1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/page_counter.h> 18 #include <linux/vmpressure.h> 19 #include <linux/eventfd.h> 20 #include <linux/mm.h> 21 #include <linux/vmstat.h> 22 #include <linux/writeback.h> 23 #include <linux/page-flags.h> 24 25 struct mem_cgroup; 26 struct obj_cgroup; 27 struct page; 28 struct mm_struct; 29 struct kmem_cache; 30 31 /* Cgroup-specific page state, on top of universal node page state */ 32 enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37 }; 38 39 enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49 }; 50 51 struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54 }; 55 56 #ifdef CONFIG_MEMCG 57 58 #define MEM_CGROUP_ID_SHIFT 16 59 #define MEM_CGROUP_ID_MAX USHRT_MAX 60 61 struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64 }; 65 66 /* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72 enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76 }; 77 78 struct memcg_vmstats_percpu { 79 long stat[MEMCG_NR_STAT]; 80 unsigned long events[NR_VM_EVENT_ITEMS]; 81 unsigned long nr_page_events; 82 unsigned long targets[MEM_CGROUP_NTARGETS]; 83 }; 84 85 struct mem_cgroup_reclaim_iter { 86 struct mem_cgroup *position; 87 /* scan generation, increased every round-trip */ 88 unsigned int generation; 89 }; 90 91 struct lruvec_stat { 92 long count[NR_VM_NODE_STAT_ITEMS]; 93 }; 94 95 /* 96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 97 * which have elements charged to this memcg. 98 */ 99 struct memcg_shrinker_map { 100 struct rcu_head rcu; 101 unsigned long map[]; 102 }; 103 104 /* 105 * per-node information in memory controller. 106 */ 107 struct mem_cgroup_per_node { 108 struct lruvec lruvec; 109 110 /* Legacy local VM stats */ 111 struct lruvec_stat __percpu *lruvec_stat_local; 112 113 /* Subtree VM stats (batched updates) */ 114 struct lruvec_stat __percpu *lruvec_stat_cpu; 115 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 116 117 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 118 119 struct mem_cgroup_reclaim_iter iter; 120 121 struct memcg_shrinker_map __rcu *shrinker_map; 122 123 struct rb_node tree_node; /* RB tree node */ 124 unsigned long usage_in_excess;/* Set to the value by which */ 125 /* the soft limit is exceeded*/ 126 bool on_tree; 127 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 128 /* use container_of */ 129 }; 130 131 struct mem_cgroup_threshold { 132 struct eventfd_ctx *eventfd; 133 unsigned long threshold; 134 }; 135 136 /* For threshold */ 137 struct mem_cgroup_threshold_ary { 138 /* An array index points to threshold just below or equal to usage. */ 139 int current_threshold; 140 /* Size of entries[] */ 141 unsigned int size; 142 /* Array of thresholds */ 143 struct mem_cgroup_threshold entries[]; 144 }; 145 146 struct mem_cgroup_thresholds { 147 /* Primary thresholds array */ 148 struct mem_cgroup_threshold_ary *primary; 149 /* 150 * Spare threshold array. 151 * This is needed to make mem_cgroup_unregister_event() "never fail". 152 * It must be able to store at least primary->size - 1 entries. 153 */ 154 struct mem_cgroup_threshold_ary *spare; 155 }; 156 157 enum memcg_kmem_state { 158 KMEM_NONE, 159 KMEM_ALLOCATED, 160 KMEM_ONLINE, 161 }; 162 163 #if defined(CONFIG_SMP) 164 struct memcg_padding { 165 char x[0]; 166 } ____cacheline_internodealigned_in_smp; 167 #define MEMCG_PADDING(name) struct memcg_padding name; 168 #else 169 #define MEMCG_PADDING(name) 170 #endif 171 172 /* 173 * Remember four most recent foreign writebacks with dirty pages in this 174 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 175 * one in a given round, we're likely to catch it later if it keeps 176 * foreign-dirtying, so a fairly low count should be enough. 177 * 178 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 179 */ 180 #define MEMCG_CGWB_FRN_CNT 4 181 182 struct memcg_cgwb_frn { 183 u64 bdi_id; /* bdi->id of the foreign inode */ 184 int memcg_id; /* memcg->css.id of foreign inode */ 185 u64 at; /* jiffies_64 at the time of dirtying */ 186 struct wb_completion done; /* tracks in-flight foreign writebacks */ 187 }; 188 189 /* 190 * Bucket for arbitrarily byte-sized objects charged to a memory 191 * cgroup. The bucket can be reparented in one piece when the cgroup 192 * is destroyed, without having to round up the individual references 193 * of all live memory objects in the wild. 194 */ 195 struct obj_cgroup { 196 struct percpu_ref refcnt; 197 struct mem_cgroup *memcg; 198 atomic_t nr_charged_bytes; 199 union { 200 struct list_head list; 201 struct rcu_head rcu; 202 }; 203 }; 204 205 /* 206 * The memory controller data structure. The memory controller controls both 207 * page cache and RSS per cgroup. We would eventually like to provide 208 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 209 * to help the administrator determine what knobs to tune. 210 */ 211 struct mem_cgroup { 212 struct cgroup_subsys_state css; 213 214 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 215 struct mem_cgroup_id id; 216 217 /* Accounted resources */ 218 struct page_counter memory; 219 struct page_counter swap; 220 221 /* Legacy consumer-oriented counters */ 222 struct page_counter memsw; 223 struct page_counter kmem; 224 struct page_counter tcpmem; 225 226 /* Range enforcement for interrupt charges */ 227 struct work_struct high_work; 228 229 unsigned long soft_limit; 230 231 /* vmpressure notifications */ 232 struct vmpressure vmpressure; 233 234 /* 235 * Should the accounting and control be hierarchical, per subtree? 236 */ 237 bool use_hierarchy; 238 239 /* 240 * Should the OOM killer kill all belonging tasks, had it kill one? 241 */ 242 bool oom_group; 243 244 /* protected by memcg_oom_lock */ 245 bool oom_lock; 246 int under_oom; 247 248 int swappiness; 249 /* OOM-Killer disable */ 250 int oom_kill_disable; 251 252 /* memory.events and memory.events.local */ 253 struct cgroup_file events_file; 254 struct cgroup_file events_local_file; 255 256 /* handle for "memory.swap.events" */ 257 struct cgroup_file swap_events_file; 258 259 /* protect arrays of thresholds */ 260 struct mutex thresholds_lock; 261 262 /* thresholds for memory usage. RCU-protected */ 263 struct mem_cgroup_thresholds thresholds; 264 265 /* thresholds for mem+swap usage. RCU-protected */ 266 struct mem_cgroup_thresholds memsw_thresholds; 267 268 /* For oom notifier event fd */ 269 struct list_head oom_notify; 270 271 /* 272 * Should we move charges of a task when a task is moved into this 273 * mem_cgroup ? And what type of charges should we move ? 274 */ 275 unsigned long move_charge_at_immigrate; 276 /* taken only while moving_account > 0 */ 277 spinlock_t move_lock; 278 unsigned long move_lock_flags; 279 280 MEMCG_PADDING(_pad1_); 281 282 /* 283 * set > 0 if pages under this cgroup are moving to other cgroup. 284 */ 285 atomic_t moving_account; 286 struct task_struct *move_lock_task; 287 288 /* Legacy local VM stats and events */ 289 struct memcg_vmstats_percpu __percpu *vmstats_local; 290 291 /* Subtree VM stats and events (batched updates) */ 292 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 293 294 MEMCG_PADDING(_pad2_); 295 296 atomic_long_t vmstats[MEMCG_NR_STAT]; 297 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 298 299 /* memory.events */ 300 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 301 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 302 303 unsigned long socket_pressure; 304 305 /* Legacy tcp memory accounting */ 306 bool tcpmem_active; 307 int tcpmem_pressure; 308 309 #ifdef CONFIG_MEMCG_KMEM 310 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 311 int kmemcg_id; 312 enum memcg_kmem_state kmem_state; 313 struct obj_cgroup __rcu *objcg; 314 struct list_head objcg_list; /* list of inherited objcgs */ 315 #endif 316 317 #ifdef CONFIG_CGROUP_WRITEBACK 318 struct list_head cgwb_list; 319 struct wb_domain cgwb_domain; 320 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 321 #endif 322 323 /* List of events which userspace want to receive */ 324 struct list_head event_list; 325 spinlock_t event_list_lock; 326 327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 328 struct deferred_split deferred_split_queue; 329 #endif 330 331 struct mem_cgroup_per_node *nodeinfo[0]; 332 /* WARNING: nodeinfo must be the last member here */ 333 }; 334 335 /* 336 * size of first charge trial. "32" comes from vmscan.c's magic value. 337 * TODO: maybe necessary to use big numbers in big irons. 338 */ 339 #define MEMCG_CHARGE_BATCH 32U 340 341 extern struct mem_cgroup *root_mem_cgroup; 342 343 static __always_inline bool memcg_stat_item_in_bytes(int idx) 344 { 345 if (idx == MEMCG_PERCPU_B) 346 return true; 347 return vmstat_item_in_bytes(idx); 348 } 349 350 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 351 { 352 return (memcg == root_mem_cgroup); 353 } 354 355 static inline bool mem_cgroup_disabled(void) 356 { 357 return !cgroup_subsys_enabled(memory_cgrp_subsys); 358 } 359 360 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 361 struct mem_cgroup *memcg, 362 bool in_low_reclaim) 363 { 364 if (mem_cgroup_disabled()) 365 return 0; 366 367 /* 368 * There is no reclaim protection applied to a targeted reclaim. 369 * We are special casing this specific case here because 370 * mem_cgroup_protected calculation is not robust enough to keep 371 * the protection invariant for calculated effective values for 372 * parallel reclaimers with different reclaim target. This is 373 * especially a problem for tail memcgs (as they have pages on LRU) 374 * which would want to have effective values 0 for targeted reclaim 375 * but a different value for external reclaim. 376 * 377 * Example 378 * Let's have global and A's reclaim in parallel: 379 * | 380 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 381 * |\ 382 * | C (low = 1G, usage = 2.5G) 383 * B (low = 1G, usage = 0.5G) 384 * 385 * For the global reclaim 386 * A.elow = A.low 387 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 388 * C.elow = min(C.usage, C.low) 389 * 390 * With the effective values resetting we have A reclaim 391 * A.elow = 0 392 * B.elow = B.low 393 * C.elow = C.low 394 * 395 * If the global reclaim races with A's reclaim then 396 * B.elow = C.elow = 0 because children_low_usage > A.elow) 397 * is possible and reclaiming B would be violating the protection. 398 * 399 */ 400 if (root == memcg) 401 return 0; 402 403 if (in_low_reclaim) 404 return READ_ONCE(memcg->memory.emin); 405 406 return max(READ_ONCE(memcg->memory.emin), 407 READ_ONCE(memcg->memory.elow)); 408 } 409 410 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 411 struct mem_cgroup *memcg); 412 413 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 414 { 415 /* 416 * The root memcg doesn't account charges, and doesn't support 417 * protection. 418 */ 419 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 420 421 } 422 423 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 424 { 425 if (!mem_cgroup_supports_protection(memcg)) 426 return false; 427 428 return READ_ONCE(memcg->memory.elow) >= 429 page_counter_read(&memcg->memory); 430 } 431 432 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 433 { 434 if (!mem_cgroup_supports_protection(memcg)) 435 return false; 436 437 return READ_ONCE(memcg->memory.emin) >= 438 page_counter_read(&memcg->memory); 439 } 440 441 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 442 443 void mem_cgroup_uncharge(struct page *page); 444 void mem_cgroup_uncharge_list(struct list_head *page_list); 445 446 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 447 448 static struct mem_cgroup_per_node * 449 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 450 { 451 return memcg->nodeinfo[nid]; 452 } 453 454 /** 455 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 456 * @memcg: memcg of the wanted lruvec 457 * 458 * Returns the lru list vector holding pages for a given @memcg & 459 * @node combination. This can be the node lruvec, if the memory 460 * controller is disabled. 461 */ 462 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 463 struct pglist_data *pgdat) 464 { 465 struct mem_cgroup_per_node *mz; 466 struct lruvec *lruvec; 467 468 if (mem_cgroup_disabled()) { 469 lruvec = &pgdat->__lruvec; 470 goto out; 471 } 472 473 if (!memcg) 474 memcg = root_mem_cgroup; 475 476 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 477 lruvec = &mz->lruvec; 478 out: 479 /* 480 * Since a node can be onlined after the mem_cgroup was created, 481 * we have to be prepared to initialize lruvec->pgdat here; 482 * and if offlined then reonlined, we need to reinitialize it. 483 */ 484 if (unlikely(lruvec->pgdat != pgdat)) 485 lruvec->pgdat = pgdat; 486 return lruvec; 487 } 488 489 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 490 491 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 492 493 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 494 495 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 496 497 static inline 498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 499 return css ? container_of(css, struct mem_cgroup, css) : NULL; 500 } 501 502 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 503 { 504 return percpu_ref_tryget(&objcg->refcnt); 505 } 506 507 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 508 { 509 percpu_ref_get(&objcg->refcnt); 510 } 511 512 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 513 { 514 percpu_ref_put(&objcg->refcnt); 515 } 516 517 /* 518 * After the initialization objcg->memcg is always pointing at 519 * a valid memcg, but can be atomically swapped to the parent memcg. 520 * 521 * The caller must ensure that the returned memcg won't be released: 522 * e.g. acquire the rcu_read_lock or css_set_lock. 523 */ 524 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 525 { 526 return READ_ONCE(objcg->memcg); 527 } 528 529 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 530 { 531 if (memcg) 532 css_put(&memcg->css); 533 } 534 535 #define mem_cgroup_from_counter(counter, member) \ 536 container_of(counter, struct mem_cgroup, member) 537 538 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 539 struct mem_cgroup *, 540 struct mem_cgroup_reclaim_cookie *); 541 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 542 int mem_cgroup_scan_tasks(struct mem_cgroup *, 543 int (*)(struct task_struct *, void *), void *); 544 545 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 546 { 547 if (mem_cgroup_disabled()) 548 return 0; 549 550 return memcg->id.id; 551 } 552 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 553 554 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 555 { 556 return mem_cgroup_from_css(seq_css(m)); 557 } 558 559 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 560 { 561 struct mem_cgroup_per_node *mz; 562 563 if (mem_cgroup_disabled()) 564 return NULL; 565 566 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 567 return mz->memcg; 568 } 569 570 /** 571 * parent_mem_cgroup - find the accounting parent of a memcg 572 * @memcg: memcg whose parent to find 573 * 574 * Returns the parent memcg, or NULL if this is the root or the memory 575 * controller is in legacy no-hierarchy mode. 576 */ 577 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 578 { 579 if (!memcg->memory.parent) 580 return NULL; 581 return mem_cgroup_from_counter(memcg->memory.parent, memory); 582 } 583 584 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 585 struct mem_cgroup *root) 586 { 587 if (root == memcg) 588 return true; 589 if (!root->use_hierarchy) 590 return false; 591 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 592 } 593 594 static inline bool mm_match_cgroup(struct mm_struct *mm, 595 struct mem_cgroup *memcg) 596 { 597 struct mem_cgroup *task_memcg; 598 bool match = false; 599 600 rcu_read_lock(); 601 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 602 if (task_memcg) 603 match = mem_cgroup_is_descendant(task_memcg, memcg); 604 rcu_read_unlock(); 605 return match; 606 } 607 608 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 609 ino_t page_cgroup_ino(struct page *page); 610 611 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 612 { 613 if (mem_cgroup_disabled()) 614 return true; 615 return !!(memcg->css.flags & CSS_ONLINE); 616 } 617 618 /* 619 * For memory reclaim. 620 */ 621 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 622 623 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 624 int zid, int nr_pages); 625 626 static inline 627 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 628 enum lru_list lru, int zone_idx) 629 { 630 struct mem_cgroup_per_node *mz; 631 632 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 633 return mz->lru_zone_size[zone_idx][lru]; 634 } 635 636 void mem_cgroup_handle_over_high(void); 637 638 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 639 640 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 641 642 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 643 struct task_struct *p); 644 645 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 646 647 static inline void mem_cgroup_enter_user_fault(void) 648 { 649 WARN_ON(current->in_user_fault); 650 current->in_user_fault = 1; 651 } 652 653 static inline void mem_cgroup_exit_user_fault(void) 654 { 655 WARN_ON(!current->in_user_fault); 656 current->in_user_fault = 0; 657 } 658 659 static inline bool task_in_memcg_oom(struct task_struct *p) 660 { 661 return p->memcg_in_oom; 662 } 663 664 bool mem_cgroup_oom_synchronize(bool wait); 665 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 666 struct mem_cgroup *oom_domain); 667 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 668 669 #ifdef CONFIG_MEMCG_SWAP 670 extern bool cgroup_memory_noswap; 671 #endif 672 673 struct mem_cgroup *lock_page_memcg(struct page *page); 674 void __unlock_page_memcg(struct mem_cgroup *memcg); 675 void unlock_page_memcg(struct page *page); 676 677 /* 678 * idx can be of type enum memcg_stat_item or node_stat_item. 679 * Keep in sync with memcg_exact_page_state(). 680 */ 681 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 682 { 683 long x = atomic_long_read(&memcg->vmstats[idx]); 684 #ifdef CONFIG_SMP 685 if (x < 0) 686 x = 0; 687 #endif 688 return x; 689 } 690 691 /* 692 * idx can be of type enum memcg_stat_item or node_stat_item. 693 * Keep in sync with memcg_exact_page_state(). 694 */ 695 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 696 int idx) 697 { 698 long x = 0; 699 int cpu; 700 701 for_each_possible_cpu(cpu) 702 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 703 #ifdef CONFIG_SMP 704 if (x < 0) 705 x = 0; 706 #endif 707 return x; 708 } 709 710 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 711 712 /* idx can be of type enum memcg_stat_item or node_stat_item */ 713 static inline void mod_memcg_state(struct mem_cgroup *memcg, 714 int idx, int val) 715 { 716 unsigned long flags; 717 718 local_irq_save(flags); 719 __mod_memcg_state(memcg, idx, val); 720 local_irq_restore(flags); 721 } 722 723 /** 724 * mod_memcg_page_state - update page state statistics 725 * @page: the page 726 * @idx: page state item to account 727 * @val: number of pages (positive or negative) 728 * 729 * The @page must be locked or the caller must use lock_page_memcg() 730 * to prevent double accounting when the page is concurrently being 731 * moved to another memcg: 732 * 733 * lock_page(page) or lock_page_memcg(page) 734 * if (TestClearPageState(page)) 735 * mod_memcg_page_state(page, state, -1); 736 * unlock_page(page) or unlock_page_memcg(page) 737 * 738 * Kernel pages are an exception to this, since they'll never move. 739 */ 740 static inline void __mod_memcg_page_state(struct page *page, 741 int idx, int val) 742 { 743 if (page->mem_cgroup) 744 __mod_memcg_state(page->mem_cgroup, idx, val); 745 } 746 747 static inline void mod_memcg_page_state(struct page *page, 748 int idx, int val) 749 { 750 if (page->mem_cgroup) 751 mod_memcg_state(page->mem_cgroup, idx, val); 752 } 753 754 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 755 enum node_stat_item idx) 756 { 757 struct mem_cgroup_per_node *pn; 758 long x; 759 760 if (mem_cgroup_disabled()) 761 return node_page_state(lruvec_pgdat(lruvec), idx); 762 763 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 764 x = atomic_long_read(&pn->lruvec_stat[idx]); 765 #ifdef CONFIG_SMP 766 if (x < 0) 767 x = 0; 768 #endif 769 return x; 770 } 771 772 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 773 enum node_stat_item idx) 774 { 775 struct mem_cgroup_per_node *pn; 776 long x = 0; 777 int cpu; 778 779 if (mem_cgroup_disabled()) 780 return node_page_state(lruvec_pgdat(lruvec), idx); 781 782 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 783 for_each_possible_cpu(cpu) 784 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 785 #ifdef CONFIG_SMP 786 if (x < 0) 787 x = 0; 788 #endif 789 return x; 790 } 791 792 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 793 int val); 794 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 795 int val); 796 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 797 798 void mod_memcg_obj_state(void *p, int idx, int val); 799 800 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 801 int val) 802 { 803 unsigned long flags; 804 805 local_irq_save(flags); 806 __mod_lruvec_slab_state(p, idx, val); 807 local_irq_restore(flags); 808 } 809 810 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 811 enum node_stat_item idx, int val) 812 { 813 unsigned long flags; 814 815 local_irq_save(flags); 816 __mod_memcg_lruvec_state(lruvec, idx, val); 817 local_irq_restore(flags); 818 } 819 820 static inline void mod_lruvec_state(struct lruvec *lruvec, 821 enum node_stat_item idx, int val) 822 { 823 unsigned long flags; 824 825 local_irq_save(flags); 826 __mod_lruvec_state(lruvec, idx, val); 827 local_irq_restore(flags); 828 } 829 830 static inline void __mod_lruvec_page_state(struct page *page, 831 enum node_stat_item idx, int val) 832 { 833 struct page *head = compound_head(page); /* rmap on tail pages */ 834 pg_data_t *pgdat = page_pgdat(page); 835 struct lruvec *lruvec; 836 837 /* Untracked pages have no memcg, no lruvec. Update only the node */ 838 if (!head->mem_cgroup) { 839 __mod_node_page_state(pgdat, idx, val); 840 return; 841 } 842 843 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); 844 __mod_lruvec_state(lruvec, idx, val); 845 } 846 847 static inline void mod_lruvec_page_state(struct page *page, 848 enum node_stat_item idx, int val) 849 { 850 unsigned long flags; 851 852 local_irq_save(flags); 853 __mod_lruvec_page_state(page, idx, val); 854 local_irq_restore(flags); 855 } 856 857 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 858 gfp_t gfp_mask, 859 unsigned long *total_scanned); 860 861 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 862 unsigned long count); 863 864 static inline void count_memcg_events(struct mem_cgroup *memcg, 865 enum vm_event_item idx, 866 unsigned long count) 867 { 868 unsigned long flags; 869 870 local_irq_save(flags); 871 __count_memcg_events(memcg, idx, count); 872 local_irq_restore(flags); 873 } 874 875 static inline void count_memcg_page_event(struct page *page, 876 enum vm_event_item idx) 877 { 878 if (page->mem_cgroup) 879 count_memcg_events(page->mem_cgroup, idx, 1); 880 } 881 882 static inline void count_memcg_event_mm(struct mm_struct *mm, 883 enum vm_event_item idx) 884 { 885 struct mem_cgroup *memcg; 886 887 if (mem_cgroup_disabled()) 888 return; 889 890 rcu_read_lock(); 891 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 892 if (likely(memcg)) 893 count_memcg_events(memcg, idx, 1); 894 rcu_read_unlock(); 895 } 896 897 static inline void memcg_memory_event(struct mem_cgroup *memcg, 898 enum memcg_memory_event event) 899 { 900 atomic_long_inc(&memcg->memory_events_local[event]); 901 cgroup_file_notify(&memcg->events_local_file); 902 903 do { 904 atomic_long_inc(&memcg->memory_events[event]); 905 cgroup_file_notify(&memcg->events_file); 906 907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 908 break; 909 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 910 break; 911 } while ((memcg = parent_mem_cgroup(memcg)) && 912 !mem_cgroup_is_root(memcg)); 913 } 914 915 static inline void memcg_memory_event_mm(struct mm_struct *mm, 916 enum memcg_memory_event event) 917 { 918 struct mem_cgroup *memcg; 919 920 if (mem_cgroup_disabled()) 921 return; 922 923 rcu_read_lock(); 924 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 925 if (likely(memcg)) 926 memcg_memory_event(memcg, event); 927 rcu_read_unlock(); 928 } 929 930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 931 void mem_cgroup_split_huge_fixup(struct page *head); 932 #endif 933 934 #else /* CONFIG_MEMCG */ 935 936 #define MEM_CGROUP_ID_SHIFT 0 937 #define MEM_CGROUP_ID_MAX 0 938 939 struct mem_cgroup; 940 941 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 942 { 943 return true; 944 } 945 946 static inline bool mem_cgroup_disabled(void) 947 { 948 return true; 949 } 950 951 static inline void memcg_memory_event(struct mem_cgroup *memcg, 952 enum memcg_memory_event event) 953 { 954 } 955 956 static inline void memcg_memory_event_mm(struct mm_struct *mm, 957 enum memcg_memory_event event) 958 { 959 } 960 961 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 962 struct mem_cgroup *memcg, 963 bool in_low_reclaim) 964 { 965 return 0; 966 } 967 968 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 969 struct mem_cgroup *memcg) 970 { 971 } 972 973 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 974 { 975 return false; 976 } 977 978 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 979 { 980 return false; 981 } 982 983 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 984 gfp_t gfp_mask) 985 { 986 return 0; 987 } 988 989 static inline void mem_cgroup_uncharge(struct page *page) 990 { 991 } 992 993 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 994 { 995 } 996 997 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 998 { 999 } 1000 1001 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1002 struct pglist_data *pgdat) 1003 { 1004 return &pgdat->__lruvec; 1005 } 1006 1007 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 1008 struct pglist_data *pgdat) 1009 { 1010 return &pgdat->__lruvec; 1011 } 1012 1013 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1014 { 1015 return NULL; 1016 } 1017 1018 static inline bool mm_match_cgroup(struct mm_struct *mm, 1019 struct mem_cgroup *memcg) 1020 { 1021 return true; 1022 } 1023 1024 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1025 { 1026 return NULL; 1027 } 1028 1029 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1030 { 1031 return NULL; 1032 } 1033 1034 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1035 { 1036 } 1037 1038 static inline struct mem_cgroup * 1039 mem_cgroup_iter(struct mem_cgroup *root, 1040 struct mem_cgroup *prev, 1041 struct mem_cgroup_reclaim_cookie *reclaim) 1042 { 1043 return NULL; 1044 } 1045 1046 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1047 struct mem_cgroup *prev) 1048 { 1049 } 1050 1051 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1052 int (*fn)(struct task_struct *, void *), void *arg) 1053 { 1054 return 0; 1055 } 1056 1057 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1058 { 1059 return 0; 1060 } 1061 1062 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1063 { 1064 WARN_ON_ONCE(id); 1065 /* XXX: This should always return root_mem_cgroup */ 1066 return NULL; 1067 } 1068 1069 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1070 { 1071 return NULL; 1072 } 1073 1074 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1075 { 1076 return NULL; 1077 } 1078 1079 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1080 { 1081 return true; 1082 } 1083 1084 static inline 1085 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1086 enum lru_list lru, int zone_idx) 1087 { 1088 return 0; 1089 } 1090 1091 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1092 { 1093 return 0; 1094 } 1095 1096 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1097 { 1098 return 0; 1099 } 1100 1101 static inline void 1102 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1103 { 1104 } 1105 1106 static inline void 1107 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1108 { 1109 } 1110 1111 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1112 { 1113 return NULL; 1114 } 1115 1116 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1117 { 1118 } 1119 1120 static inline void unlock_page_memcg(struct page *page) 1121 { 1122 } 1123 1124 static inline void mem_cgroup_handle_over_high(void) 1125 { 1126 } 1127 1128 static inline void mem_cgroup_enter_user_fault(void) 1129 { 1130 } 1131 1132 static inline void mem_cgroup_exit_user_fault(void) 1133 { 1134 } 1135 1136 static inline bool task_in_memcg_oom(struct task_struct *p) 1137 { 1138 return false; 1139 } 1140 1141 static inline bool mem_cgroup_oom_synchronize(bool wait) 1142 { 1143 return false; 1144 } 1145 1146 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1147 struct task_struct *victim, struct mem_cgroup *oom_domain) 1148 { 1149 return NULL; 1150 } 1151 1152 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1153 { 1154 } 1155 1156 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1157 { 1158 return 0; 1159 } 1160 1161 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1162 int idx) 1163 { 1164 return 0; 1165 } 1166 1167 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1168 int idx, 1169 int nr) 1170 { 1171 } 1172 1173 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1174 int idx, 1175 int nr) 1176 { 1177 } 1178 1179 static inline void __mod_memcg_page_state(struct page *page, 1180 int idx, 1181 int nr) 1182 { 1183 } 1184 1185 static inline void mod_memcg_page_state(struct page *page, 1186 int idx, 1187 int nr) 1188 { 1189 } 1190 1191 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1192 enum node_stat_item idx) 1193 { 1194 return node_page_state(lruvec_pgdat(lruvec), idx); 1195 } 1196 1197 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1198 enum node_stat_item idx) 1199 { 1200 return node_page_state(lruvec_pgdat(lruvec), idx); 1201 } 1202 1203 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1204 enum node_stat_item idx, int val) 1205 { 1206 } 1207 1208 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1209 enum node_stat_item idx, int val) 1210 { 1211 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1212 } 1213 1214 static inline void mod_lruvec_state(struct lruvec *lruvec, 1215 enum node_stat_item idx, int val) 1216 { 1217 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1218 } 1219 1220 static inline void __mod_lruvec_page_state(struct page *page, 1221 enum node_stat_item idx, int val) 1222 { 1223 __mod_node_page_state(page_pgdat(page), idx, val); 1224 } 1225 1226 static inline void mod_lruvec_page_state(struct page *page, 1227 enum node_stat_item idx, int val) 1228 { 1229 mod_node_page_state(page_pgdat(page), idx, val); 1230 } 1231 1232 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1233 int val) 1234 { 1235 struct page *page = virt_to_head_page(p); 1236 1237 __mod_node_page_state(page_pgdat(page), idx, val); 1238 } 1239 1240 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1241 int val) 1242 { 1243 struct page *page = virt_to_head_page(p); 1244 1245 mod_node_page_state(page_pgdat(page), idx, val); 1246 } 1247 1248 static inline void mod_memcg_obj_state(void *p, int idx, int val) 1249 { 1250 } 1251 1252 static inline 1253 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1254 gfp_t gfp_mask, 1255 unsigned long *total_scanned) 1256 { 1257 return 0; 1258 } 1259 1260 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1261 { 1262 } 1263 1264 static inline void count_memcg_events(struct mem_cgroup *memcg, 1265 enum vm_event_item idx, 1266 unsigned long count) 1267 { 1268 } 1269 1270 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1271 enum vm_event_item idx, 1272 unsigned long count) 1273 { 1274 } 1275 1276 static inline void count_memcg_page_event(struct page *page, 1277 int idx) 1278 { 1279 } 1280 1281 static inline 1282 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1283 { 1284 } 1285 #endif /* CONFIG_MEMCG */ 1286 1287 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1288 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1289 int idx) 1290 { 1291 __mod_memcg_state(memcg, idx, 1); 1292 } 1293 1294 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1295 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1296 int idx) 1297 { 1298 __mod_memcg_state(memcg, idx, -1); 1299 } 1300 1301 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1302 static inline void __inc_memcg_page_state(struct page *page, 1303 int idx) 1304 { 1305 __mod_memcg_page_state(page, idx, 1); 1306 } 1307 1308 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1309 static inline void __dec_memcg_page_state(struct page *page, 1310 int idx) 1311 { 1312 __mod_memcg_page_state(page, idx, -1); 1313 } 1314 1315 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1316 enum node_stat_item idx) 1317 { 1318 __mod_lruvec_state(lruvec, idx, 1); 1319 } 1320 1321 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1322 enum node_stat_item idx) 1323 { 1324 __mod_lruvec_state(lruvec, idx, -1); 1325 } 1326 1327 static inline void __inc_lruvec_page_state(struct page *page, 1328 enum node_stat_item idx) 1329 { 1330 __mod_lruvec_page_state(page, idx, 1); 1331 } 1332 1333 static inline void __dec_lruvec_page_state(struct page *page, 1334 enum node_stat_item idx) 1335 { 1336 __mod_lruvec_page_state(page, idx, -1); 1337 } 1338 1339 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1340 { 1341 __mod_lruvec_slab_state(p, idx, 1); 1342 } 1343 1344 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1345 { 1346 __mod_lruvec_slab_state(p, idx, -1); 1347 } 1348 1349 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1350 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1351 int idx) 1352 { 1353 mod_memcg_state(memcg, idx, 1); 1354 } 1355 1356 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1357 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1358 int idx) 1359 { 1360 mod_memcg_state(memcg, idx, -1); 1361 } 1362 1363 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1364 static inline void inc_memcg_page_state(struct page *page, 1365 int idx) 1366 { 1367 mod_memcg_page_state(page, idx, 1); 1368 } 1369 1370 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1371 static inline void dec_memcg_page_state(struct page *page, 1372 int idx) 1373 { 1374 mod_memcg_page_state(page, idx, -1); 1375 } 1376 1377 static inline void inc_lruvec_state(struct lruvec *lruvec, 1378 enum node_stat_item idx) 1379 { 1380 mod_lruvec_state(lruvec, idx, 1); 1381 } 1382 1383 static inline void dec_lruvec_state(struct lruvec *lruvec, 1384 enum node_stat_item idx) 1385 { 1386 mod_lruvec_state(lruvec, idx, -1); 1387 } 1388 1389 static inline void inc_lruvec_page_state(struct page *page, 1390 enum node_stat_item idx) 1391 { 1392 mod_lruvec_page_state(page, idx, 1); 1393 } 1394 1395 static inline void dec_lruvec_page_state(struct page *page, 1396 enum node_stat_item idx) 1397 { 1398 mod_lruvec_page_state(page, idx, -1); 1399 } 1400 1401 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1402 { 1403 struct mem_cgroup *memcg; 1404 1405 memcg = lruvec_memcg(lruvec); 1406 if (!memcg) 1407 return NULL; 1408 memcg = parent_mem_cgroup(memcg); 1409 if (!memcg) 1410 return NULL; 1411 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1412 } 1413 1414 #ifdef CONFIG_CGROUP_WRITEBACK 1415 1416 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1417 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1418 unsigned long *pheadroom, unsigned long *pdirty, 1419 unsigned long *pwriteback); 1420 1421 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1422 struct bdi_writeback *wb); 1423 1424 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1425 struct bdi_writeback *wb) 1426 { 1427 if (mem_cgroup_disabled()) 1428 return; 1429 1430 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1431 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1432 } 1433 1434 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1435 1436 #else /* CONFIG_CGROUP_WRITEBACK */ 1437 1438 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1439 { 1440 return NULL; 1441 } 1442 1443 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1444 unsigned long *pfilepages, 1445 unsigned long *pheadroom, 1446 unsigned long *pdirty, 1447 unsigned long *pwriteback) 1448 { 1449 } 1450 1451 static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1452 struct bdi_writeback *wb) 1453 { 1454 } 1455 1456 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1457 { 1458 } 1459 1460 #endif /* CONFIG_CGROUP_WRITEBACK */ 1461 1462 struct sock; 1463 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1464 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1465 #ifdef CONFIG_MEMCG 1466 extern struct static_key_false memcg_sockets_enabled_key; 1467 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1468 void mem_cgroup_sk_alloc(struct sock *sk); 1469 void mem_cgroup_sk_free(struct sock *sk); 1470 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1471 { 1472 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1473 return true; 1474 do { 1475 if (time_before(jiffies, memcg->socket_pressure)) 1476 return true; 1477 } while ((memcg = parent_mem_cgroup(memcg))); 1478 return false; 1479 } 1480 1481 extern int memcg_expand_shrinker_maps(int new_id); 1482 1483 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1484 int nid, int shrinker_id); 1485 #else 1486 #define mem_cgroup_sockets_enabled 0 1487 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1488 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1489 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1490 { 1491 return false; 1492 } 1493 1494 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1495 int nid, int shrinker_id) 1496 { 1497 } 1498 #endif 1499 1500 #ifdef CONFIG_MEMCG_KMEM 1501 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1502 unsigned int nr_pages); 1503 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 1504 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1505 void __memcg_kmem_uncharge_page(struct page *page, int order); 1506 1507 struct obj_cgroup *get_obj_cgroup_from_current(void); 1508 1509 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1510 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1511 1512 extern struct static_key_false memcg_kmem_enabled_key; 1513 1514 extern int memcg_nr_cache_ids; 1515 void memcg_get_cache_ids(void); 1516 void memcg_put_cache_ids(void); 1517 1518 /* 1519 * Helper macro to loop through all memcg-specific caches. Callers must still 1520 * check if the cache is valid (it is either valid or NULL). 1521 * the slab_mutex must be held when looping through those caches 1522 */ 1523 #define for_each_memcg_cache_index(_idx) \ 1524 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1525 1526 static inline bool memcg_kmem_enabled(void) 1527 { 1528 return static_branch_likely(&memcg_kmem_enabled_key); 1529 } 1530 1531 static inline bool memcg_kmem_bypass(void) 1532 { 1533 if (in_interrupt()) 1534 return true; 1535 1536 /* Allow remote memcg charging in kthread contexts. */ 1537 if ((!current->mm || (current->flags & PF_KTHREAD)) && 1538 !current->active_memcg) 1539 return true; 1540 return false; 1541 } 1542 1543 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1544 int order) 1545 { 1546 if (memcg_kmem_enabled()) 1547 return __memcg_kmem_charge_page(page, gfp, order); 1548 return 0; 1549 } 1550 1551 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1552 { 1553 if (memcg_kmem_enabled()) 1554 __memcg_kmem_uncharge_page(page, order); 1555 } 1556 1557 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1558 unsigned int nr_pages) 1559 { 1560 if (memcg_kmem_enabled()) 1561 return __memcg_kmem_charge(memcg, gfp, nr_pages); 1562 return 0; 1563 } 1564 1565 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, 1566 unsigned int nr_pages) 1567 { 1568 if (memcg_kmem_enabled()) 1569 __memcg_kmem_uncharge(memcg, nr_pages); 1570 } 1571 1572 /* 1573 * helper for accessing a memcg's index. It will be used as an index in the 1574 * child cache array in kmem_cache, and also to derive its name. This function 1575 * will return -1 when this is not a kmem-limited memcg. 1576 */ 1577 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1578 { 1579 return memcg ? memcg->kmemcg_id : -1; 1580 } 1581 1582 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1583 1584 #else 1585 1586 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1587 int order) 1588 { 1589 return 0; 1590 } 1591 1592 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1593 { 1594 } 1595 1596 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1597 int order) 1598 { 1599 return 0; 1600 } 1601 1602 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1603 { 1604 } 1605 1606 #define for_each_memcg_cache_index(_idx) \ 1607 for (; NULL; ) 1608 1609 static inline bool memcg_kmem_enabled(void) 1610 { 1611 return false; 1612 } 1613 1614 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1615 { 1616 return -1; 1617 } 1618 1619 static inline void memcg_get_cache_ids(void) 1620 { 1621 } 1622 1623 static inline void memcg_put_cache_ids(void) 1624 { 1625 } 1626 1627 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1628 { 1629 return NULL; 1630 } 1631 1632 #endif /* CONFIG_MEMCG_KMEM */ 1633 1634 #endif /* _LINUX_MEMCONTROL_H */ 1635