xref: /linux-6.15/include/linux/memcontrol.h (revision aaa3e7fb)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	long stat[MEMCG_NR_STAT];
80 	unsigned long events[NR_VM_EVENT_ITEMS];
81 	unsigned long nr_page_events;
82 	unsigned long targets[MEM_CGROUP_NTARGETS];
83 };
84 
85 struct mem_cgroup_reclaim_iter {
86 	struct mem_cgroup *position;
87 	/* scan generation, increased every round-trip */
88 	unsigned int generation;
89 };
90 
91 struct lruvec_stat {
92 	long count[NR_VM_NODE_STAT_ITEMS];
93 };
94 
95 /*
96  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
97  * which have elements charged to this memcg.
98  */
99 struct memcg_shrinker_map {
100 	struct rcu_head rcu;
101 	unsigned long map[];
102 };
103 
104 /*
105  * per-node information in memory controller.
106  */
107 struct mem_cgroup_per_node {
108 	struct lruvec		lruvec;
109 
110 	/* Legacy local VM stats */
111 	struct lruvec_stat __percpu *lruvec_stat_local;
112 
113 	/* Subtree VM stats (batched updates) */
114 	struct lruvec_stat __percpu *lruvec_stat_cpu;
115 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
116 
117 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
118 
119 	struct mem_cgroup_reclaim_iter	iter;
120 
121 	struct memcg_shrinker_map __rcu	*shrinker_map;
122 
123 	struct rb_node		tree_node;	/* RB tree node */
124 	unsigned long		usage_in_excess;/* Set to the value by which */
125 						/* the soft limit is exceeded*/
126 	bool			on_tree;
127 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
128 						/* use container_of	   */
129 };
130 
131 struct mem_cgroup_threshold {
132 	struct eventfd_ctx *eventfd;
133 	unsigned long threshold;
134 };
135 
136 /* For threshold */
137 struct mem_cgroup_threshold_ary {
138 	/* An array index points to threshold just below or equal to usage. */
139 	int current_threshold;
140 	/* Size of entries[] */
141 	unsigned int size;
142 	/* Array of thresholds */
143 	struct mem_cgroup_threshold entries[];
144 };
145 
146 struct mem_cgroup_thresholds {
147 	/* Primary thresholds array */
148 	struct mem_cgroup_threshold_ary *primary;
149 	/*
150 	 * Spare threshold array.
151 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
152 	 * It must be able to store at least primary->size - 1 entries.
153 	 */
154 	struct mem_cgroup_threshold_ary *spare;
155 };
156 
157 enum memcg_kmem_state {
158 	KMEM_NONE,
159 	KMEM_ALLOCATED,
160 	KMEM_ONLINE,
161 };
162 
163 #if defined(CONFIG_SMP)
164 struct memcg_padding {
165 	char x[0];
166 } ____cacheline_internodealigned_in_smp;
167 #define MEMCG_PADDING(name)      struct memcg_padding name;
168 #else
169 #define MEMCG_PADDING(name)
170 #endif
171 
172 /*
173  * Remember four most recent foreign writebacks with dirty pages in this
174  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
175  * one in a given round, we're likely to catch it later if it keeps
176  * foreign-dirtying, so a fairly low count should be enough.
177  *
178  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
179  */
180 #define MEMCG_CGWB_FRN_CNT	4
181 
182 struct memcg_cgwb_frn {
183 	u64 bdi_id;			/* bdi->id of the foreign inode */
184 	int memcg_id;			/* memcg->css.id of foreign inode */
185 	u64 at;				/* jiffies_64 at the time of dirtying */
186 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
187 };
188 
189 /*
190  * Bucket for arbitrarily byte-sized objects charged to a memory
191  * cgroup. The bucket can be reparented in one piece when the cgroup
192  * is destroyed, without having to round up the individual references
193  * of all live memory objects in the wild.
194  */
195 struct obj_cgroup {
196 	struct percpu_ref refcnt;
197 	struct mem_cgroup *memcg;
198 	atomic_t nr_charged_bytes;
199 	union {
200 		struct list_head list;
201 		struct rcu_head rcu;
202 	};
203 };
204 
205 /*
206  * The memory controller data structure. The memory controller controls both
207  * page cache and RSS per cgroup. We would eventually like to provide
208  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209  * to help the administrator determine what knobs to tune.
210  */
211 struct mem_cgroup {
212 	struct cgroup_subsys_state css;
213 
214 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
215 	struct mem_cgroup_id id;
216 
217 	/* Accounted resources */
218 	struct page_counter memory;
219 	struct page_counter swap;
220 
221 	/* Legacy consumer-oriented counters */
222 	struct page_counter memsw;
223 	struct page_counter kmem;
224 	struct page_counter tcpmem;
225 
226 	/* Range enforcement for interrupt charges */
227 	struct work_struct high_work;
228 
229 	unsigned long soft_limit;
230 
231 	/* vmpressure notifications */
232 	struct vmpressure vmpressure;
233 
234 	/*
235 	 * Should the accounting and control be hierarchical, per subtree?
236 	 */
237 	bool use_hierarchy;
238 
239 	/*
240 	 * Should the OOM killer kill all belonging tasks, had it kill one?
241 	 */
242 	bool oom_group;
243 
244 	/* protected by memcg_oom_lock */
245 	bool		oom_lock;
246 	int		under_oom;
247 
248 	int	swappiness;
249 	/* OOM-Killer disable */
250 	int		oom_kill_disable;
251 
252 	/* memory.events and memory.events.local */
253 	struct cgroup_file events_file;
254 	struct cgroup_file events_local_file;
255 
256 	/* handle for "memory.swap.events" */
257 	struct cgroup_file swap_events_file;
258 
259 	/* protect arrays of thresholds */
260 	struct mutex thresholds_lock;
261 
262 	/* thresholds for memory usage. RCU-protected */
263 	struct mem_cgroup_thresholds thresholds;
264 
265 	/* thresholds for mem+swap usage. RCU-protected */
266 	struct mem_cgroup_thresholds memsw_thresholds;
267 
268 	/* For oom notifier event fd */
269 	struct list_head oom_notify;
270 
271 	/*
272 	 * Should we move charges of a task when a task is moved into this
273 	 * mem_cgroup ? And what type of charges should we move ?
274 	 */
275 	unsigned long move_charge_at_immigrate;
276 	/* taken only while moving_account > 0 */
277 	spinlock_t		move_lock;
278 	unsigned long		move_lock_flags;
279 
280 	MEMCG_PADDING(_pad1_);
281 
282 	/*
283 	 * set > 0 if pages under this cgroup are moving to other cgroup.
284 	 */
285 	atomic_t		moving_account;
286 	struct task_struct	*move_lock_task;
287 
288 	/* Legacy local VM stats and events */
289 	struct memcg_vmstats_percpu __percpu *vmstats_local;
290 
291 	/* Subtree VM stats and events (batched updates) */
292 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
293 
294 	MEMCG_PADDING(_pad2_);
295 
296 	atomic_long_t		vmstats[MEMCG_NR_STAT];
297 	atomic_long_t		vmevents[NR_VM_EVENT_ITEMS];
298 
299 	/* memory.events */
300 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
301 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
302 
303 	unsigned long		socket_pressure;
304 
305 	/* Legacy tcp memory accounting */
306 	bool			tcpmem_active;
307 	int			tcpmem_pressure;
308 
309 #ifdef CONFIG_MEMCG_KMEM
310         /* Index in the kmem_cache->memcg_params.memcg_caches array */
311 	int kmemcg_id;
312 	enum memcg_kmem_state kmem_state;
313 	struct obj_cgroup __rcu *objcg;
314 	struct list_head objcg_list; /* list of inherited objcgs */
315 #endif
316 
317 #ifdef CONFIG_CGROUP_WRITEBACK
318 	struct list_head cgwb_list;
319 	struct wb_domain cgwb_domain;
320 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
321 #endif
322 
323 	/* List of events which userspace want to receive */
324 	struct list_head event_list;
325 	spinlock_t event_list_lock;
326 
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 	struct deferred_split deferred_split_queue;
329 #endif
330 
331 	struct mem_cgroup_per_node *nodeinfo[0];
332 	/* WARNING: nodeinfo must be the last member here */
333 };
334 
335 /*
336  * size of first charge trial. "32" comes from vmscan.c's magic value.
337  * TODO: maybe necessary to use big numbers in big irons.
338  */
339 #define MEMCG_CHARGE_BATCH 32U
340 
341 extern struct mem_cgroup *root_mem_cgroup;
342 
343 static __always_inline bool memcg_stat_item_in_bytes(int idx)
344 {
345 	if (idx == MEMCG_PERCPU_B)
346 		return true;
347 	return vmstat_item_in_bytes(idx);
348 }
349 
350 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
351 {
352 	return (memcg == root_mem_cgroup);
353 }
354 
355 static inline bool mem_cgroup_disabled(void)
356 {
357 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
358 }
359 
360 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
361 						  struct mem_cgroup *memcg,
362 						  bool in_low_reclaim)
363 {
364 	if (mem_cgroup_disabled())
365 		return 0;
366 
367 	/*
368 	 * There is no reclaim protection applied to a targeted reclaim.
369 	 * We are special casing this specific case here because
370 	 * mem_cgroup_protected calculation is not robust enough to keep
371 	 * the protection invariant for calculated effective values for
372 	 * parallel reclaimers with different reclaim target. This is
373 	 * especially a problem for tail memcgs (as they have pages on LRU)
374 	 * which would want to have effective values 0 for targeted reclaim
375 	 * but a different value for external reclaim.
376 	 *
377 	 * Example
378 	 * Let's have global and A's reclaim in parallel:
379 	 *  |
380 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
381 	 *  |\
382 	 *  | C (low = 1G, usage = 2.5G)
383 	 *  B (low = 1G, usage = 0.5G)
384 	 *
385 	 * For the global reclaim
386 	 * A.elow = A.low
387 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
388 	 * C.elow = min(C.usage, C.low)
389 	 *
390 	 * With the effective values resetting we have A reclaim
391 	 * A.elow = 0
392 	 * B.elow = B.low
393 	 * C.elow = C.low
394 	 *
395 	 * If the global reclaim races with A's reclaim then
396 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
397 	 * is possible and reclaiming B would be violating the protection.
398 	 *
399 	 */
400 	if (root == memcg)
401 		return 0;
402 
403 	if (in_low_reclaim)
404 		return READ_ONCE(memcg->memory.emin);
405 
406 	return max(READ_ONCE(memcg->memory.emin),
407 		   READ_ONCE(memcg->memory.elow));
408 }
409 
410 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
411 				     struct mem_cgroup *memcg);
412 
413 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
414 {
415 	/*
416 	 * The root memcg doesn't account charges, and doesn't support
417 	 * protection.
418 	 */
419 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
420 
421 }
422 
423 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
424 {
425 	if (!mem_cgroup_supports_protection(memcg))
426 		return false;
427 
428 	return READ_ONCE(memcg->memory.elow) >=
429 		page_counter_read(&memcg->memory);
430 }
431 
432 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
433 {
434 	if (!mem_cgroup_supports_protection(memcg))
435 		return false;
436 
437 	return READ_ONCE(memcg->memory.emin) >=
438 		page_counter_read(&memcg->memory);
439 }
440 
441 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
442 
443 void mem_cgroup_uncharge(struct page *page);
444 void mem_cgroup_uncharge_list(struct list_head *page_list);
445 
446 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
447 
448 static struct mem_cgroup_per_node *
449 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
450 {
451 	return memcg->nodeinfo[nid];
452 }
453 
454 /**
455  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
456  * @memcg: memcg of the wanted lruvec
457  *
458  * Returns the lru list vector holding pages for a given @memcg &
459  * @node combination. This can be the node lruvec, if the memory
460  * controller is disabled.
461  */
462 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
463 					       struct pglist_data *pgdat)
464 {
465 	struct mem_cgroup_per_node *mz;
466 	struct lruvec *lruvec;
467 
468 	if (mem_cgroup_disabled()) {
469 		lruvec = &pgdat->__lruvec;
470 		goto out;
471 	}
472 
473 	if (!memcg)
474 		memcg = root_mem_cgroup;
475 
476 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
477 	lruvec = &mz->lruvec;
478 out:
479 	/*
480 	 * Since a node can be onlined after the mem_cgroup was created,
481 	 * we have to be prepared to initialize lruvec->pgdat here;
482 	 * and if offlined then reonlined, we need to reinitialize it.
483 	 */
484 	if (unlikely(lruvec->pgdat != pgdat))
485 		lruvec->pgdat = pgdat;
486 	return lruvec;
487 }
488 
489 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
490 
491 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
492 
493 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
494 
495 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
496 
497 static inline
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
499 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
500 }
501 
502 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
503 {
504 	return percpu_ref_tryget(&objcg->refcnt);
505 }
506 
507 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
508 {
509 	percpu_ref_get(&objcg->refcnt);
510 }
511 
512 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
513 {
514 	percpu_ref_put(&objcg->refcnt);
515 }
516 
517 /*
518  * After the initialization objcg->memcg is always pointing at
519  * a valid memcg, but can be atomically swapped to the parent memcg.
520  *
521  * The caller must ensure that the returned memcg won't be released:
522  * e.g. acquire the rcu_read_lock or css_set_lock.
523  */
524 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
525 {
526 	return READ_ONCE(objcg->memcg);
527 }
528 
529 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
530 {
531 	if (memcg)
532 		css_put(&memcg->css);
533 }
534 
535 #define mem_cgroup_from_counter(counter, member)	\
536 	container_of(counter, struct mem_cgroup, member)
537 
538 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
539 				   struct mem_cgroup *,
540 				   struct mem_cgroup_reclaim_cookie *);
541 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
542 int mem_cgroup_scan_tasks(struct mem_cgroup *,
543 			  int (*)(struct task_struct *, void *), void *);
544 
545 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
546 {
547 	if (mem_cgroup_disabled())
548 		return 0;
549 
550 	return memcg->id.id;
551 }
552 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
553 
554 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
555 {
556 	return mem_cgroup_from_css(seq_css(m));
557 }
558 
559 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
560 {
561 	struct mem_cgroup_per_node *mz;
562 
563 	if (mem_cgroup_disabled())
564 		return NULL;
565 
566 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
567 	return mz->memcg;
568 }
569 
570 /**
571  * parent_mem_cgroup - find the accounting parent of a memcg
572  * @memcg: memcg whose parent to find
573  *
574  * Returns the parent memcg, or NULL if this is the root or the memory
575  * controller is in legacy no-hierarchy mode.
576  */
577 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
578 {
579 	if (!memcg->memory.parent)
580 		return NULL;
581 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
582 }
583 
584 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
585 			      struct mem_cgroup *root)
586 {
587 	if (root == memcg)
588 		return true;
589 	if (!root->use_hierarchy)
590 		return false;
591 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
592 }
593 
594 static inline bool mm_match_cgroup(struct mm_struct *mm,
595 				   struct mem_cgroup *memcg)
596 {
597 	struct mem_cgroup *task_memcg;
598 	bool match = false;
599 
600 	rcu_read_lock();
601 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
602 	if (task_memcg)
603 		match = mem_cgroup_is_descendant(task_memcg, memcg);
604 	rcu_read_unlock();
605 	return match;
606 }
607 
608 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
609 ino_t page_cgroup_ino(struct page *page);
610 
611 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
612 {
613 	if (mem_cgroup_disabled())
614 		return true;
615 	return !!(memcg->css.flags & CSS_ONLINE);
616 }
617 
618 /*
619  * For memory reclaim.
620  */
621 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
622 
623 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
624 		int zid, int nr_pages);
625 
626 static inline
627 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
628 		enum lru_list lru, int zone_idx)
629 {
630 	struct mem_cgroup_per_node *mz;
631 
632 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
633 	return mz->lru_zone_size[zone_idx][lru];
634 }
635 
636 void mem_cgroup_handle_over_high(void);
637 
638 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
639 
640 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
641 
642 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
643 				struct task_struct *p);
644 
645 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
646 
647 static inline void mem_cgroup_enter_user_fault(void)
648 {
649 	WARN_ON(current->in_user_fault);
650 	current->in_user_fault = 1;
651 }
652 
653 static inline void mem_cgroup_exit_user_fault(void)
654 {
655 	WARN_ON(!current->in_user_fault);
656 	current->in_user_fault = 0;
657 }
658 
659 static inline bool task_in_memcg_oom(struct task_struct *p)
660 {
661 	return p->memcg_in_oom;
662 }
663 
664 bool mem_cgroup_oom_synchronize(bool wait);
665 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
666 					    struct mem_cgroup *oom_domain);
667 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
668 
669 #ifdef CONFIG_MEMCG_SWAP
670 extern bool cgroup_memory_noswap;
671 #endif
672 
673 struct mem_cgroup *lock_page_memcg(struct page *page);
674 void __unlock_page_memcg(struct mem_cgroup *memcg);
675 void unlock_page_memcg(struct page *page);
676 
677 /*
678  * idx can be of type enum memcg_stat_item or node_stat_item.
679  * Keep in sync with memcg_exact_page_state().
680  */
681 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
682 {
683 	long x = atomic_long_read(&memcg->vmstats[idx]);
684 #ifdef CONFIG_SMP
685 	if (x < 0)
686 		x = 0;
687 #endif
688 	return x;
689 }
690 
691 /*
692  * idx can be of type enum memcg_stat_item or node_stat_item.
693  * Keep in sync with memcg_exact_page_state().
694  */
695 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
696 						   int idx)
697 {
698 	long x = 0;
699 	int cpu;
700 
701 	for_each_possible_cpu(cpu)
702 		x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
703 #ifdef CONFIG_SMP
704 	if (x < 0)
705 		x = 0;
706 #endif
707 	return x;
708 }
709 
710 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
711 
712 /* idx can be of type enum memcg_stat_item or node_stat_item */
713 static inline void mod_memcg_state(struct mem_cgroup *memcg,
714 				   int idx, int val)
715 {
716 	unsigned long flags;
717 
718 	local_irq_save(flags);
719 	__mod_memcg_state(memcg, idx, val);
720 	local_irq_restore(flags);
721 }
722 
723 /**
724  * mod_memcg_page_state - update page state statistics
725  * @page: the page
726  * @idx: page state item to account
727  * @val: number of pages (positive or negative)
728  *
729  * The @page must be locked or the caller must use lock_page_memcg()
730  * to prevent double accounting when the page is concurrently being
731  * moved to another memcg:
732  *
733  *   lock_page(page) or lock_page_memcg(page)
734  *   if (TestClearPageState(page))
735  *     mod_memcg_page_state(page, state, -1);
736  *   unlock_page(page) or unlock_page_memcg(page)
737  *
738  * Kernel pages are an exception to this, since they'll never move.
739  */
740 static inline void __mod_memcg_page_state(struct page *page,
741 					  int idx, int val)
742 {
743 	if (page->mem_cgroup)
744 		__mod_memcg_state(page->mem_cgroup, idx, val);
745 }
746 
747 static inline void mod_memcg_page_state(struct page *page,
748 					int idx, int val)
749 {
750 	if (page->mem_cgroup)
751 		mod_memcg_state(page->mem_cgroup, idx, val);
752 }
753 
754 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
755 					      enum node_stat_item idx)
756 {
757 	struct mem_cgroup_per_node *pn;
758 	long x;
759 
760 	if (mem_cgroup_disabled())
761 		return node_page_state(lruvec_pgdat(lruvec), idx);
762 
763 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
764 	x = atomic_long_read(&pn->lruvec_stat[idx]);
765 #ifdef CONFIG_SMP
766 	if (x < 0)
767 		x = 0;
768 #endif
769 	return x;
770 }
771 
772 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
773 						    enum node_stat_item idx)
774 {
775 	struct mem_cgroup_per_node *pn;
776 	long x = 0;
777 	int cpu;
778 
779 	if (mem_cgroup_disabled())
780 		return node_page_state(lruvec_pgdat(lruvec), idx);
781 
782 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
783 	for_each_possible_cpu(cpu)
784 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
785 #ifdef CONFIG_SMP
786 	if (x < 0)
787 		x = 0;
788 #endif
789 	return x;
790 }
791 
792 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
793 			      int val);
794 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
795 			int val);
796 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
797 
798 void mod_memcg_obj_state(void *p, int idx, int val);
799 
800 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
801 					 int val)
802 {
803 	unsigned long flags;
804 
805 	local_irq_save(flags);
806 	__mod_lruvec_slab_state(p, idx, val);
807 	local_irq_restore(flags);
808 }
809 
810 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
811 					  enum node_stat_item idx, int val)
812 {
813 	unsigned long flags;
814 
815 	local_irq_save(flags);
816 	__mod_memcg_lruvec_state(lruvec, idx, val);
817 	local_irq_restore(flags);
818 }
819 
820 static inline void mod_lruvec_state(struct lruvec *lruvec,
821 				    enum node_stat_item idx, int val)
822 {
823 	unsigned long flags;
824 
825 	local_irq_save(flags);
826 	__mod_lruvec_state(lruvec, idx, val);
827 	local_irq_restore(flags);
828 }
829 
830 static inline void __mod_lruvec_page_state(struct page *page,
831 					   enum node_stat_item idx, int val)
832 {
833 	struct page *head = compound_head(page); /* rmap on tail pages */
834 	pg_data_t *pgdat = page_pgdat(page);
835 	struct lruvec *lruvec;
836 
837 	/* Untracked pages have no memcg, no lruvec. Update only the node */
838 	if (!head->mem_cgroup) {
839 		__mod_node_page_state(pgdat, idx, val);
840 		return;
841 	}
842 
843 	lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
844 	__mod_lruvec_state(lruvec, idx, val);
845 }
846 
847 static inline void mod_lruvec_page_state(struct page *page,
848 					 enum node_stat_item idx, int val)
849 {
850 	unsigned long flags;
851 
852 	local_irq_save(flags);
853 	__mod_lruvec_page_state(page, idx, val);
854 	local_irq_restore(flags);
855 }
856 
857 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
858 						gfp_t gfp_mask,
859 						unsigned long *total_scanned);
860 
861 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
862 			  unsigned long count);
863 
864 static inline void count_memcg_events(struct mem_cgroup *memcg,
865 				      enum vm_event_item idx,
866 				      unsigned long count)
867 {
868 	unsigned long flags;
869 
870 	local_irq_save(flags);
871 	__count_memcg_events(memcg, idx, count);
872 	local_irq_restore(flags);
873 }
874 
875 static inline void count_memcg_page_event(struct page *page,
876 					  enum vm_event_item idx)
877 {
878 	if (page->mem_cgroup)
879 		count_memcg_events(page->mem_cgroup, idx, 1);
880 }
881 
882 static inline void count_memcg_event_mm(struct mm_struct *mm,
883 					enum vm_event_item idx)
884 {
885 	struct mem_cgroup *memcg;
886 
887 	if (mem_cgroup_disabled())
888 		return;
889 
890 	rcu_read_lock();
891 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
892 	if (likely(memcg))
893 		count_memcg_events(memcg, idx, 1);
894 	rcu_read_unlock();
895 }
896 
897 static inline void memcg_memory_event(struct mem_cgroup *memcg,
898 				      enum memcg_memory_event event)
899 {
900 	atomic_long_inc(&memcg->memory_events_local[event]);
901 	cgroup_file_notify(&memcg->events_local_file);
902 
903 	do {
904 		atomic_long_inc(&memcg->memory_events[event]);
905 		cgroup_file_notify(&memcg->events_file);
906 
907 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
908 			break;
909 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
910 			break;
911 	} while ((memcg = parent_mem_cgroup(memcg)) &&
912 		 !mem_cgroup_is_root(memcg));
913 }
914 
915 static inline void memcg_memory_event_mm(struct mm_struct *mm,
916 					 enum memcg_memory_event event)
917 {
918 	struct mem_cgroup *memcg;
919 
920 	if (mem_cgroup_disabled())
921 		return;
922 
923 	rcu_read_lock();
924 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
925 	if (likely(memcg))
926 		memcg_memory_event(memcg, event);
927 	rcu_read_unlock();
928 }
929 
930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
931 void mem_cgroup_split_huge_fixup(struct page *head);
932 #endif
933 
934 #else /* CONFIG_MEMCG */
935 
936 #define MEM_CGROUP_ID_SHIFT	0
937 #define MEM_CGROUP_ID_MAX	0
938 
939 struct mem_cgroup;
940 
941 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
942 {
943 	return true;
944 }
945 
946 static inline bool mem_cgroup_disabled(void)
947 {
948 	return true;
949 }
950 
951 static inline void memcg_memory_event(struct mem_cgroup *memcg,
952 				      enum memcg_memory_event event)
953 {
954 }
955 
956 static inline void memcg_memory_event_mm(struct mm_struct *mm,
957 					 enum memcg_memory_event event)
958 {
959 }
960 
961 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
962 						  struct mem_cgroup *memcg,
963 						  bool in_low_reclaim)
964 {
965 	return 0;
966 }
967 
968 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
969 						   struct mem_cgroup *memcg)
970 {
971 }
972 
973 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
974 {
975 	return false;
976 }
977 
978 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
979 {
980 	return false;
981 }
982 
983 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
984 				    gfp_t gfp_mask)
985 {
986 	return 0;
987 }
988 
989 static inline void mem_cgroup_uncharge(struct page *page)
990 {
991 }
992 
993 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
994 {
995 }
996 
997 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
998 {
999 }
1000 
1001 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1002 					       struct pglist_data *pgdat)
1003 {
1004 	return &pgdat->__lruvec;
1005 }
1006 
1007 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1008 						    struct pglist_data *pgdat)
1009 {
1010 	return &pgdat->__lruvec;
1011 }
1012 
1013 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1014 {
1015 	return NULL;
1016 }
1017 
1018 static inline bool mm_match_cgroup(struct mm_struct *mm,
1019 		struct mem_cgroup *memcg)
1020 {
1021 	return true;
1022 }
1023 
1024 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1025 {
1026 	return NULL;
1027 }
1028 
1029 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1030 {
1031 	return NULL;
1032 }
1033 
1034 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1035 {
1036 }
1037 
1038 static inline struct mem_cgroup *
1039 mem_cgroup_iter(struct mem_cgroup *root,
1040 		struct mem_cgroup *prev,
1041 		struct mem_cgroup_reclaim_cookie *reclaim)
1042 {
1043 	return NULL;
1044 }
1045 
1046 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1047 					 struct mem_cgroup *prev)
1048 {
1049 }
1050 
1051 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1052 		int (*fn)(struct task_struct *, void *), void *arg)
1053 {
1054 	return 0;
1055 }
1056 
1057 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1058 {
1059 	return 0;
1060 }
1061 
1062 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1063 {
1064 	WARN_ON_ONCE(id);
1065 	/* XXX: This should always return root_mem_cgroup */
1066 	return NULL;
1067 }
1068 
1069 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1070 {
1071 	return NULL;
1072 }
1073 
1074 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1075 {
1076 	return NULL;
1077 }
1078 
1079 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1080 {
1081 	return true;
1082 }
1083 
1084 static inline
1085 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1086 		enum lru_list lru, int zone_idx)
1087 {
1088 	return 0;
1089 }
1090 
1091 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1092 {
1093 	return 0;
1094 }
1095 
1096 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1097 {
1098 	return 0;
1099 }
1100 
1101 static inline void
1102 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1103 {
1104 }
1105 
1106 static inline void
1107 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1108 {
1109 }
1110 
1111 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1112 {
1113 	return NULL;
1114 }
1115 
1116 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1117 {
1118 }
1119 
1120 static inline void unlock_page_memcg(struct page *page)
1121 {
1122 }
1123 
1124 static inline void mem_cgroup_handle_over_high(void)
1125 {
1126 }
1127 
1128 static inline void mem_cgroup_enter_user_fault(void)
1129 {
1130 }
1131 
1132 static inline void mem_cgroup_exit_user_fault(void)
1133 {
1134 }
1135 
1136 static inline bool task_in_memcg_oom(struct task_struct *p)
1137 {
1138 	return false;
1139 }
1140 
1141 static inline bool mem_cgroup_oom_synchronize(bool wait)
1142 {
1143 	return false;
1144 }
1145 
1146 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1147 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1148 {
1149 	return NULL;
1150 }
1151 
1152 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1153 {
1154 }
1155 
1156 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1157 {
1158 	return 0;
1159 }
1160 
1161 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1162 						   int idx)
1163 {
1164 	return 0;
1165 }
1166 
1167 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1168 				     int idx,
1169 				     int nr)
1170 {
1171 }
1172 
1173 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1174 				   int idx,
1175 				   int nr)
1176 {
1177 }
1178 
1179 static inline void __mod_memcg_page_state(struct page *page,
1180 					  int idx,
1181 					  int nr)
1182 {
1183 }
1184 
1185 static inline void mod_memcg_page_state(struct page *page,
1186 					int idx,
1187 					int nr)
1188 {
1189 }
1190 
1191 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1192 					      enum node_stat_item idx)
1193 {
1194 	return node_page_state(lruvec_pgdat(lruvec), idx);
1195 }
1196 
1197 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1198 						    enum node_stat_item idx)
1199 {
1200 	return node_page_state(lruvec_pgdat(lruvec), idx);
1201 }
1202 
1203 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1204 					    enum node_stat_item idx, int val)
1205 {
1206 }
1207 
1208 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1209 				      enum node_stat_item idx, int val)
1210 {
1211 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1212 }
1213 
1214 static inline void mod_lruvec_state(struct lruvec *lruvec,
1215 				    enum node_stat_item idx, int val)
1216 {
1217 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1218 }
1219 
1220 static inline void __mod_lruvec_page_state(struct page *page,
1221 					   enum node_stat_item idx, int val)
1222 {
1223 	__mod_node_page_state(page_pgdat(page), idx, val);
1224 }
1225 
1226 static inline void mod_lruvec_page_state(struct page *page,
1227 					 enum node_stat_item idx, int val)
1228 {
1229 	mod_node_page_state(page_pgdat(page), idx, val);
1230 }
1231 
1232 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1233 					   int val)
1234 {
1235 	struct page *page = virt_to_head_page(p);
1236 
1237 	__mod_node_page_state(page_pgdat(page), idx, val);
1238 }
1239 
1240 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1241 					 int val)
1242 {
1243 	struct page *page = virt_to_head_page(p);
1244 
1245 	mod_node_page_state(page_pgdat(page), idx, val);
1246 }
1247 
1248 static inline void mod_memcg_obj_state(void *p, int idx, int val)
1249 {
1250 }
1251 
1252 static inline
1253 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1254 					    gfp_t gfp_mask,
1255 					    unsigned long *total_scanned)
1256 {
1257 	return 0;
1258 }
1259 
1260 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1261 {
1262 }
1263 
1264 static inline void count_memcg_events(struct mem_cgroup *memcg,
1265 				      enum vm_event_item idx,
1266 				      unsigned long count)
1267 {
1268 }
1269 
1270 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1271 					enum vm_event_item idx,
1272 					unsigned long count)
1273 {
1274 }
1275 
1276 static inline void count_memcg_page_event(struct page *page,
1277 					  int idx)
1278 {
1279 }
1280 
1281 static inline
1282 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1283 {
1284 }
1285 #endif /* CONFIG_MEMCG */
1286 
1287 /* idx can be of type enum memcg_stat_item or node_stat_item */
1288 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1289 				     int idx)
1290 {
1291 	__mod_memcg_state(memcg, idx, 1);
1292 }
1293 
1294 /* idx can be of type enum memcg_stat_item or node_stat_item */
1295 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1296 				     int idx)
1297 {
1298 	__mod_memcg_state(memcg, idx, -1);
1299 }
1300 
1301 /* idx can be of type enum memcg_stat_item or node_stat_item */
1302 static inline void __inc_memcg_page_state(struct page *page,
1303 					  int idx)
1304 {
1305 	__mod_memcg_page_state(page, idx, 1);
1306 }
1307 
1308 /* idx can be of type enum memcg_stat_item or node_stat_item */
1309 static inline void __dec_memcg_page_state(struct page *page,
1310 					  int idx)
1311 {
1312 	__mod_memcg_page_state(page, idx, -1);
1313 }
1314 
1315 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1316 				      enum node_stat_item idx)
1317 {
1318 	__mod_lruvec_state(lruvec, idx, 1);
1319 }
1320 
1321 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1322 				      enum node_stat_item idx)
1323 {
1324 	__mod_lruvec_state(lruvec, idx, -1);
1325 }
1326 
1327 static inline void __inc_lruvec_page_state(struct page *page,
1328 					   enum node_stat_item idx)
1329 {
1330 	__mod_lruvec_page_state(page, idx, 1);
1331 }
1332 
1333 static inline void __dec_lruvec_page_state(struct page *page,
1334 					   enum node_stat_item idx)
1335 {
1336 	__mod_lruvec_page_state(page, idx, -1);
1337 }
1338 
1339 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1340 {
1341 	__mod_lruvec_slab_state(p, idx, 1);
1342 }
1343 
1344 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1345 {
1346 	__mod_lruvec_slab_state(p, idx, -1);
1347 }
1348 
1349 /* idx can be of type enum memcg_stat_item or node_stat_item */
1350 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1351 				   int idx)
1352 {
1353 	mod_memcg_state(memcg, idx, 1);
1354 }
1355 
1356 /* idx can be of type enum memcg_stat_item or node_stat_item */
1357 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1358 				   int idx)
1359 {
1360 	mod_memcg_state(memcg, idx, -1);
1361 }
1362 
1363 /* idx can be of type enum memcg_stat_item or node_stat_item */
1364 static inline void inc_memcg_page_state(struct page *page,
1365 					int idx)
1366 {
1367 	mod_memcg_page_state(page, idx, 1);
1368 }
1369 
1370 /* idx can be of type enum memcg_stat_item or node_stat_item */
1371 static inline void dec_memcg_page_state(struct page *page,
1372 					int idx)
1373 {
1374 	mod_memcg_page_state(page, idx, -1);
1375 }
1376 
1377 static inline void inc_lruvec_state(struct lruvec *lruvec,
1378 				    enum node_stat_item idx)
1379 {
1380 	mod_lruvec_state(lruvec, idx, 1);
1381 }
1382 
1383 static inline void dec_lruvec_state(struct lruvec *lruvec,
1384 				    enum node_stat_item idx)
1385 {
1386 	mod_lruvec_state(lruvec, idx, -1);
1387 }
1388 
1389 static inline void inc_lruvec_page_state(struct page *page,
1390 					 enum node_stat_item idx)
1391 {
1392 	mod_lruvec_page_state(page, idx, 1);
1393 }
1394 
1395 static inline void dec_lruvec_page_state(struct page *page,
1396 					 enum node_stat_item idx)
1397 {
1398 	mod_lruvec_page_state(page, idx, -1);
1399 }
1400 
1401 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1402 {
1403 	struct mem_cgroup *memcg;
1404 
1405 	memcg = lruvec_memcg(lruvec);
1406 	if (!memcg)
1407 		return NULL;
1408 	memcg = parent_mem_cgroup(memcg);
1409 	if (!memcg)
1410 		return NULL;
1411 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1412 }
1413 
1414 #ifdef CONFIG_CGROUP_WRITEBACK
1415 
1416 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1417 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1418 			 unsigned long *pheadroom, unsigned long *pdirty,
1419 			 unsigned long *pwriteback);
1420 
1421 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1422 					     struct bdi_writeback *wb);
1423 
1424 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1425 						  struct bdi_writeback *wb)
1426 {
1427 	if (mem_cgroup_disabled())
1428 		return;
1429 
1430 	if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1431 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1432 }
1433 
1434 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1435 
1436 #else	/* CONFIG_CGROUP_WRITEBACK */
1437 
1438 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1439 {
1440 	return NULL;
1441 }
1442 
1443 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1444 				       unsigned long *pfilepages,
1445 				       unsigned long *pheadroom,
1446 				       unsigned long *pdirty,
1447 				       unsigned long *pwriteback)
1448 {
1449 }
1450 
1451 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1452 						  struct bdi_writeback *wb)
1453 {
1454 }
1455 
1456 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1457 {
1458 }
1459 
1460 #endif	/* CONFIG_CGROUP_WRITEBACK */
1461 
1462 struct sock;
1463 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1464 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1465 #ifdef CONFIG_MEMCG
1466 extern struct static_key_false memcg_sockets_enabled_key;
1467 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1468 void mem_cgroup_sk_alloc(struct sock *sk);
1469 void mem_cgroup_sk_free(struct sock *sk);
1470 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1471 {
1472 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1473 		return true;
1474 	do {
1475 		if (time_before(jiffies, memcg->socket_pressure))
1476 			return true;
1477 	} while ((memcg = parent_mem_cgroup(memcg)));
1478 	return false;
1479 }
1480 
1481 extern int memcg_expand_shrinker_maps(int new_id);
1482 
1483 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1484 				   int nid, int shrinker_id);
1485 #else
1486 #define mem_cgroup_sockets_enabled 0
1487 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1488 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1489 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1490 {
1491 	return false;
1492 }
1493 
1494 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1495 					  int nid, int shrinker_id)
1496 {
1497 }
1498 #endif
1499 
1500 #ifdef CONFIG_MEMCG_KMEM
1501 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1502 			unsigned int nr_pages);
1503 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1504 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1505 void __memcg_kmem_uncharge_page(struct page *page, int order);
1506 
1507 struct obj_cgroup *get_obj_cgroup_from_current(void);
1508 
1509 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1510 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1511 
1512 extern struct static_key_false memcg_kmem_enabled_key;
1513 
1514 extern int memcg_nr_cache_ids;
1515 void memcg_get_cache_ids(void);
1516 void memcg_put_cache_ids(void);
1517 
1518 /*
1519  * Helper macro to loop through all memcg-specific caches. Callers must still
1520  * check if the cache is valid (it is either valid or NULL).
1521  * the slab_mutex must be held when looping through those caches
1522  */
1523 #define for_each_memcg_cache_index(_idx)	\
1524 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1525 
1526 static inline bool memcg_kmem_enabled(void)
1527 {
1528 	return static_branch_likely(&memcg_kmem_enabled_key);
1529 }
1530 
1531 static inline bool memcg_kmem_bypass(void)
1532 {
1533 	if (in_interrupt())
1534 		return true;
1535 
1536 	/* Allow remote memcg charging in kthread contexts. */
1537 	if ((!current->mm || (current->flags & PF_KTHREAD)) &&
1538 	     !current->active_memcg)
1539 		return true;
1540 	return false;
1541 }
1542 
1543 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1544 					 int order)
1545 {
1546 	if (memcg_kmem_enabled())
1547 		return __memcg_kmem_charge_page(page, gfp, order);
1548 	return 0;
1549 }
1550 
1551 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1552 {
1553 	if (memcg_kmem_enabled())
1554 		__memcg_kmem_uncharge_page(page, order);
1555 }
1556 
1557 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1558 				    unsigned int nr_pages)
1559 {
1560 	if (memcg_kmem_enabled())
1561 		return __memcg_kmem_charge(memcg, gfp, nr_pages);
1562 	return 0;
1563 }
1564 
1565 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1566 				       unsigned int nr_pages)
1567 {
1568 	if (memcg_kmem_enabled())
1569 		__memcg_kmem_uncharge(memcg, nr_pages);
1570 }
1571 
1572 /*
1573  * helper for accessing a memcg's index. It will be used as an index in the
1574  * child cache array in kmem_cache, and also to derive its name. This function
1575  * will return -1 when this is not a kmem-limited memcg.
1576  */
1577 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1578 {
1579 	return memcg ? memcg->kmemcg_id : -1;
1580 }
1581 
1582 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1583 
1584 #else
1585 
1586 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1587 					 int order)
1588 {
1589 	return 0;
1590 }
1591 
1592 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1593 {
1594 }
1595 
1596 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1597 					   int order)
1598 {
1599 	return 0;
1600 }
1601 
1602 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1603 {
1604 }
1605 
1606 #define for_each_memcg_cache_index(_idx)	\
1607 	for (; NULL; )
1608 
1609 static inline bool memcg_kmem_enabled(void)
1610 {
1611 	return false;
1612 }
1613 
1614 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1615 {
1616 	return -1;
1617 }
1618 
1619 static inline void memcg_get_cache_ids(void)
1620 {
1621 }
1622 
1623 static inline void memcg_put_cache_ids(void)
1624 {
1625 }
1626 
1627 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1628 {
1629        return NULL;
1630 }
1631 
1632 #endif /* CONFIG_MEMCG_KMEM */
1633 
1634 #endif /* _LINUX_MEMCONTROL_H */
1635