xref: /linux-6.15/include/linux/memcontrol.h (revision a29c0e4b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/* Legacy tcp memory accounting */
303 	bool tcpmem_active;
304 	int tcpmem_pressure;
305 
306 	/* List of events which userspace want to receive */
307 	struct list_head event_list;
308 	spinlock_t event_list_lock;
309 #endif /* CONFIG_MEMCG_V1 */
310 
311 	struct mem_cgroup_per_node *nodeinfo[];
312 };
313 
314 /*
315  * size of first charge trial.
316  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
317  * workload.
318  */
319 #define MEMCG_CHARGE_BATCH 64U
320 
321 extern struct mem_cgroup *root_mem_cgroup;
322 
323 enum page_memcg_data_flags {
324 	/* page->memcg_data is a pointer to an slabobj_ext vector */
325 	MEMCG_DATA_OBJEXTS = (1UL << 0),
326 	/* page has been accounted as a non-slab kernel page */
327 	MEMCG_DATA_KMEM = (1UL << 1),
328 	/* the next bit after the last actual flag */
329 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
330 };
331 
332 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
333 
334 #else /* CONFIG_MEMCG */
335 
336 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
337 
338 #endif /* CONFIG_MEMCG */
339 
340 enum objext_flags {
341 	/* slabobj_ext vector failed to allocate */
342 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
343 	/* the next bit after the last actual flag */
344 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
345 };
346 
347 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
348 
349 #ifdef CONFIG_MEMCG
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released.
358  */
359 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
360 {
361 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - exclusive reference
422  *
423  * For a kmem folio a caller should hold an rcu read lock to protect memcg
424  * associated with a kmem folio from being released.
425  */
426 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
427 {
428 	if (folio_memcg_kmem(folio))
429 		return obj_cgroup_memcg(__folio_objcg(folio));
430 	return __folio_memcg(folio);
431 }
432 
433 /*
434  * folio_memcg_charged - If a folio is charged to a memory cgroup.
435  * @folio: Pointer to the folio.
436  *
437  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
438  */
439 static inline bool folio_memcg_charged(struct folio *folio)
440 {
441 	if (folio_memcg_kmem(folio))
442 		return __folio_objcg(folio) != NULL;
443 	return __folio_memcg(folio) != NULL;
444 }
445 
446 /**
447  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
448  * @folio: Pointer to the folio.
449  *
450  * This function assumes that the folio is known to have a
451  * proper memory cgroup pointer. It's not safe to call this function
452  * against some type of folios, e.g. slab folios or ex-slab folios.
453  *
454  * Return: A pointer to the memory cgroup associated with the folio,
455  * or NULL.
456  */
457 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
458 {
459 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
460 
461 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
462 
463 	if (memcg_data & MEMCG_DATA_KMEM) {
464 		struct obj_cgroup *objcg;
465 
466 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
467 		return obj_cgroup_memcg(objcg);
468 	}
469 
470 	WARN_ON_ONCE(!rcu_read_lock_held());
471 
472 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
473 }
474 
475 /*
476  * folio_memcg_check - Get the memory cgroup associated with a folio.
477  * @folio: Pointer to the folio.
478  *
479  * Returns a pointer to the memory cgroup associated with the folio,
480  * or NULL. This function unlike folio_memcg() can take any folio
481  * as an argument. It has to be used in cases when it's not known if a folio
482  * has an associated memory cgroup pointer or an object cgroups vector or
483  * an object cgroup.
484  *
485  * For a non-kmem folio any of the following ensures folio and memcg binding
486  * stability:
487  *
488  * - the folio lock
489  * - LRU isolation
490  * - exclusive reference
491  *
492  * For a kmem folio a caller should hold an rcu read lock to protect memcg
493  * associated with a kmem folio from being released.
494  */
495 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
496 {
497 	/*
498 	 * Because folio->memcg_data might be changed asynchronously
499 	 * for slabs, READ_ONCE() should be used here.
500 	 */
501 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
502 
503 	if (memcg_data & MEMCG_DATA_OBJEXTS)
504 		return NULL;
505 
506 	if (memcg_data & MEMCG_DATA_KMEM) {
507 		struct obj_cgroup *objcg;
508 
509 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
510 		return obj_cgroup_memcg(objcg);
511 	}
512 
513 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
514 }
515 
516 static inline struct mem_cgroup *page_memcg_check(struct page *page)
517 {
518 	if (PageTail(page))
519 		return NULL;
520 	return folio_memcg_check((struct folio *)page);
521 }
522 
523 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
524 {
525 	struct mem_cgroup *memcg;
526 
527 	rcu_read_lock();
528 retry:
529 	memcg = obj_cgroup_memcg(objcg);
530 	if (unlikely(!css_tryget(&memcg->css)))
531 		goto retry;
532 	rcu_read_unlock();
533 
534 	return memcg;
535 }
536 
537 /*
538  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
539  * @folio: Pointer to the folio.
540  *
541  * Checks if the folio has MemcgKmem flag set. The caller must ensure
542  * that the folio has an associated memory cgroup. It's not safe to call
543  * this function against some types of folios, e.g. slab folios.
544  */
545 static inline bool folio_memcg_kmem(struct folio *folio)
546 {
547 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
548 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
549 	return folio->memcg_data & MEMCG_DATA_KMEM;
550 }
551 
552 static inline bool PageMemcgKmem(struct page *page)
553 {
554 	return folio_memcg_kmem(page_folio(page));
555 }
556 
557 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
558 {
559 	return (memcg == root_mem_cgroup);
560 }
561 
562 static inline bool mem_cgroup_disabled(void)
563 {
564 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
565 }
566 
567 static inline void mem_cgroup_protection(struct mem_cgroup *root,
568 					 struct mem_cgroup *memcg,
569 					 unsigned long *min,
570 					 unsigned long *low)
571 {
572 	*min = *low = 0;
573 
574 	if (mem_cgroup_disabled())
575 		return;
576 
577 	/*
578 	 * There is no reclaim protection applied to a targeted reclaim.
579 	 * We are special casing this specific case here because
580 	 * mem_cgroup_calculate_protection is not robust enough to keep
581 	 * the protection invariant for calculated effective values for
582 	 * parallel reclaimers with different reclaim target. This is
583 	 * especially a problem for tail memcgs (as they have pages on LRU)
584 	 * which would want to have effective values 0 for targeted reclaim
585 	 * but a different value for external reclaim.
586 	 *
587 	 * Example
588 	 * Let's have global and A's reclaim in parallel:
589 	 *  |
590 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
591 	 *  |\
592 	 *  | C (low = 1G, usage = 2.5G)
593 	 *  B (low = 1G, usage = 0.5G)
594 	 *
595 	 * For the global reclaim
596 	 * A.elow = A.low
597 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
598 	 * C.elow = min(C.usage, C.low)
599 	 *
600 	 * With the effective values resetting we have A reclaim
601 	 * A.elow = 0
602 	 * B.elow = B.low
603 	 * C.elow = C.low
604 	 *
605 	 * If the global reclaim races with A's reclaim then
606 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
607 	 * is possible and reclaiming B would be violating the protection.
608 	 *
609 	 */
610 	if (root == memcg)
611 		return;
612 
613 	*min = READ_ONCE(memcg->memory.emin);
614 	*low = READ_ONCE(memcg->memory.elow);
615 }
616 
617 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
618 				     struct mem_cgroup *memcg);
619 
620 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
621 					  struct mem_cgroup *memcg)
622 {
623 	/*
624 	 * The root memcg doesn't account charges, and doesn't support
625 	 * protection. The target memcg's protection is ignored, see
626 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
627 	 */
628 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
629 		memcg == target;
630 }
631 
632 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
633 					struct mem_cgroup *memcg)
634 {
635 	if (mem_cgroup_unprotected(target, memcg))
636 		return false;
637 
638 	return READ_ONCE(memcg->memory.elow) >=
639 		page_counter_read(&memcg->memory);
640 }
641 
642 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
643 					struct mem_cgroup *memcg)
644 {
645 	if (mem_cgroup_unprotected(target, memcg))
646 		return false;
647 
648 	return READ_ONCE(memcg->memory.emin) >=
649 		page_counter_read(&memcg->memory);
650 }
651 
652 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
653 
654 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
655 
656 /**
657  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
658  * @folio: Folio to charge.
659  * @mm: mm context of the allocating task.
660  * @gfp: Reclaim mode.
661  *
662  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
663  * pages according to @gfp if necessary.  If @mm is NULL, try to
664  * charge to the active memcg.
665  *
666  * Do not use this for folios allocated for swapin.
667  *
668  * Return: 0 on success. Otherwise, an error code is returned.
669  */
670 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
671 				    gfp_t gfp)
672 {
673 	if (mem_cgroup_disabled())
674 		return 0;
675 	return __mem_cgroup_charge(folio, mm, gfp);
676 }
677 
678 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
679 		long nr_pages);
680 
681 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
682 				  gfp_t gfp, swp_entry_t entry);
683 
684 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages);
685 
686 void __mem_cgroup_uncharge(struct folio *folio);
687 
688 /**
689  * mem_cgroup_uncharge - Uncharge a folio.
690  * @folio: Folio to uncharge.
691  *
692  * Uncharge a folio previously charged with mem_cgroup_charge().
693  */
694 static inline void mem_cgroup_uncharge(struct folio *folio)
695 {
696 	if (mem_cgroup_disabled())
697 		return;
698 	__mem_cgroup_uncharge(folio);
699 }
700 
701 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
702 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
703 {
704 	if (mem_cgroup_disabled())
705 		return;
706 	__mem_cgroup_uncharge_folios(folios);
707 }
708 
709 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
710 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
711 void mem_cgroup_migrate(struct folio *old, struct folio *new);
712 
713 /**
714  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
715  * @memcg: memcg of the wanted lruvec
716  * @pgdat: pglist_data
717  *
718  * Returns the lru list vector holding pages for a given @memcg &
719  * @pgdat combination. This can be the node lruvec, if the memory
720  * controller is disabled.
721  */
722 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
723 					       struct pglist_data *pgdat)
724 {
725 	struct mem_cgroup_per_node *mz;
726 	struct lruvec *lruvec;
727 
728 	if (mem_cgroup_disabled()) {
729 		lruvec = &pgdat->__lruvec;
730 		goto out;
731 	}
732 
733 	if (!memcg)
734 		memcg = root_mem_cgroup;
735 
736 	mz = memcg->nodeinfo[pgdat->node_id];
737 	lruvec = &mz->lruvec;
738 out:
739 	/*
740 	 * Since a node can be onlined after the mem_cgroup was created,
741 	 * we have to be prepared to initialize lruvec->pgdat here;
742 	 * and if offlined then reonlined, we need to reinitialize it.
743 	 */
744 	if (unlikely(lruvec->pgdat != pgdat))
745 		lruvec->pgdat = pgdat;
746 	return lruvec;
747 }
748 
749 /**
750  * folio_lruvec - return lruvec for isolating/putting an LRU folio
751  * @folio: Pointer to the folio.
752  *
753  * This function relies on folio->mem_cgroup being stable.
754  */
755 static inline struct lruvec *folio_lruvec(struct folio *folio)
756 {
757 	struct mem_cgroup *memcg = folio_memcg(folio);
758 
759 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
760 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
761 }
762 
763 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
764 
765 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
766 
767 struct mem_cgroup *get_mem_cgroup_from_current(void);
768 
769 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
770 
771 struct lruvec *folio_lruvec_lock(struct folio *folio);
772 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
773 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
774 						unsigned long *flags);
775 
776 #ifdef CONFIG_DEBUG_VM
777 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
778 #else
779 static inline
780 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
781 {
782 }
783 #endif
784 
785 static inline
786 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
787 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
788 }
789 
790 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
791 {
792 	return percpu_ref_tryget(&objcg->refcnt);
793 }
794 
795 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
796 {
797 	percpu_ref_get(&objcg->refcnt);
798 }
799 
800 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
801 				       unsigned long nr)
802 {
803 	percpu_ref_get_many(&objcg->refcnt, nr);
804 }
805 
806 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
807 {
808 	if (objcg)
809 		percpu_ref_put(&objcg->refcnt);
810 }
811 
812 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
813 {
814 	return !memcg || css_tryget(&memcg->css);
815 }
816 
817 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
818 {
819 	return !memcg || css_tryget_online(&memcg->css);
820 }
821 
822 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
823 {
824 	if (memcg)
825 		css_put(&memcg->css);
826 }
827 
828 #define mem_cgroup_from_counter(counter, member)	\
829 	container_of(counter, struct mem_cgroup, member)
830 
831 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
832 				   struct mem_cgroup *,
833 				   struct mem_cgroup_reclaim_cookie *);
834 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
835 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
836 			   int (*)(struct task_struct *, void *), void *arg);
837 
838 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
839 {
840 	if (mem_cgroup_disabled())
841 		return 0;
842 
843 	return memcg->id.id;
844 }
845 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
846 
847 #ifdef CONFIG_SHRINKER_DEBUG
848 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
849 {
850 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
851 }
852 
853 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
854 #endif
855 
856 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
857 {
858 	return mem_cgroup_from_css(seq_css(m));
859 }
860 
861 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
862 {
863 	struct mem_cgroup_per_node *mz;
864 
865 	if (mem_cgroup_disabled())
866 		return NULL;
867 
868 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
869 	return mz->memcg;
870 }
871 
872 /**
873  * parent_mem_cgroup - find the accounting parent of a memcg
874  * @memcg: memcg whose parent to find
875  *
876  * Returns the parent memcg, or NULL if this is the root.
877  */
878 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
879 {
880 	return mem_cgroup_from_css(memcg->css.parent);
881 }
882 
883 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
884 			      struct mem_cgroup *root)
885 {
886 	if (root == memcg)
887 		return true;
888 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
889 }
890 
891 static inline bool mm_match_cgroup(struct mm_struct *mm,
892 				   struct mem_cgroup *memcg)
893 {
894 	struct mem_cgroup *task_memcg;
895 	bool match = false;
896 
897 	rcu_read_lock();
898 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
899 	if (task_memcg)
900 		match = mem_cgroup_is_descendant(task_memcg, memcg);
901 	rcu_read_unlock();
902 	return match;
903 }
904 
905 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
906 ino_t page_cgroup_ino(struct page *page);
907 
908 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
909 {
910 	if (mem_cgroup_disabled())
911 		return true;
912 	return !!(memcg->css.flags & CSS_ONLINE);
913 }
914 
915 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
916 		int zid, int nr_pages);
917 
918 static inline
919 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
920 		enum lru_list lru, int zone_idx)
921 {
922 	struct mem_cgroup_per_node *mz;
923 
924 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
925 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
926 }
927 
928 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
929 
930 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
931 
932 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
933 
934 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
935 				struct task_struct *p);
936 
937 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
938 
939 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
940 					    struct mem_cgroup *oom_domain);
941 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
942 
943 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
944 		       int val);
945 
946 /* idx can be of type enum memcg_stat_item or node_stat_item */
947 static inline void mod_memcg_state(struct mem_cgroup *memcg,
948 				   enum memcg_stat_item idx, int val)
949 {
950 	unsigned long flags;
951 
952 	local_irq_save(flags);
953 	__mod_memcg_state(memcg, idx, val);
954 	local_irq_restore(flags);
955 }
956 
957 static inline void mod_memcg_page_state(struct page *page,
958 					enum memcg_stat_item idx, int val)
959 {
960 	struct mem_cgroup *memcg;
961 
962 	if (mem_cgroup_disabled())
963 		return;
964 
965 	rcu_read_lock();
966 	memcg = folio_memcg(page_folio(page));
967 	if (memcg)
968 		mod_memcg_state(memcg, idx, val);
969 	rcu_read_unlock();
970 }
971 
972 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
973 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
974 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
975 				      enum node_stat_item idx);
976 
977 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
978 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
979 
980 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
981 
982 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
983 					 int val)
984 {
985 	unsigned long flags;
986 
987 	local_irq_save(flags);
988 	__mod_lruvec_kmem_state(p, idx, val);
989 	local_irq_restore(flags);
990 }
991 
992 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
993 			  unsigned long count);
994 
995 static inline void count_memcg_events(struct mem_cgroup *memcg,
996 				      enum vm_event_item idx,
997 				      unsigned long count)
998 {
999 	unsigned long flags;
1000 
1001 	local_irq_save(flags);
1002 	__count_memcg_events(memcg, idx, count);
1003 	local_irq_restore(flags);
1004 }
1005 
1006 static inline void count_memcg_folio_events(struct folio *folio,
1007 		enum vm_event_item idx, unsigned long nr)
1008 {
1009 	struct mem_cgroup *memcg = folio_memcg(folio);
1010 
1011 	if (memcg)
1012 		count_memcg_events(memcg, idx, nr);
1013 }
1014 
1015 static inline void count_memcg_events_mm(struct mm_struct *mm,
1016 					enum vm_event_item idx, unsigned long count)
1017 {
1018 	struct mem_cgroup *memcg;
1019 
1020 	if (mem_cgroup_disabled())
1021 		return;
1022 
1023 	rcu_read_lock();
1024 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1025 	if (likely(memcg))
1026 		count_memcg_events(memcg, idx, count);
1027 	rcu_read_unlock();
1028 }
1029 
1030 static inline void count_memcg_event_mm(struct mm_struct *mm,
1031 					enum vm_event_item idx)
1032 {
1033 	count_memcg_events_mm(mm, idx, 1);
1034 }
1035 
1036 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1037 				      enum memcg_memory_event event)
1038 {
1039 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1040 			  event == MEMCG_SWAP_FAIL;
1041 
1042 	atomic_long_inc(&memcg->memory_events_local[event]);
1043 	if (!swap_event)
1044 		cgroup_file_notify(&memcg->events_local_file);
1045 
1046 	do {
1047 		atomic_long_inc(&memcg->memory_events[event]);
1048 		if (swap_event)
1049 			cgroup_file_notify(&memcg->swap_events_file);
1050 		else
1051 			cgroup_file_notify(&memcg->events_file);
1052 
1053 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1054 			break;
1055 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1056 			break;
1057 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1058 		 !mem_cgroup_is_root(memcg));
1059 }
1060 
1061 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1062 					 enum memcg_memory_event event)
1063 {
1064 	struct mem_cgroup *memcg;
1065 
1066 	if (mem_cgroup_disabled())
1067 		return;
1068 
1069 	rcu_read_lock();
1070 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1071 	if (likely(memcg))
1072 		memcg_memory_event(memcg, event);
1073 	rcu_read_unlock();
1074 }
1075 
1076 void split_page_memcg(struct page *head, int old_order, int new_order);
1077 
1078 #else /* CONFIG_MEMCG */
1079 
1080 #define MEM_CGROUP_ID_SHIFT	0
1081 
1082 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1083 {
1084 	return NULL;
1085 }
1086 
1087 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1088 {
1089 	WARN_ON_ONCE(!rcu_read_lock_held());
1090 	return NULL;
1091 }
1092 
1093 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1094 {
1095 	return NULL;
1096 }
1097 
1098 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1099 {
1100 	return NULL;
1101 }
1102 
1103 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1104 {
1105 	return NULL;
1106 }
1107 
1108 static inline bool folio_memcg_kmem(struct folio *folio)
1109 {
1110 	return false;
1111 }
1112 
1113 static inline bool PageMemcgKmem(struct page *page)
1114 {
1115 	return false;
1116 }
1117 
1118 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1119 {
1120 	return true;
1121 }
1122 
1123 static inline bool mem_cgroup_disabled(void)
1124 {
1125 	return true;
1126 }
1127 
1128 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1129 				      enum memcg_memory_event event)
1130 {
1131 }
1132 
1133 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1134 					 enum memcg_memory_event event)
1135 {
1136 }
1137 
1138 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1139 					 struct mem_cgroup *memcg,
1140 					 unsigned long *min,
1141 					 unsigned long *low)
1142 {
1143 	*min = *low = 0;
1144 }
1145 
1146 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1147 						   struct mem_cgroup *memcg)
1148 {
1149 }
1150 
1151 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1152 					  struct mem_cgroup *memcg)
1153 {
1154 	return true;
1155 }
1156 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1157 					struct mem_cgroup *memcg)
1158 {
1159 	return false;
1160 }
1161 
1162 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1163 					struct mem_cgroup *memcg)
1164 {
1165 	return false;
1166 }
1167 
1168 static inline void mem_cgroup_commit_charge(struct folio *folio,
1169 		struct mem_cgroup *memcg)
1170 {
1171 }
1172 
1173 static inline int mem_cgroup_charge(struct folio *folio,
1174 		struct mm_struct *mm, gfp_t gfp)
1175 {
1176 	return 0;
1177 }
1178 
1179 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1180 		gfp_t gfp, long nr_pages)
1181 {
1182 	return 0;
1183 }
1184 
1185 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1186 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1187 {
1188 	return 0;
1189 }
1190 
1191 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr)
1192 {
1193 }
1194 
1195 static inline void mem_cgroup_uncharge(struct folio *folio)
1196 {
1197 }
1198 
1199 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1200 {
1201 }
1202 
1203 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1204 		unsigned int nr_pages)
1205 {
1206 }
1207 
1208 static inline void mem_cgroup_replace_folio(struct folio *old,
1209 		struct folio *new)
1210 {
1211 }
1212 
1213 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1214 {
1215 }
1216 
1217 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1218 					       struct pglist_data *pgdat)
1219 {
1220 	return &pgdat->__lruvec;
1221 }
1222 
1223 static inline struct lruvec *folio_lruvec(struct folio *folio)
1224 {
1225 	struct pglist_data *pgdat = folio_pgdat(folio);
1226 	return &pgdat->__lruvec;
1227 }
1228 
1229 static inline
1230 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1231 {
1232 }
1233 
1234 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1235 {
1236 	return NULL;
1237 }
1238 
1239 static inline bool mm_match_cgroup(struct mm_struct *mm,
1240 		struct mem_cgroup *memcg)
1241 {
1242 	return true;
1243 }
1244 
1245 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1246 {
1247 	return NULL;
1248 }
1249 
1250 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1251 {
1252 	return NULL;
1253 }
1254 
1255 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1256 {
1257 	return NULL;
1258 }
1259 
1260 static inline
1261 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1262 {
1263 	return NULL;
1264 }
1265 
1266 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1267 {
1268 }
1269 
1270 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1271 {
1272 	return true;
1273 }
1274 
1275 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1276 {
1277 	return true;
1278 }
1279 
1280 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1281 {
1282 }
1283 
1284 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1285 {
1286 	struct pglist_data *pgdat = folio_pgdat(folio);
1287 
1288 	spin_lock(&pgdat->__lruvec.lru_lock);
1289 	return &pgdat->__lruvec;
1290 }
1291 
1292 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1293 {
1294 	struct pglist_data *pgdat = folio_pgdat(folio);
1295 
1296 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1297 	return &pgdat->__lruvec;
1298 }
1299 
1300 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1301 		unsigned long *flagsp)
1302 {
1303 	struct pglist_data *pgdat = folio_pgdat(folio);
1304 
1305 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1306 	return &pgdat->__lruvec;
1307 }
1308 
1309 static inline struct mem_cgroup *
1310 mem_cgroup_iter(struct mem_cgroup *root,
1311 		struct mem_cgroup *prev,
1312 		struct mem_cgroup_reclaim_cookie *reclaim)
1313 {
1314 	return NULL;
1315 }
1316 
1317 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1318 					 struct mem_cgroup *prev)
1319 {
1320 }
1321 
1322 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1323 		int (*fn)(struct task_struct *, void *), void *arg)
1324 {
1325 }
1326 
1327 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1328 {
1329 	return 0;
1330 }
1331 
1332 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1333 {
1334 	WARN_ON_ONCE(id);
1335 	/* XXX: This should always return root_mem_cgroup */
1336 	return NULL;
1337 }
1338 
1339 #ifdef CONFIG_SHRINKER_DEBUG
1340 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1341 {
1342 	return 0;
1343 }
1344 
1345 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1346 {
1347 	return NULL;
1348 }
1349 #endif
1350 
1351 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1352 {
1353 	return NULL;
1354 }
1355 
1356 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1357 {
1358 	return NULL;
1359 }
1360 
1361 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1362 {
1363 	return true;
1364 }
1365 
1366 static inline
1367 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1368 		enum lru_list lru, int zone_idx)
1369 {
1370 	return 0;
1371 }
1372 
1373 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1374 {
1375 	return 0;
1376 }
1377 
1378 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1379 {
1380 	return 0;
1381 }
1382 
1383 static inline void
1384 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1385 {
1386 }
1387 
1388 static inline void
1389 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1390 {
1391 }
1392 
1393 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1394 {
1395 }
1396 
1397 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1398 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1399 {
1400 	return NULL;
1401 }
1402 
1403 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1404 {
1405 }
1406 
1407 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1408 				     enum memcg_stat_item idx,
1409 				     int nr)
1410 {
1411 }
1412 
1413 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1414 				   enum memcg_stat_item idx,
1415 				   int nr)
1416 {
1417 }
1418 
1419 static inline void mod_memcg_page_state(struct page *page,
1420 					enum memcg_stat_item idx, int val)
1421 {
1422 }
1423 
1424 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1425 {
1426 	return 0;
1427 }
1428 
1429 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1430 					      enum node_stat_item idx)
1431 {
1432 	return node_page_state(lruvec_pgdat(lruvec), idx);
1433 }
1434 
1435 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1436 						    enum node_stat_item idx)
1437 {
1438 	return node_page_state(lruvec_pgdat(lruvec), idx);
1439 }
1440 
1441 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1442 {
1443 }
1444 
1445 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1446 {
1447 }
1448 
1449 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1450 					   int val)
1451 {
1452 	struct page *page = virt_to_head_page(p);
1453 
1454 	__mod_node_page_state(page_pgdat(page), idx, val);
1455 }
1456 
1457 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1458 					 int val)
1459 {
1460 	struct page *page = virt_to_head_page(p);
1461 
1462 	mod_node_page_state(page_pgdat(page), idx, val);
1463 }
1464 
1465 static inline void count_memcg_events(struct mem_cgroup *memcg,
1466 				      enum vm_event_item idx,
1467 				      unsigned long count)
1468 {
1469 }
1470 
1471 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1472 					enum vm_event_item idx,
1473 					unsigned long count)
1474 {
1475 }
1476 
1477 static inline void count_memcg_folio_events(struct folio *folio,
1478 		enum vm_event_item idx, unsigned long nr)
1479 {
1480 }
1481 
1482 static inline void count_memcg_events_mm(struct mm_struct *mm,
1483 					enum vm_event_item idx, unsigned long count)
1484 {
1485 }
1486 
1487 static inline
1488 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1489 {
1490 }
1491 
1492 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1493 {
1494 }
1495 #endif /* CONFIG_MEMCG */
1496 
1497 /*
1498  * Extended information for slab objects stored as an array in page->memcg_data
1499  * if MEMCG_DATA_OBJEXTS is set.
1500  */
1501 struct slabobj_ext {
1502 #ifdef CONFIG_MEMCG
1503 	struct obj_cgroup *objcg;
1504 #endif
1505 #ifdef CONFIG_MEM_ALLOC_PROFILING
1506 	union codetag_ref ref;
1507 #endif
1508 } __aligned(8);
1509 
1510 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1511 {
1512 	__mod_lruvec_kmem_state(p, idx, 1);
1513 }
1514 
1515 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1516 {
1517 	__mod_lruvec_kmem_state(p, idx, -1);
1518 }
1519 
1520 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1521 {
1522 	struct mem_cgroup *memcg;
1523 
1524 	memcg = lruvec_memcg(lruvec);
1525 	if (!memcg)
1526 		return NULL;
1527 	memcg = parent_mem_cgroup(memcg);
1528 	if (!memcg)
1529 		return NULL;
1530 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1531 }
1532 
1533 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1534 {
1535 	spin_unlock(&lruvec->lru_lock);
1536 }
1537 
1538 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1539 {
1540 	spin_unlock_irq(&lruvec->lru_lock);
1541 }
1542 
1543 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1544 		unsigned long flags)
1545 {
1546 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1547 }
1548 
1549 /* Test requires a stable folio->memcg binding, see folio_memcg() */
1550 static inline bool folio_matches_lruvec(struct folio *folio,
1551 		struct lruvec *lruvec)
1552 {
1553 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1554 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1555 }
1556 
1557 /* Don't lock again iff page's lruvec locked */
1558 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1559 		struct lruvec *locked_lruvec)
1560 {
1561 	if (locked_lruvec) {
1562 		if (folio_matches_lruvec(folio, locked_lruvec))
1563 			return locked_lruvec;
1564 
1565 		unlock_page_lruvec_irq(locked_lruvec);
1566 	}
1567 
1568 	return folio_lruvec_lock_irq(folio);
1569 }
1570 
1571 /* Don't lock again iff folio's lruvec locked */
1572 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1573 		struct lruvec **lruvecp, unsigned long *flags)
1574 {
1575 	if (*lruvecp) {
1576 		if (folio_matches_lruvec(folio, *lruvecp))
1577 			return;
1578 
1579 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1580 	}
1581 
1582 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1583 }
1584 
1585 #ifdef CONFIG_CGROUP_WRITEBACK
1586 
1587 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1588 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1589 			 unsigned long *pheadroom, unsigned long *pdirty,
1590 			 unsigned long *pwriteback);
1591 
1592 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1593 					     struct bdi_writeback *wb);
1594 
1595 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1596 						  struct bdi_writeback *wb)
1597 {
1598 	struct mem_cgroup *memcg;
1599 
1600 	if (mem_cgroup_disabled())
1601 		return;
1602 
1603 	memcg = folio_memcg(folio);
1604 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1605 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1606 }
1607 
1608 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1609 
1610 #else	/* CONFIG_CGROUP_WRITEBACK */
1611 
1612 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1613 {
1614 	return NULL;
1615 }
1616 
1617 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1618 				       unsigned long *pfilepages,
1619 				       unsigned long *pheadroom,
1620 				       unsigned long *pdirty,
1621 				       unsigned long *pwriteback)
1622 {
1623 }
1624 
1625 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1626 						  struct bdi_writeback *wb)
1627 {
1628 }
1629 
1630 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1631 {
1632 }
1633 
1634 #endif	/* CONFIG_CGROUP_WRITEBACK */
1635 
1636 struct sock;
1637 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1638 			     gfp_t gfp_mask);
1639 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1640 #ifdef CONFIG_MEMCG
1641 extern struct static_key_false memcg_sockets_enabled_key;
1642 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1643 void mem_cgroup_sk_alloc(struct sock *sk);
1644 void mem_cgroup_sk_free(struct sock *sk);
1645 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1646 {
1647 #ifdef CONFIG_MEMCG_V1
1648 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1649 		return !!memcg->tcpmem_pressure;
1650 #endif /* CONFIG_MEMCG_V1 */
1651 	do {
1652 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1653 			return true;
1654 	} while ((memcg = parent_mem_cgroup(memcg)));
1655 	return false;
1656 }
1657 
1658 int alloc_shrinker_info(struct mem_cgroup *memcg);
1659 void free_shrinker_info(struct mem_cgroup *memcg);
1660 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1661 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1662 #else
1663 #define mem_cgroup_sockets_enabled 0
1664 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1665 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1666 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1667 {
1668 	return false;
1669 }
1670 
1671 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1672 				    int nid, int shrinker_id)
1673 {
1674 }
1675 #endif
1676 
1677 #ifdef CONFIG_MEMCG
1678 bool mem_cgroup_kmem_disabled(void);
1679 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1680 void __memcg_kmem_uncharge_page(struct page *page, int order);
1681 
1682 /*
1683  * The returned objcg pointer is safe to use without additional
1684  * protection within a scope. The scope is defined either by
1685  * the current task (similar to the "current" global variable)
1686  * or by set_active_memcg() pair.
1687  * Please, use obj_cgroup_get() to get a reference if the pointer
1688  * needs to be used outside of the local scope.
1689  */
1690 struct obj_cgroup *current_obj_cgroup(void);
1691 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1692 
1693 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1694 {
1695 	struct obj_cgroup *objcg = current_obj_cgroup();
1696 
1697 	if (objcg)
1698 		obj_cgroup_get(objcg);
1699 
1700 	return objcg;
1701 }
1702 
1703 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1704 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1705 
1706 extern struct static_key_false memcg_bpf_enabled_key;
1707 static inline bool memcg_bpf_enabled(void)
1708 {
1709 	return static_branch_likely(&memcg_bpf_enabled_key);
1710 }
1711 
1712 extern struct static_key_false memcg_kmem_online_key;
1713 
1714 static inline bool memcg_kmem_online(void)
1715 {
1716 	return static_branch_likely(&memcg_kmem_online_key);
1717 }
1718 
1719 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1720 					 int order)
1721 {
1722 	if (memcg_kmem_online())
1723 		return __memcg_kmem_charge_page(page, gfp, order);
1724 	return 0;
1725 }
1726 
1727 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1728 {
1729 	if (memcg_kmem_online())
1730 		__memcg_kmem_uncharge_page(page, order);
1731 }
1732 
1733 /*
1734  * A helper for accessing memcg's kmem_id, used for getting
1735  * corresponding LRU lists.
1736  */
1737 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1738 {
1739 	return memcg ? memcg->kmemcg_id : -1;
1740 }
1741 
1742 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1743 
1744 static inline void count_objcg_event(struct obj_cgroup *objcg,
1745 				     enum vm_event_item idx)
1746 {
1747 	struct mem_cgroup *memcg;
1748 
1749 	if (!memcg_kmem_online())
1750 		return;
1751 
1752 	rcu_read_lock();
1753 	memcg = obj_cgroup_memcg(objcg);
1754 	count_memcg_events(memcg, idx, 1);
1755 	rcu_read_unlock();
1756 }
1757 
1758 #else
1759 static inline bool mem_cgroup_kmem_disabled(void)
1760 {
1761 	return true;
1762 }
1763 
1764 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1765 					 int order)
1766 {
1767 	return 0;
1768 }
1769 
1770 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1771 {
1772 }
1773 
1774 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1775 					   int order)
1776 {
1777 	return 0;
1778 }
1779 
1780 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1781 {
1782 }
1783 
1784 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1785 {
1786 	return NULL;
1787 }
1788 
1789 static inline bool memcg_bpf_enabled(void)
1790 {
1791 	return false;
1792 }
1793 
1794 static inline bool memcg_kmem_online(void)
1795 {
1796 	return false;
1797 }
1798 
1799 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1800 {
1801 	return -1;
1802 }
1803 
1804 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1805 {
1806 	return NULL;
1807 }
1808 
1809 static inline void count_objcg_event(struct obj_cgroup *objcg,
1810 				     enum vm_event_item idx)
1811 {
1812 }
1813 
1814 #endif /* CONFIG_MEMCG */
1815 
1816 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1817 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1818 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1819 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1820 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1821 #else
1822 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1823 {
1824 	return true;
1825 }
1826 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1827 					   size_t size)
1828 {
1829 }
1830 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1831 					     size_t size)
1832 {
1833 }
1834 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1835 {
1836 	/* if zswap is disabled, do not block pages going to the swapping device */
1837 	return true;
1838 }
1839 #endif
1840 
1841 
1842 /* Cgroup v1-related declarations */
1843 
1844 #ifdef CONFIG_MEMCG_V1
1845 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1846 					gfp_t gfp_mask,
1847 					unsigned long *total_scanned);
1848 
1849 bool mem_cgroup_oom_synchronize(bool wait);
1850 
1851 static inline bool task_in_memcg_oom(struct task_struct *p)
1852 {
1853 	return p->memcg_in_oom;
1854 }
1855 
1856 static inline void mem_cgroup_enter_user_fault(void)
1857 {
1858 	WARN_ON(current->in_user_fault);
1859 	current->in_user_fault = 1;
1860 }
1861 
1862 static inline void mem_cgroup_exit_user_fault(void)
1863 {
1864 	WARN_ON(!current->in_user_fault);
1865 	current->in_user_fault = 0;
1866 }
1867 
1868 #else /* CONFIG_MEMCG_V1 */
1869 static inline
1870 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1871 					gfp_t gfp_mask,
1872 					unsigned long *total_scanned)
1873 {
1874 	return 0;
1875 }
1876 
1877 static inline bool task_in_memcg_oom(struct task_struct *p)
1878 {
1879 	return false;
1880 }
1881 
1882 static inline bool mem_cgroup_oom_synchronize(bool wait)
1883 {
1884 	return false;
1885 }
1886 
1887 static inline void mem_cgroup_enter_user_fault(void)
1888 {
1889 }
1890 
1891 static inline void mem_cgroup_exit_user_fault(void)
1892 {
1893 }
1894 
1895 #endif /* CONFIG_MEMCG_V1 */
1896 
1897 #endif /* _LINUX_MEMCONTROL_H */
1898