pointer or an object cgroups vector or
491  * an object cgroup.
492  *
493  * For a non-kmem page any of the following ensures page and memcg binding
494  * stability:
495  *
496  * - the page lock
497  * - LRU isolation
498  * - lock_page_memcg()
499  * - exclusive reference
500  *
501  * For a kmem page a caller should hold an rcu read lock to protect memcg
502  * associated with a kmem page from being released.
503  */
504 static inline struct mem_cgroup *page_memcg_check(struct page *page)
505 {
506 	/*
507 	 * Because page->memcg_data might be changed asynchronously
508 	 * for slab pages, READ_ONCE() should be used here.
509 	 */
510 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
511 
512 	if (memcg_data & MEMCG_DATA_OBJCGS)
513 		return NULL;
514 
515 	if (memcg_data & MEMCG_DATA_KMEM) {
516 		struct obj_cgroup *objcg;
517 
518 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
519 		return obj_cgroup_memcg(objcg);
520 	}
521 
522 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
523 }
524 
525 #ifdef CONFIG_MEMCG_KMEM
526 /*
527  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
528  * @folio: Pointer to the folio.
529  *
530  * Checks if the folio has MemcgKmem flag set. The caller must ensure
531  * that the folio has an associated memory cgroup. It's not safe to call
532  * this function against some types of folios, e.g. slab folios.
533  */
534 static inline bool folio_memcg_kmem(struct folio *folio)
535 {
536 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
537 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
538 	return folio->memcg_data & MEMCG_DATA_KMEM;
539 }
540 
541 /*
542  * page_objcgs - get the object cgroups vector associated with a page
543  * @page: a pointer to the page struct
544  *
545  * Returns a pointer to the object cgroups vector associated with the page,
546  * or NULL. This function assumes that the page is known to have an
547  * associated object cgroups vector. It's not safe to call this function
548  * against pages, which might have an associated memory cgroup: e.g.
549  * kernel stack pages.
550  */
551 static inline struct obj_cgroup **page_objcgs(struct page *page)
552 {
553 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
554 
555 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
556 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
557 
558 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
559 }
560 
561 /*
562  * page_objcgs_check - get the object cgroups vector associated with a page
563  * @page: a pointer to the page struct
564  *
565  * Returns a pointer to the object cgroups vector associated with the page,
566  * or NULL. This function is safe to use if the page can be directly associated
567  * with a memory cgroup.
568  */
569 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
570 {
571 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
572 
573 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
574 		return NULL;
575 
576 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
577 
578 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
579 }
580 
581 #else
582 static inline bool folio_memcg_kmem(struct folio *folio)
583 {
584 	return false;
585 }
586 
587 static inline struct obj_cgroup **page_objcgs(struct page *page)
588 {
589 	return NULL;
590 }
591 
592 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
593 {
594 	return NULL;
595 }
596 #endif
597 
598 static inline bool PageMemcgKmem(struct page *page)
599 {
600 	return folio_memcg_kmem(page_folio(page));
601 }
602 
603 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
604 {
605 	return (memcg == root_mem_cgroup);
606 }
607 
608 static inline bool mem_cgroup_disabled(void)
609 {
610 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
611 }
612 
613 static inline void mem_cgroup_protection(struct mem_cgroup *root,
614 					 struct mem_cgroup *memcg,
615 					 unsigned long *min,
616 					 unsigned long *low)
617 {
618 	*min = *low = 0;
619 
620 	if (mem_cgroup_disabled())
621 		return;
622 
623 	/*
624 	 * There is no reclaim protection applied to a targeted reclaim.
625 	 * We are special casing this specific case here because
626 	 * mem_cgroup_protected calculation is not robust enough to keep
627 	 * the protection invariant for calculated effective values for
628 	 * parallel reclaimers with different reclaim target. This is
629 	 * especially a problem for tail memcgs (as they have pages on LRU)
630 	 * which would want to have effective values 0 for targeted reclaim
631 	 * but a different value for external reclaim.
632 	 *
633 	 * Example
634 	 * Let's have global and A's reclaim in parallel:
635 	 *  |
636 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
637 	 *  |\
638 	 *  | C (low = 1G, usage = 2.5G)
639 	 *  B (low = 1G, usage = 0.5G)
640 	 *
641 	 * For the global reclaim
642 	 * A.elow = A.low
643 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
644 	 * C.elow = min(C.usage, C.low)
645 	 *
646 	 * With the effective values resetting we have A reclaim
647 	 * A.elow = 0
648 	 * B.elow = B.low
649 	 * C.elow = C.low
650 	 *
651 	 * If the global reclaim races with A's reclaim then
652 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
653 	 * is possible and reclaiming B would be violating the protection.
654 	 *
655 	 */
656 	if (root == memcg)
657 		return;
658 
659 	*min = READ_ONCE(memcg->memory.emin);
660 	*low = READ_ONCE(memcg->memory.elow);
661 }
662 
663 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
664 				     struct mem_cgroup *memcg);
665 
666 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
667 {
668 	/*
669 	 * The root memcg doesn't account charges, and doesn't support
670 	 * protection.
671 	 */
672 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
673 
674 }
675 
676 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
677 {
678 	if (!mem_cgroup_supports_protection(memcg))
679 		return false;
680 
681 	return READ_ONCE(memcg->memory.elow) >=
682 		page_counter_read(&memcg->memory);
683 }
684 
685 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
686 {
687 	if (!mem_cgroup_supports_protection(memcg))
688 		return false;
689 
690 	return READ_ONCE(memcg->memory.emin) >=
691 		page_counter_read(&memcg->memory);
692 }
693 
694 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
695 
696 /**
697  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
698  * @folio: Folio to charge.
699  * @mm: mm context of the allocating task.
700  * @gfp: Reclaim mode.
701  *
702  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
703  * pages according to @gfp if necessary.  If @mm is NULL, try to
704  * charge to the active memcg.
705  *
706  * Do not use this for folios allocated for swapin.
707  *
708  * Return: 0 on success. Otherwise, an error code is returned.
709  */
710 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
711 				    gfp_t gfp)
712 {
713 	if (mem_cgroup_disabled())
714 		return 0;
715 	return __mem_cgroup_charge(folio, mm, gfp);
716 }
717 
718 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
719 				  gfp_t gfp, swp_entry_t entry);
720 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
721 
722 void __mem_cgroup_uncharge(struct folio *folio);
723 
724 /**
725  * mem_cgroup_uncharge - Uncharge a folio.
726  * @folio: Folio to uncharge.
727  *
728  * Uncharge a folio previously charged with mem_cgroup_charge().
729  */
730 static inline void mem_cgroup_uncharge(struct folio *folio)
731 {
732 	if (mem_cgroup_disabled())
733 		return;
734 	__mem_cgroup_uncharge(folio);
735 }
736 
737 void __mem_cgroup_uncharge_list(struct list_head *page_list);
738 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
739 {
740 	if (mem_cgroup_disabled())
741 		return;
742 	__mem_cgroup_uncharge_list(page_list);
743 }
744 
745 void mem_cgroup_migrate(struct folio *old, struct folio *new);
746 
747 /**
748  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
749  * @memcg: memcg of the wanted lruvec
750  * @pgdat: pglist_data
751  *
752  * Returns the lru list vector holding pages for a given @memcg &
753  * @pgdat combination. This can be the node lruvec, if the memory
754  * controller is disabled.
755  */
756 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
757 					       struct pglist_data *pgdat)
758 {
759 	struct mem_cgroup_per_node *mz;
760 	struct lruvec *lruvec;
761 
762 	if (mem_cgroup_disabled()) {
763 		lruvec = &pgdat->__lruvec;
764 		goto out;
765 	}
766 
767 	if (!memcg)
768 		memcg = root_mem_cgroup;
769 
770 	mz = memcg->nodeinfo[pgdat->node_id];
771 	lruvec = &mz->lruvec;
772 out:
773 	/*
774 	 * Since a node can be onlined after the mem_cgroup was created,
775 	 * we have to be prepared to initialize lruvec->pgdat here;
776 	 * and if offlined then reonlined, we need to reinitialize it.
777 	 */
778 	if (unlikely(lruvec->pgdat != pgdat))
779 		lruvec->pgdat = pgdat;
780 	return lruvec;
781 }
782 
783 /**
784  * folio_lruvec - return lruvec for isolating/putting an LRU folio
785  * @folio: Pointer to the folio.
786  *
787  * This function relies on folio->mem_cgroup being stable.
788  */
789 static inline struct lruvec *folio_lruvec(struct folio *folio)
790 {
791 	struct mem_cgroup *memcg = folio_memcg(folio);
792 
793 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
794 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
795 }
796 
797 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
798 
799 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
800 
801 struct lruvec *folio_lruvec_lock(struct folio *folio);
802 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
803 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
804 						unsigned long *flags);
805 
806 #ifdef CONFIG_DEBUG_VM
807 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
808 #else
809 static inline
810 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
811 {
812 }
813 #endif
814 
815 static inline
816 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
817 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
818 }
819 
820 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
821 {
822 	return percpu_ref_tryget(&objcg->refcnt);
823 }
824 
825 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
826 {
827 	percpu_ref_get(&objcg->refcnt);
828 }
829 
830 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
831 				       unsigned long nr)
832 {
833 	percpu_ref_get_many(&objcg->refcnt, nr);
834 }
835 
836 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
837 {
838 	percpu_ref_put(&objcg->refcnt);
839 }
840 
841 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
842 {
843 	if (memcg)
844 		css_put(&memcg->css);
845 }
846 
847 #define mem_cgroup_from_counter(counter, member)	\
848 	container_of(counter, struct mem_cgroup, member)
849 
850 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
851 				   struct mem_cgroup *,
852 				   struct mem_cgroup_reclaim_cookie *);
853 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
854 int mem_cgroup_scan_tasks(struct mem_cgroup *,
855 			  int (*)(struct task_struct *, void *), void *);
856 
857 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
858 {
859 	if (mem_cgroup_disabled())
860 		return 0;
861 
862 	return memcg->id.id;
863 }
864 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
865 
866 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
867 {
868 	return mem_cgroup_from_css(seq_css(m));
869 }
870 
871 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
872 {
873 	struct mem_cgroup_per_node *mz;
874 
875 	if (mem_cgroup_disabled())
876 		return NULL;
877 
878 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
879 	return mz->memcg;
880 }
881 
882 /**
883  * parent_mem_cgroup - find the accounting parent of a memcg
884  * @memcg: memcg whose parent to find
885  *
886  * Returns the parent memcg, or NULL if this is the root or the memory
887  * controller is in legacy no-hierarchy mode.
888  */
889 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
890 {
891 	if (!memcg->memory.parent)
892 		return NULL;
893 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
894 }
895 
896 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
897 			      struct mem_cgroup *root)
898 {
899 	if (root == memcg)
900 		return true;
901 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
902 }
903 
904 static inline bool mm_match_cgroup(struct mm_struct *mm,
905 				   struct mem_cgroup *memcg)
906 {
907 	struct mem_cgroup *task_memcg;
908 	bool match = false;
909 
910 	rcu_read_lock();
911 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
912 	if (task_memcg)
913 		match = mem_cgroup_is_descendant(task_memcg, memcg);
914 	rcu_read_unlock();
915 	return match;
916 }
917 
918 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
919 ino_t page_cgroup_ino(struct page *page);
920 
921 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
922 {
923 	if (mem_cgroup_disabled())
924 		return true;
925 	return !!(memcg->css.flags & CSS_ONLINE);
926 }
927 
928 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
929 		int zid, int nr_pages);
930 
931 static inline
932 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
933 		enum lru_list lru, int zone_idx)
934 {
935 	struct mem_cgroup_per_node *mz;
936 
937 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
938 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
939 }
940 
941 void mem_cgroup_handle_over_high(void);
942 
943 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
944 
945 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
946 
947 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
948 				struct task_struct *p);
949 
950 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
951 
952 static inline void mem_cgroup_enter_user_fault(void)
953 {
954 	WARN_ON(current->in_user_fault);
955 	current->in_user_fault = 1;
956 }
957 
958 static inline void mem_cgroup_exit_user_fault(void)
959 {
960 	WARN_ON(!current->in_user_fault);
961 	current->in_user_fault = 0;
962 }
963 
964 static inline bool task_in_memcg_oom(struct task_struct *p)
965 {
966 	return p->memcg_in_oom;
967 }
968 
969 bool mem_cgroup_oom_synchronize(bool wait);
970 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
971 					    struct mem_cgroup *oom_domain);
972 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
973 
974 #ifdef CONFIG_MEMCG_SWAP
975 extern bool cgroup_memory_noswap;
976 #endif
977 
978 void folio_memcg_lock(struct folio *folio);
979 void folio_memcg_unlock(struct folio *folio);
980 void lock_page_memcg(struct page *page);
981 void unlock_page_memcg(struct page *page);
982 
983 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
984 
985 /* idx can be of type enum memcg_stat_item or node_stat_item */
986 static inline void mod_memcg_state(struct mem_cgroup *memcg,
987 				   int idx, int val)
988 {
989 	unsigned long flags;
990 
991 	local_irq_save(flags);
992 	__mod_memcg_state(memcg, idx, val);
993 	local_irq_restore(flags);
994 }
995 
996 static inline void mod_memcg_page_state(struct page *page,
997 					int idx, int val)
998 {
999 	struct mem_cgroup *memcg;
1000 
1001 	if (mem_cgroup_disabled())
1002 		return;
1003 
1004 	rcu_read_lock();
1005 	memcg = page_memcg(page);
1006 	if (memcg)
1007 		mod_memcg_state(memcg, idx, val);
1008 	rcu_read_unlock();
1009 }
1010 
1011 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1012 {
1013 	return READ_ONCE(memcg->vmstats.state[idx]);
1014 }
1015 
1016 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1017 					      enum node_stat_item idx)
1018 {
1019 	struct mem_cgroup_per_node *pn;
1020 
1021 	if (mem_cgroup_disabled())
1022 		return node_page_state(lruvec_pgdat(lruvec), idx);
1023 
1024 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1025 	return READ_ONCE(pn->lruvec_stats.state[idx]);
1026 }
1027 
1028 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1029 						    enum node_stat_item idx)
1030 {
1031 	struct mem_cgroup_per_node *pn;
1032 	long x = 0;
1033 	int cpu;
1034 
1035 	if (mem_cgroup_disabled())
1036 		return node_page_state(lruvec_pgdat(lruvec), idx);
1037 
1038 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1039 	for_each_possible_cpu(cpu)
1040 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1041 #ifdef CONFIG_SMP
1042 	if (x < 0)
1043 		x = 0;
1044 #endif
1045 	return x;
1046 }
1047 
1048 void mem_cgroup_flush_stats(void);
1049 
1050 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1051 			      int val);
1052 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1053 
1054 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1055 					 int val)
1056 {
1057 	unsigned long flags;
1058 
1059 	local_irq_save(flags);
1060 	__mod_lruvec_kmem_state(p, idx, val);
1061 	local_irq_restore(flags);
1062 }
1063 
1064 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1065 					  enum node_stat_item idx, int val)
1066 {
1067 	unsigned long flags;
1068 
1069 	local_irq_save(flags);
1070 	__mod_memcg_lruvec_state(lruvec, idx, val);
1071 	local_irq_restore(flags);
1072 }
1073 
1074 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1075 			  unsigned long count);
1076 
1077 static inline void count_memcg_events(struct mem_cgroup *memcg,
1078 				      enum vm_event_item idx,
1079 				      unsigned long count)
1080 {
1081 	unsigned long flags;
1082 
1083 	local_irq_save(flags);
1084 	__count_memcg_events(memcg, idx, count);
1085 	local_irq_restore(flags);
1086 }
1087 
1088 static inline void count_memcg_page_event(struct page *page,
1089 					  enum vm_event_item idx)
1090 {
1091 	struct mem_cgroup *memcg = page_memcg(page);
1092 
1093 	if (memcg)
1094 		count_memcg_events(memcg, idx, 1);
1095 }
1096 
1097 static inline void count_memcg_event_mm(struct mm_struct *mm,
1098 					enum vm_event_item idx)
1099 {
1100 	struct mem_cgroup *memcg;
1101 
1102 	if (mem_cgroup_disabled())
1103 		return;
1104 
1105 	rcu_read_lock();
1106 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1107 	if (likely(memcg))
1108 		count_memcg_events(memcg, idx, 1);
1109 	rcu_read_unlock();
1110 }
1111 
1112 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1113 				      enum memcg_memory_event event)
1114 {
1115 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1116 			  event == MEMCG_SWAP_FAIL;
1117 
1118 	atomic_long_inc(&memcg->memory_events_local[event]);
1119 	if (!swap_event)
1120 		cgroup_file_notify(&memcg->events_local_file);
1121 
1122 	do {
1123 		atomic_long_inc(&memcg->memory_events[event]);
1124 		if (swap_event)
1125 			cgroup_file_notify(&memcg->swap_events_file);
1126 		else
1127 			cgroup_file_notify(&memcg->events_file);
1128 
1129 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1130 			break;
1131 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1132 			break;
1133 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1134 		 !mem_cgroup_is_root(memcg));
1135 }
1136 
1137 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1138 					 enum memcg_memory_event event)
1139 {
1140 	struct mem_cgroup *memcg;
1141 
1142 	if (mem_cgroup_disabled())
1143 		return;
1144 
1145 	rcu_read_lock();
1146 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1147 	if (likely(memcg))
1148 		memcg_memory_event(memcg, event);
1149 	rcu_read_unlock();
1150 }
1151 
1152 void split_page_memcg(struct page *head, unsigned int nr);
1153 
1154 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1155 						gfp_t gfp_mask,
1156 						unsigned long *total_scanned);
1157 
1158 #else /* CONFIG_MEMCG */
1159 
1160 #define MEM_CGROUP_ID_SHIFT	0
1161 #define MEM_CGROUP_ID_MAX	0
1162 
1163 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1164 {
1165 	return NULL;
1166 }
1167 
1168 static inline struct mem_cgroup *page_memcg(struct page *page)
1169 {
1170 	return NULL;
1171 }
1172 
1173 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1174 {
1175 	WARN_ON_ONCE(!rcu_read_lock_held());
1176 	return NULL;
1177 }
1178 
1179 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1180 {
1181 	return NULL;
1182 }
1183 
1184 static inline bool folio_memcg_kmem(struct folio *folio)
1185 {
1186 	return false;
1187 }
1188 
1189 static inline bool PageMemcgKmem(struct page *page)
1190 {
1191 	return false;
1192 }
1193 
1194 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1195 {
1196 	return true;
1197 }
1198 
1199 static inline bool mem_cgroup_disabled(void)
1200 {
1201 	return true;
1202 }
1203 
1204 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1205 				      enum memcg_memory_event event)
1206 {
1207 }
1208 
1209 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1210 					 enum memcg_memory_event event)
1211 {
1212 }
1213 
1214 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1215 					 struct mem_cgroup *memcg,
1216 					 unsigned long *min,
1217 					 unsigned long *low)
1218 {
1219 	*min = *low = 0;
1220 }
1221 
1222 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1223 						   struct mem_cgroup *memcg)
1224 {
1225 }
1226 
1227 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1228 {
1229 	return false;
1230 }
1231 
1232 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1233 {
1234 	return false;
1235 }
1236 
1237 static inline int mem_cgroup_charge(struct folio *folio,
1238 		struct mm_struct *mm, gfp_t gfp)
1239 {
1240 	return 0;
1241 }
1242 
1243 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1244 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1245 {
1246 	return 0;
1247 }
1248 
1249 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1250 {
1251 }
1252 
1253 static inline void mem_cgroup_uncharge(struct folio *folio)
1254 {
1255 }
1256 
1257 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1258 {
1259 }
1260 
1261 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1262 {
1263 }
1264 
1265 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1266 					       struct pglist_data *pgdat)
1267 {
1268 	return &pgdat->__lruvec;
1269 }
1270 
1271 static inline struct lruvec *folio_lruvec(struct folio *folio)
1272 {
1273 	struct pglist_data *pgdat = folio_pgdat(folio);
1274 	return &pgdat->__lruvec;
1275 }
1276 
1277 static inline
1278 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1279 {
1280 }
1281 
1282 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1283 {
1284 	return NULL;
1285 }
1286 
1287 static inline bool mm_match_cgroup(struct mm_struct *mm,
1288 		struct mem_cgroup *memcg)
1289 {
1290 	return true;
1291 }
1292 
1293 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1294 {
1295 	return NULL;
1296 }
1297 
1298 static inline
1299 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1300 {
1301 	return NULL;
1302 }
1303 
1304 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1305 {
1306 }
1307 
1308 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1309 {
1310 	struct pglist_data *pgdat = folio_pgdat(folio);
1311 
1312 	spin_lock(&pgdat->__lruvec.lru_lock);
1313 	return &pgdat->__lruvec;
1314 }
1315 
1316 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1317 {
1318 	struct pglist_data *pgdat = folio_pgdat(folio);
1319 
1320 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1321 	return &pgdat->__lruvec;
1322 }
1323 
1324 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1325 		unsigned long *flagsp)
1326 {
1327 	struct pglist_data *pgdat = folio_pgdat(folio);
1328 
1329 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1330 	return &pgdat->__lruvec;
1331 }
1332 
1333 static inline struct mem_cgroup *
1334 mem_cgroup_iter(struct mem_cgroup *root,
1335 		struct mem_cgroup *prev,
1336 		struct mem_cgroup_reclaim_cookie *reclaim)
1337 {
1338 	return NULL;
1339 }
1340 
1341 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1342 					 struct mem_cgroup *prev)
1343 {
1344 }
1345 
1346 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1347 		int (*fn)(struct task_struct *, void *), void *arg)
1348 {
1349 	return 0;
1350 }
1351 
1352 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1353 {
1354 	return 0;
1355 }
1356 
1357 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1358 {
1359 	WARN_ON_ONCE(id);
1360 	/* XXX: This should always return root_mem_cgroup */
1361 	return NULL;
1362 }
1363 
1364 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1365 {
1366 	return NULL;
1367 }
1368 
1369 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1370 {
1371 	return NULL;
1372 }
1373 
1374 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1375 {
1376 	return true;
1377 }
1378 
1379 static inline
1380 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1381 		enum lru_list lru, int zone_idx)
1382 {
1383 	return 0;
1384 }
1385 
1386 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1387 {
1388 	return 0;
1389 }
1390 
1391 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1392 {
1393 	return 0;
1394 }
1395 
1396 static inline void
1397 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1398 {
1399 }
1400 
1401 static inline void
1402 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1403 {
1404 }
1405 
1406 static inline void lock_page_memcg(struct page *page)
1407 {
1408 }
1409 
1410 static inline void unlock_page_memcg(struct page *page)
1411 {
1412 }
1413 
1414 static inline void folio_memcg_lock(struct folio *folio)
1415 {
1416 }
1417 
1418 static inline void folio_memcg_unlock(struct folio *folio)
1419 {
1420 }
1421 
1422 static inline void mem_cgroup_handle_over_high(void)
1423 {
1424 }
1425 
1426 static inline void mem_cgroup_enter_user_fault(void)
1427 {
1428 }
1429 
1430 static inline void mem_cgroup_exit_user_fault(void)
1431 {
1432 }
1433 
1434 static inline bool task_in_memcg_oom(struct task_struct *p)
1435 {
1436 	return false;
1437 }
1438 
1439 static inline bool mem_cgroup_oom_synchronize(bool wait)
1440 {
1441 	return false;
1442 }
1443 
1444 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1445 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1446 {
1447 	return NULL;
1448 }
1449 
1450 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1451 {
1452 }
1453 
1454 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1455 				     int idx,
1456 				     int nr)
1457 {
1458 }
1459 
1460 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1461 				   int idx,
1462 				   int nr)
1463 {
1464 }
1465 
1466 static inline void mod_memcg_page_state(struct page *page,
1467 					int idx, int val)
1468 {
1469 }
1470 
1471 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1472 {
1473 	return 0;
1474 }
1475 
1476 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1477 					      enum node_stat_item idx)
1478 {
1479 	return node_page_state(lruvec_pgdat(lruvec), idx);
1480 }
1481 
1482 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1483 						    enum node_stat_item idx)
1484 {
1485 	return node_page_state(lruvec_pgdat(lruvec), idx);
1486 }
1487 
1488 static inline void mem_cgroup_flush_stats(void)
1489 {
1490 }
1491 
1492 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1493 					    enum node_stat_item idx, int val)
1494 {
1495 }
1496 
1497 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1498 					   int val)
1499 {
1500 	struct page *page = virt_to_head_page(p);
1501 
1502 	__mod_node_page_state(page_pgdat(page), idx, val);
1503 }
1504 
1505 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1506 					 int val)
1507 {
1508 	struct page *page = virt_to_head_page(p);
1509 
1510 	mod_node_page_state(page_pgdat(page), idx, val);
1511 }
1512 
1513 static inline void count_memcg_events(struct mem_cgroup *memcg,
1514 				      enum vm_event_item idx,
1515 				      unsigned long count)
1516 {
1517 }
1518 
1519 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1520 					enum vm_event_item idx,
1521 					unsigned long count)
1522 {
1523 }
1524 
1525 static inline void count_memcg_page_event(struct page *page,
1526 					  int idx)
1527 {
1528 }
1529 
1530 static inline
1531 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1532 {
1533 }
1534 
1535 static inline void split_page_memcg(struct page *head, unsigned int nr)
1536 {
1537 }
1538 
1539 static inline
1540 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1541 					    gfp_t gfp_mask,
1542 					    unsigned long *total_scanned)
1543 {
1544 	return 0;
1545 }
1546 #endif /* CONFIG_MEMCG */
1547 
1548 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1549 {
1550 	__mod_lruvec_kmem_state(p, idx, 1);
1551 }
1552 
1553 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1554 {
1555 	__mod_lruvec_kmem_state(p, idx, -1);
1556 }
1557 
1558 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1559 {
1560 	struct mem_cgroup *memcg;
1561 
1562 	memcg = lruvec_memcg(lruvec);
1563 	if (!memcg)
1564 		return NULL;
1565 	memcg = parent_mem_cgroup(memcg);
1566 	if (!memcg)
1567 		return NULL;
1568 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1569 }
1570 
1571 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1572 {
1573 	spin_unlock(&lruvec->lru_lock);
1574 }
1575 
1576 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1577 {
1578 	spin_unlock_irq(&lruvec->lru_lock);
1579 }
1580 
1581 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1582 		unsigned long flags)
1583 {
1584 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1585 }
1586 
1587 /* Test requires a stable page->memcg binding, see page_memcg() */
1588 static inline bool folio_matches_lruvec(struct folio *folio,
1589 		struct lruvec *lruvec)
1590 {
1591 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1592 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1593 }
1594 
1595 /* Don't lock again iff page's lruvec locked */
1596 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1597 		struct lruvec *locked_lruvec)
1598 {
1599 	if (locked_lruvec) {
1600 		if (folio_matches_lruvec(folio, locked_lruvec))
1601 			return locked_lruvec;
1602 
1603 		unlock_page_lruvec_irq(locked_lruvec);
1604 	}
1605 
1606 	return folio_lruvec_lock_irq(folio);
1607 }
1608 
1609 /* Don't lock again iff page's lruvec locked */
1610 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1611 		struct lruvec *locked_lruvec, unsigned long *flags)
1612 {
1613 	if (locked_lruvec) {
1614 		if (folio_matches_lruvec(folio, locked_lruvec))
1615 			return locked_lruvec;
1616 
1617 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1618 	}
1619 
1620 	return folio_lruvec_lock_irqsave(folio, flags);
1621 }
1622 
1623 #ifdef CONFIG_CGROUP_WRITEBACK
1624 
1625 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1626 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1627 			 unsigned long *pheadroom, unsigned long *pdirty,
1628 			 unsigned long *pwriteback);
1629 
1630 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1631 					     struct bdi_writeback *wb);
1632 
1633 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1634 						  struct bdi_writeback *wb)
1635 {
1636 	if (mem_cgroup_disabled())
1637 		return;
1638 
1639 	if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1640 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1641 }
1642 
1643 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1644 
1645 #else	/* CONFIG_CGROUP_WRITEBACK */
1646 
1647 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1648 {
1649 	return NULL;
1650 }
1651 
1652 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1653 				       unsigned long *pfilepages,
1654 				       unsigned long *pheadroom,
1655 				       unsigned long *pdirty,
1656 				       unsigned long *pwriteback)
1657 {
1658 }
1659 
1660 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1661 						  struct bdi_writeback *wb)
1662 {
1663 }
1664 
1665 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1666 {
1667 }
1668 
1669 #endif	/* CONFIG_CGROUP_WRITEBACK */
1670 
1671 struct sock;
1672 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1673 			     gfp_t gfp_mask);
1674 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1675 #ifdef CONFIG_MEMCG
1676 extern struct static_key_false memcg_sockets_enabled_key;
1677 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1678 void mem_cgroup_sk_alloc(struct sock *sk);
1679 void mem_cgroup_sk_free(struct sock *sk);
1680 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1681 {
1682 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1683 		return true;
1684 	do {
1685 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1686 			return true;
1687 	} while ((memcg = parent_mem_cgroup(memcg)));
1688 	return false;
1689 }
1690 
1691 int alloc_shrinker_info(struct mem_cgroup *memcg);
1692 void free_shrinker_info(struct mem_cgroup *memcg);
1693 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1694 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1695 #else
1696 #define mem_cgroup_sockets_enabled 0
1697 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1698 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1699 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1700 {
1701 	return false;
1702 }
1703 
1704 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1705 				    int nid, int shrinker_id)
1706 {
1707 }
1708 #endif
1709 
1710 #ifdef CONFIG_MEMCG_KMEM
1711 bool mem_cgroup_kmem_disabled(void);
1712 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1713 void __memcg_kmem_uncharge_page(struct page *page, int order);
1714 
1715 struct obj_cgroup *get_obj_cgroup_from_current(void);
1716 
1717 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1718 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1719 
1720 extern struct static_key_false memcg_kmem_enabled_key;
1721 
1722 extern int memcg_nr_cache_ids;
1723 void memcg_get_cache_ids(void);
1724 void memcg_put_cache_ids(void);
1725 
1726 /*
1727  * Helper macro to loop through all memcg-specific caches. Callers must still
1728  * check if the cache is valid (it is either valid or NULL).
1729  * the slab_mutex must be held when looping through those caches
1730  */
1731 #define for_each_memcg_cache_index(_idx)	\
1732 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1733 
1734 static inline bool memcg_kmem_enabled(void)
1735 {
1736 	return static_branch_likely(&memcg_kmem_enabled_key);
1737 }
1738 
1739 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1740 					 int order)
1741 {
1742 	if (memcg_kmem_enabled())
1743 		return __memcg_kmem_charge_page(page, gfp, order);
1744 	return 0;
1745 }
1746 
1747 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1748 {
1749 	if (memcg_kmem_enabled())
1750 		__memcg_kmem_uncharge_page(page, order);
1751 }
1752 
1753 /*
1754  * A helper for accessing memcg's kmem_id, used for getting
1755  * corresponding LRU lists.
1756  */
1757 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1758 {
1759 	return memcg ? memcg->kmemcg_id : -1;
1760 }
1761 
1762 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1763 
1764 #else
1765 static inline bool mem_cgroup_kmem_disabled(void)
1766 {
1767 	return true;
1768 }
1769 
1770 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1771 					 int order)
1772 {
1773 	return 0;
1774 }
1775 
1776 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1777 {
1778 }
1779 
1780 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1781 					   int order)
1782 {
1783 	return 0;
1784 }
1785 
1786 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1787 {
1788 }
1789 
1790 #define for_each_memcg_cache_index(_idx)	\
1791 	for (; NULL; )
1792 
1793 static inline bool memcg_kmem_enabled(void)
1794 {
1795 	return false;
1796 }
1797 
1798 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1799 {
1800 	return -1;
1801 }
1802 
1803 static inline void memcg_get_cache_ids(void)
1804 {
1805 }
1806 
1807 static inline void memcg_put_cache_ids(void)
1808 {
1809 }
1810 
1811 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1812 {
1813        return NULL;
1814 }
1815 
1816 #endif /* CONFIG_MEMCG_KMEM */
1817 
1818 #endif /* _LINUX_MEMCONTROL_H */
1819