xref: /linux-6.15/include/linux/memcontrol.h (revision c819e2cf)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 
27 struct mem_cgroup;
28 struct page;
29 struct mm_struct;
30 struct kmem_cache;
31 
32 /*
33  * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
34  * These two lists should keep in accord with each other.
35  */
36 enum mem_cgroup_stat_index {
37 	/*
38 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
39 	 */
40 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
41 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
42 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
43 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
44 	MEM_CGROUP_STAT_WRITEBACK,	/* # of pages under writeback */
45 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
46 	MEM_CGROUP_STAT_NSTATS,
47 };
48 
49 struct mem_cgroup_reclaim_cookie {
50 	struct zone *zone;
51 	int priority;
52 	unsigned int generation;
53 };
54 
55 #ifdef CONFIG_MEMCG
56 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
57 			  gfp_t gfp_mask, struct mem_cgroup **memcgp);
58 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
59 			      bool lrucare);
60 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
61 void mem_cgroup_uncharge(struct page *page);
62 void mem_cgroup_uncharge_list(struct list_head *page_list);
63 
64 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
65 			bool lrucare);
66 
67 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
68 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
69 
70 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
71 			      struct mem_cgroup *root);
72 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
73 
74 extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
75 extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
76 
77 extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
78 extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
79 
80 static inline bool mm_match_cgroup(struct mm_struct *mm,
81 				   struct mem_cgroup *memcg)
82 {
83 	struct mem_cgroup *task_memcg;
84 	bool match = false;
85 
86 	rcu_read_lock();
87 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
88 	if (task_memcg)
89 		match = mem_cgroup_is_descendant(task_memcg, memcg);
90 	rcu_read_unlock();
91 	return match;
92 }
93 
94 extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
95 
96 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
97 				   struct mem_cgroup *,
98 				   struct mem_cgroup_reclaim_cookie *);
99 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
100 
101 /*
102  * For memory reclaim.
103  */
104 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
105 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
106 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
107 void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
108 extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
109 					struct task_struct *p);
110 
111 static inline void mem_cgroup_oom_enable(void)
112 {
113 	WARN_ON(current->memcg_oom.may_oom);
114 	current->memcg_oom.may_oom = 1;
115 }
116 
117 static inline void mem_cgroup_oom_disable(void)
118 {
119 	WARN_ON(!current->memcg_oom.may_oom);
120 	current->memcg_oom.may_oom = 0;
121 }
122 
123 static inline bool task_in_memcg_oom(struct task_struct *p)
124 {
125 	return p->memcg_oom.memcg;
126 }
127 
128 bool mem_cgroup_oom_synchronize(bool wait);
129 
130 #ifdef CONFIG_MEMCG_SWAP
131 extern int do_swap_account;
132 #endif
133 
134 static inline bool mem_cgroup_disabled(void)
135 {
136 	if (memory_cgrp_subsys.disabled)
137 		return true;
138 	return false;
139 }
140 
141 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, bool *locked,
142 					      unsigned long *flags);
143 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
144 			      unsigned long *flags);
145 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
146 				 enum mem_cgroup_stat_index idx, int val);
147 
148 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
149 					    enum mem_cgroup_stat_index idx)
150 {
151 	mem_cgroup_update_page_stat(memcg, idx, 1);
152 }
153 
154 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
155 					    enum mem_cgroup_stat_index idx)
156 {
157 	mem_cgroup_update_page_stat(memcg, idx, -1);
158 }
159 
160 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
161 						gfp_t gfp_mask,
162 						unsigned long *total_scanned);
163 
164 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
165 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
166 					     enum vm_event_item idx)
167 {
168 	if (mem_cgroup_disabled())
169 		return;
170 	__mem_cgroup_count_vm_event(mm, idx);
171 }
172 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
173 void mem_cgroup_split_huge_fixup(struct page *head);
174 #endif
175 
176 #else /* CONFIG_MEMCG */
177 struct mem_cgroup;
178 
179 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
180 					gfp_t gfp_mask,
181 					struct mem_cgroup **memcgp)
182 {
183 	*memcgp = NULL;
184 	return 0;
185 }
186 
187 static inline void mem_cgroup_commit_charge(struct page *page,
188 					    struct mem_cgroup *memcg,
189 					    bool lrucare)
190 {
191 }
192 
193 static inline void mem_cgroup_cancel_charge(struct page *page,
194 					    struct mem_cgroup *memcg)
195 {
196 }
197 
198 static inline void mem_cgroup_uncharge(struct page *page)
199 {
200 }
201 
202 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
203 {
204 }
205 
206 static inline void mem_cgroup_migrate(struct page *oldpage,
207 				      struct page *newpage,
208 				      bool lrucare)
209 {
210 }
211 
212 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
213 						    struct mem_cgroup *memcg)
214 {
215 	return &zone->lruvec;
216 }
217 
218 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
219 						    struct zone *zone)
220 {
221 	return &zone->lruvec;
222 }
223 
224 static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
225 {
226 	return NULL;
227 }
228 
229 static inline bool mm_match_cgroup(struct mm_struct *mm,
230 		struct mem_cgroup *memcg)
231 {
232 	return true;
233 }
234 
235 static inline bool task_in_mem_cgroup(struct task_struct *task,
236 				      const struct mem_cgroup *memcg)
237 {
238 	return true;
239 }
240 
241 static inline struct cgroup_subsys_state
242 		*mem_cgroup_css(struct mem_cgroup *memcg)
243 {
244 	return NULL;
245 }
246 
247 static inline struct mem_cgroup *
248 mem_cgroup_iter(struct mem_cgroup *root,
249 		struct mem_cgroup *prev,
250 		struct mem_cgroup_reclaim_cookie *reclaim)
251 {
252 	return NULL;
253 }
254 
255 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
256 					 struct mem_cgroup *prev)
257 {
258 }
259 
260 static inline bool mem_cgroup_disabled(void)
261 {
262 	return true;
263 }
264 
265 static inline int
266 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
267 {
268 	return 1;
269 }
270 
271 static inline unsigned long
272 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
273 {
274 	return 0;
275 }
276 
277 static inline void
278 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
279 			      int increment)
280 {
281 }
282 
283 static inline void
284 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
285 {
286 }
287 
288 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
289 					bool *locked, unsigned long *flags)
290 {
291 	return NULL;
292 }
293 
294 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg,
295 					bool *locked, unsigned long *flags)
296 {
297 }
298 
299 static inline void mem_cgroup_oom_enable(void)
300 {
301 }
302 
303 static inline void mem_cgroup_oom_disable(void)
304 {
305 }
306 
307 static inline bool task_in_memcg_oom(struct task_struct *p)
308 {
309 	return false;
310 }
311 
312 static inline bool mem_cgroup_oom_synchronize(bool wait)
313 {
314 	return false;
315 }
316 
317 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
318 					    enum mem_cgroup_stat_index idx)
319 {
320 }
321 
322 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
323 					    enum mem_cgroup_stat_index idx)
324 {
325 }
326 
327 static inline
328 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
329 					    gfp_t gfp_mask,
330 					    unsigned long *total_scanned)
331 {
332 	return 0;
333 }
334 
335 static inline void mem_cgroup_split_huge_fixup(struct page *head)
336 {
337 }
338 
339 static inline
340 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
341 {
342 }
343 #endif /* CONFIG_MEMCG */
344 
345 enum {
346 	UNDER_LIMIT,
347 	SOFT_LIMIT,
348 	OVER_LIMIT,
349 };
350 
351 struct sock;
352 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
353 void sock_update_memcg(struct sock *sk);
354 void sock_release_memcg(struct sock *sk);
355 #else
356 static inline void sock_update_memcg(struct sock *sk)
357 {
358 }
359 static inline void sock_release_memcg(struct sock *sk)
360 {
361 }
362 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
363 
364 #ifdef CONFIG_MEMCG_KMEM
365 extern struct static_key memcg_kmem_enabled_key;
366 
367 extern int memcg_limited_groups_array_size;
368 
369 /*
370  * Helper macro to loop through all memcg-specific caches. Callers must still
371  * check if the cache is valid (it is either valid or NULL).
372  * the slab_mutex must be held when looping through those caches
373  */
374 #define for_each_memcg_cache_index(_idx)	\
375 	for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
376 
377 static inline bool memcg_kmem_enabled(void)
378 {
379 	return static_key_false(&memcg_kmem_enabled_key);
380 }
381 
382 /*
383  * In general, we'll do everything in our power to not incur in any overhead
384  * for non-memcg users for the kmem functions. Not even a function call, if we
385  * can avoid it.
386  *
387  * Therefore, we'll inline all those functions so that in the best case, we'll
388  * see that kmemcg is off for everybody and proceed quickly.  If it is on,
389  * we'll still do most of the flag checking inline. We check a lot of
390  * conditions, but because they are pretty simple, they are expected to be
391  * fast.
392  */
393 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
394 					int order);
395 void __memcg_kmem_commit_charge(struct page *page,
396 				       struct mem_cgroup *memcg, int order);
397 void __memcg_kmem_uncharge_pages(struct page *page, int order);
398 
399 int memcg_cache_id(struct mem_cgroup *memcg);
400 
401 void memcg_update_array_size(int num_groups);
402 
403 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
404 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
405 
406 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order);
407 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order);
408 
409 int __memcg_cleanup_cache_params(struct kmem_cache *s);
410 
411 /**
412  * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
413  * @gfp: the gfp allocation flags.
414  * @memcg: a pointer to the memcg this was charged against.
415  * @order: allocation order.
416  *
417  * returns true if the memcg where the current task belongs can hold this
418  * allocation.
419  *
420  * We return true automatically if this allocation is not to be accounted to
421  * any memcg.
422  */
423 static inline bool
424 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
425 {
426 	if (!memcg_kmem_enabled())
427 		return true;
428 
429 	/*
430 	 * __GFP_NOFAIL allocations will move on even if charging is not
431 	 * possible. Therefore we don't even try, and have this allocation
432 	 * unaccounted. We could in theory charge it forcibly, but we hope
433 	 * those allocations are rare, and won't be worth the trouble.
434 	 */
435 	if (gfp & __GFP_NOFAIL)
436 		return true;
437 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
438 		return true;
439 
440 	/* If the test is dying, just let it go. */
441 	if (unlikely(fatal_signal_pending(current)))
442 		return true;
443 
444 	return __memcg_kmem_newpage_charge(gfp, memcg, order);
445 }
446 
447 /**
448  * memcg_kmem_uncharge_pages: uncharge pages from memcg
449  * @page: pointer to struct page being freed
450  * @order: allocation order.
451  */
452 static inline void
453 memcg_kmem_uncharge_pages(struct page *page, int order)
454 {
455 	if (memcg_kmem_enabled())
456 		__memcg_kmem_uncharge_pages(page, order);
457 }
458 
459 /**
460  * memcg_kmem_commit_charge: embeds correct memcg in a page
461  * @page: pointer to struct page recently allocated
462  * @memcg: the memcg structure we charged against
463  * @order: allocation order.
464  *
465  * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
466  * failure of the allocation. if @page is NULL, this function will revert the
467  * charges. Otherwise, it will commit @page to @memcg.
468  */
469 static inline void
470 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
471 {
472 	if (memcg_kmem_enabled() && memcg)
473 		__memcg_kmem_commit_charge(page, memcg, order);
474 }
475 
476 /**
477  * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
478  * @cachep: the original global kmem cache
479  * @gfp: allocation flags.
480  *
481  * All memory allocated from a per-memcg cache is charged to the owner memcg.
482  */
483 static __always_inline struct kmem_cache *
484 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
485 {
486 	if (!memcg_kmem_enabled())
487 		return cachep;
488 	if (gfp & __GFP_NOFAIL)
489 		return cachep;
490 	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
491 		return cachep;
492 	if (unlikely(fatal_signal_pending(current)))
493 		return cachep;
494 
495 	return __memcg_kmem_get_cache(cachep);
496 }
497 
498 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
499 {
500 	if (memcg_kmem_enabled())
501 		__memcg_kmem_put_cache(cachep);
502 }
503 #else
504 #define for_each_memcg_cache_index(_idx)	\
505 	for (; NULL; )
506 
507 static inline bool memcg_kmem_enabled(void)
508 {
509 	return false;
510 }
511 
512 static inline bool
513 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
514 {
515 	return true;
516 }
517 
518 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
519 {
520 }
521 
522 static inline void
523 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
524 {
525 }
526 
527 static inline int memcg_cache_id(struct mem_cgroup *memcg)
528 {
529 	return -1;
530 }
531 
532 static inline struct kmem_cache *
533 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
534 {
535 	return cachep;
536 }
537 
538 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
539 {
540 }
541 #endif /* CONFIG_MEMCG_KMEM */
542 #endif /* _LINUX_MEMCONTROL_H */
543 
544