1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 27 struct mem_cgroup; 28 struct page; 29 struct mm_struct; 30 struct kmem_cache; 31 32 /* 33 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 34 * These two lists should keep in accord with each other. 35 */ 36 enum mem_cgroup_stat_index { 37 /* 38 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 39 */ 40 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 41 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 42 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 43 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 44 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 45 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 46 MEM_CGROUP_STAT_NSTATS, 47 }; 48 49 struct mem_cgroup_reclaim_cookie { 50 struct zone *zone; 51 int priority; 52 unsigned int generation; 53 }; 54 55 #ifdef CONFIG_MEMCG 56 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 57 gfp_t gfp_mask, struct mem_cgroup **memcgp); 58 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 59 bool lrucare); 60 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg); 61 void mem_cgroup_uncharge(struct page *page); 62 void mem_cgroup_uncharge_list(struct list_head *page_list); 63 64 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 65 bool lrucare); 66 67 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 68 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 69 70 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 71 struct mem_cgroup *root); 72 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 73 74 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 75 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 76 77 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 78 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); 79 80 static inline bool mm_match_cgroup(struct mm_struct *mm, 81 struct mem_cgroup *memcg) 82 { 83 struct mem_cgroup *task_memcg; 84 bool match = false; 85 86 rcu_read_lock(); 87 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 88 if (task_memcg) 89 match = mem_cgroup_is_descendant(task_memcg, memcg); 90 rcu_read_unlock(); 91 return match; 92 } 93 94 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 95 96 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 97 struct mem_cgroup *, 98 struct mem_cgroup_reclaim_cookie *); 99 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 100 101 /* 102 * For memory reclaim. 103 */ 104 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 105 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 106 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 107 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 108 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 109 struct task_struct *p); 110 111 static inline void mem_cgroup_oom_enable(void) 112 { 113 WARN_ON(current->memcg_oom.may_oom); 114 current->memcg_oom.may_oom = 1; 115 } 116 117 static inline void mem_cgroup_oom_disable(void) 118 { 119 WARN_ON(!current->memcg_oom.may_oom); 120 current->memcg_oom.may_oom = 0; 121 } 122 123 static inline bool task_in_memcg_oom(struct task_struct *p) 124 { 125 return p->memcg_oom.memcg; 126 } 127 128 bool mem_cgroup_oom_synchronize(bool wait); 129 130 #ifdef CONFIG_MEMCG_SWAP 131 extern int do_swap_account; 132 #endif 133 134 static inline bool mem_cgroup_disabled(void) 135 { 136 if (memory_cgrp_subsys.disabled) 137 return true; 138 return false; 139 } 140 141 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, bool *locked, 142 unsigned long *flags); 143 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked, 144 unsigned long *flags); 145 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 146 enum mem_cgroup_stat_index idx, int val); 147 148 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 149 enum mem_cgroup_stat_index idx) 150 { 151 mem_cgroup_update_page_stat(memcg, idx, 1); 152 } 153 154 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 155 enum mem_cgroup_stat_index idx) 156 { 157 mem_cgroup_update_page_stat(memcg, idx, -1); 158 } 159 160 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 161 gfp_t gfp_mask, 162 unsigned long *total_scanned); 163 164 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 165 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 166 enum vm_event_item idx) 167 { 168 if (mem_cgroup_disabled()) 169 return; 170 __mem_cgroup_count_vm_event(mm, idx); 171 } 172 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 173 void mem_cgroup_split_huge_fixup(struct page *head); 174 #endif 175 176 #else /* CONFIG_MEMCG */ 177 struct mem_cgroup; 178 179 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 180 gfp_t gfp_mask, 181 struct mem_cgroup **memcgp) 182 { 183 *memcgp = NULL; 184 return 0; 185 } 186 187 static inline void mem_cgroup_commit_charge(struct page *page, 188 struct mem_cgroup *memcg, 189 bool lrucare) 190 { 191 } 192 193 static inline void mem_cgroup_cancel_charge(struct page *page, 194 struct mem_cgroup *memcg) 195 { 196 } 197 198 static inline void mem_cgroup_uncharge(struct page *page) 199 { 200 } 201 202 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 203 { 204 } 205 206 static inline void mem_cgroup_migrate(struct page *oldpage, 207 struct page *newpage, 208 bool lrucare) 209 { 210 } 211 212 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 213 struct mem_cgroup *memcg) 214 { 215 return &zone->lruvec; 216 } 217 218 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 219 struct zone *zone) 220 { 221 return &zone->lruvec; 222 } 223 224 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 225 { 226 return NULL; 227 } 228 229 static inline bool mm_match_cgroup(struct mm_struct *mm, 230 struct mem_cgroup *memcg) 231 { 232 return true; 233 } 234 235 static inline bool task_in_mem_cgroup(struct task_struct *task, 236 const struct mem_cgroup *memcg) 237 { 238 return true; 239 } 240 241 static inline struct cgroup_subsys_state 242 *mem_cgroup_css(struct mem_cgroup *memcg) 243 { 244 return NULL; 245 } 246 247 static inline struct mem_cgroup * 248 mem_cgroup_iter(struct mem_cgroup *root, 249 struct mem_cgroup *prev, 250 struct mem_cgroup_reclaim_cookie *reclaim) 251 { 252 return NULL; 253 } 254 255 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 256 struct mem_cgroup *prev) 257 { 258 } 259 260 static inline bool mem_cgroup_disabled(void) 261 { 262 return true; 263 } 264 265 static inline int 266 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 267 { 268 return 1; 269 } 270 271 static inline unsigned long 272 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 273 { 274 return 0; 275 } 276 277 static inline void 278 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 279 int increment) 280 { 281 } 282 283 static inline void 284 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 285 { 286 } 287 288 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, 289 bool *locked, unsigned long *flags) 290 { 291 return NULL; 292 } 293 294 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, 295 bool *locked, unsigned long *flags) 296 { 297 } 298 299 static inline void mem_cgroup_oom_enable(void) 300 { 301 } 302 303 static inline void mem_cgroup_oom_disable(void) 304 { 305 } 306 307 static inline bool task_in_memcg_oom(struct task_struct *p) 308 { 309 return false; 310 } 311 312 static inline bool mem_cgroup_oom_synchronize(bool wait) 313 { 314 return false; 315 } 316 317 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 318 enum mem_cgroup_stat_index idx) 319 { 320 } 321 322 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 323 enum mem_cgroup_stat_index idx) 324 { 325 } 326 327 static inline 328 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 329 gfp_t gfp_mask, 330 unsigned long *total_scanned) 331 { 332 return 0; 333 } 334 335 static inline void mem_cgroup_split_huge_fixup(struct page *head) 336 { 337 } 338 339 static inline 340 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 341 { 342 } 343 #endif /* CONFIG_MEMCG */ 344 345 enum { 346 UNDER_LIMIT, 347 SOFT_LIMIT, 348 OVER_LIMIT, 349 }; 350 351 struct sock; 352 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 353 void sock_update_memcg(struct sock *sk); 354 void sock_release_memcg(struct sock *sk); 355 #else 356 static inline void sock_update_memcg(struct sock *sk) 357 { 358 } 359 static inline void sock_release_memcg(struct sock *sk) 360 { 361 } 362 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 363 364 #ifdef CONFIG_MEMCG_KMEM 365 extern struct static_key memcg_kmem_enabled_key; 366 367 extern int memcg_limited_groups_array_size; 368 369 /* 370 * Helper macro to loop through all memcg-specific caches. Callers must still 371 * check if the cache is valid (it is either valid or NULL). 372 * the slab_mutex must be held when looping through those caches 373 */ 374 #define for_each_memcg_cache_index(_idx) \ 375 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 376 377 static inline bool memcg_kmem_enabled(void) 378 { 379 return static_key_false(&memcg_kmem_enabled_key); 380 } 381 382 /* 383 * In general, we'll do everything in our power to not incur in any overhead 384 * for non-memcg users for the kmem functions. Not even a function call, if we 385 * can avoid it. 386 * 387 * Therefore, we'll inline all those functions so that in the best case, we'll 388 * see that kmemcg is off for everybody and proceed quickly. If it is on, 389 * we'll still do most of the flag checking inline. We check a lot of 390 * conditions, but because they are pretty simple, they are expected to be 391 * fast. 392 */ 393 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 394 int order); 395 void __memcg_kmem_commit_charge(struct page *page, 396 struct mem_cgroup *memcg, int order); 397 void __memcg_kmem_uncharge_pages(struct page *page, int order); 398 399 int memcg_cache_id(struct mem_cgroup *memcg); 400 401 void memcg_update_array_size(int num_groups); 402 403 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep); 404 void __memcg_kmem_put_cache(struct kmem_cache *cachep); 405 406 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order); 407 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order); 408 409 int __memcg_cleanup_cache_params(struct kmem_cache *s); 410 411 /** 412 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 413 * @gfp: the gfp allocation flags. 414 * @memcg: a pointer to the memcg this was charged against. 415 * @order: allocation order. 416 * 417 * returns true if the memcg where the current task belongs can hold this 418 * allocation. 419 * 420 * We return true automatically if this allocation is not to be accounted to 421 * any memcg. 422 */ 423 static inline bool 424 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 425 { 426 if (!memcg_kmem_enabled()) 427 return true; 428 429 /* 430 * __GFP_NOFAIL allocations will move on even if charging is not 431 * possible. Therefore we don't even try, and have this allocation 432 * unaccounted. We could in theory charge it forcibly, but we hope 433 * those allocations are rare, and won't be worth the trouble. 434 */ 435 if (gfp & __GFP_NOFAIL) 436 return true; 437 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 438 return true; 439 440 /* If the test is dying, just let it go. */ 441 if (unlikely(fatal_signal_pending(current))) 442 return true; 443 444 return __memcg_kmem_newpage_charge(gfp, memcg, order); 445 } 446 447 /** 448 * memcg_kmem_uncharge_pages: uncharge pages from memcg 449 * @page: pointer to struct page being freed 450 * @order: allocation order. 451 */ 452 static inline void 453 memcg_kmem_uncharge_pages(struct page *page, int order) 454 { 455 if (memcg_kmem_enabled()) 456 __memcg_kmem_uncharge_pages(page, order); 457 } 458 459 /** 460 * memcg_kmem_commit_charge: embeds correct memcg in a page 461 * @page: pointer to struct page recently allocated 462 * @memcg: the memcg structure we charged against 463 * @order: allocation order. 464 * 465 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 466 * failure of the allocation. if @page is NULL, this function will revert the 467 * charges. Otherwise, it will commit @page to @memcg. 468 */ 469 static inline void 470 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 471 { 472 if (memcg_kmem_enabled() && memcg) 473 __memcg_kmem_commit_charge(page, memcg, order); 474 } 475 476 /** 477 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 478 * @cachep: the original global kmem cache 479 * @gfp: allocation flags. 480 * 481 * All memory allocated from a per-memcg cache is charged to the owner memcg. 482 */ 483 static __always_inline struct kmem_cache * 484 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 485 { 486 if (!memcg_kmem_enabled()) 487 return cachep; 488 if (gfp & __GFP_NOFAIL) 489 return cachep; 490 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 491 return cachep; 492 if (unlikely(fatal_signal_pending(current))) 493 return cachep; 494 495 return __memcg_kmem_get_cache(cachep); 496 } 497 498 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 499 { 500 if (memcg_kmem_enabled()) 501 __memcg_kmem_put_cache(cachep); 502 } 503 #else 504 #define for_each_memcg_cache_index(_idx) \ 505 for (; NULL; ) 506 507 static inline bool memcg_kmem_enabled(void) 508 { 509 return false; 510 } 511 512 static inline bool 513 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 514 { 515 return true; 516 } 517 518 static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 519 { 520 } 521 522 static inline void 523 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 524 { 525 } 526 527 static inline int memcg_cache_id(struct mem_cgroup *memcg) 528 { 529 return -1; 530 } 531 532 static inline struct kmem_cache * 533 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 534 { 535 return cachep; 536 } 537 538 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 539 { 540 } 541 #endif /* CONFIG_MEMCG_KMEM */ 542 #endif /* _LINUX_MEMCONTROL_H */ 543 544