xref: /linux-6.15/include/linux/memcontrol.h (revision a58f3dcf)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/* Legacy tcp memory accounting */
303 	bool tcpmem_active;
304 	int tcpmem_pressure;
305 
306 	/* List of events which userspace want to receive */
307 	struct list_head event_list;
308 	spinlock_t event_list_lock;
309 #endif /* CONFIG_MEMCG_V1 */
310 
311 	struct mem_cgroup_per_node *nodeinfo[];
312 };
313 
314 /*
315  * size of first charge trial.
316  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
317  * workload.
318  */
319 #define MEMCG_CHARGE_BATCH 64U
320 
321 extern struct mem_cgroup *root_mem_cgroup;
322 
323 enum page_memcg_data_flags {
324 	/* page->memcg_data is a pointer to an slabobj_ext vector */
325 	MEMCG_DATA_OBJEXTS = (1UL << 0),
326 	/* page has been accounted as a non-slab kernel page */
327 	MEMCG_DATA_KMEM = (1UL << 1),
328 	/* the next bit after the last actual flag */
329 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
330 };
331 
332 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
333 
334 #else /* CONFIG_MEMCG */
335 
336 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
337 
338 #endif /* CONFIG_MEMCG */
339 
340 enum objext_flags {
341 	/* slabobj_ext vector failed to allocate */
342 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
343 	/* the next bit after the last actual flag */
344 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
345 };
346 
347 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
348 
349 #ifdef CONFIG_MEMCG
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released.
358  */
359 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
360 {
361 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - exclusive reference
422  *
423  * For a kmem folio a caller should hold an rcu read lock to protect memcg
424  * associated with a kmem folio from being released.
425  */
426 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
427 {
428 	if (folio_memcg_kmem(folio))
429 		return obj_cgroup_memcg(__folio_objcg(folio));
430 	return __folio_memcg(folio);
431 }
432 
433 /*
434  * folio_memcg_charged - If a folio is charged to a memory cgroup.
435  * @folio: Pointer to the folio.
436  *
437  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
438  */
439 static inline bool folio_memcg_charged(struct folio *folio)
440 {
441 	if (folio_memcg_kmem(folio))
442 		return __folio_objcg(folio) != NULL;
443 	return __folio_memcg(folio) != NULL;
444 }
445 
446 /*
447  * folio_memcg_check - Get the memory cgroup associated with a folio.
448  * @folio: Pointer to the folio.
449  *
450  * Returns a pointer to the memory cgroup associated with the folio,
451  * or NULL. This function unlike folio_memcg() can take any folio
452  * as an argument. It has to be used in cases when it's not known if a folio
453  * has an associated memory cgroup pointer or an object cgroups vector or
454  * an object cgroup.
455  *
456  * For a non-kmem folio any of the following ensures folio and memcg binding
457  * stability:
458  *
459  * - the folio lock
460  * - LRU isolation
461  * - exclusive reference
462  *
463  * For a kmem folio a caller should hold an rcu read lock to protect memcg
464  * associated with a kmem folio from being released.
465  */
466 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
467 {
468 	/*
469 	 * Because folio->memcg_data might be changed asynchronously
470 	 * for slabs, READ_ONCE() should be used here.
471 	 */
472 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
473 
474 	if (memcg_data & MEMCG_DATA_OBJEXTS)
475 		return NULL;
476 
477 	if (memcg_data & MEMCG_DATA_KMEM) {
478 		struct obj_cgroup *objcg;
479 
480 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
481 		return obj_cgroup_memcg(objcg);
482 	}
483 
484 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
485 }
486 
487 static inline struct mem_cgroup *page_memcg_check(struct page *page)
488 {
489 	if (PageTail(page))
490 		return NULL;
491 	return folio_memcg_check((struct folio *)page);
492 }
493 
494 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
495 {
496 	struct mem_cgroup *memcg;
497 
498 	rcu_read_lock();
499 retry:
500 	memcg = obj_cgroup_memcg(objcg);
501 	if (unlikely(!css_tryget(&memcg->css)))
502 		goto retry;
503 	rcu_read_unlock();
504 
505 	return memcg;
506 }
507 
508 /*
509  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
510  * @folio: Pointer to the folio.
511  *
512  * Checks if the folio has MemcgKmem flag set. The caller must ensure
513  * that the folio has an associated memory cgroup. It's not safe to call
514  * this function against some types of folios, e.g. slab folios.
515  */
516 static inline bool folio_memcg_kmem(struct folio *folio)
517 {
518 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
519 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
520 	return folio->memcg_data & MEMCG_DATA_KMEM;
521 }
522 
523 static inline bool PageMemcgKmem(struct page *page)
524 {
525 	return folio_memcg_kmem(page_folio(page));
526 }
527 
528 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
529 {
530 	return (memcg == root_mem_cgroup);
531 }
532 
533 static inline bool mem_cgroup_disabled(void)
534 {
535 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
536 }
537 
538 static inline void mem_cgroup_protection(struct mem_cgroup *root,
539 					 struct mem_cgroup *memcg,
540 					 unsigned long *min,
541 					 unsigned long *low)
542 {
543 	*min = *low = 0;
544 
545 	if (mem_cgroup_disabled())
546 		return;
547 
548 	/*
549 	 * There is no reclaim protection applied to a targeted reclaim.
550 	 * We are special casing this specific case here because
551 	 * mem_cgroup_calculate_protection is not robust enough to keep
552 	 * the protection invariant for calculated effective values for
553 	 * parallel reclaimers with different reclaim target. This is
554 	 * especially a problem for tail memcgs (as they have pages on LRU)
555 	 * which would want to have effective values 0 for targeted reclaim
556 	 * but a different value for external reclaim.
557 	 *
558 	 * Example
559 	 * Let's have global and A's reclaim in parallel:
560 	 *  |
561 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
562 	 *  |\
563 	 *  | C (low = 1G, usage = 2.5G)
564 	 *  B (low = 1G, usage = 0.5G)
565 	 *
566 	 * For the global reclaim
567 	 * A.elow = A.low
568 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
569 	 * C.elow = min(C.usage, C.low)
570 	 *
571 	 * With the effective values resetting we have A reclaim
572 	 * A.elow = 0
573 	 * B.elow = B.low
574 	 * C.elow = C.low
575 	 *
576 	 * If the global reclaim races with A's reclaim then
577 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
578 	 * is possible and reclaiming B would be violating the protection.
579 	 *
580 	 */
581 	if (root == memcg)
582 		return;
583 
584 	*min = READ_ONCE(memcg->memory.emin);
585 	*low = READ_ONCE(memcg->memory.elow);
586 }
587 
588 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
589 				     struct mem_cgroup *memcg);
590 
591 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
592 					  struct mem_cgroup *memcg)
593 {
594 	/*
595 	 * The root memcg doesn't account charges, and doesn't support
596 	 * protection. The target memcg's protection is ignored, see
597 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
598 	 */
599 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
600 		memcg == target;
601 }
602 
603 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
604 					struct mem_cgroup *memcg)
605 {
606 	if (mem_cgroup_unprotected(target, memcg))
607 		return false;
608 
609 	return READ_ONCE(memcg->memory.elow) >=
610 		page_counter_read(&memcg->memory);
611 }
612 
613 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
614 					struct mem_cgroup *memcg)
615 {
616 	if (mem_cgroup_unprotected(target, memcg))
617 		return false;
618 
619 	return READ_ONCE(memcg->memory.emin) >=
620 		page_counter_read(&memcg->memory);
621 }
622 
623 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
624 
625 /**
626  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
627  * @folio: Folio to charge.
628  * @mm: mm context of the allocating task.
629  * @gfp: Reclaim mode.
630  *
631  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
632  * pages according to @gfp if necessary.  If @mm is NULL, try to
633  * charge to the active memcg.
634  *
635  * Do not use this for folios allocated for swapin.
636  *
637  * Return: 0 on success. Otherwise, an error code is returned.
638  */
639 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
640 				    gfp_t gfp)
641 {
642 	if (mem_cgroup_disabled())
643 		return 0;
644 	return __mem_cgroup_charge(folio, mm, gfp);
645 }
646 
647 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
648 
649 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
650 				  gfp_t gfp, swp_entry_t entry);
651 
652 void __mem_cgroup_uncharge(struct folio *folio);
653 
654 /**
655  * mem_cgroup_uncharge - Uncharge a folio.
656  * @folio: Folio to uncharge.
657  *
658  * Uncharge a folio previously charged with mem_cgroup_charge().
659  */
660 static inline void mem_cgroup_uncharge(struct folio *folio)
661 {
662 	if (mem_cgroup_disabled())
663 		return;
664 	__mem_cgroup_uncharge(folio);
665 }
666 
667 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
668 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
669 {
670 	if (mem_cgroup_disabled())
671 		return;
672 	__mem_cgroup_uncharge_folios(folios);
673 }
674 
675 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
676 void mem_cgroup_migrate(struct folio *old, struct folio *new);
677 
678 /**
679  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
680  * @memcg: memcg of the wanted lruvec
681  * @pgdat: pglist_data
682  *
683  * Returns the lru list vector holding pages for a given @memcg &
684  * @pgdat combination. This can be the node lruvec, if the memory
685  * controller is disabled.
686  */
687 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
688 					       struct pglist_data *pgdat)
689 {
690 	struct mem_cgroup_per_node *mz;
691 	struct lruvec *lruvec;
692 
693 	if (mem_cgroup_disabled()) {
694 		lruvec = &pgdat->__lruvec;
695 		goto out;
696 	}
697 
698 	if (!memcg)
699 		memcg = root_mem_cgroup;
700 
701 	mz = memcg->nodeinfo[pgdat->node_id];
702 	lruvec = &mz->lruvec;
703 out:
704 	/*
705 	 * Since a node can be onlined after the mem_cgroup was created,
706 	 * we have to be prepared to initialize lruvec->pgdat here;
707 	 * and if offlined then reonlined, we need to reinitialize it.
708 	 */
709 	if (unlikely(lruvec->pgdat != pgdat))
710 		lruvec->pgdat = pgdat;
711 	return lruvec;
712 }
713 
714 /**
715  * folio_lruvec - return lruvec for isolating/putting an LRU folio
716  * @folio: Pointer to the folio.
717  *
718  * This function relies on folio->mem_cgroup being stable.
719  */
720 static inline struct lruvec *folio_lruvec(struct folio *folio)
721 {
722 	struct mem_cgroup *memcg = folio_memcg(folio);
723 
724 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
725 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
726 }
727 
728 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
729 
730 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
731 
732 struct mem_cgroup *get_mem_cgroup_from_current(void);
733 
734 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
735 
736 struct lruvec *folio_lruvec_lock(struct folio *folio);
737 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
738 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
739 						unsigned long *flags);
740 
741 #ifdef CONFIG_DEBUG_VM
742 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
743 #else
744 static inline
745 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
746 {
747 }
748 #endif
749 
750 static inline
751 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
752 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
753 }
754 
755 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
756 {
757 	return percpu_ref_tryget(&objcg->refcnt);
758 }
759 
760 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
761 {
762 	percpu_ref_get(&objcg->refcnt);
763 }
764 
765 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
766 				       unsigned long nr)
767 {
768 	percpu_ref_get_many(&objcg->refcnt, nr);
769 }
770 
771 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
772 {
773 	if (objcg)
774 		percpu_ref_put(&objcg->refcnt);
775 }
776 
777 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
778 {
779 	return !memcg || css_tryget(&memcg->css);
780 }
781 
782 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
783 {
784 	return !memcg || css_tryget_online(&memcg->css);
785 }
786 
787 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
788 {
789 	if (memcg)
790 		css_put(&memcg->css);
791 }
792 
793 #define mem_cgroup_from_counter(counter, member)	\
794 	container_of(counter, struct mem_cgroup, member)
795 
796 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
797 				   struct mem_cgroup *,
798 				   struct mem_cgroup_reclaim_cookie *);
799 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
800 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
801 			   int (*)(struct task_struct *, void *), void *arg);
802 
803 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
804 {
805 	if (mem_cgroup_disabled())
806 		return 0;
807 
808 	return memcg->id.id;
809 }
810 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
811 
812 #ifdef CONFIG_SHRINKER_DEBUG
813 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
814 {
815 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
816 }
817 
818 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
819 #endif
820 
821 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
822 {
823 	return mem_cgroup_from_css(seq_css(m));
824 }
825 
826 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
827 {
828 	struct mem_cgroup_per_node *mz;
829 
830 	if (mem_cgroup_disabled())
831 		return NULL;
832 
833 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
834 	return mz->memcg;
835 }
836 
837 /**
838  * parent_mem_cgroup - find the accounting parent of a memcg
839  * @memcg: memcg whose parent to find
840  *
841  * Returns the parent memcg, or NULL if this is the root.
842  */
843 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
844 {
845 	return mem_cgroup_from_css(memcg->css.parent);
846 }
847 
848 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
849 			      struct mem_cgroup *root)
850 {
851 	if (root == memcg)
852 		return true;
853 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
854 }
855 
856 static inline bool mm_match_cgroup(struct mm_struct *mm,
857 				   struct mem_cgroup *memcg)
858 {
859 	struct mem_cgroup *task_memcg;
860 	bool match = false;
861 
862 	rcu_read_lock();
863 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
864 	if (task_memcg)
865 		match = mem_cgroup_is_descendant(task_memcg, memcg);
866 	rcu_read_unlock();
867 	return match;
868 }
869 
870 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
871 ino_t page_cgroup_ino(struct page *page);
872 
873 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
874 {
875 	if (mem_cgroup_disabled())
876 		return true;
877 	return !!(memcg->css.flags & CSS_ONLINE);
878 }
879 
880 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
881 		int zid, int nr_pages);
882 
883 static inline
884 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
885 		enum lru_list lru, int zone_idx)
886 {
887 	struct mem_cgroup_per_node *mz;
888 
889 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
890 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
891 }
892 
893 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
894 
895 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
896 
897 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
898 
899 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
900 				struct task_struct *p);
901 
902 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
903 
904 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
905 					    struct mem_cgroup *oom_domain);
906 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
907 
908 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
909 		       int val);
910 
911 /* idx can be of type enum memcg_stat_item or node_stat_item */
912 static inline void mod_memcg_state(struct mem_cgroup *memcg,
913 				   enum memcg_stat_item idx, int val)
914 {
915 	unsigned long flags;
916 
917 	local_irq_save(flags);
918 	__mod_memcg_state(memcg, idx, val);
919 	local_irq_restore(flags);
920 }
921 
922 static inline void mod_memcg_page_state(struct page *page,
923 					enum memcg_stat_item idx, int val)
924 {
925 	struct mem_cgroup *memcg;
926 
927 	if (mem_cgroup_disabled())
928 		return;
929 
930 	rcu_read_lock();
931 	memcg = folio_memcg(page_folio(page));
932 	if (memcg)
933 		mod_memcg_state(memcg, idx, val);
934 	rcu_read_unlock();
935 }
936 
937 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
938 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
939 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
940 				      enum node_stat_item idx);
941 
942 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
943 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
944 
945 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
946 
947 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
948 					 int val)
949 {
950 	unsigned long flags;
951 
952 	local_irq_save(flags);
953 	__mod_lruvec_kmem_state(p, idx, val);
954 	local_irq_restore(flags);
955 }
956 
957 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
958 			  unsigned long count);
959 
960 static inline void count_memcg_events(struct mem_cgroup *memcg,
961 				      enum vm_event_item idx,
962 				      unsigned long count)
963 {
964 	unsigned long flags;
965 
966 	local_irq_save(flags);
967 	__count_memcg_events(memcg, idx, count);
968 	local_irq_restore(flags);
969 }
970 
971 static inline void count_memcg_folio_events(struct folio *folio,
972 		enum vm_event_item idx, unsigned long nr)
973 {
974 	struct mem_cgroup *memcg = folio_memcg(folio);
975 
976 	if (memcg)
977 		count_memcg_events(memcg, idx, nr);
978 }
979 
980 static inline void count_memcg_events_mm(struct mm_struct *mm,
981 					enum vm_event_item idx, unsigned long count)
982 {
983 	struct mem_cgroup *memcg;
984 
985 	if (mem_cgroup_disabled())
986 		return;
987 
988 	rcu_read_lock();
989 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
990 	if (likely(memcg))
991 		count_memcg_events(memcg, idx, count);
992 	rcu_read_unlock();
993 }
994 
995 static inline void count_memcg_event_mm(struct mm_struct *mm,
996 					enum vm_event_item idx)
997 {
998 	count_memcg_events_mm(mm, idx, 1);
999 }
1000 
1001 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1002 				      enum memcg_memory_event event)
1003 {
1004 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1005 			  event == MEMCG_SWAP_FAIL;
1006 
1007 	atomic_long_inc(&memcg->memory_events_local[event]);
1008 	if (!swap_event)
1009 		cgroup_file_notify(&memcg->events_local_file);
1010 
1011 	do {
1012 		atomic_long_inc(&memcg->memory_events[event]);
1013 		if (swap_event)
1014 			cgroup_file_notify(&memcg->swap_events_file);
1015 		else
1016 			cgroup_file_notify(&memcg->events_file);
1017 
1018 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1019 			break;
1020 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1021 			break;
1022 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1023 		 !mem_cgroup_is_root(memcg));
1024 }
1025 
1026 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1027 					 enum memcg_memory_event event)
1028 {
1029 	struct mem_cgroup *memcg;
1030 
1031 	if (mem_cgroup_disabled())
1032 		return;
1033 
1034 	rcu_read_lock();
1035 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 	if (likely(memcg))
1037 		memcg_memory_event(memcg, event);
1038 	rcu_read_unlock();
1039 }
1040 
1041 void split_page_memcg(struct page *head, int old_order, int new_order);
1042 
1043 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1044 {
1045 	struct mem_cgroup *memcg;
1046 	u64 id;
1047 
1048 	if (mem_cgroup_disabled())
1049 		return 0;
1050 
1051 	rcu_read_lock();
1052 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1053 	if (!memcg)
1054 		memcg = root_mem_cgroup;
1055 	id = cgroup_id(memcg->css.cgroup);
1056 	rcu_read_unlock();
1057 	return id;
1058 }
1059 
1060 #else /* CONFIG_MEMCG */
1061 
1062 #define MEM_CGROUP_ID_SHIFT	0
1063 
1064 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1065 {
1066 	return NULL;
1067 }
1068 
1069 static inline bool folio_memcg_charged(struct folio *folio)
1070 {
1071 	return false;
1072 }
1073 
1074 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1075 {
1076 	return NULL;
1077 }
1078 
1079 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1080 {
1081 	return NULL;
1082 }
1083 
1084 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1085 {
1086 	return NULL;
1087 }
1088 
1089 static inline bool folio_memcg_kmem(struct folio *folio)
1090 {
1091 	return false;
1092 }
1093 
1094 static inline bool PageMemcgKmem(struct page *page)
1095 {
1096 	return false;
1097 }
1098 
1099 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1100 {
1101 	return true;
1102 }
1103 
1104 static inline bool mem_cgroup_disabled(void)
1105 {
1106 	return true;
1107 }
1108 
1109 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1110 				      enum memcg_memory_event event)
1111 {
1112 }
1113 
1114 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1115 					 enum memcg_memory_event event)
1116 {
1117 }
1118 
1119 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1120 					 struct mem_cgroup *memcg,
1121 					 unsigned long *min,
1122 					 unsigned long *low)
1123 {
1124 	*min = *low = 0;
1125 }
1126 
1127 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1128 						   struct mem_cgroup *memcg)
1129 {
1130 }
1131 
1132 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1133 					  struct mem_cgroup *memcg)
1134 {
1135 	return true;
1136 }
1137 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1138 					struct mem_cgroup *memcg)
1139 {
1140 	return false;
1141 }
1142 
1143 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1144 					struct mem_cgroup *memcg)
1145 {
1146 	return false;
1147 }
1148 
1149 static inline int mem_cgroup_charge(struct folio *folio,
1150 		struct mm_struct *mm, gfp_t gfp)
1151 {
1152 	return 0;
1153 }
1154 
1155 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1156 {
1157         return 0;
1158 }
1159 
1160 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1161 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1162 {
1163 	return 0;
1164 }
1165 
1166 static inline void mem_cgroup_uncharge(struct folio *folio)
1167 {
1168 }
1169 
1170 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1171 {
1172 }
1173 
1174 static inline void mem_cgroup_replace_folio(struct folio *old,
1175 		struct folio *new)
1176 {
1177 }
1178 
1179 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1180 {
1181 }
1182 
1183 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1184 					       struct pglist_data *pgdat)
1185 {
1186 	return &pgdat->__lruvec;
1187 }
1188 
1189 static inline struct lruvec *folio_lruvec(struct folio *folio)
1190 {
1191 	struct pglist_data *pgdat = folio_pgdat(folio);
1192 	return &pgdat->__lruvec;
1193 }
1194 
1195 static inline
1196 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1197 {
1198 }
1199 
1200 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1201 {
1202 	return NULL;
1203 }
1204 
1205 static inline bool mm_match_cgroup(struct mm_struct *mm,
1206 		struct mem_cgroup *memcg)
1207 {
1208 	return true;
1209 }
1210 
1211 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1212 {
1213 	return NULL;
1214 }
1215 
1216 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1217 {
1218 	return NULL;
1219 }
1220 
1221 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1222 {
1223 	return NULL;
1224 }
1225 
1226 static inline
1227 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1228 {
1229 	return NULL;
1230 }
1231 
1232 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1233 {
1234 }
1235 
1236 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1237 {
1238 }
1239 
1240 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1241 {
1242 	return true;
1243 }
1244 
1245 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1246 {
1247 	return true;
1248 }
1249 
1250 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1251 {
1252 }
1253 
1254 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1255 {
1256 	struct pglist_data *pgdat = folio_pgdat(folio);
1257 
1258 	spin_lock(&pgdat->__lruvec.lru_lock);
1259 	return &pgdat->__lruvec;
1260 }
1261 
1262 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1263 {
1264 	struct pglist_data *pgdat = folio_pgdat(folio);
1265 
1266 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1267 	return &pgdat->__lruvec;
1268 }
1269 
1270 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1271 		unsigned long *flagsp)
1272 {
1273 	struct pglist_data *pgdat = folio_pgdat(folio);
1274 
1275 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1276 	return &pgdat->__lruvec;
1277 }
1278 
1279 static inline struct mem_cgroup *
1280 mem_cgroup_iter(struct mem_cgroup *root,
1281 		struct mem_cgroup *prev,
1282 		struct mem_cgroup_reclaim_cookie *reclaim)
1283 {
1284 	return NULL;
1285 }
1286 
1287 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1288 					 struct mem_cgroup *prev)
1289 {
1290 }
1291 
1292 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1293 		int (*fn)(struct task_struct *, void *), void *arg)
1294 {
1295 }
1296 
1297 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1298 {
1299 	return 0;
1300 }
1301 
1302 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1303 {
1304 	WARN_ON_ONCE(id);
1305 	/* XXX: This should always return root_mem_cgroup */
1306 	return NULL;
1307 }
1308 
1309 #ifdef CONFIG_SHRINKER_DEBUG
1310 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1311 {
1312 	return 0;
1313 }
1314 
1315 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1316 {
1317 	return NULL;
1318 }
1319 #endif
1320 
1321 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1322 {
1323 	return NULL;
1324 }
1325 
1326 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1327 {
1328 	return NULL;
1329 }
1330 
1331 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1332 {
1333 	return true;
1334 }
1335 
1336 static inline
1337 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1338 		enum lru_list lru, int zone_idx)
1339 {
1340 	return 0;
1341 }
1342 
1343 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1344 {
1345 	return 0;
1346 }
1347 
1348 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1349 {
1350 	return 0;
1351 }
1352 
1353 static inline void
1354 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1355 {
1356 }
1357 
1358 static inline void
1359 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1360 {
1361 }
1362 
1363 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1364 {
1365 }
1366 
1367 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1368 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1369 {
1370 	return NULL;
1371 }
1372 
1373 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1374 {
1375 }
1376 
1377 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1378 				     enum memcg_stat_item idx,
1379 				     int nr)
1380 {
1381 }
1382 
1383 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1384 				   enum memcg_stat_item idx,
1385 				   int nr)
1386 {
1387 }
1388 
1389 static inline void mod_memcg_page_state(struct page *page,
1390 					enum memcg_stat_item idx, int val)
1391 {
1392 }
1393 
1394 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1395 {
1396 	return 0;
1397 }
1398 
1399 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1400 					      enum node_stat_item idx)
1401 {
1402 	return node_page_state(lruvec_pgdat(lruvec), idx);
1403 }
1404 
1405 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1406 						    enum node_stat_item idx)
1407 {
1408 	return node_page_state(lruvec_pgdat(lruvec), idx);
1409 }
1410 
1411 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1412 {
1413 }
1414 
1415 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1416 {
1417 }
1418 
1419 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1420 					   int val)
1421 {
1422 	struct page *page = virt_to_head_page(p);
1423 
1424 	__mod_node_page_state(page_pgdat(page), idx, val);
1425 }
1426 
1427 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1428 					 int val)
1429 {
1430 	struct page *page = virt_to_head_page(p);
1431 
1432 	mod_node_page_state(page_pgdat(page), idx, val);
1433 }
1434 
1435 static inline void count_memcg_events(struct mem_cgroup *memcg,
1436 				      enum vm_event_item idx,
1437 				      unsigned long count)
1438 {
1439 }
1440 
1441 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1442 					enum vm_event_item idx,
1443 					unsigned long count)
1444 {
1445 }
1446 
1447 static inline void count_memcg_folio_events(struct folio *folio,
1448 		enum vm_event_item idx, unsigned long nr)
1449 {
1450 }
1451 
1452 static inline void count_memcg_events_mm(struct mm_struct *mm,
1453 					enum vm_event_item idx, unsigned long count)
1454 {
1455 }
1456 
1457 static inline
1458 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1459 {
1460 }
1461 
1462 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1463 {
1464 }
1465 
1466 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1467 {
1468 	return 0;
1469 }
1470 #endif /* CONFIG_MEMCG */
1471 
1472 /*
1473  * Extended information for slab objects stored as an array in page->memcg_data
1474  * if MEMCG_DATA_OBJEXTS is set.
1475  */
1476 struct slabobj_ext {
1477 #ifdef CONFIG_MEMCG
1478 	struct obj_cgroup *objcg;
1479 #endif
1480 #ifdef CONFIG_MEM_ALLOC_PROFILING
1481 	union codetag_ref ref;
1482 #endif
1483 } __aligned(8);
1484 
1485 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1486 {
1487 	__mod_lruvec_kmem_state(p, idx, 1);
1488 }
1489 
1490 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1491 {
1492 	__mod_lruvec_kmem_state(p, idx, -1);
1493 }
1494 
1495 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1496 {
1497 	struct mem_cgroup *memcg;
1498 
1499 	memcg = lruvec_memcg(lruvec);
1500 	if (!memcg)
1501 		return NULL;
1502 	memcg = parent_mem_cgroup(memcg);
1503 	if (!memcg)
1504 		return NULL;
1505 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1506 }
1507 
1508 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1509 {
1510 	spin_unlock(&lruvec->lru_lock);
1511 }
1512 
1513 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1514 {
1515 	spin_unlock_irq(&lruvec->lru_lock);
1516 }
1517 
1518 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1519 		unsigned long flags)
1520 {
1521 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1522 }
1523 
1524 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1525 static inline bool folio_matches_lruvec(struct folio *folio,
1526 		struct lruvec *lruvec)
1527 {
1528 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1529 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1530 }
1531 
1532 /* Don't lock again iff page's lruvec locked */
1533 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1534 		struct lruvec *locked_lruvec)
1535 {
1536 	if (locked_lruvec) {
1537 		if (folio_matches_lruvec(folio, locked_lruvec))
1538 			return locked_lruvec;
1539 
1540 		unlock_page_lruvec_irq(locked_lruvec);
1541 	}
1542 
1543 	return folio_lruvec_lock_irq(folio);
1544 }
1545 
1546 /* Don't lock again iff folio's lruvec locked */
1547 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1548 		struct lruvec **lruvecp, unsigned long *flags)
1549 {
1550 	if (*lruvecp) {
1551 		if (folio_matches_lruvec(folio, *lruvecp))
1552 			return;
1553 
1554 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1555 	}
1556 
1557 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1558 }
1559 
1560 #ifdef CONFIG_CGROUP_WRITEBACK
1561 
1562 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1563 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1564 			 unsigned long *pheadroom, unsigned long *pdirty,
1565 			 unsigned long *pwriteback);
1566 
1567 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1568 					     struct bdi_writeback *wb);
1569 
1570 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1571 						  struct bdi_writeback *wb)
1572 {
1573 	struct mem_cgroup *memcg;
1574 
1575 	if (mem_cgroup_disabled())
1576 		return;
1577 
1578 	memcg = folio_memcg(folio);
1579 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1580 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1581 }
1582 
1583 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1584 
1585 #else	/* CONFIG_CGROUP_WRITEBACK */
1586 
1587 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1588 {
1589 	return NULL;
1590 }
1591 
1592 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1593 				       unsigned long *pfilepages,
1594 				       unsigned long *pheadroom,
1595 				       unsigned long *pdirty,
1596 				       unsigned long *pwriteback)
1597 {
1598 }
1599 
1600 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1601 						  struct bdi_writeback *wb)
1602 {
1603 }
1604 
1605 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1606 {
1607 }
1608 
1609 #endif	/* CONFIG_CGROUP_WRITEBACK */
1610 
1611 struct sock;
1612 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1613 			     gfp_t gfp_mask);
1614 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1615 #ifdef CONFIG_MEMCG
1616 extern struct static_key_false memcg_sockets_enabled_key;
1617 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1618 void mem_cgroup_sk_alloc(struct sock *sk);
1619 void mem_cgroup_sk_free(struct sock *sk);
1620 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1621 {
1622 #ifdef CONFIG_MEMCG_V1
1623 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1624 		return !!memcg->tcpmem_pressure;
1625 #endif /* CONFIG_MEMCG_V1 */
1626 	do {
1627 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1628 			return true;
1629 	} while ((memcg = parent_mem_cgroup(memcg)));
1630 	return false;
1631 }
1632 
1633 int alloc_shrinker_info(struct mem_cgroup *memcg);
1634 void free_shrinker_info(struct mem_cgroup *memcg);
1635 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1636 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1637 #else
1638 #define mem_cgroup_sockets_enabled 0
1639 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1640 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1641 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1642 {
1643 	return false;
1644 }
1645 
1646 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1647 				    int nid, int shrinker_id)
1648 {
1649 }
1650 #endif
1651 
1652 #ifdef CONFIG_MEMCG
1653 bool mem_cgroup_kmem_disabled(void);
1654 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1655 void __memcg_kmem_uncharge_page(struct page *page, int order);
1656 
1657 /*
1658  * The returned objcg pointer is safe to use without additional
1659  * protection within a scope. The scope is defined either by
1660  * the current task (similar to the "current" global variable)
1661  * or by set_active_memcg() pair.
1662  * Please, use obj_cgroup_get() to get a reference if the pointer
1663  * needs to be used outside of the local scope.
1664  */
1665 struct obj_cgroup *current_obj_cgroup(void);
1666 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1667 
1668 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1669 {
1670 	struct obj_cgroup *objcg = current_obj_cgroup();
1671 
1672 	if (objcg)
1673 		obj_cgroup_get(objcg);
1674 
1675 	return objcg;
1676 }
1677 
1678 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1679 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1680 
1681 extern struct static_key_false memcg_bpf_enabled_key;
1682 static inline bool memcg_bpf_enabled(void)
1683 {
1684 	return static_branch_likely(&memcg_bpf_enabled_key);
1685 }
1686 
1687 extern struct static_key_false memcg_kmem_online_key;
1688 
1689 static inline bool memcg_kmem_online(void)
1690 {
1691 	return static_branch_likely(&memcg_kmem_online_key);
1692 }
1693 
1694 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1695 					 int order)
1696 {
1697 	if (memcg_kmem_online())
1698 		return __memcg_kmem_charge_page(page, gfp, order);
1699 	return 0;
1700 }
1701 
1702 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1703 {
1704 	if (memcg_kmem_online())
1705 		__memcg_kmem_uncharge_page(page, order);
1706 }
1707 
1708 /*
1709  * A helper for accessing memcg's kmem_id, used for getting
1710  * corresponding LRU lists.
1711  */
1712 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1713 {
1714 	return memcg ? memcg->kmemcg_id : -1;
1715 }
1716 
1717 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1718 
1719 static inline void count_objcg_events(struct obj_cgroup *objcg,
1720 				      enum vm_event_item idx,
1721 				      unsigned long count)
1722 {
1723 	struct mem_cgroup *memcg;
1724 
1725 	if (!memcg_kmem_online())
1726 		return;
1727 
1728 	rcu_read_lock();
1729 	memcg = obj_cgroup_memcg(objcg);
1730 	count_memcg_events(memcg, idx, count);
1731 	rcu_read_unlock();
1732 }
1733 
1734 #else
1735 static inline bool mem_cgroup_kmem_disabled(void)
1736 {
1737 	return true;
1738 }
1739 
1740 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1741 					 int order)
1742 {
1743 	return 0;
1744 }
1745 
1746 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1747 {
1748 }
1749 
1750 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1751 					   int order)
1752 {
1753 	return 0;
1754 }
1755 
1756 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1757 {
1758 }
1759 
1760 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1761 {
1762 	return NULL;
1763 }
1764 
1765 static inline bool memcg_bpf_enabled(void)
1766 {
1767 	return false;
1768 }
1769 
1770 static inline bool memcg_kmem_online(void)
1771 {
1772 	return false;
1773 }
1774 
1775 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1776 {
1777 	return -1;
1778 }
1779 
1780 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1781 {
1782 	return NULL;
1783 }
1784 
1785 static inline void count_objcg_events(struct obj_cgroup *objcg,
1786 				      enum vm_event_item idx,
1787 				      unsigned long count)
1788 {
1789 }
1790 
1791 #endif /* CONFIG_MEMCG */
1792 
1793 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1794 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1795 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1796 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1797 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1798 #else
1799 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1800 {
1801 	return true;
1802 }
1803 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1804 					   size_t size)
1805 {
1806 }
1807 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1808 					     size_t size)
1809 {
1810 }
1811 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1812 {
1813 	/* if zswap is disabled, do not block pages going to the swapping device */
1814 	return true;
1815 }
1816 #endif
1817 
1818 
1819 /* Cgroup v1-related declarations */
1820 
1821 #ifdef CONFIG_MEMCG_V1
1822 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1823 					gfp_t gfp_mask,
1824 					unsigned long *total_scanned);
1825 
1826 bool mem_cgroup_oom_synchronize(bool wait);
1827 
1828 static inline bool task_in_memcg_oom(struct task_struct *p)
1829 {
1830 	return p->memcg_in_oom;
1831 }
1832 
1833 static inline void mem_cgroup_enter_user_fault(void)
1834 {
1835 	WARN_ON(current->in_user_fault);
1836 	current->in_user_fault = 1;
1837 }
1838 
1839 static inline void mem_cgroup_exit_user_fault(void)
1840 {
1841 	WARN_ON(!current->in_user_fault);
1842 	current->in_user_fault = 0;
1843 }
1844 
1845 void memcg1_swapout(struct folio *folio, swp_entry_t entry);
1846 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages);
1847 
1848 #else /* CONFIG_MEMCG_V1 */
1849 static inline
1850 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1851 					gfp_t gfp_mask,
1852 					unsigned long *total_scanned)
1853 {
1854 	return 0;
1855 }
1856 
1857 static inline bool task_in_memcg_oom(struct task_struct *p)
1858 {
1859 	return false;
1860 }
1861 
1862 static inline bool mem_cgroup_oom_synchronize(bool wait)
1863 {
1864 	return false;
1865 }
1866 
1867 static inline void mem_cgroup_enter_user_fault(void)
1868 {
1869 }
1870 
1871 static inline void mem_cgroup_exit_user_fault(void)
1872 {
1873 }
1874 
1875 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry)
1876 {
1877 }
1878 
1879 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages)
1880 {
1881 }
1882 
1883 #endif /* CONFIG_MEMCG_V1 */
1884 
1885 #endif /* _LINUX_MEMCONTROL_H */
1886