1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <[email protected]> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <[email protected]> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/kernel.h> 18 #include <linux/page_counter.h> 19 #include <linux/vmpressure.h> 20 #include <linux/eventfd.h> 21 #include <linux/mm.h> 22 #include <linux/vmstat.h> 23 #include <linux/writeback.h> 24 #include <linux/page-flags.h> 25 #include <linux/shrinker.h> 26 27 struct mem_cgroup; 28 struct obj_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Cgroup-specific page state, on top of universal node page state */ 34 enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43 }; 44 45 enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56 }; 57 58 struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 unsigned int generation; 61 }; 62 63 #ifdef CONFIG_MEMCG 64 65 #define MEM_CGROUP_ID_SHIFT 16 66 67 struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70 }; 71 72 struct memcg_vmstats_percpu; 73 struct memcg_vmstats; 74 struct lruvec_stats_percpu; 75 struct lruvec_stats; 76 77 struct mem_cgroup_reclaim_iter { 78 struct mem_cgroup *position; 79 /* scan generation, increased every round-trip */ 80 unsigned int generation; 81 }; 82 83 /* 84 * per-node information in memory controller. 85 */ 86 struct mem_cgroup_per_node { 87 /* Keep the read-only fields at the start */ 88 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 89 /* use container_of */ 90 91 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 92 struct lruvec_stats *lruvec_stats; 93 struct shrinker_info __rcu *shrinker_info; 94 95 #ifdef CONFIG_MEMCG_V1 96 /* 97 * Memcg-v1 only stuff in middle as buffer between read mostly fields 98 * and update often fields to avoid false sharing. Once v1 stuff is 99 * moved in a separate struct, an explicit padding is needed. 100 */ 101 102 struct rb_node tree_node; /* RB tree node */ 103 unsigned long usage_in_excess;/* Set to the value by which */ 104 /* the soft limit is exceeded*/ 105 bool on_tree; 106 #endif 107 108 /* Fields which get updated often at the end. */ 109 struct lruvec lruvec; 110 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 111 struct mem_cgroup_reclaim_iter iter; 112 }; 113 114 struct mem_cgroup_threshold { 115 struct eventfd_ctx *eventfd; 116 unsigned long threshold; 117 }; 118 119 /* For threshold */ 120 struct mem_cgroup_threshold_ary { 121 /* An array index points to threshold just below or equal to usage. */ 122 int current_threshold; 123 /* Size of entries[] */ 124 unsigned int size; 125 /* Array of thresholds */ 126 struct mem_cgroup_threshold entries[] __counted_by(size); 127 }; 128 129 struct mem_cgroup_thresholds { 130 /* Primary thresholds array */ 131 struct mem_cgroup_threshold_ary *primary; 132 /* 133 * Spare threshold array. 134 * This is needed to make mem_cgroup_unregister_event() "never fail". 135 * It must be able to store at least primary->size - 1 entries. 136 */ 137 struct mem_cgroup_threshold_ary *spare; 138 }; 139 140 /* 141 * Remember four most recent foreign writebacks with dirty pages in this 142 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 143 * one in a given round, we're likely to catch it later if it keeps 144 * foreign-dirtying, so a fairly low count should be enough. 145 * 146 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 147 */ 148 #define MEMCG_CGWB_FRN_CNT 4 149 150 struct memcg_cgwb_frn { 151 u64 bdi_id; /* bdi->id of the foreign inode */ 152 int memcg_id; /* memcg->css.id of foreign inode */ 153 u64 at; /* jiffies_64 at the time of dirtying */ 154 struct wb_completion done; /* tracks in-flight foreign writebacks */ 155 }; 156 157 /* 158 * Bucket for arbitrarily byte-sized objects charged to a memory 159 * cgroup. The bucket can be reparented in one piece when the cgroup 160 * is destroyed, without having to round up the individual references 161 * of all live memory objects in the wild. 162 */ 163 struct obj_cgroup { 164 struct percpu_ref refcnt; 165 struct mem_cgroup *memcg; 166 atomic_t nr_charged_bytes; 167 union { 168 struct list_head list; /* protected by objcg_lock */ 169 struct rcu_head rcu; 170 }; 171 }; 172 173 /* 174 * The memory controller data structure. The memory controller controls both 175 * page cache and RSS per cgroup. We would eventually like to provide 176 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 177 * to help the administrator determine what knobs to tune. 178 */ 179 struct mem_cgroup { 180 struct cgroup_subsys_state css; 181 182 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 183 struct mem_cgroup_id id; 184 185 /* Accounted resources */ 186 struct page_counter memory; /* Both v1 & v2 */ 187 188 union { 189 struct page_counter swap; /* v2 only */ 190 struct page_counter memsw; /* v1 only */ 191 }; 192 193 /* Range enforcement for interrupt charges */ 194 struct work_struct high_work; 195 196 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 197 unsigned long zswap_max; 198 199 /* 200 * Prevent pages from this memcg from being written back from zswap to 201 * swap, and from being swapped out on zswap store failures. 202 */ 203 bool zswap_writeback; 204 #endif 205 206 /* vmpressure notifications */ 207 struct vmpressure vmpressure; 208 209 /* 210 * Should the OOM killer kill all belonging tasks, had it kill one? 211 */ 212 bool oom_group; 213 214 int swappiness; 215 216 /* memory.events and memory.events.local */ 217 struct cgroup_file events_file; 218 struct cgroup_file events_local_file; 219 220 /* handle for "memory.swap.events" */ 221 struct cgroup_file swap_events_file; 222 223 /* memory.stat */ 224 struct memcg_vmstats *vmstats; 225 226 /* memory.events */ 227 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 228 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 229 230 /* 231 * Hint of reclaim pressure for socket memroy management. Note 232 * that this indicator should NOT be used in legacy cgroup mode 233 * where socket memory is accounted/charged separately. 234 */ 235 unsigned long socket_pressure; 236 237 #ifdef CONFIG_MEMCG_KMEM 238 int kmemcg_id; 239 /* 240 * memcg->objcg is wiped out as a part of the objcg repaprenting 241 * process. memcg->orig_objcg preserves a pointer (and a reference) 242 * to the original objcg until the end of live of memcg. 243 */ 244 struct obj_cgroup __rcu *objcg; 245 struct obj_cgroup *orig_objcg; 246 /* list of inherited objcgs, protected by objcg_lock */ 247 struct list_head objcg_list; 248 #endif 249 250 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 251 252 #ifdef CONFIG_CGROUP_WRITEBACK 253 struct list_head cgwb_list; 254 struct wb_domain cgwb_domain; 255 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 256 #endif 257 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 struct deferred_split deferred_split_queue; 260 #endif 261 262 #ifdef CONFIG_LRU_GEN_WALKS_MMU 263 /* per-memcg mm_struct list */ 264 struct lru_gen_mm_list mm_list; 265 #endif 266 267 #ifdef CONFIG_MEMCG_V1 268 /* Legacy consumer-oriented counters */ 269 struct page_counter kmem; /* v1 only */ 270 struct page_counter tcpmem; /* v1 only */ 271 272 unsigned long soft_limit; 273 274 /* protected by memcg_oom_lock */ 275 bool oom_lock; 276 int under_oom; 277 278 /* OOM-Killer disable */ 279 int oom_kill_disable; 280 281 /* protect arrays of thresholds */ 282 struct mutex thresholds_lock; 283 284 /* thresholds for memory usage. RCU-protected */ 285 struct mem_cgroup_thresholds thresholds; 286 287 /* thresholds for mem+swap usage. RCU-protected */ 288 struct mem_cgroup_thresholds memsw_thresholds; 289 290 /* For oom notifier event fd */ 291 struct list_head oom_notify; 292 293 /* 294 * Should we move charges of a task when a task is moved into this 295 * mem_cgroup ? And what type of charges should we move ? 296 */ 297 unsigned long move_charge_at_immigrate; 298 /* taken only while moving_account > 0 */ 299 spinlock_t move_lock; 300 unsigned long move_lock_flags; 301 302 /* Legacy tcp memory accounting */ 303 bool tcpmem_active; 304 int tcpmem_pressure; 305 306 /* 307 * set > 0 if pages under this cgroup are moving to other cgroup. 308 */ 309 atomic_t moving_account; 310 struct task_struct *move_lock_task; 311 312 /* List of events which userspace want to receive */ 313 struct list_head event_list; 314 spinlock_t event_list_lock; 315 #endif /* CONFIG_MEMCG_V1 */ 316 317 struct mem_cgroup_per_node *nodeinfo[]; 318 }; 319 320 /* 321 * size of first charge trial. 322 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 323 * workload. 324 */ 325 #define MEMCG_CHARGE_BATCH 64U 326 327 extern struct mem_cgroup *root_mem_cgroup; 328 329 enum page_memcg_data_flags { 330 /* page->memcg_data is a pointer to an slabobj_ext vector */ 331 MEMCG_DATA_OBJEXTS = (1UL << 0), 332 /* page has been accounted as a non-slab kernel page */ 333 MEMCG_DATA_KMEM = (1UL << 1), 334 /* the next bit after the last actual flag */ 335 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 336 }; 337 338 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 339 340 #else /* CONFIG_MEMCG */ 341 342 #define __FIRST_OBJEXT_FLAG (1UL << 0) 343 344 #endif /* CONFIG_MEMCG */ 345 346 enum objext_flags { 347 /* slabobj_ext vector failed to allocate */ 348 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG, 349 /* the next bit after the last actual flag */ 350 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 351 }; 352 353 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 354 355 #ifdef CONFIG_MEMCG 356 357 static inline bool folio_memcg_kmem(struct folio *folio); 358 359 /* 360 * After the initialization objcg->memcg is always pointing at 361 * a valid memcg, but can be atomically swapped to the parent memcg. 362 * 363 * The caller must ensure that the returned memcg won't be released: 364 * e.g. acquire the rcu_read_lock or css_set_lock. 365 */ 366 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 367 { 368 return READ_ONCE(objcg->memcg); 369 } 370 371 /* 372 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 373 * @folio: Pointer to the folio. 374 * 375 * Returns a pointer to the memory cgroup associated with the folio, 376 * or NULL. This function assumes that the folio is known to have a 377 * proper memory cgroup pointer. It's not safe to call this function 378 * against some type of folios, e.g. slab folios or ex-slab folios or 379 * kmem folios. 380 */ 381 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 382 { 383 unsigned long memcg_data = folio->memcg_data; 384 385 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 386 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 387 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 388 389 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 390 } 391 392 /* 393 * __folio_objcg - get the object cgroup associated with a kmem folio. 394 * @folio: Pointer to the folio. 395 * 396 * Returns a pointer to the object cgroup associated with the folio, 397 * or NULL. This function assumes that the folio is known to have a 398 * proper object cgroup pointer. It's not safe to call this function 399 * against some type of folios, e.g. slab folios or ex-slab folios or 400 * LRU folios. 401 */ 402 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 403 { 404 unsigned long memcg_data = folio->memcg_data; 405 406 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 407 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 408 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 409 410 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 411 } 412 413 /* 414 * folio_memcg - Get the memory cgroup associated with a folio. 415 * @folio: Pointer to the folio. 416 * 417 * Returns a pointer to the memory cgroup associated with the folio, 418 * or NULL. This function assumes that the folio is known to have a 419 * proper memory cgroup pointer. It's not safe to call this function 420 * against some type of folios, e.g. slab folios or ex-slab folios. 421 * 422 * For a non-kmem folio any of the following ensures folio and memcg binding 423 * stability: 424 * 425 * - the folio lock 426 * - LRU isolation 427 * - folio_memcg_lock() 428 * - exclusive reference 429 * - mem_cgroup_trylock_pages() 430 * 431 * For a kmem folio a caller should hold an rcu read lock to protect memcg 432 * associated with a kmem folio from being released. 433 */ 434 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 435 { 436 if (folio_memcg_kmem(folio)) 437 return obj_cgroup_memcg(__folio_objcg(folio)); 438 return __folio_memcg(folio); 439 } 440 441 /** 442 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 443 * @folio: Pointer to the folio. 444 * 445 * This function assumes that the folio is known to have a 446 * proper memory cgroup pointer. It's not safe to call this function 447 * against some type of folios, e.g. slab folios or ex-slab folios. 448 * 449 * Return: A pointer to the memory cgroup associated with the folio, 450 * or NULL. 451 */ 452 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 453 { 454 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 455 456 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 457 WARN_ON_ONCE(!rcu_read_lock_held()); 458 459 if (memcg_data & MEMCG_DATA_KMEM) { 460 struct obj_cgroup *objcg; 461 462 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 463 return obj_cgroup_memcg(objcg); 464 } 465 466 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 467 } 468 469 /* 470 * folio_memcg_check - Get the memory cgroup associated with a folio. 471 * @folio: Pointer to the folio. 472 * 473 * Returns a pointer to the memory cgroup associated with the folio, 474 * or NULL. This function unlike folio_memcg() can take any folio 475 * as an argument. It has to be used in cases when it's not known if a folio 476 * has an associated memory cgroup pointer or an object cgroups vector or 477 * an object cgroup. 478 * 479 * For a non-kmem folio any of the following ensures folio and memcg binding 480 * stability: 481 * 482 * - the folio lock 483 * - LRU isolation 484 * - lock_folio_memcg() 485 * - exclusive reference 486 * - mem_cgroup_trylock_pages() 487 * 488 * For a kmem folio a caller should hold an rcu read lock to protect memcg 489 * associated with a kmem folio from being released. 490 */ 491 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 492 { 493 /* 494 * Because folio->memcg_data might be changed asynchronously 495 * for slabs, READ_ONCE() should be used here. 496 */ 497 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 498 499 if (memcg_data & MEMCG_DATA_OBJEXTS) 500 return NULL; 501 502 if (memcg_data & MEMCG_DATA_KMEM) { 503 struct obj_cgroup *objcg; 504 505 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 506 return obj_cgroup_memcg(objcg); 507 } 508 509 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 510 } 511 512 static inline struct mem_cgroup *page_memcg_check(struct page *page) 513 { 514 if (PageTail(page)) 515 return NULL; 516 return folio_memcg_check((struct folio *)page); 517 } 518 519 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 520 { 521 struct mem_cgroup *memcg; 522 523 rcu_read_lock(); 524 retry: 525 memcg = obj_cgroup_memcg(objcg); 526 if (unlikely(!css_tryget(&memcg->css))) 527 goto retry; 528 rcu_read_unlock(); 529 530 return memcg; 531 } 532 533 #ifdef CONFIG_MEMCG_KMEM 534 /* 535 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 536 * @folio: Pointer to the folio. 537 * 538 * Checks if the folio has MemcgKmem flag set. The caller must ensure 539 * that the folio has an associated memory cgroup. It's not safe to call 540 * this function against some types of folios, e.g. slab folios. 541 */ 542 static inline bool folio_memcg_kmem(struct folio *folio) 543 { 544 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 545 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 546 return folio->memcg_data & MEMCG_DATA_KMEM; 547 } 548 549 550 #else 551 static inline bool folio_memcg_kmem(struct folio *folio) 552 { 553 return false; 554 } 555 556 #endif 557 558 static inline bool PageMemcgKmem(struct page *page) 559 { 560 return folio_memcg_kmem(page_folio(page)); 561 } 562 563 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 564 { 565 return (memcg == root_mem_cgroup); 566 } 567 568 static inline bool mem_cgroup_disabled(void) 569 { 570 return !cgroup_subsys_enabled(memory_cgrp_subsys); 571 } 572 573 static inline void mem_cgroup_protection(struct mem_cgroup *root, 574 struct mem_cgroup *memcg, 575 unsigned long *min, 576 unsigned long *low) 577 { 578 *min = *low = 0; 579 580 if (mem_cgroup_disabled()) 581 return; 582 583 /* 584 * There is no reclaim protection applied to a targeted reclaim. 585 * We are special casing this specific case here because 586 * mem_cgroup_calculate_protection is not robust enough to keep 587 * the protection invariant for calculated effective values for 588 * parallel reclaimers with different reclaim target. This is 589 * especially a problem for tail memcgs (as they have pages on LRU) 590 * which would want to have effective values 0 for targeted reclaim 591 * but a different value for external reclaim. 592 * 593 * Example 594 * Let's have global and A's reclaim in parallel: 595 * | 596 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 597 * |\ 598 * | C (low = 1G, usage = 2.5G) 599 * B (low = 1G, usage = 0.5G) 600 * 601 * For the global reclaim 602 * A.elow = A.low 603 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 604 * C.elow = min(C.usage, C.low) 605 * 606 * With the effective values resetting we have A reclaim 607 * A.elow = 0 608 * B.elow = B.low 609 * C.elow = C.low 610 * 611 * If the global reclaim races with A's reclaim then 612 * B.elow = C.elow = 0 because children_low_usage > A.elow) 613 * is possible and reclaiming B would be violating the protection. 614 * 615 */ 616 if (root == memcg) 617 return; 618 619 *min = READ_ONCE(memcg->memory.emin); 620 *low = READ_ONCE(memcg->memory.elow); 621 } 622 623 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 624 struct mem_cgroup *memcg); 625 626 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 627 struct mem_cgroup *memcg) 628 { 629 /* 630 * The root memcg doesn't account charges, and doesn't support 631 * protection. The target memcg's protection is ignored, see 632 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 633 */ 634 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 635 memcg == target; 636 } 637 638 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 639 struct mem_cgroup *memcg) 640 { 641 if (mem_cgroup_unprotected(target, memcg)) 642 return false; 643 644 return READ_ONCE(memcg->memory.elow) >= 645 page_counter_read(&memcg->memory); 646 } 647 648 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 649 struct mem_cgroup *memcg) 650 { 651 if (mem_cgroup_unprotected(target, memcg)) 652 return false; 653 654 return READ_ONCE(memcg->memory.emin) >= 655 page_counter_read(&memcg->memory); 656 } 657 658 void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 659 660 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 661 662 /** 663 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 664 * @folio: Folio to charge. 665 * @mm: mm context of the allocating task. 666 * @gfp: Reclaim mode. 667 * 668 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 669 * pages according to @gfp if necessary. If @mm is NULL, try to 670 * charge to the active memcg. 671 * 672 * Do not use this for folios allocated for swapin. 673 * 674 * Return: 0 on success. Otherwise, an error code is returned. 675 */ 676 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 677 gfp_t gfp) 678 { 679 if (mem_cgroup_disabled()) 680 return 0; 681 return __mem_cgroup_charge(folio, mm, gfp); 682 } 683 684 int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 685 long nr_pages); 686 687 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 688 gfp_t gfp, swp_entry_t entry); 689 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 690 691 void __mem_cgroup_uncharge(struct folio *folio); 692 693 /** 694 * mem_cgroup_uncharge - Uncharge a folio. 695 * @folio: Folio to uncharge. 696 * 697 * Uncharge a folio previously charged with mem_cgroup_charge(). 698 */ 699 static inline void mem_cgroup_uncharge(struct folio *folio) 700 { 701 if (mem_cgroup_disabled()) 702 return; 703 __mem_cgroup_uncharge(folio); 704 } 705 706 void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 707 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 708 { 709 if (mem_cgroup_disabled()) 710 return; 711 __mem_cgroup_uncharge_folios(folios); 712 } 713 714 void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 715 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 716 void mem_cgroup_migrate(struct folio *old, struct folio *new); 717 718 /** 719 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 720 * @memcg: memcg of the wanted lruvec 721 * @pgdat: pglist_data 722 * 723 * Returns the lru list vector holding pages for a given @memcg & 724 * @pgdat combination. This can be the node lruvec, if the memory 725 * controller is disabled. 726 */ 727 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 728 struct pglist_data *pgdat) 729 { 730 struct mem_cgroup_per_node *mz; 731 struct lruvec *lruvec; 732 733 if (mem_cgroup_disabled()) { 734 lruvec = &pgdat->__lruvec; 735 goto out; 736 } 737 738 if (!memcg) 739 memcg = root_mem_cgroup; 740 741 mz = memcg->nodeinfo[pgdat->node_id]; 742 lruvec = &mz->lruvec; 743 out: 744 /* 745 * Since a node can be onlined after the mem_cgroup was created, 746 * we have to be prepared to initialize lruvec->pgdat here; 747 * and if offlined then reonlined, we need to reinitialize it. 748 */ 749 if (unlikely(lruvec->pgdat != pgdat)) 750 lruvec->pgdat = pgdat; 751 return lruvec; 752 } 753 754 /** 755 * folio_lruvec - return lruvec for isolating/putting an LRU folio 756 * @folio: Pointer to the folio. 757 * 758 * This function relies on folio->mem_cgroup being stable. 759 */ 760 static inline struct lruvec *folio_lruvec(struct folio *folio) 761 { 762 struct mem_cgroup *memcg = folio_memcg(folio); 763 764 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 765 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 766 } 767 768 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 769 770 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 771 772 struct mem_cgroup *get_mem_cgroup_from_current(void); 773 774 struct lruvec *folio_lruvec_lock(struct folio *folio); 775 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 776 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 777 unsigned long *flags); 778 779 #ifdef CONFIG_DEBUG_VM 780 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 781 #else 782 static inline 783 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 784 { 785 } 786 #endif 787 788 static inline 789 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 790 return css ? container_of(css, struct mem_cgroup, css) : NULL; 791 } 792 793 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 794 { 795 return percpu_ref_tryget(&objcg->refcnt); 796 } 797 798 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 799 { 800 percpu_ref_get(&objcg->refcnt); 801 } 802 803 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 804 unsigned long nr) 805 { 806 percpu_ref_get_many(&objcg->refcnt, nr); 807 } 808 809 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 810 { 811 if (objcg) 812 percpu_ref_put(&objcg->refcnt); 813 } 814 815 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 816 { 817 return !memcg || css_tryget(&memcg->css); 818 } 819 820 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 821 { 822 return !memcg || css_tryget_online(&memcg->css); 823 } 824 825 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 826 { 827 if (memcg) 828 css_put(&memcg->css); 829 } 830 831 #define mem_cgroup_from_counter(counter, member) \ 832 container_of(counter, struct mem_cgroup, member) 833 834 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 835 struct mem_cgroup *, 836 struct mem_cgroup_reclaim_cookie *); 837 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 838 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 839 int (*)(struct task_struct *, void *), void *arg); 840 841 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 842 { 843 if (mem_cgroup_disabled()) 844 return 0; 845 846 return memcg->id.id; 847 } 848 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 849 850 #ifdef CONFIG_SHRINKER_DEBUG 851 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 852 { 853 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 854 } 855 856 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 857 #endif 858 859 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 860 { 861 return mem_cgroup_from_css(seq_css(m)); 862 } 863 864 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 865 { 866 struct mem_cgroup_per_node *mz; 867 868 if (mem_cgroup_disabled()) 869 return NULL; 870 871 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 872 return mz->memcg; 873 } 874 875 /** 876 * parent_mem_cgroup - find the accounting parent of a memcg 877 * @memcg: memcg whose parent to find 878 * 879 * Returns the parent memcg, or NULL if this is the root. 880 */ 881 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 882 { 883 return mem_cgroup_from_css(memcg->css.parent); 884 } 885 886 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 887 struct mem_cgroup *root) 888 { 889 if (root == memcg) 890 return true; 891 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 892 } 893 894 static inline bool mm_match_cgroup(struct mm_struct *mm, 895 struct mem_cgroup *memcg) 896 { 897 struct mem_cgroup *task_memcg; 898 bool match = false; 899 900 rcu_read_lock(); 901 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 902 if (task_memcg) 903 match = mem_cgroup_is_descendant(task_memcg, memcg); 904 rcu_read_unlock(); 905 return match; 906 } 907 908 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 909 ino_t page_cgroup_ino(struct page *page); 910 911 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 912 { 913 if (mem_cgroup_disabled()) 914 return true; 915 return !!(memcg->css.flags & CSS_ONLINE); 916 } 917 918 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 919 int zid, int nr_pages); 920 921 static inline 922 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 923 enum lru_list lru, int zone_idx) 924 { 925 struct mem_cgroup_per_node *mz; 926 927 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 928 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 929 } 930 931 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 932 933 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 934 935 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 936 937 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 938 struct task_struct *p); 939 940 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 941 942 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 943 struct mem_cgroup *oom_domain); 944 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 945 946 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 947 int val); 948 949 /* idx can be of type enum memcg_stat_item or node_stat_item */ 950 static inline void mod_memcg_state(struct mem_cgroup *memcg, 951 enum memcg_stat_item idx, int val) 952 { 953 unsigned long flags; 954 955 local_irq_save(flags); 956 __mod_memcg_state(memcg, idx, val); 957 local_irq_restore(flags); 958 } 959 960 static inline void mod_memcg_page_state(struct page *page, 961 enum memcg_stat_item idx, int val) 962 { 963 struct mem_cgroup *memcg; 964 965 if (mem_cgroup_disabled()) 966 return; 967 968 rcu_read_lock(); 969 memcg = folio_memcg(page_folio(page)); 970 if (memcg) 971 mod_memcg_state(memcg, idx, val); 972 rcu_read_unlock(); 973 } 974 975 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 976 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 977 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 978 enum node_stat_item idx); 979 980 void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 981 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 982 983 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 984 985 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 986 int val) 987 { 988 unsigned long flags; 989 990 local_irq_save(flags); 991 __mod_lruvec_kmem_state(p, idx, val); 992 local_irq_restore(flags); 993 } 994 995 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 996 unsigned long count); 997 998 static inline void count_memcg_events(struct mem_cgroup *memcg, 999 enum vm_event_item idx, 1000 unsigned long count) 1001 { 1002 unsigned long flags; 1003 1004 local_irq_save(flags); 1005 __count_memcg_events(memcg, idx, count); 1006 local_irq_restore(flags); 1007 } 1008 1009 static inline void count_memcg_folio_events(struct folio *folio, 1010 enum vm_event_item idx, unsigned long nr) 1011 { 1012 struct mem_cgroup *memcg = folio_memcg(folio); 1013 1014 if (memcg) 1015 count_memcg_events(memcg, idx, nr); 1016 } 1017 1018 static inline void count_memcg_event_mm(struct mm_struct *mm, 1019 enum vm_event_item idx) 1020 { 1021 struct mem_cgroup *memcg; 1022 1023 if (mem_cgroup_disabled()) 1024 return; 1025 1026 rcu_read_lock(); 1027 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1028 if (likely(memcg)) 1029 count_memcg_events(memcg, idx, 1); 1030 rcu_read_unlock(); 1031 } 1032 1033 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1034 enum memcg_memory_event event) 1035 { 1036 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1037 event == MEMCG_SWAP_FAIL; 1038 1039 atomic_long_inc(&memcg->memory_events_local[event]); 1040 if (!swap_event) 1041 cgroup_file_notify(&memcg->events_local_file); 1042 1043 do { 1044 atomic_long_inc(&memcg->memory_events[event]); 1045 if (swap_event) 1046 cgroup_file_notify(&memcg->swap_events_file); 1047 else 1048 cgroup_file_notify(&memcg->events_file); 1049 1050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1051 break; 1052 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1053 break; 1054 } while ((memcg = parent_mem_cgroup(memcg)) && 1055 !mem_cgroup_is_root(memcg)); 1056 } 1057 1058 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1059 enum memcg_memory_event event) 1060 { 1061 struct mem_cgroup *memcg; 1062 1063 if (mem_cgroup_disabled()) 1064 return; 1065 1066 rcu_read_lock(); 1067 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1068 if (likely(memcg)) 1069 memcg_memory_event(memcg, event); 1070 rcu_read_unlock(); 1071 } 1072 1073 void split_page_memcg(struct page *head, int old_order, int new_order); 1074 1075 #else /* CONFIG_MEMCG */ 1076 1077 #define MEM_CGROUP_ID_SHIFT 0 1078 1079 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1080 { 1081 return NULL; 1082 } 1083 1084 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1085 { 1086 WARN_ON_ONCE(!rcu_read_lock_held()); 1087 return NULL; 1088 } 1089 1090 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1091 { 1092 return NULL; 1093 } 1094 1095 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1096 { 1097 return NULL; 1098 } 1099 1100 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1101 { 1102 return NULL; 1103 } 1104 1105 static inline bool folio_memcg_kmem(struct folio *folio) 1106 { 1107 return false; 1108 } 1109 1110 static inline bool PageMemcgKmem(struct page *page) 1111 { 1112 return false; 1113 } 1114 1115 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1116 { 1117 return true; 1118 } 1119 1120 static inline bool mem_cgroup_disabled(void) 1121 { 1122 return true; 1123 } 1124 1125 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1126 enum memcg_memory_event event) 1127 { 1128 } 1129 1130 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1131 enum memcg_memory_event event) 1132 { 1133 } 1134 1135 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1136 struct mem_cgroup *memcg, 1137 unsigned long *min, 1138 unsigned long *low) 1139 { 1140 *min = *low = 0; 1141 } 1142 1143 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1144 struct mem_cgroup *memcg) 1145 { 1146 } 1147 1148 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1149 struct mem_cgroup *memcg) 1150 { 1151 return true; 1152 } 1153 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1154 struct mem_cgroup *memcg) 1155 { 1156 return false; 1157 } 1158 1159 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1160 struct mem_cgroup *memcg) 1161 { 1162 return false; 1163 } 1164 1165 static inline void mem_cgroup_commit_charge(struct folio *folio, 1166 struct mem_cgroup *memcg) 1167 { 1168 } 1169 1170 static inline int mem_cgroup_charge(struct folio *folio, 1171 struct mm_struct *mm, gfp_t gfp) 1172 { 1173 return 0; 1174 } 1175 1176 static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1177 gfp_t gfp, long nr_pages) 1178 { 1179 return 0; 1180 } 1181 1182 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1183 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1184 { 1185 return 0; 1186 } 1187 1188 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1189 { 1190 } 1191 1192 static inline void mem_cgroup_uncharge(struct folio *folio) 1193 { 1194 } 1195 1196 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1197 { 1198 } 1199 1200 static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1201 unsigned int nr_pages) 1202 { 1203 } 1204 1205 static inline void mem_cgroup_replace_folio(struct folio *old, 1206 struct folio *new) 1207 { 1208 } 1209 1210 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1211 { 1212 } 1213 1214 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1215 struct pglist_data *pgdat) 1216 { 1217 return &pgdat->__lruvec; 1218 } 1219 1220 static inline struct lruvec *folio_lruvec(struct folio *folio) 1221 { 1222 struct pglist_data *pgdat = folio_pgdat(folio); 1223 return &pgdat->__lruvec; 1224 } 1225 1226 static inline 1227 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1228 { 1229 } 1230 1231 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1232 { 1233 return NULL; 1234 } 1235 1236 static inline bool mm_match_cgroup(struct mm_struct *mm, 1237 struct mem_cgroup *memcg) 1238 { 1239 return true; 1240 } 1241 1242 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1243 { 1244 return NULL; 1245 } 1246 1247 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1248 { 1249 return NULL; 1250 } 1251 1252 static inline 1253 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1254 { 1255 return NULL; 1256 } 1257 1258 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1259 { 1260 } 1261 1262 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1263 { 1264 return true; 1265 } 1266 1267 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1268 { 1269 return true; 1270 } 1271 1272 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1273 { 1274 } 1275 1276 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1277 { 1278 struct pglist_data *pgdat = folio_pgdat(folio); 1279 1280 spin_lock(&pgdat->__lruvec.lru_lock); 1281 return &pgdat->__lruvec; 1282 } 1283 1284 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1285 { 1286 struct pglist_data *pgdat = folio_pgdat(folio); 1287 1288 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1289 return &pgdat->__lruvec; 1290 } 1291 1292 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1293 unsigned long *flagsp) 1294 { 1295 struct pglist_data *pgdat = folio_pgdat(folio); 1296 1297 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1298 return &pgdat->__lruvec; 1299 } 1300 1301 static inline struct mem_cgroup * 1302 mem_cgroup_iter(struct mem_cgroup *root, 1303 struct mem_cgroup *prev, 1304 struct mem_cgroup_reclaim_cookie *reclaim) 1305 { 1306 return NULL; 1307 } 1308 1309 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1310 struct mem_cgroup *prev) 1311 { 1312 } 1313 1314 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1315 int (*fn)(struct task_struct *, void *), void *arg) 1316 { 1317 } 1318 1319 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1320 { 1321 return 0; 1322 } 1323 1324 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1325 { 1326 WARN_ON_ONCE(id); 1327 /* XXX: This should always return root_mem_cgroup */ 1328 return NULL; 1329 } 1330 1331 #ifdef CONFIG_SHRINKER_DEBUG 1332 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1333 { 1334 return 0; 1335 } 1336 1337 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1338 { 1339 return NULL; 1340 } 1341 #endif 1342 1343 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1344 { 1345 return NULL; 1346 } 1347 1348 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1349 { 1350 return NULL; 1351 } 1352 1353 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1354 { 1355 return true; 1356 } 1357 1358 static inline 1359 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1360 enum lru_list lru, int zone_idx) 1361 { 1362 return 0; 1363 } 1364 1365 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1366 { 1367 return 0; 1368 } 1369 1370 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1371 { 1372 return 0; 1373 } 1374 1375 static inline void 1376 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1377 { 1378 } 1379 1380 static inline void 1381 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1382 { 1383 } 1384 1385 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1386 { 1387 } 1388 1389 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1390 struct task_struct *victim, struct mem_cgroup *oom_domain) 1391 { 1392 return NULL; 1393 } 1394 1395 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1396 { 1397 } 1398 1399 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1400 enum memcg_stat_item idx, 1401 int nr) 1402 { 1403 } 1404 1405 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1406 enum memcg_stat_item idx, 1407 int nr) 1408 { 1409 } 1410 1411 static inline void mod_memcg_page_state(struct page *page, 1412 enum memcg_stat_item idx, int val) 1413 { 1414 } 1415 1416 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1417 { 1418 return 0; 1419 } 1420 1421 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1422 enum node_stat_item idx) 1423 { 1424 return node_page_state(lruvec_pgdat(lruvec), idx); 1425 } 1426 1427 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1428 enum node_stat_item idx) 1429 { 1430 return node_page_state(lruvec_pgdat(lruvec), idx); 1431 } 1432 1433 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1434 { 1435 } 1436 1437 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1438 { 1439 } 1440 1441 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1442 int val) 1443 { 1444 struct page *page = virt_to_head_page(p); 1445 1446 __mod_node_page_state(page_pgdat(page), idx, val); 1447 } 1448 1449 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1450 int val) 1451 { 1452 struct page *page = virt_to_head_page(p); 1453 1454 mod_node_page_state(page_pgdat(page), idx, val); 1455 } 1456 1457 static inline void count_memcg_events(struct mem_cgroup *memcg, 1458 enum vm_event_item idx, 1459 unsigned long count) 1460 { 1461 } 1462 1463 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1464 enum vm_event_item idx, 1465 unsigned long count) 1466 { 1467 } 1468 1469 static inline void count_memcg_folio_events(struct folio *folio, 1470 enum vm_event_item idx, unsigned long nr) 1471 { 1472 } 1473 1474 static inline 1475 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1476 { 1477 } 1478 1479 static inline void split_page_memcg(struct page *head, int old_order, int new_order) 1480 { 1481 } 1482 #endif /* CONFIG_MEMCG */ 1483 1484 /* 1485 * Extended information for slab objects stored as an array in page->memcg_data 1486 * if MEMCG_DATA_OBJEXTS is set. 1487 */ 1488 struct slabobj_ext { 1489 #ifdef CONFIG_MEMCG_KMEM 1490 struct obj_cgroup *objcg; 1491 #endif 1492 #ifdef CONFIG_MEM_ALLOC_PROFILING 1493 union codetag_ref ref; 1494 #endif 1495 } __aligned(8); 1496 1497 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1498 { 1499 __mod_lruvec_kmem_state(p, idx, 1); 1500 } 1501 1502 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1503 { 1504 __mod_lruvec_kmem_state(p, idx, -1); 1505 } 1506 1507 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1508 { 1509 struct mem_cgroup *memcg; 1510 1511 memcg = lruvec_memcg(lruvec); 1512 if (!memcg) 1513 return NULL; 1514 memcg = parent_mem_cgroup(memcg); 1515 if (!memcg) 1516 return NULL; 1517 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1518 } 1519 1520 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1521 { 1522 spin_unlock(&lruvec->lru_lock); 1523 } 1524 1525 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1526 { 1527 spin_unlock_irq(&lruvec->lru_lock); 1528 } 1529 1530 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1531 unsigned long flags) 1532 { 1533 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1534 } 1535 1536 /* Test requires a stable folio->memcg binding, see folio_memcg() */ 1537 static inline bool folio_matches_lruvec(struct folio *folio, 1538 struct lruvec *lruvec) 1539 { 1540 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1541 lruvec_memcg(lruvec) == folio_memcg(folio); 1542 } 1543 1544 /* Don't lock again iff page's lruvec locked */ 1545 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1546 struct lruvec *locked_lruvec) 1547 { 1548 if (locked_lruvec) { 1549 if (folio_matches_lruvec(folio, locked_lruvec)) 1550 return locked_lruvec; 1551 1552 unlock_page_lruvec_irq(locked_lruvec); 1553 } 1554 1555 return folio_lruvec_lock_irq(folio); 1556 } 1557 1558 /* Don't lock again iff folio's lruvec locked */ 1559 static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1560 struct lruvec **lruvecp, unsigned long *flags) 1561 { 1562 if (*lruvecp) { 1563 if (folio_matches_lruvec(folio, *lruvecp)) 1564 return; 1565 1566 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1567 } 1568 1569 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1570 } 1571 1572 #ifdef CONFIG_CGROUP_WRITEBACK 1573 1574 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1575 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1576 unsigned long *pheadroom, unsigned long *pdirty, 1577 unsigned long *pwriteback); 1578 1579 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1580 struct bdi_writeback *wb); 1581 1582 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1583 struct bdi_writeback *wb) 1584 { 1585 struct mem_cgroup *memcg; 1586 1587 if (mem_cgroup_disabled()) 1588 return; 1589 1590 memcg = folio_memcg(folio); 1591 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1592 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1593 } 1594 1595 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1596 1597 #else /* CONFIG_CGROUP_WRITEBACK */ 1598 1599 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1600 { 1601 return NULL; 1602 } 1603 1604 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1605 unsigned long *pfilepages, 1606 unsigned long *pheadroom, 1607 unsigned long *pdirty, 1608 unsigned long *pwriteback) 1609 { 1610 } 1611 1612 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1613 struct bdi_writeback *wb) 1614 { 1615 } 1616 1617 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1618 { 1619 } 1620 1621 #endif /* CONFIG_CGROUP_WRITEBACK */ 1622 1623 struct sock; 1624 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1625 gfp_t gfp_mask); 1626 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1627 #ifdef CONFIG_MEMCG 1628 extern struct static_key_false memcg_sockets_enabled_key; 1629 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1630 void mem_cgroup_sk_alloc(struct sock *sk); 1631 void mem_cgroup_sk_free(struct sock *sk); 1632 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1633 { 1634 #ifdef CONFIG_MEMCG_V1 1635 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1636 return !!memcg->tcpmem_pressure; 1637 #endif /* CONFIG_MEMCG_V1 */ 1638 do { 1639 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1640 return true; 1641 } while ((memcg = parent_mem_cgroup(memcg))); 1642 return false; 1643 } 1644 1645 int alloc_shrinker_info(struct mem_cgroup *memcg); 1646 void free_shrinker_info(struct mem_cgroup *memcg); 1647 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1648 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1649 #else 1650 #define mem_cgroup_sockets_enabled 0 1651 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1652 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1653 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1654 { 1655 return false; 1656 } 1657 1658 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1659 int nid, int shrinker_id) 1660 { 1661 } 1662 #endif 1663 1664 #ifdef CONFIG_MEMCG_KMEM 1665 bool mem_cgroup_kmem_disabled(void); 1666 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1667 void __memcg_kmem_uncharge_page(struct page *page, int order); 1668 1669 /* 1670 * The returned objcg pointer is safe to use without additional 1671 * protection within a scope. The scope is defined either by 1672 * the current task (similar to the "current" global variable) 1673 * or by set_active_memcg() pair. 1674 * Please, use obj_cgroup_get() to get a reference if the pointer 1675 * needs to be used outside of the local scope. 1676 */ 1677 struct obj_cgroup *current_obj_cgroup(void); 1678 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1679 1680 static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1681 { 1682 struct obj_cgroup *objcg = current_obj_cgroup(); 1683 1684 if (objcg) 1685 obj_cgroup_get(objcg); 1686 1687 return objcg; 1688 } 1689 1690 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1691 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1692 1693 extern struct static_key_false memcg_bpf_enabled_key; 1694 static inline bool memcg_bpf_enabled(void) 1695 { 1696 return static_branch_likely(&memcg_bpf_enabled_key); 1697 } 1698 1699 extern struct static_key_false memcg_kmem_online_key; 1700 1701 static inline bool memcg_kmem_online(void) 1702 { 1703 return static_branch_likely(&memcg_kmem_online_key); 1704 } 1705 1706 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1707 int order) 1708 { 1709 if (memcg_kmem_online()) 1710 return __memcg_kmem_charge_page(page, gfp, order); 1711 return 0; 1712 } 1713 1714 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1715 { 1716 if (memcg_kmem_online()) 1717 __memcg_kmem_uncharge_page(page, order); 1718 } 1719 1720 /* 1721 * A helper for accessing memcg's kmem_id, used for getting 1722 * corresponding LRU lists. 1723 */ 1724 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1725 { 1726 return memcg ? memcg->kmemcg_id : -1; 1727 } 1728 1729 struct mem_cgroup *mem_cgroup_from_obj(void *p); 1730 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1731 1732 static inline void count_objcg_event(struct obj_cgroup *objcg, 1733 enum vm_event_item idx) 1734 { 1735 struct mem_cgroup *memcg; 1736 1737 if (!memcg_kmem_online()) 1738 return; 1739 1740 rcu_read_lock(); 1741 memcg = obj_cgroup_memcg(objcg); 1742 count_memcg_events(memcg, idx, 1); 1743 rcu_read_unlock(); 1744 } 1745 1746 #else 1747 static inline bool mem_cgroup_kmem_disabled(void) 1748 { 1749 return true; 1750 } 1751 1752 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1753 int order) 1754 { 1755 return 0; 1756 } 1757 1758 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1759 { 1760 } 1761 1762 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1763 int order) 1764 { 1765 return 0; 1766 } 1767 1768 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1769 { 1770 } 1771 1772 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1773 { 1774 return NULL; 1775 } 1776 1777 static inline bool memcg_bpf_enabled(void) 1778 { 1779 return false; 1780 } 1781 1782 static inline bool memcg_kmem_online(void) 1783 { 1784 return false; 1785 } 1786 1787 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1788 { 1789 return -1; 1790 } 1791 1792 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1793 { 1794 return NULL; 1795 } 1796 1797 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1798 { 1799 return NULL; 1800 } 1801 1802 static inline void count_objcg_event(struct obj_cgroup *objcg, 1803 enum vm_event_item idx) 1804 { 1805 } 1806 1807 #endif /* CONFIG_MEMCG_KMEM */ 1808 1809 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1810 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1811 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1812 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1813 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1814 #else 1815 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1816 { 1817 return true; 1818 } 1819 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1820 size_t size) 1821 { 1822 } 1823 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1824 size_t size) 1825 { 1826 } 1827 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1828 { 1829 /* if zswap is disabled, do not block pages going to the swapping device */ 1830 return true; 1831 } 1832 #endif 1833 1834 1835 /* Cgroup v1-related declarations */ 1836 1837 #ifdef CONFIG_MEMCG_V1 1838 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1839 gfp_t gfp_mask, 1840 unsigned long *total_scanned); 1841 1842 bool mem_cgroup_oom_synchronize(bool wait); 1843 1844 static inline bool task_in_memcg_oom(struct task_struct *p) 1845 { 1846 return p->memcg_in_oom; 1847 } 1848 1849 void folio_memcg_lock(struct folio *folio); 1850 void folio_memcg_unlock(struct folio *folio); 1851 1852 /* try to stablize folio_memcg() for all the pages in a memcg */ 1853 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1854 { 1855 rcu_read_lock(); 1856 1857 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 1858 return true; 1859 1860 rcu_read_unlock(); 1861 return false; 1862 } 1863 1864 static inline void mem_cgroup_unlock_pages(void) 1865 { 1866 rcu_read_unlock(); 1867 } 1868 1869 static inline void mem_cgroup_enter_user_fault(void) 1870 { 1871 WARN_ON(current->in_user_fault); 1872 current->in_user_fault = 1; 1873 } 1874 1875 static inline void mem_cgroup_exit_user_fault(void) 1876 { 1877 WARN_ON(!current->in_user_fault); 1878 current->in_user_fault = 0; 1879 } 1880 1881 #else /* CONFIG_MEMCG_V1 */ 1882 static inline 1883 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1884 gfp_t gfp_mask, 1885 unsigned long *total_scanned) 1886 { 1887 return 0; 1888 } 1889 1890 static inline void folio_memcg_lock(struct folio *folio) 1891 { 1892 } 1893 1894 static inline void folio_memcg_unlock(struct folio *folio) 1895 { 1896 } 1897 1898 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1899 { 1900 /* to match folio_memcg_rcu() */ 1901 rcu_read_lock(); 1902 return true; 1903 } 1904 1905 static inline void mem_cgroup_unlock_pages(void) 1906 { 1907 rcu_read_unlock(); 1908 } 1909 1910 static inline bool task_in_memcg_oom(struct task_struct *p) 1911 { 1912 return false; 1913 } 1914 1915 static inline bool mem_cgroup_oom_synchronize(bool wait) 1916 { 1917 return false; 1918 } 1919 1920 static inline void mem_cgroup_enter_user_fault(void) 1921 { 1922 } 1923 1924 static inline void mem_cgroup_exit_user_fault(void) 1925 { 1926 } 1927 1928 #endif /* CONFIG_MEMCG_V1 */ 1929 1930 #endif /* _LINUX_MEMCONTROL_H */ 1931