xref: /linux-6.15/include/linux/memcontrol.h (revision 9f66849f)
1 /* memcontrol.h - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <[email protected]>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33 
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38 
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 	MEMCG_RSS,
43 	MEMCG_RSS_HUGE,
44 	MEMCG_SWAP,
45 	MEMCG_SOCK,
46 	/* XXX: why are these zone and not node counters? */
47 	MEMCG_KERNEL_STACK_KB,
48 	MEMCG_NR_STAT,
49 };
50 
51 enum memcg_memory_event {
52 	MEMCG_LOW,
53 	MEMCG_HIGH,
54 	MEMCG_MAX,
55 	MEMCG_OOM,
56 	MEMCG_OOM_KILL,
57 	MEMCG_SWAP_MAX,
58 	MEMCG_SWAP_FAIL,
59 	MEMCG_NR_MEMORY_EVENTS,
60 };
61 
62 enum mem_cgroup_protection {
63 	MEMCG_PROT_NONE,
64 	MEMCG_PROT_LOW,
65 	MEMCG_PROT_MIN,
66 };
67 
68 struct mem_cgroup_reclaim_cookie {
69 	pg_data_t *pgdat;
70 	int priority;
71 	unsigned int generation;
72 };
73 
74 #ifdef CONFIG_MEMCG
75 
76 #define MEM_CGROUP_ID_SHIFT	16
77 #define MEM_CGROUP_ID_MAX	USHRT_MAX
78 
79 struct mem_cgroup_id {
80 	int id;
81 	refcount_t ref;
82 };
83 
84 /*
85  * Per memcg event counter is incremented at every pagein/pageout. With THP,
86  * it will be incremated by the number of pages. This counter is used for
87  * for trigger some periodic events. This is straightforward and better
88  * than using jiffies etc. to handle periodic memcg event.
89  */
90 enum mem_cgroup_events_target {
91 	MEM_CGROUP_TARGET_THRESH,
92 	MEM_CGROUP_TARGET_SOFTLIMIT,
93 	MEM_CGROUP_TARGET_NUMAINFO,
94 	MEM_CGROUP_NTARGETS,
95 };
96 
97 struct mem_cgroup_stat_cpu {
98 	long count[MEMCG_NR_STAT];
99 	unsigned long events[NR_VM_EVENT_ITEMS];
100 	unsigned long nr_page_events;
101 	unsigned long targets[MEM_CGROUP_NTARGETS];
102 };
103 
104 struct mem_cgroup_reclaim_iter {
105 	struct mem_cgroup *position;
106 	/* scan generation, increased every round-trip */
107 	unsigned int generation;
108 };
109 
110 struct lruvec_stat {
111 	long count[NR_VM_NODE_STAT_ITEMS];
112 };
113 
114 /*
115  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116  * which have elements charged to this memcg.
117  */
118 struct memcg_shrinker_map {
119 	struct rcu_head rcu;
120 	unsigned long map[0];
121 };
122 
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_node {
127 	struct lruvec		lruvec;
128 
129 	struct lruvec_stat __percpu *lruvec_stat_cpu;
130 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131 
132 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133 
134 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
135 
136 #ifdef CONFIG_MEMCG_KMEM
137 	struct memcg_shrinker_map __rcu	*shrinker_map;
138 #endif
139 	struct rb_node		tree_node;	/* RB tree node */
140 	unsigned long		usage_in_excess;/* Set to the value by which */
141 						/* the soft limit is exceeded*/
142 	bool			on_tree;
143 	bool			congested;	/* memcg has many dirty pages */
144 						/* backed by a congested BDI */
145 
146 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147 						/* use container_of	   */
148 };
149 
150 struct mem_cgroup_threshold {
151 	struct eventfd_ctx *eventfd;
152 	unsigned long threshold;
153 };
154 
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157 	/* An array index points to threshold just below or equal to usage. */
158 	int current_threshold;
159 	/* Size of entries[] */
160 	unsigned int size;
161 	/* Array of thresholds */
162 	struct mem_cgroup_threshold entries[0];
163 };
164 
165 struct mem_cgroup_thresholds {
166 	/* Primary thresholds array */
167 	struct mem_cgroup_threshold_ary *primary;
168 	/*
169 	 * Spare threshold array.
170 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 	 * It must be able to store at least primary->size - 1 entries.
172 	 */
173 	struct mem_cgroup_threshold_ary *spare;
174 };
175 
176 enum memcg_kmem_state {
177 	KMEM_NONE,
178 	KMEM_ALLOCATED,
179 	KMEM_ONLINE,
180 };
181 
182 #if defined(CONFIG_SMP)
183 struct memcg_padding {
184 	char x[0];
185 } ____cacheline_internodealigned_in_smp;
186 #define MEMCG_PADDING(name)      struct memcg_padding name;
187 #else
188 #define MEMCG_PADDING(name)
189 #endif
190 
191 /*
192  * The memory controller data structure. The memory controller controls both
193  * page cache and RSS per cgroup. We would eventually like to provide
194  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195  * to help the administrator determine what knobs to tune.
196  */
197 struct mem_cgroup {
198 	struct cgroup_subsys_state css;
199 
200 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
201 	struct mem_cgroup_id id;
202 
203 	/* Accounted resources */
204 	struct page_counter memory;
205 	struct page_counter swap;
206 
207 	/* Legacy consumer-oriented counters */
208 	struct page_counter memsw;
209 	struct page_counter kmem;
210 	struct page_counter tcpmem;
211 
212 	/* Upper bound of normal memory consumption range */
213 	unsigned long high;
214 
215 	/* Range enforcement for interrupt charges */
216 	struct work_struct high_work;
217 
218 	unsigned long soft_limit;
219 
220 	/* vmpressure notifications */
221 	struct vmpressure vmpressure;
222 
223 	/*
224 	 * Should the accounting and control be hierarchical, per subtree?
225 	 */
226 	bool use_hierarchy;
227 
228 	/*
229 	 * Should the OOM killer kill all belonging tasks, had it kill one?
230 	 */
231 	bool oom_group;
232 
233 	/* protected by memcg_oom_lock */
234 	bool		oom_lock;
235 	int		under_oom;
236 
237 	int	swappiness;
238 	/* OOM-Killer disable */
239 	int		oom_kill_disable;
240 
241 	/* memory.events */
242 	struct cgroup_file events_file;
243 
244 	/* handle for "memory.swap.events" */
245 	struct cgroup_file swap_events_file;
246 
247 	/* protect arrays of thresholds */
248 	struct mutex thresholds_lock;
249 
250 	/* thresholds for memory usage. RCU-protected */
251 	struct mem_cgroup_thresholds thresholds;
252 
253 	/* thresholds for mem+swap usage. RCU-protected */
254 	struct mem_cgroup_thresholds memsw_thresholds;
255 
256 	/* For oom notifier event fd */
257 	struct list_head oom_notify;
258 
259 	/*
260 	 * Should we move charges of a task when a task is moved into this
261 	 * mem_cgroup ? And what type of charges should we move ?
262 	 */
263 	unsigned long move_charge_at_immigrate;
264 	/* taken only while moving_account > 0 */
265 	spinlock_t		move_lock;
266 	unsigned long		move_lock_flags;
267 
268 	MEMCG_PADDING(_pad1_);
269 
270 	/*
271 	 * set > 0 if pages under this cgroup are moving to other cgroup.
272 	 */
273 	atomic_t		moving_account;
274 	struct task_struct	*move_lock_task;
275 
276 	/* memory.stat */
277 	struct mem_cgroup_stat_cpu __percpu *stat_cpu;
278 
279 	MEMCG_PADDING(_pad2_);
280 
281 	atomic_long_t		stat[MEMCG_NR_STAT];
282 	atomic_long_t		events[NR_VM_EVENT_ITEMS];
283 	atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 
285 	unsigned long		socket_pressure;
286 
287 	/* Legacy tcp memory accounting */
288 	bool			tcpmem_active;
289 	int			tcpmem_pressure;
290 
291 #ifdef CONFIG_MEMCG_KMEM
292         /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 	int kmemcg_id;
294 	enum memcg_kmem_state kmem_state;
295 	struct list_head kmem_caches;
296 #endif
297 
298 	int last_scanned_node;
299 #if MAX_NUMNODES > 1
300 	nodemask_t	scan_nodes;
301 	atomic_t	numainfo_events;
302 	atomic_t	numainfo_updating;
303 #endif
304 
305 #ifdef CONFIG_CGROUP_WRITEBACK
306 	struct list_head cgwb_list;
307 	struct wb_domain cgwb_domain;
308 #endif
309 
310 	/* List of events which userspace want to receive */
311 	struct list_head event_list;
312 	spinlock_t event_list_lock;
313 
314 	struct mem_cgroup_per_node *nodeinfo[0];
315 	/* WARNING: nodeinfo must be the last member here */
316 };
317 
318 /*
319  * size of first charge trial. "32" comes from vmscan.c's magic value.
320  * TODO: maybe necessary to use big numbers in big irons.
321  */
322 #define MEMCG_CHARGE_BATCH 32U
323 
324 extern struct mem_cgroup *root_mem_cgroup;
325 
326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327 {
328 	return (memcg == root_mem_cgroup);
329 }
330 
331 static inline bool mem_cgroup_disabled(void)
332 {
333 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
334 }
335 
336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 						struct mem_cgroup *memcg);
338 
339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 			  bool compound);
342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 			  bool compound);
345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 			      bool lrucare, bool compound);
347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 		bool compound);
349 void mem_cgroup_uncharge(struct page *page);
350 void mem_cgroup_uncharge_list(struct list_head *page_list);
351 
352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353 
354 static struct mem_cgroup_per_node *
355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356 {
357 	return memcg->nodeinfo[nid];
358 }
359 
360 /**
361  * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362  * @node: node of the wanted lruvec
363  * @memcg: memcg of the wanted lruvec
364  *
365  * Returns the lru list vector holding pages for a given @node or a given
366  * @memcg and @zone. This can be the node lruvec, if the memory controller
367  * is disabled.
368  */
369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 				struct mem_cgroup *memcg)
371 {
372 	struct mem_cgroup_per_node *mz;
373 	struct lruvec *lruvec;
374 
375 	if (mem_cgroup_disabled()) {
376 		lruvec = node_lruvec(pgdat);
377 		goto out;
378 	}
379 
380 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 	lruvec = &mz->lruvec;
382 out:
383 	/*
384 	 * Since a node can be onlined after the mem_cgroup was created,
385 	 * we have to be prepared to initialize lruvec->pgdat here;
386 	 * and if offlined then reonlined, we need to reinitialize it.
387 	 */
388 	if (unlikely(lruvec->pgdat != pgdat))
389 		lruvec->pgdat = pgdat;
390 	return lruvec;
391 }
392 
393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394 
395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397 
398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399 
400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401 
402 static inline
403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
405 }
406 
407 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408 {
409 	if (memcg)
410 		css_put(&memcg->css);
411 }
412 
413 #define mem_cgroup_from_counter(counter, member)	\
414 	container_of(counter, struct mem_cgroup, member)
415 
416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 				   struct mem_cgroup *,
418 				   struct mem_cgroup_reclaim_cookie *);
419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420 int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 			  int (*)(struct task_struct *, void *), void *);
422 
423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424 {
425 	if (mem_cgroup_disabled())
426 		return 0;
427 
428 	return memcg->id.id;
429 }
430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431 
432 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
433 {
434 	return mem_cgroup_from_css(seq_css(m));
435 }
436 
437 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
438 {
439 	struct mem_cgroup_per_node *mz;
440 
441 	if (mem_cgroup_disabled())
442 		return NULL;
443 
444 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
445 	return mz->memcg;
446 }
447 
448 /**
449  * parent_mem_cgroup - find the accounting parent of a memcg
450  * @memcg: memcg whose parent to find
451  *
452  * Returns the parent memcg, or NULL if this is the root or the memory
453  * controller is in legacy no-hierarchy mode.
454  */
455 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
456 {
457 	if (!memcg->memory.parent)
458 		return NULL;
459 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
460 }
461 
462 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
463 			      struct mem_cgroup *root)
464 {
465 	if (root == memcg)
466 		return true;
467 	if (!root->use_hierarchy)
468 		return false;
469 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
470 }
471 
472 static inline bool mm_match_cgroup(struct mm_struct *mm,
473 				   struct mem_cgroup *memcg)
474 {
475 	struct mem_cgroup *task_memcg;
476 	bool match = false;
477 
478 	rcu_read_lock();
479 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
480 	if (task_memcg)
481 		match = mem_cgroup_is_descendant(task_memcg, memcg);
482 	rcu_read_unlock();
483 	return match;
484 }
485 
486 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
487 ino_t page_cgroup_ino(struct page *page);
488 
489 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
490 {
491 	if (mem_cgroup_disabled())
492 		return true;
493 	return !!(memcg->css.flags & CSS_ONLINE);
494 }
495 
496 /*
497  * For memory reclaim.
498  */
499 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
500 
501 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
502 		int zid, int nr_pages);
503 
504 static inline
505 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
506 		enum lru_list lru, int zone_idx)
507 {
508 	struct mem_cgroup_per_node *mz;
509 
510 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
511 	return mz->lru_zone_size[zone_idx][lru];
512 }
513 
514 void mem_cgroup_handle_over_high(void);
515 
516 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
517 
518 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
519 				struct task_struct *p);
520 
521 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
522 
523 static inline void mem_cgroup_enter_user_fault(void)
524 {
525 	WARN_ON(current->in_user_fault);
526 	current->in_user_fault = 1;
527 }
528 
529 static inline void mem_cgroup_exit_user_fault(void)
530 {
531 	WARN_ON(!current->in_user_fault);
532 	current->in_user_fault = 0;
533 }
534 
535 static inline bool task_in_memcg_oom(struct task_struct *p)
536 {
537 	return p->memcg_in_oom;
538 }
539 
540 bool mem_cgroup_oom_synchronize(bool wait);
541 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
542 					    struct mem_cgroup *oom_domain);
543 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
544 
545 #ifdef CONFIG_MEMCG_SWAP
546 extern int do_swap_account;
547 #endif
548 
549 struct mem_cgroup *lock_page_memcg(struct page *page);
550 void __unlock_page_memcg(struct mem_cgroup *memcg);
551 void unlock_page_memcg(struct page *page);
552 
553 /*
554  * idx can be of type enum memcg_stat_item or node_stat_item.
555  * Keep in sync with memcg_exact_page_state().
556  */
557 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
558 					     int idx)
559 {
560 	long x = atomic_long_read(&memcg->stat[idx]);
561 #ifdef CONFIG_SMP
562 	if (x < 0)
563 		x = 0;
564 #endif
565 	return x;
566 }
567 
568 /* idx can be of type enum memcg_stat_item or node_stat_item */
569 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
570 				     int idx, int val)
571 {
572 	long x;
573 
574 	if (mem_cgroup_disabled())
575 		return;
576 
577 	x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
578 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
579 		atomic_long_add(x, &memcg->stat[idx]);
580 		x = 0;
581 	}
582 	__this_cpu_write(memcg->stat_cpu->count[idx], x);
583 }
584 
585 /* idx can be of type enum memcg_stat_item or node_stat_item */
586 static inline void mod_memcg_state(struct mem_cgroup *memcg,
587 				   int idx, int val)
588 {
589 	unsigned long flags;
590 
591 	local_irq_save(flags);
592 	__mod_memcg_state(memcg, idx, val);
593 	local_irq_restore(flags);
594 }
595 
596 /**
597  * mod_memcg_page_state - update page state statistics
598  * @page: the page
599  * @idx: page state item to account
600  * @val: number of pages (positive or negative)
601  *
602  * The @page must be locked or the caller must use lock_page_memcg()
603  * to prevent double accounting when the page is concurrently being
604  * moved to another memcg:
605  *
606  *   lock_page(page) or lock_page_memcg(page)
607  *   if (TestClearPageState(page))
608  *     mod_memcg_page_state(page, state, -1);
609  *   unlock_page(page) or unlock_page_memcg(page)
610  *
611  * Kernel pages are an exception to this, since they'll never move.
612  */
613 static inline void __mod_memcg_page_state(struct page *page,
614 					  int idx, int val)
615 {
616 	if (page->mem_cgroup)
617 		__mod_memcg_state(page->mem_cgroup, idx, val);
618 }
619 
620 static inline void mod_memcg_page_state(struct page *page,
621 					int idx, int val)
622 {
623 	if (page->mem_cgroup)
624 		mod_memcg_state(page->mem_cgroup, idx, val);
625 }
626 
627 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
628 					      enum node_stat_item idx)
629 {
630 	struct mem_cgroup_per_node *pn;
631 	long x;
632 
633 	if (mem_cgroup_disabled())
634 		return node_page_state(lruvec_pgdat(lruvec), idx);
635 
636 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
637 	x = atomic_long_read(&pn->lruvec_stat[idx]);
638 #ifdef CONFIG_SMP
639 	if (x < 0)
640 		x = 0;
641 #endif
642 	return x;
643 }
644 
645 static inline void __mod_lruvec_state(struct lruvec *lruvec,
646 				      enum node_stat_item idx, int val)
647 {
648 	struct mem_cgroup_per_node *pn;
649 	long x;
650 
651 	/* Update node */
652 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
653 
654 	if (mem_cgroup_disabled())
655 		return;
656 
657 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
658 
659 	/* Update memcg */
660 	__mod_memcg_state(pn->memcg, idx, val);
661 
662 	/* Update lruvec */
663 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
664 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
665 		atomic_long_add(x, &pn->lruvec_stat[idx]);
666 		x = 0;
667 	}
668 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
669 }
670 
671 static inline void mod_lruvec_state(struct lruvec *lruvec,
672 				    enum node_stat_item idx, int val)
673 {
674 	unsigned long flags;
675 
676 	local_irq_save(flags);
677 	__mod_lruvec_state(lruvec, idx, val);
678 	local_irq_restore(flags);
679 }
680 
681 static inline void __mod_lruvec_page_state(struct page *page,
682 					   enum node_stat_item idx, int val)
683 {
684 	pg_data_t *pgdat = page_pgdat(page);
685 	struct lruvec *lruvec;
686 
687 	/* Untracked pages have no memcg, no lruvec. Update only the node */
688 	if (!page->mem_cgroup) {
689 		__mod_node_page_state(pgdat, idx, val);
690 		return;
691 	}
692 
693 	lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
694 	__mod_lruvec_state(lruvec, idx, val);
695 }
696 
697 static inline void mod_lruvec_page_state(struct page *page,
698 					 enum node_stat_item idx, int val)
699 {
700 	unsigned long flags;
701 
702 	local_irq_save(flags);
703 	__mod_lruvec_page_state(page, idx, val);
704 	local_irq_restore(flags);
705 }
706 
707 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
708 						gfp_t gfp_mask,
709 						unsigned long *total_scanned);
710 
711 static inline void __count_memcg_events(struct mem_cgroup *memcg,
712 					enum vm_event_item idx,
713 					unsigned long count)
714 {
715 	unsigned long x;
716 
717 	if (mem_cgroup_disabled())
718 		return;
719 
720 	x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
721 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
722 		atomic_long_add(x, &memcg->events[idx]);
723 		x = 0;
724 	}
725 	__this_cpu_write(memcg->stat_cpu->events[idx], x);
726 }
727 
728 static inline void count_memcg_events(struct mem_cgroup *memcg,
729 				      enum vm_event_item idx,
730 				      unsigned long count)
731 {
732 	unsigned long flags;
733 
734 	local_irq_save(flags);
735 	__count_memcg_events(memcg, idx, count);
736 	local_irq_restore(flags);
737 }
738 
739 static inline void count_memcg_page_event(struct page *page,
740 					  enum vm_event_item idx)
741 {
742 	if (page->mem_cgroup)
743 		count_memcg_events(page->mem_cgroup, idx, 1);
744 }
745 
746 static inline void count_memcg_event_mm(struct mm_struct *mm,
747 					enum vm_event_item idx)
748 {
749 	struct mem_cgroup *memcg;
750 
751 	if (mem_cgroup_disabled())
752 		return;
753 
754 	rcu_read_lock();
755 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
756 	if (likely(memcg))
757 		count_memcg_events(memcg, idx, 1);
758 	rcu_read_unlock();
759 }
760 
761 static inline void memcg_memory_event(struct mem_cgroup *memcg,
762 				      enum memcg_memory_event event)
763 {
764 	atomic_long_inc(&memcg->memory_events[event]);
765 	cgroup_file_notify(&memcg->events_file);
766 }
767 
768 static inline void memcg_memory_event_mm(struct mm_struct *mm,
769 					 enum memcg_memory_event event)
770 {
771 	struct mem_cgroup *memcg;
772 
773 	if (mem_cgroup_disabled())
774 		return;
775 
776 	rcu_read_lock();
777 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
778 	if (likely(memcg))
779 		memcg_memory_event(memcg, event);
780 	rcu_read_unlock();
781 }
782 
783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
784 void mem_cgroup_split_huge_fixup(struct page *head);
785 #endif
786 
787 #else /* CONFIG_MEMCG */
788 
789 #define MEM_CGROUP_ID_SHIFT	0
790 #define MEM_CGROUP_ID_MAX	0
791 
792 struct mem_cgroup;
793 
794 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
795 {
796 	return true;
797 }
798 
799 static inline bool mem_cgroup_disabled(void)
800 {
801 	return true;
802 }
803 
804 static inline void memcg_memory_event(struct mem_cgroup *memcg,
805 				      enum memcg_memory_event event)
806 {
807 }
808 
809 static inline void memcg_memory_event_mm(struct mm_struct *mm,
810 					 enum memcg_memory_event event)
811 {
812 }
813 
814 static inline enum mem_cgroup_protection mem_cgroup_protected(
815 	struct mem_cgroup *root, struct mem_cgroup *memcg)
816 {
817 	return MEMCG_PROT_NONE;
818 }
819 
820 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
821 					gfp_t gfp_mask,
822 					struct mem_cgroup **memcgp,
823 					bool compound)
824 {
825 	*memcgp = NULL;
826 	return 0;
827 }
828 
829 static inline int mem_cgroup_try_charge_delay(struct page *page,
830 					      struct mm_struct *mm,
831 					      gfp_t gfp_mask,
832 					      struct mem_cgroup **memcgp,
833 					      bool compound)
834 {
835 	*memcgp = NULL;
836 	return 0;
837 }
838 
839 static inline void mem_cgroup_commit_charge(struct page *page,
840 					    struct mem_cgroup *memcg,
841 					    bool lrucare, bool compound)
842 {
843 }
844 
845 static inline void mem_cgroup_cancel_charge(struct page *page,
846 					    struct mem_cgroup *memcg,
847 					    bool compound)
848 {
849 }
850 
851 static inline void mem_cgroup_uncharge(struct page *page)
852 {
853 }
854 
855 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
856 {
857 }
858 
859 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
860 {
861 }
862 
863 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
864 				struct mem_cgroup *memcg)
865 {
866 	return node_lruvec(pgdat);
867 }
868 
869 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
870 						    struct pglist_data *pgdat)
871 {
872 	return &pgdat->lruvec;
873 }
874 
875 static inline bool mm_match_cgroup(struct mm_struct *mm,
876 		struct mem_cgroup *memcg)
877 {
878 	return true;
879 }
880 
881 static inline bool task_in_mem_cgroup(struct task_struct *task,
882 				      const struct mem_cgroup *memcg)
883 {
884 	return true;
885 }
886 
887 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
888 {
889 	return NULL;
890 }
891 
892 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
893 {
894 	return NULL;
895 }
896 
897 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
898 {
899 }
900 
901 static inline struct mem_cgroup *
902 mem_cgroup_iter(struct mem_cgroup *root,
903 		struct mem_cgroup *prev,
904 		struct mem_cgroup_reclaim_cookie *reclaim)
905 {
906 	return NULL;
907 }
908 
909 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
910 					 struct mem_cgroup *prev)
911 {
912 }
913 
914 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
915 		int (*fn)(struct task_struct *, void *), void *arg)
916 {
917 	return 0;
918 }
919 
920 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
921 {
922 	return 0;
923 }
924 
925 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
926 {
927 	WARN_ON_ONCE(id);
928 	/* XXX: This should always return root_mem_cgroup */
929 	return NULL;
930 }
931 
932 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
933 {
934 	return NULL;
935 }
936 
937 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
938 {
939 	return NULL;
940 }
941 
942 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
943 {
944 	return true;
945 }
946 
947 static inline
948 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
949 		enum lru_list lru, int zone_idx)
950 {
951 	return 0;
952 }
953 
954 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
955 {
956 	return 0;
957 }
958 
959 static inline void
960 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
961 {
962 }
963 
964 static inline void
965 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
966 {
967 }
968 
969 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
970 {
971 	return NULL;
972 }
973 
974 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
975 {
976 }
977 
978 static inline void unlock_page_memcg(struct page *page)
979 {
980 }
981 
982 static inline void mem_cgroup_handle_over_high(void)
983 {
984 }
985 
986 static inline void mem_cgroup_enter_user_fault(void)
987 {
988 }
989 
990 static inline void mem_cgroup_exit_user_fault(void)
991 {
992 }
993 
994 static inline bool task_in_memcg_oom(struct task_struct *p)
995 {
996 	return false;
997 }
998 
999 static inline bool mem_cgroup_oom_synchronize(bool wait)
1000 {
1001 	return false;
1002 }
1003 
1004 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1005 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1006 {
1007 	return NULL;
1008 }
1009 
1010 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1011 {
1012 }
1013 
1014 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1015 					     int idx)
1016 {
1017 	return 0;
1018 }
1019 
1020 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1021 				     int idx,
1022 				     int nr)
1023 {
1024 }
1025 
1026 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1027 				   int idx,
1028 				   int nr)
1029 {
1030 }
1031 
1032 static inline void __mod_memcg_page_state(struct page *page,
1033 					  int idx,
1034 					  int nr)
1035 {
1036 }
1037 
1038 static inline void mod_memcg_page_state(struct page *page,
1039 					int idx,
1040 					int nr)
1041 {
1042 }
1043 
1044 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1045 					      enum node_stat_item idx)
1046 {
1047 	return node_page_state(lruvec_pgdat(lruvec), idx);
1048 }
1049 
1050 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1051 				      enum node_stat_item idx, int val)
1052 {
1053 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1054 }
1055 
1056 static inline void mod_lruvec_state(struct lruvec *lruvec,
1057 				    enum node_stat_item idx, int val)
1058 {
1059 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1060 }
1061 
1062 static inline void __mod_lruvec_page_state(struct page *page,
1063 					   enum node_stat_item idx, int val)
1064 {
1065 	__mod_node_page_state(page_pgdat(page), idx, val);
1066 }
1067 
1068 static inline void mod_lruvec_page_state(struct page *page,
1069 					 enum node_stat_item idx, int val)
1070 {
1071 	mod_node_page_state(page_pgdat(page), idx, val);
1072 }
1073 
1074 static inline
1075 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1076 					    gfp_t gfp_mask,
1077 					    unsigned long *total_scanned)
1078 {
1079 	return 0;
1080 }
1081 
1082 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1083 {
1084 }
1085 
1086 static inline void count_memcg_events(struct mem_cgroup *memcg,
1087 				      enum vm_event_item idx,
1088 				      unsigned long count)
1089 {
1090 }
1091 
1092 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1093 					enum vm_event_item idx,
1094 					unsigned long count)
1095 {
1096 }
1097 
1098 static inline void count_memcg_page_event(struct page *page,
1099 					  int idx)
1100 {
1101 }
1102 
1103 static inline
1104 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1105 {
1106 }
1107 #endif /* CONFIG_MEMCG */
1108 
1109 /* idx can be of type enum memcg_stat_item or node_stat_item */
1110 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1111 				     int idx)
1112 {
1113 	__mod_memcg_state(memcg, idx, 1);
1114 }
1115 
1116 /* idx can be of type enum memcg_stat_item or node_stat_item */
1117 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1118 				     int idx)
1119 {
1120 	__mod_memcg_state(memcg, idx, -1);
1121 }
1122 
1123 /* idx can be of type enum memcg_stat_item or node_stat_item */
1124 static inline void __inc_memcg_page_state(struct page *page,
1125 					  int idx)
1126 {
1127 	__mod_memcg_page_state(page, idx, 1);
1128 }
1129 
1130 /* idx can be of type enum memcg_stat_item or node_stat_item */
1131 static inline void __dec_memcg_page_state(struct page *page,
1132 					  int idx)
1133 {
1134 	__mod_memcg_page_state(page, idx, -1);
1135 }
1136 
1137 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1138 				      enum node_stat_item idx)
1139 {
1140 	__mod_lruvec_state(lruvec, idx, 1);
1141 }
1142 
1143 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1144 				      enum node_stat_item idx)
1145 {
1146 	__mod_lruvec_state(lruvec, idx, -1);
1147 }
1148 
1149 static inline void __inc_lruvec_page_state(struct page *page,
1150 					   enum node_stat_item idx)
1151 {
1152 	__mod_lruvec_page_state(page, idx, 1);
1153 }
1154 
1155 static inline void __dec_lruvec_page_state(struct page *page,
1156 					   enum node_stat_item idx)
1157 {
1158 	__mod_lruvec_page_state(page, idx, -1);
1159 }
1160 
1161 /* idx can be of type enum memcg_stat_item or node_stat_item */
1162 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1163 				   int idx)
1164 {
1165 	mod_memcg_state(memcg, idx, 1);
1166 }
1167 
1168 /* idx can be of type enum memcg_stat_item or node_stat_item */
1169 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1170 				   int idx)
1171 {
1172 	mod_memcg_state(memcg, idx, -1);
1173 }
1174 
1175 /* idx can be of type enum memcg_stat_item or node_stat_item */
1176 static inline void inc_memcg_page_state(struct page *page,
1177 					int idx)
1178 {
1179 	mod_memcg_page_state(page, idx, 1);
1180 }
1181 
1182 /* idx can be of type enum memcg_stat_item or node_stat_item */
1183 static inline void dec_memcg_page_state(struct page *page,
1184 					int idx)
1185 {
1186 	mod_memcg_page_state(page, idx, -1);
1187 }
1188 
1189 static inline void inc_lruvec_state(struct lruvec *lruvec,
1190 				    enum node_stat_item idx)
1191 {
1192 	mod_lruvec_state(lruvec, idx, 1);
1193 }
1194 
1195 static inline void dec_lruvec_state(struct lruvec *lruvec,
1196 				    enum node_stat_item idx)
1197 {
1198 	mod_lruvec_state(lruvec, idx, -1);
1199 }
1200 
1201 static inline void inc_lruvec_page_state(struct page *page,
1202 					 enum node_stat_item idx)
1203 {
1204 	mod_lruvec_page_state(page, idx, 1);
1205 }
1206 
1207 static inline void dec_lruvec_page_state(struct page *page,
1208 					 enum node_stat_item idx)
1209 {
1210 	mod_lruvec_page_state(page, idx, -1);
1211 }
1212 
1213 #ifdef CONFIG_CGROUP_WRITEBACK
1214 
1215 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1216 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1217 			 unsigned long *pheadroom, unsigned long *pdirty,
1218 			 unsigned long *pwriteback);
1219 
1220 #else	/* CONFIG_CGROUP_WRITEBACK */
1221 
1222 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1223 {
1224 	return NULL;
1225 }
1226 
1227 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1228 				       unsigned long *pfilepages,
1229 				       unsigned long *pheadroom,
1230 				       unsigned long *pdirty,
1231 				       unsigned long *pwriteback)
1232 {
1233 }
1234 
1235 #endif	/* CONFIG_CGROUP_WRITEBACK */
1236 
1237 struct sock;
1238 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1239 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1240 #ifdef CONFIG_MEMCG
1241 extern struct static_key_false memcg_sockets_enabled_key;
1242 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1243 void mem_cgroup_sk_alloc(struct sock *sk);
1244 void mem_cgroup_sk_free(struct sock *sk);
1245 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1246 {
1247 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1248 		return true;
1249 	do {
1250 		if (time_before(jiffies, memcg->socket_pressure))
1251 			return true;
1252 	} while ((memcg = parent_mem_cgroup(memcg)));
1253 	return false;
1254 }
1255 #else
1256 #define mem_cgroup_sockets_enabled 0
1257 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1258 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1259 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1260 {
1261 	return false;
1262 }
1263 #endif
1264 
1265 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1266 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1267 
1268 #ifdef CONFIG_MEMCG_KMEM
1269 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1270 void __memcg_kmem_uncharge(struct page *page, int order);
1271 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1272 			      struct mem_cgroup *memcg);
1273 
1274 extern struct static_key_false memcg_kmem_enabled_key;
1275 extern struct workqueue_struct *memcg_kmem_cache_wq;
1276 
1277 extern int memcg_nr_cache_ids;
1278 void memcg_get_cache_ids(void);
1279 void memcg_put_cache_ids(void);
1280 
1281 /*
1282  * Helper macro to loop through all memcg-specific caches. Callers must still
1283  * check if the cache is valid (it is either valid or NULL).
1284  * the slab_mutex must be held when looping through those caches
1285  */
1286 #define for_each_memcg_cache_index(_idx)	\
1287 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1288 
1289 static inline bool memcg_kmem_enabled(void)
1290 {
1291 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1292 }
1293 
1294 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1295 {
1296 	if (memcg_kmem_enabled())
1297 		return __memcg_kmem_charge(page, gfp, order);
1298 	return 0;
1299 }
1300 
1301 static inline void memcg_kmem_uncharge(struct page *page, int order)
1302 {
1303 	if (memcg_kmem_enabled())
1304 		__memcg_kmem_uncharge(page, order);
1305 }
1306 
1307 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1308 					  int order, struct mem_cgroup *memcg)
1309 {
1310 	if (memcg_kmem_enabled())
1311 		return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1312 	return 0;
1313 }
1314 /*
1315  * helper for accessing a memcg's index. It will be used as an index in the
1316  * child cache array in kmem_cache, and also to derive its name. This function
1317  * will return -1 when this is not a kmem-limited memcg.
1318  */
1319 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1320 {
1321 	return memcg ? memcg->kmemcg_id : -1;
1322 }
1323 
1324 extern int memcg_expand_shrinker_maps(int new_id);
1325 
1326 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1327 				   int nid, int shrinker_id);
1328 #else
1329 
1330 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1331 {
1332 	return 0;
1333 }
1334 
1335 static inline void memcg_kmem_uncharge(struct page *page, int order)
1336 {
1337 }
1338 
1339 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1340 {
1341 	return 0;
1342 }
1343 
1344 static inline void __memcg_kmem_uncharge(struct page *page, int order)
1345 {
1346 }
1347 
1348 #define for_each_memcg_cache_index(_idx)	\
1349 	for (; NULL; )
1350 
1351 static inline bool memcg_kmem_enabled(void)
1352 {
1353 	return false;
1354 }
1355 
1356 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1357 {
1358 	return -1;
1359 }
1360 
1361 static inline void memcg_get_cache_ids(void)
1362 {
1363 }
1364 
1365 static inline void memcg_put_cache_ids(void)
1366 {
1367 }
1368 
1369 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1370 					  int nid, int shrinker_id) { }
1371 #endif /* CONFIG_MEMCG_KMEM */
1372 
1373 #endif /* _LINUX_MEMCONTROL_H */
1374