xref: /linux-6.15/include/linux/memcontrol.h (revision be2e2cb1)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 #define MEM_CGROUP_ID_MAX	USHRT_MAX
65 
66 struct mem_cgroup_id {
67 	int id;
68 	refcount_t ref;
69 };
70 
71 /*
72  * Per memcg event counter is incremented at every pagein/pageout. With THP,
73  * it will be incremented by the number of pages. This counter is used
74  * to trigger some periodic events. This is straightforward and better
75  * than using jiffies etc. to handle periodic memcg event.
76  */
77 enum mem_cgroup_events_target {
78 	MEM_CGROUP_TARGET_THRESH,
79 	MEM_CGROUP_TARGET_SOFTLIMIT,
80 	MEM_CGROUP_NTARGETS,
81 };
82 
83 struct memcg_vmstats_percpu {
84 	/* Local (CPU and cgroup) page state & events */
85 	long			state[MEMCG_NR_STAT];
86 	unsigned long		events[NR_VM_EVENT_ITEMS];
87 
88 	/* Delta calculation for lockless upward propagation */
89 	long			state_prev[MEMCG_NR_STAT];
90 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
91 
92 	/* Cgroup1: threshold notifications & softlimit tree updates */
93 	unsigned long		nr_page_events;
94 	unsigned long		targets[MEM_CGROUP_NTARGETS];
95 };
96 
97 struct memcg_vmstats {
98 	/* Aggregated (CPU and subtree) page state & events */
99 	long			state[MEMCG_NR_STAT];
100 	unsigned long		events[NR_VM_EVENT_ITEMS];
101 
102 	/* Pending child counts during tree propagation */
103 	long			state_pending[MEMCG_NR_STAT];
104 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
105 };
106 
107 struct mem_cgroup_reclaim_iter {
108 	struct mem_cgroup *position;
109 	/* scan generation, increased every round-trip */
110 	unsigned int generation;
111 };
112 
113 /*
114  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
115  * shrinkers, which have elements charged to this memcg.
116  */
117 struct shrinker_info {
118 	struct rcu_head rcu;
119 	atomic_long_t *nr_deferred;
120 	unsigned long *map;
121 };
122 
123 struct lruvec_stats_percpu {
124 	/* Local (CPU and cgroup) state */
125 	long state[NR_VM_NODE_STAT_ITEMS];
126 
127 	/* Delta calculation for lockless upward propagation */
128 	long state_prev[NR_VM_NODE_STAT_ITEMS];
129 };
130 
131 struct lruvec_stats {
132 	/* Aggregated (CPU and subtree) state */
133 	long state[NR_VM_NODE_STAT_ITEMS];
134 
135 	/* Pending child counts during tree propagation */
136 	long state_pending[NR_VM_NODE_STAT_ITEMS];
137 };
138 
139 /*
140  * per-node information in memory controller.
141  */
142 struct mem_cgroup_per_node {
143 	struct lruvec		lruvec;
144 
145 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
146 	struct lruvec_stats			lruvec_stats;
147 
148 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
149 
150 	struct mem_cgroup_reclaim_iter	iter;
151 
152 	struct shrinker_info __rcu	*shrinker_info;
153 
154 	struct rb_node		tree_node;	/* RB tree node */
155 	unsigned long		usage_in_excess;/* Set to the value by which */
156 						/* the soft limit is exceeded*/
157 	bool			on_tree;
158 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
159 						/* use container_of	   */
160 };
161 
162 struct mem_cgroup_threshold {
163 	struct eventfd_ctx *eventfd;
164 	unsigned long threshold;
165 };
166 
167 /* For threshold */
168 struct mem_cgroup_threshold_ary {
169 	/* An array index points to threshold just below or equal to usage. */
170 	int current_threshold;
171 	/* Size of entries[] */
172 	unsigned int size;
173 	/* Array of thresholds */
174 	struct mem_cgroup_threshold entries[];
175 };
176 
177 struct mem_cgroup_thresholds {
178 	/* Primary thresholds array */
179 	struct mem_cgroup_threshold_ary *primary;
180 	/*
181 	 * Spare threshold array.
182 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
183 	 * It must be able to store at least primary->size - 1 entries.
184 	 */
185 	struct mem_cgroup_threshold_ary *spare;
186 };
187 
188 #if defined(CONFIG_SMP)
189 struct memcg_padding {
190 	char x[0];
191 } ____cacheline_internodealigned_in_smp;
192 #define MEMCG_PADDING(name)      struct memcg_padding name
193 #else
194 #define MEMCG_PADDING(name)
195 #endif
196 
197 /*
198  * Remember four most recent foreign writebacks with dirty pages in this
199  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
200  * one in a given round, we're likely to catch it later if it keeps
201  * foreign-dirtying, so a fairly low count should be enough.
202  *
203  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
204  */
205 #define MEMCG_CGWB_FRN_CNT	4
206 
207 struct memcg_cgwb_frn {
208 	u64 bdi_id;			/* bdi->id of the foreign inode */
209 	int memcg_id;			/* memcg->css.id of foreign inode */
210 	u64 at;				/* jiffies_64 at the time of dirtying */
211 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
212 };
213 
214 /*
215  * Bucket for arbitrarily byte-sized objects charged to a memory
216  * cgroup. The bucket can be reparented in one piece when the cgroup
217  * is destroyed, without having to round up the individual references
218  * of all live memory objects in the wild.
219  */
220 struct obj_cgroup {
221 	struct percpu_ref refcnt;
222 	struct mem_cgroup *memcg;
223 	atomic_t nr_charged_bytes;
224 	union {
225 		struct list_head list; /* protected by objcg_lock */
226 		struct rcu_head rcu;
227 	};
228 };
229 
230 /*
231  * The memory controller data structure. The memory controller controls both
232  * page cache and RSS per cgroup. We would eventually like to provide
233  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
234  * to help the administrator determine what knobs to tune.
235  */
236 struct mem_cgroup {
237 	struct cgroup_subsys_state css;
238 
239 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
240 	struct mem_cgroup_id id;
241 
242 	/* Accounted resources */
243 	struct page_counter memory;		/* Both v1 & v2 */
244 
245 	union {
246 		struct page_counter swap;	/* v2 only */
247 		struct page_counter memsw;	/* v1 only */
248 	};
249 
250 	/* Legacy consumer-oriented counters */
251 	struct page_counter kmem;		/* v1 only */
252 	struct page_counter tcpmem;		/* v1 only */
253 
254 	/* Range enforcement for interrupt charges */
255 	struct work_struct high_work;
256 
257 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
258 	unsigned long zswap_max;
259 #endif
260 
261 	unsigned long soft_limit;
262 
263 	/* vmpressure notifications */
264 	struct vmpressure vmpressure;
265 
266 	/*
267 	 * Should the OOM killer kill all belonging tasks, had it kill one?
268 	 */
269 	bool oom_group;
270 
271 	/* protected by memcg_oom_lock */
272 	bool		oom_lock;
273 	int		under_oom;
274 
275 	int	swappiness;
276 	/* OOM-Killer disable */
277 	int		oom_kill_disable;
278 
279 	/* memory.events and memory.events.local */
280 	struct cgroup_file events_file;
281 	struct cgroup_file events_local_file;
282 
283 	/* handle for "memory.swap.events" */
284 	struct cgroup_file swap_events_file;
285 
286 	/* protect arrays of thresholds */
287 	struct mutex thresholds_lock;
288 
289 	/* thresholds for memory usage. RCU-protected */
290 	struct mem_cgroup_thresholds thresholds;
291 
292 	/* thresholds for mem+swap usage. RCU-protected */
293 	struct mem_cgroup_thresholds memsw_thresholds;
294 
295 	/* For oom notifier event fd */
296 	struct list_head oom_notify;
297 
298 	/*
299 	 * Should we move charges of a task when a task is moved into this
300 	 * mem_cgroup ? And what type of charges should we move ?
301 	 */
302 	unsigned long move_charge_at_immigrate;
303 	/* taken only while moving_account > 0 */
304 	spinlock_t		move_lock;
305 	unsigned long		move_lock_flags;
306 
307 	MEMCG_PADDING(_pad1_);
308 
309 	/* memory.stat */
310 	struct memcg_vmstats	vmstats;
311 
312 	/* memory.events */
313 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
314 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
315 
316 	unsigned long		socket_pressure;
317 
318 	/* Legacy tcp memory accounting */
319 	bool			tcpmem_active;
320 	int			tcpmem_pressure;
321 
322 #ifdef CONFIG_MEMCG_KMEM
323 	int kmemcg_id;
324 	struct obj_cgroup __rcu *objcg;
325 	/* list of inherited objcgs, protected by objcg_lock */
326 	struct list_head objcg_list;
327 #endif
328 
329 	MEMCG_PADDING(_pad2_);
330 
331 	/*
332 	 * set > 0 if pages under this cgroup are moving to other cgroup.
333 	 */
334 	atomic_t		moving_account;
335 	struct task_struct	*move_lock_task;
336 
337 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
338 
339 #ifdef CONFIG_CGROUP_WRITEBACK
340 	struct list_head cgwb_list;
341 	struct wb_domain cgwb_domain;
342 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
343 #endif
344 
345 	/* List of events which userspace want to receive */
346 	struct list_head event_list;
347 	spinlock_t event_list_lock;
348 
349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 	struct deferred_split deferred_split_queue;
351 #endif
352 
353 	struct mem_cgroup_per_node *nodeinfo[];
354 };
355 
356 /*
357  * size of first charge trial. "32" comes from vmscan.c's magic value.
358  * TODO: maybe necessary to use big numbers in big irons.
359  */
360 #define MEMCG_CHARGE_BATCH 32U
361 
362 extern struct mem_cgroup *root_mem_cgroup;
363 
364 enum page_memcg_data_flags {
365 	/* page->memcg_data is a pointer to an objcgs vector */
366 	MEMCG_DATA_OBJCGS = (1UL << 0),
367 	/* page has been accounted as a non-slab kernel page */
368 	MEMCG_DATA_KMEM = (1UL << 1),
369 	/* the next bit after the last actual flag */
370 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
371 };
372 
373 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
374 
375 static inline bool folio_memcg_kmem(struct folio *folio);
376 
377 /*
378  * After the initialization objcg->memcg is always pointing at
379  * a valid memcg, but can be atomically swapped to the parent memcg.
380  *
381  * The caller must ensure that the returned memcg won't be released:
382  * e.g. acquire the rcu_read_lock or css_set_lock.
383  */
384 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
385 {
386 	return READ_ONCE(objcg->memcg);
387 }
388 
389 /*
390  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
391  * @folio: Pointer to the folio.
392  *
393  * Returns a pointer to the memory cgroup associated with the folio,
394  * or NULL. This function assumes that the folio is known to have a
395  * proper memory cgroup pointer. It's not safe to call this function
396  * against some type of folios, e.g. slab folios or ex-slab folios or
397  * kmem folios.
398  */
399 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
400 {
401 	unsigned long memcg_data = folio->memcg_data;
402 
403 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
404 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
405 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
406 
407 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
408 }
409 
410 /*
411  * __folio_objcg - get the object cgroup associated with a kmem folio.
412  * @folio: Pointer to the folio.
413  *
414  * Returns a pointer to the object cgroup associated with the folio,
415  * or NULL. This function assumes that the folio is known to have a
416  * proper object cgroup pointer. It's not safe to call this function
417  * against some type of folios, e.g. slab folios or ex-slab folios or
418  * LRU folios.
419  */
420 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
421 {
422 	unsigned long memcg_data = folio->memcg_data;
423 
424 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
425 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
426 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
427 
428 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
429 }
430 
431 /*
432  * folio_memcg - Get the memory cgroup associated with a folio.
433  * @folio: Pointer to the folio.
434  *
435  * Returns a pointer to the memory cgroup associated with the folio,
436  * or NULL. This function assumes that the folio is known to have a
437  * proper memory cgroup pointer. It's not safe to call this function
438  * against some type of folios, e.g. slab folios or ex-slab folios.
439  *
440  * For a non-kmem folio any of the following ensures folio and memcg binding
441  * stability:
442  *
443  * - the folio lock
444  * - LRU isolation
445  * - lock_page_memcg()
446  * - exclusive reference
447  *
448  * For a kmem folio a caller should hold an rcu read lock to protect memcg
449  * associated with a kmem folio from being released.
450  */
451 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
452 {
453 	if (folio_memcg_kmem(folio))
454 		return obj_cgroup_memcg(__folio_objcg(folio));
455 	return __folio_memcg(folio);
456 }
457 
458 static inline struct mem_cgroup *page_memcg(struct page *page)
459 {
460 	return folio_memcg(page_folio(page));
461 }
462 
463 /**
464  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
465  * @folio: Pointer to the folio.
466  *
467  * This function assumes that the folio is known to have a
468  * proper memory cgroup pointer. It's not safe to call this function
469  * against some type of folios, e.g. slab folios or ex-slab folios.
470  *
471  * Return: A pointer to the memory cgroup associated with the folio,
472  * or NULL.
473  */
474 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
475 {
476 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
477 
478 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
479 	WARN_ON_ONCE(!rcu_read_lock_held());
480 
481 	if (memcg_data & MEMCG_DATA_KMEM) {
482 		struct obj_cgroup *objcg;
483 
484 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
485 		return obj_cgroup_memcg(objcg);
486 	}
487 
488 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
489 }
490 
491 /*
492  * page_memcg_check - get the memory cgroup associated with a page
493  * @page: a pointer to the page struct
494  *
495  * Returns a pointer to the memory cgroup associated with the page,
496  * or NULL. This function unlike page_memcg() can take any page
497  * as an argument. It has to be used in cases when it's not known if a page
498  * has an associated memory cgroup pointer or an object cgroups vector or
499  * an object cgroup.
500  *
501  * For a non-kmem page any of the following ensures page and memcg binding
502  * stability:
503  *
504  * - the page lock
505  * - LRU isolation
506  * - lock_page_memcg()
507  * - exclusive reference
508  *
509  * For a kmem page a caller should hold an rcu read lock to protect memcg
510  * associated with a kmem page from being released.
511  */
512 static inline struct mem_cgroup *page_memcg_check(struct page *page)
513 {
514 	/*
515 	 * Because page->memcg_data might be changed asynchronously
516 	 * for slab pages, READ_ONCE() should be used here.
517 	 */
518 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
519 
520 	if (memcg_data & MEMCG_DATA_OBJCGS)
521 		return NULL;
522 
523 	if (memcg_data & MEMCG_DATA_KMEM) {
524 		struct obj_cgroup *objcg;
525 
526 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
527 		return obj_cgroup_memcg(objcg);
528 	}
529 
530 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
531 }
532 
533 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
534 {
535 	struct mem_cgroup *memcg;
536 
537 	rcu_read_lock();
538 retry:
539 	memcg = obj_cgroup_memcg(objcg);
540 	if (unlikely(!css_tryget(&memcg->css)))
541 		goto retry;
542 	rcu_read_unlock();
543 
544 	return memcg;
545 }
546 
547 #ifdef CONFIG_MEMCG_KMEM
548 /*
549  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
550  * @folio: Pointer to the folio.
551  *
552  * Checks if the folio has MemcgKmem flag set. The caller must ensure
553  * that the folio has an associated memory cgroup. It's not safe to call
554  * this function against some types of folios, e.g. slab folios.
555  */
556 static inline bool folio_memcg_kmem(struct folio *folio)
557 {
558 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
559 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
560 	return folio->memcg_data & MEMCG_DATA_KMEM;
561 }
562 
563 
564 #else
565 static inline bool folio_memcg_kmem(struct folio *folio)
566 {
567 	return false;
568 }
569 
570 #endif
571 
572 static inline bool PageMemcgKmem(struct page *page)
573 {
574 	return folio_memcg_kmem(page_folio(page));
575 }
576 
577 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
578 {
579 	return (memcg == root_mem_cgroup);
580 }
581 
582 static inline bool mem_cgroup_disabled(void)
583 {
584 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
585 }
586 
587 static inline void mem_cgroup_protection(struct mem_cgroup *root,
588 					 struct mem_cgroup *memcg,
589 					 unsigned long *min,
590 					 unsigned long *low)
591 {
592 	*min = *low = 0;
593 
594 	if (mem_cgroup_disabled())
595 		return;
596 
597 	/*
598 	 * There is no reclaim protection applied to a targeted reclaim.
599 	 * We are special casing this specific case here because
600 	 * mem_cgroup_protected calculation is not robust enough to keep
601 	 * the protection invariant for calculated effective values for
602 	 * parallel reclaimers with different reclaim target. This is
603 	 * especially a problem for tail memcgs (as they have pages on LRU)
604 	 * which would want to have effective values 0 for targeted reclaim
605 	 * but a different value for external reclaim.
606 	 *
607 	 * Example
608 	 * Let's have global and A's reclaim in parallel:
609 	 *  |
610 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
611 	 *  |\
612 	 *  | C (low = 1G, usage = 2.5G)
613 	 *  B (low = 1G, usage = 0.5G)
614 	 *
615 	 * For the global reclaim
616 	 * A.elow = A.low
617 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
618 	 * C.elow = min(C.usage, C.low)
619 	 *
620 	 * With the effective values resetting we have A reclaim
621 	 * A.elow = 0
622 	 * B.elow = B.low
623 	 * C.elow = C.low
624 	 *
625 	 * If the global reclaim races with A's reclaim then
626 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
627 	 * is possible and reclaiming B would be violating the protection.
628 	 *
629 	 */
630 	if (root == memcg)
631 		return;
632 
633 	*min = READ_ONCE(memcg->memory.emin);
634 	*low = READ_ONCE(memcg->memory.elow);
635 }
636 
637 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
638 				     struct mem_cgroup *memcg);
639 
640 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
641 {
642 	/*
643 	 * The root memcg doesn't account charges, and doesn't support
644 	 * protection.
645 	 */
646 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
647 
648 }
649 
650 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
651 {
652 	if (!mem_cgroup_supports_protection(memcg))
653 		return false;
654 
655 	return READ_ONCE(memcg->memory.elow) >=
656 		page_counter_read(&memcg->memory);
657 }
658 
659 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
660 {
661 	if (!mem_cgroup_supports_protection(memcg))
662 		return false;
663 
664 	return READ_ONCE(memcg->memory.emin) >=
665 		page_counter_read(&memcg->memory);
666 }
667 
668 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
669 
670 /**
671  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
672  * @folio: Folio to charge.
673  * @mm: mm context of the allocating task.
674  * @gfp: Reclaim mode.
675  *
676  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
677  * pages according to @gfp if necessary.  If @mm is NULL, try to
678  * charge to the active memcg.
679  *
680  * Do not use this for folios allocated for swapin.
681  *
682  * Return: 0 on success. Otherwise, an error code is returned.
683  */
684 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
685 				    gfp_t gfp)
686 {
687 	if (mem_cgroup_disabled())
688 		return 0;
689 	return __mem_cgroup_charge(folio, mm, gfp);
690 }
691 
692 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
693 				  gfp_t gfp, swp_entry_t entry);
694 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
695 
696 void __mem_cgroup_uncharge(struct folio *folio);
697 
698 /**
699  * mem_cgroup_uncharge - Uncharge a folio.
700  * @folio: Folio to uncharge.
701  *
702  * Uncharge a folio previously charged with mem_cgroup_charge().
703  */
704 static inline void mem_cgroup_uncharge(struct folio *folio)
705 {
706 	if (mem_cgroup_disabled())
707 		return;
708 	__mem_cgroup_uncharge(folio);
709 }
710 
711 void __mem_cgroup_uncharge_list(struct list_head *page_list);
712 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
713 {
714 	if (mem_cgroup_disabled())
715 		return;
716 	__mem_cgroup_uncharge_list(page_list);
717 }
718 
719 void mem_cgroup_migrate(struct folio *old, struct folio *new);
720 
721 /**
722  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
723  * @memcg: memcg of the wanted lruvec
724  * @pgdat: pglist_data
725  *
726  * Returns the lru list vector holding pages for a given @memcg &
727  * @pgdat combination. This can be the node lruvec, if the memory
728  * controller is disabled.
729  */
730 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
731 					       struct pglist_data *pgdat)
732 {
733 	struct mem_cgroup_per_node *mz;
734 	struct lruvec *lruvec;
735 
736 	if (mem_cgroup_disabled()) {
737 		lruvec = &pgdat->__lruvec;
738 		goto out;
739 	}
740 
741 	if (!memcg)
742 		memcg = root_mem_cgroup;
743 
744 	mz = memcg->nodeinfo[pgdat->node_id];
745 	lruvec = &mz->lruvec;
746 out:
747 	/*
748 	 * Since a node can be onlined after the mem_cgroup was created,
749 	 * we have to be prepared to initialize lruvec->pgdat here;
750 	 * and if offlined then reonlined, we need to reinitialize it.
751 	 */
752 	if (unlikely(lruvec->pgdat != pgdat))
753 		lruvec->pgdat = pgdat;
754 	return lruvec;
755 }
756 
757 /**
758  * folio_lruvec - return lruvec for isolating/putting an LRU folio
759  * @folio: Pointer to the folio.
760  *
761  * This function relies on folio->mem_cgroup being stable.
762  */
763 static inline struct lruvec *folio_lruvec(struct folio *folio)
764 {
765 	struct mem_cgroup *memcg = folio_memcg(folio);
766 
767 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
768 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
769 }
770 
771 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
772 
773 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
774 
775 struct lruvec *folio_lruvec_lock(struct folio *folio);
776 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
777 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
778 						unsigned long *flags);
779 
780 #ifdef CONFIG_DEBUG_VM
781 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
782 #else
783 static inline
784 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
785 {
786 }
787 #endif
788 
789 static inline
790 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
791 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
792 }
793 
794 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
795 {
796 	return percpu_ref_tryget(&objcg->refcnt);
797 }
798 
799 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
800 {
801 	percpu_ref_get(&objcg->refcnt);
802 }
803 
804 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
805 				       unsigned long nr)
806 {
807 	percpu_ref_get_many(&objcg->refcnt, nr);
808 }
809 
810 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
811 {
812 	percpu_ref_put(&objcg->refcnt);
813 }
814 
815 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
816 {
817 	if (memcg)
818 		css_put(&memcg->css);
819 }
820 
821 #define mem_cgroup_from_counter(counter, member)	\
822 	container_of(counter, struct mem_cgroup, member)
823 
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
825 				   struct mem_cgroup *,
826 				   struct mem_cgroup_reclaim_cookie *);
827 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
828 int mem_cgroup_scan_tasks(struct mem_cgroup *,
829 			  int (*)(struct task_struct *, void *), void *);
830 
831 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
832 {
833 	if (mem_cgroup_disabled())
834 		return 0;
835 
836 	return memcg->id.id;
837 }
838 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
839 
840 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
841 {
842 	return mem_cgroup_from_css(seq_css(m));
843 }
844 
845 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
846 {
847 	struct mem_cgroup_per_node *mz;
848 
849 	if (mem_cgroup_disabled())
850 		return NULL;
851 
852 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
853 	return mz->memcg;
854 }
855 
856 /**
857  * parent_mem_cgroup - find the accounting parent of a memcg
858  * @memcg: memcg whose parent to find
859  *
860  * Returns the parent memcg, or NULL if this is the root or the memory
861  * controller is in legacy no-hierarchy mode.
862  */
863 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
864 {
865 	return mem_cgroup_from_css(memcg->css.parent);
866 }
867 
868 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
869 			      struct mem_cgroup *root)
870 {
871 	if (root == memcg)
872 		return true;
873 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
874 }
875 
876 static inline bool mm_match_cgroup(struct mm_struct *mm,
877 				   struct mem_cgroup *memcg)
878 {
879 	struct mem_cgroup *task_memcg;
880 	bool match = false;
881 
882 	rcu_read_lock();
883 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
884 	if (task_memcg)
885 		match = mem_cgroup_is_descendant(task_memcg, memcg);
886 	rcu_read_unlock();
887 	return match;
888 }
889 
890 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
891 ino_t page_cgroup_ino(struct page *page);
892 
893 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
894 {
895 	if (mem_cgroup_disabled())
896 		return true;
897 	return !!(memcg->css.flags & CSS_ONLINE);
898 }
899 
900 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
901 		int zid, int nr_pages);
902 
903 static inline
904 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
905 		enum lru_list lru, int zone_idx)
906 {
907 	struct mem_cgroup_per_node *mz;
908 
909 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
910 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
911 }
912 
913 void mem_cgroup_handle_over_high(void);
914 
915 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
916 
917 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
918 
919 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
920 				struct task_struct *p);
921 
922 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
923 
924 static inline void mem_cgroup_enter_user_fault(void)
925 {
926 	WARN_ON(current->in_user_fault);
927 	current->in_user_fault = 1;
928 }
929 
930 static inline void mem_cgroup_exit_user_fault(void)
931 {
932 	WARN_ON(!current->in_user_fault);
933 	current->in_user_fault = 0;
934 }
935 
936 static inline bool task_in_memcg_oom(struct task_struct *p)
937 {
938 	return p->memcg_in_oom;
939 }
940 
941 bool mem_cgroup_oom_synchronize(bool wait);
942 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
943 					    struct mem_cgroup *oom_domain);
944 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
945 
946 void folio_memcg_lock(struct folio *folio);
947 void folio_memcg_unlock(struct folio *folio);
948 void lock_page_memcg(struct page *page);
949 void unlock_page_memcg(struct page *page);
950 
951 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
952 
953 /* idx can be of type enum memcg_stat_item or node_stat_item */
954 static inline void mod_memcg_state(struct mem_cgroup *memcg,
955 				   int idx, int val)
956 {
957 	unsigned long flags;
958 
959 	local_irq_save(flags);
960 	__mod_memcg_state(memcg, idx, val);
961 	local_irq_restore(flags);
962 }
963 
964 static inline void mod_memcg_page_state(struct page *page,
965 					int idx, int val)
966 {
967 	struct mem_cgroup *memcg;
968 
969 	if (mem_cgroup_disabled())
970 		return;
971 
972 	rcu_read_lock();
973 	memcg = page_memcg(page);
974 	if (memcg)
975 		mod_memcg_state(memcg, idx, val);
976 	rcu_read_unlock();
977 }
978 
979 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
980 {
981 	return READ_ONCE(memcg->vmstats.state[idx]);
982 }
983 
984 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
985 					      enum node_stat_item idx)
986 {
987 	struct mem_cgroup_per_node *pn;
988 
989 	if (mem_cgroup_disabled())
990 		return node_page_state(lruvec_pgdat(lruvec), idx);
991 
992 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
993 	return READ_ONCE(pn->lruvec_stats.state[idx]);
994 }
995 
996 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
997 						    enum node_stat_item idx)
998 {
999 	struct mem_cgroup_per_node *pn;
1000 	long x = 0;
1001 	int cpu;
1002 
1003 	if (mem_cgroup_disabled())
1004 		return node_page_state(lruvec_pgdat(lruvec), idx);
1005 
1006 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1007 	for_each_possible_cpu(cpu)
1008 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1009 #ifdef CONFIG_SMP
1010 	if (x < 0)
1011 		x = 0;
1012 #endif
1013 	return x;
1014 }
1015 
1016 void mem_cgroup_flush_stats(void);
1017 void mem_cgroup_flush_stats_delayed(void);
1018 
1019 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1020 			      int val);
1021 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1022 
1023 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1024 					 int val)
1025 {
1026 	unsigned long flags;
1027 
1028 	local_irq_save(flags);
1029 	__mod_lruvec_kmem_state(p, idx, val);
1030 	local_irq_restore(flags);
1031 }
1032 
1033 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1034 					  enum node_stat_item idx, int val)
1035 {
1036 	unsigned long flags;
1037 
1038 	local_irq_save(flags);
1039 	__mod_memcg_lruvec_state(lruvec, idx, val);
1040 	local_irq_restore(flags);
1041 }
1042 
1043 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1044 			  unsigned long count);
1045 
1046 static inline void count_memcg_events(struct mem_cgroup *memcg,
1047 				      enum vm_event_item idx,
1048 				      unsigned long count)
1049 {
1050 	unsigned long flags;
1051 
1052 	local_irq_save(flags);
1053 	__count_memcg_events(memcg, idx, count);
1054 	local_irq_restore(flags);
1055 }
1056 
1057 static inline void count_memcg_page_event(struct page *page,
1058 					  enum vm_event_item idx)
1059 {
1060 	struct mem_cgroup *memcg = page_memcg(page);
1061 
1062 	if (memcg)
1063 		count_memcg_events(memcg, idx, 1);
1064 }
1065 
1066 static inline void count_memcg_folio_events(struct folio *folio,
1067 		enum vm_event_item idx, unsigned long nr)
1068 {
1069 	struct mem_cgroup *memcg = folio_memcg(folio);
1070 
1071 	if (memcg)
1072 		count_memcg_events(memcg, idx, nr);
1073 }
1074 
1075 static inline void count_memcg_event_mm(struct mm_struct *mm,
1076 					enum vm_event_item idx)
1077 {
1078 	struct mem_cgroup *memcg;
1079 
1080 	if (mem_cgroup_disabled())
1081 		return;
1082 
1083 	rcu_read_lock();
1084 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1085 	if (likely(memcg))
1086 		count_memcg_events(memcg, idx, 1);
1087 	rcu_read_unlock();
1088 }
1089 
1090 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1091 				      enum memcg_memory_event event)
1092 {
1093 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1094 			  event == MEMCG_SWAP_FAIL;
1095 
1096 	atomic_long_inc(&memcg->memory_events_local[event]);
1097 	if (!swap_event)
1098 		cgroup_file_notify(&memcg->events_local_file);
1099 
1100 	do {
1101 		atomic_long_inc(&memcg->memory_events[event]);
1102 		if (swap_event)
1103 			cgroup_file_notify(&memcg->swap_events_file);
1104 		else
1105 			cgroup_file_notify(&memcg->events_file);
1106 
1107 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1108 			break;
1109 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1110 			break;
1111 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1112 		 !mem_cgroup_is_root(memcg));
1113 }
1114 
1115 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1116 					 enum memcg_memory_event event)
1117 {
1118 	struct mem_cgroup *memcg;
1119 
1120 	if (mem_cgroup_disabled())
1121 		return;
1122 
1123 	rcu_read_lock();
1124 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1125 	if (likely(memcg))
1126 		memcg_memory_event(memcg, event);
1127 	rcu_read_unlock();
1128 }
1129 
1130 void split_page_memcg(struct page *head, unsigned int nr);
1131 
1132 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1133 						gfp_t gfp_mask,
1134 						unsigned long *total_scanned);
1135 
1136 #else /* CONFIG_MEMCG */
1137 
1138 #define MEM_CGROUP_ID_SHIFT	0
1139 #define MEM_CGROUP_ID_MAX	0
1140 
1141 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1142 {
1143 	return NULL;
1144 }
1145 
1146 static inline struct mem_cgroup *page_memcg(struct page *page)
1147 {
1148 	return NULL;
1149 }
1150 
1151 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1152 {
1153 	WARN_ON_ONCE(!rcu_read_lock_held());
1154 	return NULL;
1155 }
1156 
1157 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1158 {
1159 	return NULL;
1160 }
1161 
1162 static inline bool folio_memcg_kmem(struct folio *folio)
1163 {
1164 	return false;
1165 }
1166 
1167 static inline bool PageMemcgKmem(struct page *page)
1168 {
1169 	return false;
1170 }
1171 
1172 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1173 {
1174 	return true;
1175 }
1176 
1177 static inline bool mem_cgroup_disabled(void)
1178 {
1179 	return true;
1180 }
1181 
1182 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1183 				      enum memcg_memory_event event)
1184 {
1185 }
1186 
1187 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1188 					 enum memcg_memory_event event)
1189 {
1190 }
1191 
1192 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1193 					 struct mem_cgroup *memcg,
1194 					 unsigned long *min,
1195 					 unsigned long *low)
1196 {
1197 	*min = *low = 0;
1198 }
1199 
1200 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1201 						   struct mem_cgroup *memcg)
1202 {
1203 }
1204 
1205 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1206 {
1207 	return false;
1208 }
1209 
1210 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1211 {
1212 	return false;
1213 }
1214 
1215 static inline int mem_cgroup_charge(struct folio *folio,
1216 		struct mm_struct *mm, gfp_t gfp)
1217 {
1218 	return 0;
1219 }
1220 
1221 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1222 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1223 {
1224 	return 0;
1225 }
1226 
1227 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1228 {
1229 }
1230 
1231 static inline void mem_cgroup_uncharge(struct folio *folio)
1232 {
1233 }
1234 
1235 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1236 {
1237 }
1238 
1239 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1240 {
1241 }
1242 
1243 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1244 					       struct pglist_data *pgdat)
1245 {
1246 	return &pgdat->__lruvec;
1247 }
1248 
1249 static inline struct lruvec *folio_lruvec(struct folio *folio)
1250 {
1251 	struct pglist_data *pgdat = folio_pgdat(folio);
1252 	return &pgdat->__lruvec;
1253 }
1254 
1255 static inline
1256 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1257 {
1258 }
1259 
1260 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1261 {
1262 	return NULL;
1263 }
1264 
1265 static inline bool mm_match_cgroup(struct mm_struct *mm,
1266 		struct mem_cgroup *memcg)
1267 {
1268 	return true;
1269 }
1270 
1271 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1272 {
1273 	return NULL;
1274 }
1275 
1276 static inline
1277 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1278 {
1279 	return NULL;
1280 }
1281 
1282 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1283 {
1284 }
1285 
1286 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1287 {
1288 }
1289 
1290 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1291 {
1292 	struct pglist_data *pgdat = folio_pgdat(folio);
1293 
1294 	spin_lock(&pgdat->__lruvec.lru_lock);
1295 	return &pgdat->__lruvec;
1296 }
1297 
1298 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1299 {
1300 	struct pglist_data *pgdat = folio_pgdat(folio);
1301 
1302 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1303 	return &pgdat->__lruvec;
1304 }
1305 
1306 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1307 		unsigned long *flagsp)
1308 {
1309 	struct pglist_data *pgdat = folio_pgdat(folio);
1310 
1311 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1312 	return &pgdat->__lruvec;
1313 }
1314 
1315 static inline struct mem_cgroup *
1316 mem_cgroup_iter(struct mem_cgroup *root,
1317 		struct mem_cgroup *prev,
1318 		struct mem_cgroup_reclaim_cookie *reclaim)
1319 {
1320 	return NULL;
1321 }
1322 
1323 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1324 					 struct mem_cgroup *prev)
1325 {
1326 }
1327 
1328 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1329 		int (*fn)(struct task_struct *, void *), void *arg)
1330 {
1331 	return 0;
1332 }
1333 
1334 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1335 {
1336 	return 0;
1337 }
1338 
1339 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1340 {
1341 	WARN_ON_ONCE(id);
1342 	/* XXX: This should always return root_mem_cgroup */
1343 	return NULL;
1344 }
1345 
1346 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1347 {
1348 	return NULL;
1349 }
1350 
1351 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1352 {
1353 	return NULL;
1354 }
1355 
1356 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1357 {
1358 	return true;
1359 }
1360 
1361 static inline
1362 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1363 		enum lru_list lru, int zone_idx)
1364 {
1365 	return 0;
1366 }
1367 
1368 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1369 {
1370 	return 0;
1371 }
1372 
1373 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1374 {
1375 	return 0;
1376 }
1377 
1378 static inline void
1379 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1380 {
1381 }
1382 
1383 static inline void
1384 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1385 {
1386 }
1387 
1388 static inline void lock_page_memcg(struct page *page)
1389 {
1390 }
1391 
1392 static inline void unlock_page_memcg(struct page *page)
1393 {
1394 }
1395 
1396 static inline void folio_memcg_lock(struct folio *folio)
1397 {
1398 }
1399 
1400 static inline void folio_memcg_unlock(struct folio *folio)
1401 {
1402 }
1403 
1404 static inline void mem_cgroup_handle_over_high(void)
1405 {
1406 }
1407 
1408 static inline void mem_cgroup_enter_user_fault(void)
1409 {
1410 }
1411 
1412 static inline void mem_cgroup_exit_user_fault(void)
1413 {
1414 }
1415 
1416 static inline bool task_in_memcg_oom(struct task_struct *p)
1417 {
1418 	return false;
1419 }
1420 
1421 static inline bool mem_cgroup_oom_synchronize(bool wait)
1422 {
1423 	return false;
1424 }
1425 
1426 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1427 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1428 {
1429 	return NULL;
1430 }
1431 
1432 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1433 {
1434 }
1435 
1436 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1437 				     int idx,
1438 				     int nr)
1439 {
1440 }
1441 
1442 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1443 				   int idx,
1444 				   int nr)
1445 {
1446 }
1447 
1448 static inline void mod_memcg_page_state(struct page *page,
1449 					int idx, int val)
1450 {
1451 }
1452 
1453 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1454 {
1455 	return 0;
1456 }
1457 
1458 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1459 					      enum node_stat_item idx)
1460 {
1461 	return node_page_state(lruvec_pgdat(lruvec), idx);
1462 }
1463 
1464 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1465 						    enum node_stat_item idx)
1466 {
1467 	return node_page_state(lruvec_pgdat(lruvec), idx);
1468 }
1469 
1470 static inline void mem_cgroup_flush_stats(void)
1471 {
1472 }
1473 
1474 static inline void mem_cgroup_flush_stats_delayed(void)
1475 {
1476 }
1477 
1478 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1479 					    enum node_stat_item idx, int val)
1480 {
1481 }
1482 
1483 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1484 					   int val)
1485 {
1486 	struct page *page = virt_to_head_page(p);
1487 
1488 	__mod_node_page_state(page_pgdat(page), idx, val);
1489 }
1490 
1491 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1492 					 int val)
1493 {
1494 	struct page *page = virt_to_head_page(p);
1495 
1496 	mod_node_page_state(page_pgdat(page), idx, val);
1497 }
1498 
1499 static inline void count_memcg_events(struct mem_cgroup *memcg,
1500 				      enum vm_event_item idx,
1501 				      unsigned long count)
1502 {
1503 }
1504 
1505 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1506 					enum vm_event_item idx,
1507 					unsigned long count)
1508 {
1509 }
1510 
1511 static inline void count_memcg_page_event(struct page *page,
1512 					  int idx)
1513 {
1514 }
1515 
1516 static inline void count_memcg_folio_events(struct folio *folio,
1517 		enum vm_event_item idx, unsigned long nr)
1518 {
1519 }
1520 
1521 static inline
1522 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1523 {
1524 }
1525 
1526 static inline void split_page_memcg(struct page *head, unsigned int nr)
1527 {
1528 }
1529 
1530 static inline
1531 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1532 					    gfp_t gfp_mask,
1533 					    unsigned long *total_scanned)
1534 {
1535 	return 0;
1536 }
1537 #endif /* CONFIG_MEMCG */
1538 
1539 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1540 {
1541 	__mod_lruvec_kmem_state(p, idx, 1);
1542 }
1543 
1544 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1545 {
1546 	__mod_lruvec_kmem_state(p, idx, -1);
1547 }
1548 
1549 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1550 {
1551 	struct mem_cgroup *memcg;
1552 
1553 	memcg = lruvec_memcg(lruvec);
1554 	if (!memcg)
1555 		return NULL;
1556 	memcg = parent_mem_cgroup(memcg);
1557 	if (!memcg)
1558 		return NULL;
1559 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1560 }
1561 
1562 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1563 {
1564 	spin_unlock(&lruvec->lru_lock);
1565 }
1566 
1567 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1568 {
1569 	spin_unlock_irq(&lruvec->lru_lock);
1570 }
1571 
1572 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1573 		unsigned long flags)
1574 {
1575 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1576 }
1577 
1578 /* Test requires a stable page->memcg binding, see page_memcg() */
1579 static inline bool folio_matches_lruvec(struct folio *folio,
1580 		struct lruvec *lruvec)
1581 {
1582 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1583 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1584 }
1585 
1586 /* Don't lock again iff page's lruvec locked */
1587 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1588 		struct lruvec *locked_lruvec)
1589 {
1590 	if (locked_lruvec) {
1591 		if (folio_matches_lruvec(folio, locked_lruvec))
1592 			return locked_lruvec;
1593 
1594 		unlock_page_lruvec_irq(locked_lruvec);
1595 	}
1596 
1597 	return folio_lruvec_lock_irq(folio);
1598 }
1599 
1600 /* Don't lock again iff page's lruvec locked */
1601 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1602 		struct lruvec *locked_lruvec, unsigned long *flags)
1603 {
1604 	if (locked_lruvec) {
1605 		if (folio_matches_lruvec(folio, locked_lruvec))
1606 			return locked_lruvec;
1607 
1608 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1609 	}
1610 
1611 	return folio_lruvec_lock_irqsave(folio, flags);
1612 }
1613 
1614 #ifdef CONFIG_CGROUP_WRITEBACK
1615 
1616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1617 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1618 			 unsigned long *pheadroom, unsigned long *pdirty,
1619 			 unsigned long *pwriteback);
1620 
1621 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1622 					     struct bdi_writeback *wb);
1623 
1624 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1625 						  struct bdi_writeback *wb)
1626 {
1627 	if (mem_cgroup_disabled())
1628 		return;
1629 
1630 	if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1631 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1632 }
1633 
1634 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1635 
1636 #else	/* CONFIG_CGROUP_WRITEBACK */
1637 
1638 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1639 {
1640 	return NULL;
1641 }
1642 
1643 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1644 				       unsigned long *pfilepages,
1645 				       unsigned long *pheadroom,
1646 				       unsigned long *pdirty,
1647 				       unsigned long *pwriteback)
1648 {
1649 }
1650 
1651 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1652 						  struct bdi_writeback *wb)
1653 {
1654 }
1655 
1656 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1657 {
1658 }
1659 
1660 #endif	/* CONFIG_CGROUP_WRITEBACK */
1661 
1662 struct sock;
1663 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1664 			     gfp_t gfp_mask);
1665 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1666 #ifdef CONFIG_MEMCG
1667 extern struct static_key_false memcg_sockets_enabled_key;
1668 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1669 void mem_cgroup_sk_alloc(struct sock *sk);
1670 void mem_cgroup_sk_free(struct sock *sk);
1671 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1672 {
1673 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1674 		return true;
1675 	do {
1676 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1677 			return true;
1678 	} while ((memcg = parent_mem_cgroup(memcg)));
1679 	return false;
1680 }
1681 
1682 int alloc_shrinker_info(struct mem_cgroup *memcg);
1683 void free_shrinker_info(struct mem_cgroup *memcg);
1684 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1685 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1686 #else
1687 #define mem_cgroup_sockets_enabled 0
1688 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1689 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1690 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1691 {
1692 	return false;
1693 }
1694 
1695 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1696 				    int nid, int shrinker_id)
1697 {
1698 }
1699 #endif
1700 
1701 #ifdef CONFIG_MEMCG_KMEM
1702 bool mem_cgroup_kmem_disabled(void);
1703 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1704 void __memcg_kmem_uncharge_page(struct page *page, int order);
1705 
1706 struct obj_cgroup *get_obj_cgroup_from_current(void);
1707 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1708 
1709 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1710 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1711 
1712 extern struct static_key_false memcg_kmem_enabled_key;
1713 
1714 static inline bool memcg_kmem_enabled(void)
1715 {
1716 	return static_branch_likely(&memcg_kmem_enabled_key);
1717 }
1718 
1719 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1720 					 int order)
1721 {
1722 	if (memcg_kmem_enabled())
1723 		return __memcg_kmem_charge_page(page, gfp, order);
1724 	return 0;
1725 }
1726 
1727 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1728 {
1729 	if (memcg_kmem_enabled())
1730 		__memcg_kmem_uncharge_page(page, order);
1731 }
1732 
1733 /*
1734  * A helper for accessing memcg's kmem_id, used for getting
1735  * corresponding LRU lists.
1736  */
1737 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1738 {
1739 	return memcg ? memcg->kmemcg_id : -1;
1740 }
1741 
1742 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1743 
1744 static inline void count_objcg_event(struct obj_cgroup *objcg,
1745 				     enum vm_event_item idx)
1746 {
1747 	struct mem_cgroup *memcg;
1748 
1749 	if (mem_cgroup_kmem_disabled())
1750 		return;
1751 
1752 	rcu_read_lock();
1753 	memcg = obj_cgroup_memcg(objcg);
1754 	count_memcg_events(memcg, idx, 1);
1755 	rcu_read_unlock();
1756 }
1757 
1758 #else
1759 static inline bool mem_cgroup_kmem_disabled(void)
1760 {
1761 	return true;
1762 }
1763 
1764 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1765 					 int order)
1766 {
1767 	return 0;
1768 }
1769 
1770 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1771 {
1772 }
1773 
1774 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1775 					   int order)
1776 {
1777 	return 0;
1778 }
1779 
1780 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1781 {
1782 }
1783 
1784 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1785 {
1786 	return NULL;
1787 }
1788 
1789 static inline bool memcg_kmem_enabled(void)
1790 {
1791 	return false;
1792 }
1793 
1794 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1795 {
1796 	return -1;
1797 }
1798 
1799 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1800 {
1801        return NULL;
1802 }
1803 
1804 static inline void count_objcg_event(struct obj_cgroup *objcg,
1805 				     enum vm_event_item idx)
1806 {
1807 }
1808 
1809 #endif /* CONFIG_MEMCG_KMEM */
1810 
1811 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1812 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1813 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1814 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1815 #else
1816 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1817 {
1818 	return true;
1819 }
1820 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1821 					   size_t size)
1822 {
1823 }
1824 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1825 					     size_t size)
1826 {
1827 }
1828 #endif
1829 
1830 #endif /* _LINUX_MEMCONTROL_H */
1831