1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct page; 27 struct mm_struct; 28 struct kmem_cache; 29 30 /* Cgroup-specific page state, on top of universal node page state */ 31 enum memcg_stat_item { 32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_RSS, 34 MEMCG_RSS_HUGE, 35 MEMCG_SWAP, 36 MEMCG_SOCK, 37 /* XXX: why are these zone and not node counters? */ 38 MEMCG_KERNEL_STACK_KB, 39 MEMCG_NR_STAT, 40 }; 41 42 enum memcg_memory_event { 43 MEMCG_LOW, 44 MEMCG_HIGH, 45 MEMCG_MAX, 46 MEMCG_OOM, 47 MEMCG_OOM_KILL, 48 MEMCG_SWAP_MAX, 49 MEMCG_SWAP_FAIL, 50 MEMCG_NR_MEMORY_EVENTS, 51 }; 52 53 enum mem_cgroup_protection { 54 MEMCG_PROT_NONE, 55 MEMCG_PROT_LOW, 56 MEMCG_PROT_MIN, 57 }; 58 59 struct mem_cgroup_reclaim_cookie { 60 pg_data_t *pgdat; 61 int priority; 62 unsigned int generation; 63 }; 64 65 #ifdef CONFIG_MEMCG 66 67 #define MEM_CGROUP_ID_SHIFT 16 68 #define MEM_CGROUP_ID_MAX USHRT_MAX 69 70 struct mem_cgroup_id { 71 int id; 72 refcount_t ref; 73 }; 74 75 /* 76 * Per memcg event counter is incremented at every pagein/pageout. With THP, 77 * it will be incremated by the number of pages. This counter is used for 78 * for trigger some periodic events. This is straightforward and better 79 * than using jiffies etc. to handle periodic memcg event. 80 */ 81 enum mem_cgroup_events_target { 82 MEM_CGROUP_TARGET_THRESH, 83 MEM_CGROUP_TARGET_SOFTLIMIT, 84 MEM_CGROUP_TARGET_NUMAINFO, 85 MEM_CGROUP_NTARGETS, 86 }; 87 88 struct memcg_vmstats_percpu { 89 long stat[MEMCG_NR_STAT]; 90 unsigned long events[NR_VM_EVENT_ITEMS]; 91 unsigned long nr_page_events; 92 unsigned long targets[MEM_CGROUP_NTARGETS]; 93 }; 94 95 struct mem_cgroup_reclaim_iter { 96 struct mem_cgroup *position; 97 /* scan generation, increased every round-trip */ 98 unsigned int generation; 99 }; 100 101 struct lruvec_stat { 102 long count[NR_VM_NODE_STAT_ITEMS]; 103 }; 104 105 /* 106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 107 * which have elements charged to this memcg. 108 */ 109 struct memcg_shrinker_map { 110 struct rcu_head rcu; 111 unsigned long map[0]; 112 }; 113 114 /* 115 * per-zone information in memory controller. 116 */ 117 struct mem_cgroup_per_node { 118 struct lruvec lruvec; 119 120 /* Legacy local VM stats */ 121 struct lruvec_stat __percpu *lruvec_stat_local; 122 123 /* Subtree VM stats (batched updates) */ 124 struct lruvec_stat __percpu *lruvec_stat_cpu; 125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 130 131 #ifdef CONFIG_MEMCG_KMEM 132 struct memcg_shrinker_map __rcu *shrinker_map; 133 #endif 134 struct rb_node tree_node; /* RB tree node */ 135 unsigned long usage_in_excess;/* Set to the value by which */ 136 /* the soft limit is exceeded*/ 137 bool on_tree; 138 bool congested; /* memcg has many dirty pages */ 139 /* backed by a congested BDI */ 140 141 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 142 /* use container_of */ 143 }; 144 145 struct mem_cgroup_threshold { 146 struct eventfd_ctx *eventfd; 147 unsigned long threshold; 148 }; 149 150 /* For threshold */ 151 struct mem_cgroup_threshold_ary { 152 /* An array index points to threshold just below or equal to usage. */ 153 int current_threshold; 154 /* Size of entries[] */ 155 unsigned int size; 156 /* Array of thresholds */ 157 struct mem_cgroup_threshold entries[0]; 158 }; 159 160 struct mem_cgroup_thresholds { 161 /* Primary thresholds array */ 162 struct mem_cgroup_threshold_ary *primary; 163 /* 164 * Spare threshold array. 165 * This is needed to make mem_cgroup_unregister_event() "never fail". 166 * It must be able to store at least primary->size - 1 entries. 167 */ 168 struct mem_cgroup_threshold_ary *spare; 169 }; 170 171 enum memcg_kmem_state { 172 KMEM_NONE, 173 KMEM_ALLOCATED, 174 KMEM_ONLINE, 175 }; 176 177 #if defined(CONFIG_SMP) 178 struct memcg_padding { 179 char x[0]; 180 } ____cacheline_internodealigned_in_smp; 181 #define MEMCG_PADDING(name) struct memcg_padding name; 182 #else 183 #define MEMCG_PADDING(name) 184 #endif 185 186 /* 187 * The memory controller data structure. The memory controller controls both 188 * page cache and RSS per cgroup. We would eventually like to provide 189 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 190 * to help the administrator determine what knobs to tune. 191 */ 192 struct mem_cgroup { 193 struct cgroup_subsys_state css; 194 195 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 196 struct mem_cgroup_id id; 197 198 /* Accounted resources */ 199 struct page_counter memory; 200 struct page_counter swap; 201 202 /* Legacy consumer-oriented counters */ 203 struct page_counter memsw; 204 struct page_counter kmem; 205 struct page_counter tcpmem; 206 207 /* Upper bound of normal memory consumption range */ 208 unsigned long high; 209 210 /* Range enforcement for interrupt charges */ 211 struct work_struct high_work; 212 213 unsigned long soft_limit; 214 215 /* vmpressure notifications */ 216 struct vmpressure vmpressure; 217 218 /* 219 * Should the accounting and control be hierarchical, per subtree? 220 */ 221 bool use_hierarchy; 222 223 /* 224 * Should the OOM killer kill all belonging tasks, had it kill one? 225 */ 226 bool oom_group; 227 228 /* protected by memcg_oom_lock */ 229 bool oom_lock; 230 int under_oom; 231 232 int swappiness; 233 /* OOM-Killer disable */ 234 int oom_kill_disable; 235 236 /* memory.events and memory.events.local */ 237 struct cgroup_file events_file; 238 struct cgroup_file events_local_file; 239 240 /* handle for "memory.swap.events" */ 241 struct cgroup_file swap_events_file; 242 243 /* protect arrays of thresholds */ 244 struct mutex thresholds_lock; 245 246 /* thresholds for memory usage. RCU-protected */ 247 struct mem_cgroup_thresholds thresholds; 248 249 /* thresholds for mem+swap usage. RCU-protected */ 250 struct mem_cgroup_thresholds memsw_thresholds; 251 252 /* For oom notifier event fd */ 253 struct list_head oom_notify; 254 255 /* 256 * Should we move charges of a task when a task is moved into this 257 * mem_cgroup ? And what type of charges should we move ? 258 */ 259 unsigned long move_charge_at_immigrate; 260 /* taken only while moving_account > 0 */ 261 spinlock_t move_lock; 262 unsigned long move_lock_flags; 263 264 MEMCG_PADDING(_pad1_); 265 266 /* 267 * set > 0 if pages under this cgroup are moving to other cgroup. 268 */ 269 atomic_t moving_account; 270 struct task_struct *move_lock_task; 271 272 /* Legacy local VM stats and events */ 273 struct memcg_vmstats_percpu __percpu *vmstats_local; 274 275 /* Subtree VM stats and events (batched updates) */ 276 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 277 278 MEMCG_PADDING(_pad2_); 279 280 atomic_long_t vmstats[MEMCG_NR_STAT]; 281 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 282 283 /* memory.events */ 284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 286 287 unsigned long socket_pressure; 288 289 /* Legacy tcp memory accounting */ 290 bool tcpmem_active; 291 int tcpmem_pressure; 292 293 #ifdef CONFIG_MEMCG_KMEM 294 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 295 int kmemcg_id; 296 enum memcg_kmem_state kmem_state; 297 struct list_head kmem_caches; 298 #endif 299 300 int last_scanned_node; 301 #if MAX_NUMNODES > 1 302 nodemask_t scan_nodes; 303 atomic_t numainfo_events; 304 atomic_t numainfo_updating; 305 #endif 306 307 #ifdef CONFIG_CGROUP_WRITEBACK 308 struct list_head cgwb_list; 309 struct wb_domain cgwb_domain; 310 #endif 311 312 /* List of events which userspace want to receive */ 313 struct list_head event_list; 314 spinlock_t event_list_lock; 315 316 struct mem_cgroup_per_node *nodeinfo[0]; 317 /* WARNING: nodeinfo must be the last member here */ 318 }; 319 320 /* 321 * size of first charge trial. "32" comes from vmscan.c's magic value. 322 * TODO: maybe necessary to use big numbers in big irons. 323 */ 324 #define MEMCG_CHARGE_BATCH 32U 325 326 extern struct mem_cgroup *root_mem_cgroup; 327 328 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 329 { 330 return (memcg == root_mem_cgroup); 331 } 332 333 static inline bool mem_cgroup_disabled(void) 334 { 335 return !cgroup_subsys_enabled(memory_cgrp_subsys); 336 } 337 338 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 339 struct mem_cgroup *memcg); 340 341 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 342 gfp_t gfp_mask, struct mem_cgroup **memcgp, 343 bool compound); 344 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 345 gfp_t gfp_mask, struct mem_cgroup **memcgp, 346 bool compound); 347 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 348 bool lrucare, bool compound); 349 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 350 bool compound); 351 void mem_cgroup_uncharge(struct page *page); 352 void mem_cgroup_uncharge_list(struct list_head *page_list); 353 354 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 355 356 static struct mem_cgroup_per_node * 357 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 358 { 359 return memcg->nodeinfo[nid]; 360 } 361 362 /** 363 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 364 * @node: node of the wanted lruvec 365 * @memcg: memcg of the wanted lruvec 366 * 367 * Returns the lru list vector holding pages for a given @node or a given 368 * @memcg and @zone. This can be the node lruvec, if the memory controller 369 * is disabled. 370 */ 371 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 372 struct mem_cgroup *memcg) 373 { 374 struct mem_cgroup_per_node *mz; 375 struct lruvec *lruvec; 376 377 if (mem_cgroup_disabled()) { 378 lruvec = node_lruvec(pgdat); 379 goto out; 380 } 381 382 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 383 lruvec = &mz->lruvec; 384 out: 385 /* 386 * Since a node can be onlined after the mem_cgroup was created, 387 * we have to be prepared to initialize lruvec->pgdat here; 388 * and if offlined then reonlined, we need to reinitialize it. 389 */ 390 if (unlikely(lruvec->pgdat != pgdat)) 391 lruvec->pgdat = pgdat; 392 return lruvec; 393 } 394 395 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 396 397 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 398 399 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 400 401 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 402 403 static inline 404 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 405 return css ? container_of(css, struct mem_cgroup, css) : NULL; 406 } 407 408 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 409 { 410 if (memcg) 411 css_put(&memcg->css); 412 } 413 414 #define mem_cgroup_from_counter(counter, member) \ 415 container_of(counter, struct mem_cgroup, member) 416 417 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 418 struct mem_cgroup *, 419 struct mem_cgroup_reclaim_cookie *); 420 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 421 int mem_cgroup_scan_tasks(struct mem_cgroup *, 422 int (*)(struct task_struct *, void *), void *); 423 424 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 425 { 426 if (mem_cgroup_disabled()) 427 return 0; 428 429 return memcg->id.id; 430 } 431 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 432 433 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 434 { 435 return mem_cgroup_from_css(seq_css(m)); 436 } 437 438 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 439 { 440 struct mem_cgroup_per_node *mz; 441 442 if (mem_cgroup_disabled()) 443 return NULL; 444 445 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 446 return mz->memcg; 447 } 448 449 /** 450 * parent_mem_cgroup - find the accounting parent of a memcg 451 * @memcg: memcg whose parent to find 452 * 453 * Returns the parent memcg, or NULL if this is the root or the memory 454 * controller is in legacy no-hierarchy mode. 455 */ 456 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 457 { 458 if (!memcg->memory.parent) 459 return NULL; 460 return mem_cgroup_from_counter(memcg->memory.parent, memory); 461 } 462 463 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 464 struct mem_cgroup *root) 465 { 466 if (root == memcg) 467 return true; 468 if (!root->use_hierarchy) 469 return false; 470 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 471 } 472 473 static inline bool mm_match_cgroup(struct mm_struct *mm, 474 struct mem_cgroup *memcg) 475 { 476 struct mem_cgroup *task_memcg; 477 bool match = false; 478 479 rcu_read_lock(); 480 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 481 if (task_memcg) 482 match = mem_cgroup_is_descendant(task_memcg, memcg); 483 rcu_read_unlock(); 484 return match; 485 } 486 487 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 488 ino_t page_cgroup_ino(struct page *page); 489 490 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 491 { 492 if (mem_cgroup_disabled()) 493 return true; 494 return !!(memcg->css.flags & CSS_ONLINE); 495 } 496 497 /* 498 * For memory reclaim. 499 */ 500 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 501 502 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 503 int zid, int nr_pages); 504 505 static inline 506 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 507 enum lru_list lru, int zone_idx) 508 { 509 struct mem_cgroup_per_node *mz; 510 511 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 512 return mz->lru_zone_size[zone_idx][lru]; 513 } 514 515 void mem_cgroup_handle_over_high(void); 516 517 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 518 519 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 520 struct task_struct *p); 521 522 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 523 524 static inline void mem_cgroup_enter_user_fault(void) 525 { 526 WARN_ON(current->in_user_fault); 527 current->in_user_fault = 1; 528 } 529 530 static inline void mem_cgroup_exit_user_fault(void) 531 { 532 WARN_ON(!current->in_user_fault); 533 current->in_user_fault = 0; 534 } 535 536 static inline bool task_in_memcg_oom(struct task_struct *p) 537 { 538 return p->memcg_in_oom; 539 } 540 541 bool mem_cgroup_oom_synchronize(bool wait); 542 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 543 struct mem_cgroup *oom_domain); 544 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 545 546 #ifdef CONFIG_MEMCG_SWAP 547 extern int do_swap_account; 548 #endif 549 550 struct mem_cgroup *lock_page_memcg(struct page *page); 551 void __unlock_page_memcg(struct mem_cgroup *memcg); 552 void unlock_page_memcg(struct page *page); 553 554 /* 555 * idx can be of type enum memcg_stat_item or node_stat_item. 556 * Keep in sync with memcg_exact_page_state(). 557 */ 558 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 559 { 560 long x = atomic_long_read(&memcg->vmstats[idx]); 561 #ifdef CONFIG_SMP 562 if (x < 0) 563 x = 0; 564 #endif 565 return x; 566 } 567 568 /* 569 * idx can be of type enum memcg_stat_item or node_stat_item. 570 * Keep in sync with memcg_exact_page_state(). 571 */ 572 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 573 int idx) 574 { 575 long x = 0; 576 int cpu; 577 578 for_each_possible_cpu(cpu) 579 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 580 #ifdef CONFIG_SMP 581 if (x < 0) 582 x = 0; 583 #endif 584 return x; 585 } 586 587 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 588 589 /* idx can be of type enum memcg_stat_item or node_stat_item */ 590 static inline void mod_memcg_state(struct mem_cgroup *memcg, 591 int idx, int val) 592 { 593 unsigned long flags; 594 595 local_irq_save(flags); 596 __mod_memcg_state(memcg, idx, val); 597 local_irq_restore(flags); 598 } 599 600 /** 601 * mod_memcg_page_state - update page state statistics 602 * @page: the page 603 * @idx: page state item to account 604 * @val: number of pages (positive or negative) 605 * 606 * The @page must be locked or the caller must use lock_page_memcg() 607 * to prevent double accounting when the page is concurrently being 608 * moved to another memcg: 609 * 610 * lock_page(page) or lock_page_memcg(page) 611 * if (TestClearPageState(page)) 612 * mod_memcg_page_state(page, state, -1); 613 * unlock_page(page) or unlock_page_memcg(page) 614 * 615 * Kernel pages are an exception to this, since they'll never move. 616 */ 617 static inline void __mod_memcg_page_state(struct page *page, 618 int idx, int val) 619 { 620 if (page->mem_cgroup) 621 __mod_memcg_state(page->mem_cgroup, idx, val); 622 } 623 624 static inline void mod_memcg_page_state(struct page *page, 625 int idx, int val) 626 { 627 if (page->mem_cgroup) 628 mod_memcg_state(page->mem_cgroup, idx, val); 629 } 630 631 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 632 enum node_stat_item idx) 633 { 634 struct mem_cgroup_per_node *pn; 635 long x; 636 637 if (mem_cgroup_disabled()) 638 return node_page_state(lruvec_pgdat(lruvec), idx); 639 640 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 641 x = atomic_long_read(&pn->lruvec_stat[idx]); 642 #ifdef CONFIG_SMP 643 if (x < 0) 644 x = 0; 645 #endif 646 return x; 647 } 648 649 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 650 enum node_stat_item idx) 651 { 652 struct mem_cgroup_per_node *pn; 653 long x = 0; 654 int cpu; 655 656 if (mem_cgroup_disabled()) 657 return node_page_state(lruvec_pgdat(lruvec), idx); 658 659 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 660 for_each_possible_cpu(cpu) 661 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 662 #ifdef CONFIG_SMP 663 if (x < 0) 664 x = 0; 665 #endif 666 return x; 667 } 668 669 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 670 int val); 671 672 static inline void mod_lruvec_state(struct lruvec *lruvec, 673 enum node_stat_item idx, int val) 674 { 675 unsigned long flags; 676 677 local_irq_save(flags); 678 __mod_lruvec_state(lruvec, idx, val); 679 local_irq_restore(flags); 680 } 681 682 static inline void __mod_lruvec_page_state(struct page *page, 683 enum node_stat_item idx, int val) 684 { 685 pg_data_t *pgdat = page_pgdat(page); 686 struct lruvec *lruvec; 687 688 /* Untracked pages have no memcg, no lruvec. Update only the node */ 689 if (!page->mem_cgroup) { 690 __mod_node_page_state(pgdat, idx, val); 691 return; 692 } 693 694 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 695 __mod_lruvec_state(lruvec, idx, val); 696 } 697 698 static inline void mod_lruvec_page_state(struct page *page, 699 enum node_stat_item idx, int val) 700 { 701 unsigned long flags; 702 703 local_irq_save(flags); 704 __mod_lruvec_page_state(page, idx, val); 705 local_irq_restore(flags); 706 } 707 708 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 709 gfp_t gfp_mask, 710 unsigned long *total_scanned); 711 712 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 713 unsigned long count); 714 715 static inline void count_memcg_events(struct mem_cgroup *memcg, 716 enum vm_event_item idx, 717 unsigned long count) 718 { 719 unsigned long flags; 720 721 local_irq_save(flags); 722 __count_memcg_events(memcg, idx, count); 723 local_irq_restore(flags); 724 } 725 726 static inline void count_memcg_page_event(struct page *page, 727 enum vm_event_item idx) 728 { 729 if (page->mem_cgroup) 730 count_memcg_events(page->mem_cgroup, idx, 1); 731 } 732 733 static inline void count_memcg_event_mm(struct mm_struct *mm, 734 enum vm_event_item idx) 735 { 736 struct mem_cgroup *memcg; 737 738 if (mem_cgroup_disabled()) 739 return; 740 741 rcu_read_lock(); 742 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 743 if (likely(memcg)) 744 count_memcg_events(memcg, idx, 1); 745 rcu_read_unlock(); 746 } 747 748 static inline void memcg_memory_event(struct mem_cgroup *memcg, 749 enum memcg_memory_event event) 750 { 751 atomic_long_inc(&memcg->memory_events_local[event]); 752 cgroup_file_notify(&memcg->events_local_file); 753 754 do { 755 atomic_long_inc(&memcg->memory_events[event]); 756 cgroup_file_notify(&memcg->events_file); 757 758 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 759 break; 760 } while ((memcg = parent_mem_cgroup(memcg)) && 761 !mem_cgroup_is_root(memcg)); 762 } 763 764 static inline void memcg_memory_event_mm(struct mm_struct *mm, 765 enum memcg_memory_event event) 766 { 767 struct mem_cgroup *memcg; 768 769 if (mem_cgroup_disabled()) 770 return; 771 772 rcu_read_lock(); 773 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 774 if (likely(memcg)) 775 memcg_memory_event(memcg, event); 776 rcu_read_unlock(); 777 } 778 779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 780 void mem_cgroup_split_huge_fixup(struct page *head); 781 #endif 782 783 #else /* CONFIG_MEMCG */ 784 785 #define MEM_CGROUP_ID_SHIFT 0 786 #define MEM_CGROUP_ID_MAX 0 787 788 struct mem_cgroup; 789 790 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 791 { 792 return true; 793 } 794 795 static inline bool mem_cgroup_disabled(void) 796 { 797 return true; 798 } 799 800 static inline void memcg_memory_event(struct mem_cgroup *memcg, 801 enum memcg_memory_event event) 802 { 803 } 804 805 static inline void memcg_memory_event_mm(struct mm_struct *mm, 806 enum memcg_memory_event event) 807 { 808 } 809 810 static inline enum mem_cgroup_protection mem_cgroup_protected( 811 struct mem_cgroup *root, struct mem_cgroup *memcg) 812 { 813 return MEMCG_PROT_NONE; 814 } 815 816 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 817 gfp_t gfp_mask, 818 struct mem_cgroup **memcgp, 819 bool compound) 820 { 821 *memcgp = NULL; 822 return 0; 823 } 824 825 static inline int mem_cgroup_try_charge_delay(struct page *page, 826 struct mm_struct *mm, 827 gfp_t gfp_mask, 828 struct mem_cgroup **memcgp, 829 bool compound) 830 { 831 *memcgp = NULL; 832 return 0; 833 } 834 835 static inline void mem_cgroup_commit_charge(struct page *page, 836 struct mem_cgroup *memcg, 837 bool lrucare, bool compound) 838 { 839 } 840 841 static inline void mem_cgroup_cancel_charge(struct page *page, 842 struct mem_cgroup *memcg, 843 bool compound) 844 { 845 } 846 847 static inline void mem_cgroup_uncharge(struct page *page) 848 { 849 } 850 851 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 852 { 853 } 854 855 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 856 { 857 } 858 859 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 860 struct mem_cgroup *memcg) 861 { 862 return node_lruvec(pgdat); 863 } 864 865 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 866 struct pglist_data *pgdat) 867 { 868 return &pgdat->lruvec; 869 } 870 871 static inline bool mm_match_cgroup(struct mm_struct *mm, 872 struct mem_cgroup *memcg) 873 { 874 return true; 875 } 876 877 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 878 { 879 return NULL; 880 } 881 882 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 883 { 884 return NULL; 885 } 886 887 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 888 { 889 } 890 891 static inline struct mem_cgroup * 892 mem_cgroup_iter(struct mem_cgroup *root, 893 struct mem_cgroup *prev, 894 struct mem_cgroup_reclaim_cookie *reclaim) 895 { 896 return NULL; 897 } 898 899 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 900 struct mem_cgroup *prev) 901 { 902 } 903 904 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 905 int (*fn)(struct task_struct *, void *), void *arg) 906 { 907 return 0; 908 } 909 910 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 911 { 912 return 0; 913 } 914 915 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 916 { 917 WARN_ON_ONCE(id); 918 /* XXX: This should always return root_mem_cgroup */ 919 return NULL; 920 } 921 922 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 923 { 924 return NULL; 925 } 926 927 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 928 { 929 return NULL; 930 } 931 932 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 933 { 934 return true; 935 } 936 937 static inline 938 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 939 enum lru_list lru, int zone_idx) 940 { 941 return 0; 942 } 943 944 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 945 { 946 return 0; 947 } 948 949 static inline void 950 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 951 { 952 } 953 954 static inline void 955 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 956 { 957 } 958 959 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 960 { 961 return NULL; 962 } 963 964 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 965 { 966 } 967 968 static inline void unlock_page_memcg(struct page *page) 969 { 970 } 971 972 static inline void mem_cgroup_handle_over_high(void) 973 { 974 } 975 976 static inline void mem_cgroup_enter_user_fault(void) 977 { 978 } 979 980 static inline void mem_cgroup_exit_user_fault(void) 981 { 982 } 983 984 static inline bool task_in_memcg_oom(struct task_struct *p) 985 { 986 return false; 987 } 988 989 static inline bool mem_cgroup_oom_synchronize(bool wait) 990 { 991 return false; 992 } 993 994 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 995 struct task_struct *victim, struct mem_cgroup *oom_domain) 996 { 997 return NULL; 998 } 999 1000 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1001 { 1002 } 1003 1004 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1005 { 1006 return 0; 1007 } 1008 1009 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1010 int idx) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1016 int idx, 1017 int nr) 1018 { 1019 } 1020 1021 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1022 int idx, 1023 int nr) 1024 { 1025 } 1026 1027 static inline void __mod_memcg_page_state(struct page *page, 1028 int idx, 1029 int nr) 1030 { 1031 } 1032 1033 static inline void mod_memcg_page_state(struct page *page, 1034 int idx, 1035 int nr) 1036 { 1037 } 1038 1039 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1040 enum node_stat_item idx) 1041 { 1042 return node_page_state(lruvec_pgdat(lruvec), idx); 1043 } 1044 1045 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1046 enum node_stat_item idx) 1047 { 1048 return node_page_state(lruvec_pgdat(lruvec), idx); 1049 } 1050 1051 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1052 enum node_stat_item idx, int val) 1053 { 1054 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1055 } 1056 1057 static inline void mod_lruvec_state(struct lruvec *lruvec, 1058 enum node_stat_item idx, int val) 1059 { 1060 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1061 } 1062 1063 static inline void __mod_lruvec_page_state(struct page *page, 1064 enum node_stat_item idx, int val) 1065 { 1066 __mod_node_page_state(page_pgdat(page), idx, val); 1067 } 1068 1069 static inline void mod_lruvec_page_state(struct page *page, 1070 enum node_stat_item idx, int val) 1071 { 1072 mod_node_page_state(page_pgdat(page), idx, val); 1073 } 1074 1075 static inline 1076 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1077 gfp_t gfp_mask, 1078 unsigned long *total_scanned) 1079 { 1080 return 0; 1081 } 1082 1083 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1084 { 1085 } 1086 1087 static inline void count_memcg_events(struct mem_cgroup *memcg, 1088 enum vm_event_item idx, 1089 unsigned long count) 1090 { 1091 } 1092 1093 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1094 enum vm_event_item idx, 1095 unsigned long count) 1096 { 1097 } 1098 1099 static inline void count_memcg_page_event(struct page *page, 1100 int idx) 1101 { 1102 } 1103 1104 static inline 1105 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1106 { 1107 } 1108 #endif /* CONFIG_MEMCG */ 1109 1110 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1111 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1112 int idx) 1113 { 1114 __mod_memcg_state(memcg, idx, 1); 1115 } 1116 1117 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1118 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1119 int idx) 1120 { 1121 __mod_memcg_state(memcg, idx, -1); 1122 } 1123 1124 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1125 static inline void __inc_memcg_page_state(struct page *page, 1126 int idx) 1127 { 1128 __mod_memcg_page_state(page, idx, 1); 1129 } 1130 1131 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1132 static inline void __dec_memcg_page_state(struct page *page, 1133 int idx) 1134 { 1135 __mod_memcg_page_state(page, idx, -1); 1136 } 1137 1138 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1139 enum node_stat_item idx) 1140 { 1141 __mod_lruvec_state(lruvec, idx, 1); 1142 } 1143 1144 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1145 enum node_stat_item idx) 1146 { 1147 __mod_lruvec_state(lruvec, idx, -1); 1148 } 1149 1150 static inline void __inc_lruvec_page_state(struct page *page, 1151 enum node_stat_item idx) 1152 { 1153 __mod_lruvec_page_state(page, idx, 1); 1154 } 1155 1156 static inline void __dec_lruvec_page_state(struct page *page, 1157 enum node_stat_item idx) 1158 { 1159 __mod_lruvec_page_state(page, idx, -1); 1160 } 1161 1162 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1163 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1164 int idx) 1165 { 1166 mod_memcg_state(memcg, idx, 1); 1167 } 1168 1169 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1170 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1171 int idx) 1172 { 1173 mod_memcg_state(memcg, idx, -1); 1174 } 1175 1176 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1177 static inline void inc_memcg_page_state(struct page *page, 1178 int idx) 1179 { 1180 mod_memcg_page_state(page, idx, 1); 1181 } 1182 1183 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1184 static inline void dec_memcg_page_state(struct page *page, 1185 int idx) 1186 { 1187 mod_memcg_page_state(page, idx, -1); 1188 } 1189 1190 static inline void inc_lruvec_state(struct lruvec *lruvec, 1191 enum node_stat_item idx) 1192 { 1193 mod_lruvec_state(lruvec, idx, 1); 1194 } 1195 1196 static inline void dec_lruvec_state(struct lruvec *lruvec, 1197 enum node_stat_item idx) 1198 { 1199 mod_lruvec_state(lruvec, idx, -1); 1200 } 1201 1202 static inline void inc_lruvec_page_state(struct page *page, 1203 enum node_stat_item idx) 1204 { 1205 mod_lruvec_page_state(page, idx, 1); 1206 } 1207 1208 static inline void dec_lruvec_page_state(struct page *page, 1209 enum node_stat_item idx) 1210 { 1211 mod_lruvec_page_state(page, idx, -1); 1212 } 1213 1214 #ifdef CONFIG_CGROUP_WRITEBACK 1215 1216 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1217 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1218 unsigned long *pheadroom, unsigned long *pdirty, 1219 unsigned long *pwriteback); 1220 1221 #else /* CONFIG_CGROUP_WRITEBACK */ 1222 1223 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1224 { 1225 return NULL; 1226 } 1227 1228 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1229 unsigned long *pfilepages, 1230 unsigned long *pheadroom, 1231 unsigned long *pdirty, 1232 unsigned long *pwriteback) 1233 { 1234 } 1235 1236 #endif /* CONFIG_CGROUP_WRITEBACK */ 1237 1238 struct sock; 1239 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1240 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1241 #ifdef CONFIG_MEMCG 1242 extern struct static_key_false memcg_sockets_enabled_key; 1243 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1244 void mem_cgroup_sk_alloc(struct sock *sk); 1245 void mem_cgroup_sk_free(struct sock *sk); 1246 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1247 { 1248 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1249 return true; 1250 do { 1251 if (time_before(jiffies, memcg->socket_pressure)) 1252 return true; 1253 } while ((memcg = parent_mem_cgroup(memcg))); 1254 return false; 1255 } 1256 #else 1257 #define mem_cgroup_sockets_enabled 0 1258 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1259 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1260 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1261 { 1262 return false; 1263 } 1264 #endif 1265 1266 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1267 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1268 1269 #ifdef CONFIG_MEMCG_KMEM 1270 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1271 void __memcg_kmem_uncharge(struct page *page, int order); 1272 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1273 struct mem_cgroup *memcg); 1274 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 1275 unsigned int nr_pages); 1276 1277 extern struct static_key_false memcg_kmem_enabled_key; 1278 extern struct workqueue_struct *memcg_kmem_cache_wq; 1279 1280 extern int memcg_nr_cache_ids; 1281 void memcg_get_cache_ids(void); 1282 void memcg_put_cache_ids(void); 1283 1284 /* 1285 * Helper macro to loop through all memcg-specific caches. Callers must still 1286 * check if the cache is valid (it is either valid or NULL). 1287 * the slab_mutex must be held when looping through those caches 1288 */ 1289 #define for_each_memcg_cache_index(_idx) \ 1290 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1291 1292 static inline bool memcg_kmem_enabled(void) 1293 { 1294 return static_branch_unlikely(&memcg_kmem_enabled_key); 1295 } 1296 1297 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1298 { 1299 if (memcg_kmem_enabled()) 1300 return __memcg_kmem_charge(page, gfp, order); 1301 return 0; 1302 } 1303 1304 static inline void memcg_kmem_uncharge(struct page *page, int order) 1305 { 1306 if (memcg_kmem_enabled()) 1307 __memcg_kmem_uncharge(page, order); 1308 } 1309 1310 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1311 int order, struct mem_cgroup *memcg) 1312 { 1313 if (memcg_kmem_enabled()) 1314 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1315 return 0; 1316 } 1317 1318 static inline void memcg_kmem_uncharge_memcg(struct page *page, int order, 1319 struct mem_cgroup *memcg) 1320 { 1321 if (memcg_kmem_enabled()) 1322 __memcg_kmem_uncharge_memcg(memcg, 1 << order); 1323 } 1324 1325 /* 1326 * helper for accessing a memcg's index. It will be used as an index in the 1327 * child cache array in kmem_cache, and also to derive its name. This function 1328 * will return -1 when this is not a kmem-limited memcg. 1329 */ 1330 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1331 { 1332 return memcg ? memcg->kmemcg_id : -1; 1333 } 1334 1335 extern int memcg_expand_shrinker_maps(int new_id); 1336 1337 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1338 int nid, int shrinker_id); 1339 #else 1340 1341 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1342 { 1343 return 0; 1344 } 1345 1346 static inline void memcg_kmem_uncharge(struct page *page, int order) 1347 { 1348 } 1349 1350 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1351 { 1352 return 0; 1353 } 1354 1355 static inline void __memcg_kmem_uncharge(struct page *page, int order) 1356 { 1357 } 1358 1359 #define for_each_memcg_cache_index(_idx) \ 1360 for (; NULL; ) 1361 1362 static inline bool memcg_kmem_enabled(void) 1363 { 1364 return false; 1365 } 1366 1367 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1368 { 1369 return -1; 1370 } 1371 1372 static inline void memcg_get_cache_ids(void) 1373 { 1374 } 1375 1376 static inline void memcg_put_cache_ids(void) 1377 { 1378 } 1379 1380 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1381 int nid, int shrinker_id) { } 1382 #endif /* CONFIG_MEMCG_KMEM */ 1383 1384 #endif /* _LINUX_MEMCONTROL_H */ 1385