1 /* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <[email protected]> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <[email protected]> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #ifndef _LINUX_MEMCONTROL_H 21 #define _LINUX_MEMCONTROL_H 22 #include <linux/cgroup.h> 23 #include <linux/vm_event_item.h> 24 #include <linux/hardirq.h> 25 #include <linux/jump_label.h> 26 #include <linux/page_counter.h> 27 #include <linux/vmpressure.h> 28 #include <linux/eventfd.h> 29 #include <linux/mm.h> 30 #include <linux/vmstat.h> 31 #include <linux/writeback.h> 32 #include <linux/page-flags.h> 33 34 struct mem_cgroup; 35 struct page; 36 struct mm_struct; 37 struct kmem_cache; 38 39 /* Cgroup-specific page state, on top of universal node page state */ 40 enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49 }; 50 51 enum memcg_memory_event { 52 MEMCG_LOW, 53 MEMCG_HIGH, 54 MEMCG_MAX, 55 MEMCG_OOM, 56 MEMCG_OOM_KILL, 57 MEMCG_SWAP_MAX, 58 MEMCG_SWAP_FAIL, 59 MEMCG_NR_MEMORY_EVENTS, 60 }; 61 62 enum mem_cgroup_protection { 63 MEMCG_PROT_NONE, 64 MEMCG_PROT_LOW, 65 MEMCG_PROT_MIN, 66 }; 67 68 struct mem_cgroup_reclaim_cookie { 69 pg_data_t *pgdat; 70 int priority; 71 unsigned int generation; 72 }; 73 74 #ifdef CONFIG_MEMCG 75 76 #define MEM_CGROUP_ID_SHIFT 16 77 #define MEM_CGROUP_ID_MAX USHRT_MAX 78 79 struct mem_cgroup_id { 80 int id; 81 refcount_t ref; 82 }; 83 84 /* 85 * Per memcg event counter is incremented at every pagein/pageout. With THP, 86 * it will be incremated by the number of pages. This counter is used for 87 * for trigger some periodic events. This is straightforward and better 88 * than using jiffies etc. to handle periodic memcg event. 89 */ 90 enum mem_cgroup_events_target { 91 MEM_CGROUP_TARGET_THRESH, 92 MEM_CGROUP_TARGET_SOFTLIMIT, 93 MEM_CGROUP_TARGET_NUMAINFO, 94 MEM_CGROUP_NTARGETS, 95 }; 96 97 struct mem_cgroup_stat_cpu { 98 long count[MEMCG_NR_STAT]; 99 unsigned long events[NR_VM_EVENT_ITEMS]; 100 unsigned long nr_page_events; 101 unsigned long targets[MEM_CGROUP_NTARGETS]; 102 }; 103 104 struct mem_cgroup_reclaim_iter { 105 struct mem_cgroup *position; 106 /* scan generation, increased every round-trip */ 107 unsigned int generation; 108 }; 109 110 struct lruvec_stat { 111 long count[NR_VM_NODE_STAT_ITEMS]; 112 }; 113 114 /* 115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 116 * which have elements charged to this memcg. 117 */ 118 struct memcg_shrinker_map { 119 struct rcu_head rcu; 120 unsigned long map[0]; 121 }; 122 123 /* 124 * per-zone information in memory controller. 125 */ 126 struct mem_cgroup_per_node { 127 struct lruvec lruvec; 128 129 struct lruvec_stat __percpu *lruvec_stat_cpu; 130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 131 132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 133 134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 135 136 #ifdef CONFIG_MEMCG_KMEM 137 struct memcg_shrinker_map __rcu *shrinker_map; 138 #endif 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 bool congested; /* memcg has many dirty pages */ 144 /* backed by a congested BDI */ 145 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 147 /* use container_of */ 148 }; 149 150 struct mem_cgroup_threshold { 151 struct eventfd_ctx *eventfd; 152 unsigned long threshold; 153 }; 154 155 /* For threshold */ 156 struct mem_cgroup_threshold_ary { 157 /* An array index points to threshold just below or equal to usage. */ 158 int current_threshold; 159 /* Size of entries[] */ 160 unsigned int size; 161 /* Array of thresholds */ 162 struct mem_cgroup_threshold entries[0]; 163 }; 164 165 struct mem_cgroup_thresholds { 166 /* Primary thresholds array */ 167 struct mem_cgroup_threshold_ary *primary; 168 /* 169 * Spare threshold array. 170 * This is needed to make mem_cgroup_unregister_event() "never fail". 171 * It must be able to store at least primary->size - 1 entries. 172 */ 173 struct mem_cgroup_threshold_ary *spare; 174 }; 175 176 enum memcg_kmem_state { 177 KMEM_NONE, 178 KMEM_ALLOCATED, 179 KMEM_ONLINE, 180 }; 181 182 #if defined(CONFIG_SMP) 183 struct memcg_padding { 184 char x[0]; 185 } ____cacheline_internodealigned_in_smp; 186 #define MEMCG_PADDING(name) struct memcg_padding name; 187 #else 188 #define MEMCG_PADDING(name) 189 #endif 190 191 /* 192 * The memory controller data structure. The memory controller controls both 193 * page cache and RSS per cgroup. We would eventually like to provide 194 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 195 * to help the administrator determine what knobs to tune. 196 */ 197 struct mem_cgroup { 198 struct cgroup_subsys_state css; 199 200 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 201 struct mem_cgroup_id id; 202 203 /* Accounted resources */ 204 struct page_counter memory; 205 struct page_counter swap; 206 207 /* Legacy consumer-oriented counters */ 208 struct page_counter memsw; 209 struct page_counter kmem; 210 struct page_counter tcpmem; 211 212 /* Upper bound of normal memory consumption range */ 213 unsigned long high; 214 215 /* Range enforcement for interrupt charges */ 216 struct work_struct high_work; 217 218 unsigned long soft_limit; 219 220 /* vmpressure notifications */ 221 struct vmpressure vmpressure; 222 223 /* 224 * Should the accounting and control be hierarchical, per subtree? 225 */ 226 bool use_hierarchy; 227 228 /* 229 * Should the OOM killer kill all belonging tasks, had it kill one? 230 */ 231 bool oom_group; 232 233 /* protected by memcg_oom_lock */ 234 bool oom_lock; 235 int under_oom; 236 237 int swappiness; 238 /* OOM-Killer disable */ 239 int oom_kill_disable; 240 241 /* memory.events */ 242 struct cgroup_file events_file; 243 244 /* handle for "memory.swap.events" */ 245 struct cgroup_file swap_events_file; 246 247 /* protect arrays of thresholds */ 248 struct mutex thresholds_lock; 249 250 /* thresholds for memory usage. RCU-protected */ 251 struct mem_cgroup_thresholds thresholds; 252 253 /* thresholds for mem+swap usage. RCU-protected */ 254 struct mem_cgroup_thresholds memsw_thresholds; 255 256 /* For oom notifier event fd */ 257 struct list_head oom_notify; 258 259 /* 260 * Should we move charges of a task when a task is moved into this 261 * mem_cgroup ? And what type of charges should we move ? 262 */ 263 unsigned long move_charge_at_immigrate; 264 /* taken only while moving_account > 0 */ 265 spinlock_t move_lock; 266 unsigned long move_lock_flags; 267 268 MEMCG_PADDING(_pad1_); 269 270 /* 271 * set > 0 if pages under this cgroup are moving to other cgroup. 272 */ 273 atomic_t moving_account; 274 struct task_struct *move_lock_task; 275 276 /* memory.stat */ 277 struct mem_cgroup_stat_cpu __percpu *stat_cpu; 278 279 MEMCG_PADDING(_pad2_); 280 281 atomic_long_t stat[MEMCG_NR_STAT]; 282 atomic_long_t events[NR_VM_EVENT_ITEMS]; 283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 284 285 unsigned long socket_pressure; 286 287 /* Legacy tcp memory accounting */ 288 bool tcpmem_active; 289 int tcpmem_pressure; 290 291 #ifdef CONFIG_MEMCG_KMEM 292 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 293 int kmemcg_id; 294 enum memcg_kmem_state kmem_state; 295 struct list_head kmem_caches; 296 #endif 297 298 int last_scanned_node; 299 #if MAX_NUMNODES > 1 300 nodemask_t scan_nodes; 301 atomic_t numainfo_events; 302 atomic_t numainfo_updating; 303 #endif 304 305 #ifdef CONFIG_CGROUP_WRITEBACK 306 struct list_head cgwb_list; 307 struct wb_domain cgwb_domain; 308 #endif 309 310 /* List of events which userspace want to receive */ 311 struct list_head event_list; 312 spinlock_t event_list_lock; 313 314 struct mem_cgroup_per_node *nodeinfo[0]; 315 /* WARNING: nodeinfo must be the last member here */ 316 }; 317 318 /* 319 * size of first charge trial. "32" comes from vmscan.c's magic value. 320 * TODO: maybe necessary to use big numbers in big irons. 321 */ 322 #define MEMCG_CHARGE_BATCH 32U 323 324 extern struct mem_cgroup *root_mem_cgroup; 325 326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 327 { 328 return (memcg == root_mem_cgroup); 329 } 330 331 static inline bool mem_cgroup_disabled(void) 332 { 333 return !cgroup_subsys_enabled(memory_cgrp_subsys); 334 } 335 336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 337 struct mem_cgroup *memcg); 338 339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 340 gfp_t gfp_mask, struct mem_cgroup **memcgp, 341 bool compound); 342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 343 gfp_t gfp_mask, struct mem_cgroup **memcgp, 344 bool compound); 345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 346 bool lrucare, bool compound); 347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 348 bool compound); 349 void mem_cgroup_uncharge(struct page *page); 350 void mem_cgroup_uncharge_list(struct list_head *page_list); 351 352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 353 354 static struct mem_cgroup_per_node * 355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 356 { 357 return memcg->nodeinfo[nid]; 358 } 359 360 /** 361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 362 * @node: node of the wanted lruvec 363 * @memcg: memcg of the wanted lruvec 364 * 365 * Returns the lru list vector holding pages for a given @node or a given 366 * @memcg and @zone. This can be the node lruvec, if the memory controller 367 * is disabled. 368 */ 369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 370 struct mem_cgroup *memcg) 371 { 372 struct mem_cgroup_per_node *mz; 373 struct lruvec *lruvec; 374 375 if (mem_cgroup_disabled()) { 376 lruvec = node_lruvec(pgdat); 377 goto out; 378 } 379 380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 381 lruvec = &mz->lruvec; 382 out: 383 /* 384 * Since a node can be onlined after the mem_cgroup was created, 385 * we have to be prepared to initialize lruvec->pgdat here; 386 * and if offlined then reonlined, we need to reinitialize it. 387 */ 388 if (unlikely(lruvec->pgdat != pgdat)) 389 lruvec->pgdat = pgdat; 390 return lruvec; 391 } 392 393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 394 395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 397 398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 399 400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 401 402 static inline 403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 404 return css ? container_of(css, struct mem_cgroup, css) : NULL; 405 } 406 407 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 408 { 409 if (memcg) 410 css_put(&memcg->css); 411 } 412 413 #define mem_cgroup_from_counter(counter, member) \ 414 container_of(counter, struct mem_cgroup, member) 415 416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 417 struct mem_cgroup *, 418 struct mem_cgroup_reclaim_cookie *); 419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 420 int mem_cgroup_scan_tasks(struct mem_cgroup *, 421 int (*)(struct task_struct *, void *), void *); 422 423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 424 { 425 if (mem_cgroup_disabled()) 426 return 0; 427 428 return memcg->id.id; 429 } 430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 431 432 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 433 { 434 return mem_cgroup_from_css(seq_css(m)); 435 } 436 437 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 438 { 439 struct mem_cgroup_per_node *mz; 440 441 if (mem_cgroup_disabled()) 442 return NULL; 443 444 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 445 return mz->memcg; 446 } 447 448 /** 449 * parent_mem_cgroup - find the accounting parent of a memcg 450 * @memcg: memcg whose parent to find 451 * 452 * Returns the parent memcg, or NULL if this is the root or the memory 453 * controller is in legacy no-hierarchy mode. 454 */ 455 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 456 { 457 if (!memcg->memory.parent) 458 return NULL; 459 return mem_cgroup_from_counter(memcg->memory.parent, memory); 460 } 461 462 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 463 struct mem_cgroup *root) 464 { 465 if (root == memcg) 466 return true; 467 if (!root->use_hierarchy) 468 return false; 469 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 470 } 471 472 static inline bool mm_match_cgroup(struct mm_struct *mm, 473 struct mem_cgroup *memcg) 474 { 475 struct mem_cgroup *task_memcg; 476 bool match = false; 477 478 rcu_read_lock(); 479 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 480 if (task_memcg) 481 match = mem_cgroup_is_descendant(task_memcg, memcg); 482 rcu_read_unlock(); 483 return match; 484 } 485 486 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 487 ino_t page_cgroup_ino(struct page *page); 488 489 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 490 { 491 if (mem_cgroup_disabled()) 492 return true; 493 return !!(memcg->css.flags & CSS_ONLINE); 494 } 495 496 /* 497 * For memory reclaim. 498 */ 499 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 500 501 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 502 int zid, int nr_pages); 503 504 static inline 505 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 506 enum lru_list lru, int zone_idx) 507 { 508 struct mem_cgroup_per_node *mz; 509 510 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 511 return mz->lru_zone_size[zone_idx][lru]; 512 } 513 514 void mem_cgroup_handle_over_high(void); 515 516 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 517 518 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 519 struct task_struct *p); 520 521 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 522 523 static inline void mem_cgroup_enter_user_fault(void) 524 { 525 WARN_ON(current->in_user_fault); 526 current->in_user_fault = 1; 527 } 528 529 static inline void mem_cgroup_exit_user_fault(void) 530 { 531 WARN_ON(!current->in_user_fault); 532 current->in_user_fault = 0; 533 } 534 535 static inline bool task_in_memcg_oom(struct task_struct *p) 536 { 537 return p->memcg_in_oom; 538 } 539 540 bool mem_cgroup_oom_synchronize(bool wait); 541 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 542 struct mem_cgroup *oom_domain); 543 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 544 545 #ifdef CONFIG_MEMCG_SWAP 546 extern int do_swap_account; 547 #endif 548 549 struct mem_cgroup *lock_page_memcg(struct page *page); 550 void __unlock_page_memcg(struct mem_cgroup *memcg); 551 void unlock_page_memcg(struct page *page); 552 553 /* 554 * idx can be of type enum memcg_stat_item or node_stat_item. 555 * Keep in sync with memcg_exact_page_state(). 556 */ 557 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 558 int idx) 559 { 560 long x = atomic_long_read(&memcg->stat[idx]); 561 #ifdef CONFIG_SMP 562 if (x < 0) 563 x = 0; 564 #endif 565 return x; 566 } 567 568 /* idx can be of type enum memcg_stat_item or node_stat_item */ 569 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 570 int idx, int val) 571 { 572 long x; 573 574 if (mem_cgroup_disabled()) 575 return; 576 577 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]); 578 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 579 atomic_long_add(x, &memcg->stat[idx]); 580 x = 0; 581 } 582 __this_cpu_write(memcg->stat_cpu->count[idx], x); 583 } 584 585 /* idx can be of type enum memcg_stat_item or node_stat_item */ 586 static inline void mod_memcg_state(struct mem_cgroup *memcg, 587 int idx, int val) 588 { 589 unsigned long flags; 590 591 local_irq_save(flags); 592 __mod_memcg_state(memcg, idx, val); 593 local_irq_restore(flags); 594 } 595 596 /** 597 * mod_memcg_page_state - update page state statistics 598 * @page: the page 599 * @idx: page state item to account 600 * @val: number of pages (positive or negative) 601 * 602 * The @page must be locked or the caller must use lock_page_memcg() 603 * to prevent double accounting when the page is concurrently being 604 * moved to another memcg: 605 * 606 * lock_page(page) or lock_page_memcg(page) 607 * if (TestClearPageState(page)) 608 * mod_memcg_page_state(page, state, -1); 609 * unlock_page(page) or unlock_page_memcg(page) 610 * 611 * Kernel pages are an exception to this, since they'll never move. 612 */ 613 static inline void __mod_memcg_page_state(struct page *page, 614 int idx, int val) 615 { 616 if (page->mem_cgroup) 617 __mod_memcg_state(page->mem_cgroup, idx, val); 618 } 619 620 static inline void mod_memcg_page_state(struct page *page, 621 int idx, int val) 622 { 623 if (page->mem_cgroup) 624 mod_memcg_state(page->mem_cgroup, idx, val); 625 } 626 627 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 628 enum node_stat_item idx) 629 { 630 struct mem_cgroup_per_node *pn; 631 long x; 632 633 if (mem_cgroup_disabled()) 634 return node_page_state(lruvec_pgdat(lruvec), idx); 635 636 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 637 x = atomic_long_read(&pn->lruvec_stat[idx]); 638 #ifdef CONFIG_SMP 639 if (x < 0) 640 x = 0; 641 #endif 642 return x; 643 } 644 645 static inline void __mod_lruvec_state(struct lruvec *lruvec, 646 enum node_stat_item idx, int val) 647 { 648 struct mem_cgroup_per_node *pn; 649 long x; 650 651 /* Update node */ 652 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 653 654 if (mem_cgroup_disabled()) 655 return; 656 657 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 658 659 /* Update memcg */ 660 __mod_memcg_state(pn->memcg, idx, val); 661 662 /* Update lruvec */ 663 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 664 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 665 atomic_long_add(x, &pn->lruvec_stat[idx]); 666 x = 0; 667 } 668 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 669 } 670 671 static inline void mod_lruvec_state(struct lruvec *lruvec, 672 enum node_stat_item idx, int val) 673 { 674 unsigned long flags; 675 676 local_irq_save(flags); 677 __mod_lruvec_state(lruvec, idx, val); 678 local_irq_restore(flags); 679 } 680 681 static inline void __mod_lruvec_page_state(struct page *page, 682 enum node_stat_item idx, int val) 683 { 684 pg_data_t *pgdat = page_pgdat(page); 685 struct lruvec *lruvec; 686 687 /* Untracked pages have no memcg, no lruvec. Update only the node */ 688 if (!page->mem_cgroup) { 689 __mod_node_page_state(pgdat, idx, val); 690 return; 691 } 692 693 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 694 __mod_lruvec_state(lruvec, idx, val); 695 } 696 697 static inline void mod_lruvec_page_state(struct page *page, 698 enum node_stat_item idx, int val) 699 { 700 unsigned long flags; 701 702 local_irq_save(flags); 703 __mod_lruvec_page_state(page, idx, val); 704 local_irq_restore(flags); 705 } 706 707 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 708 gfp_t gfp_mask, 709 unsigned long *total_scanned); 710 711 static inline void __count_memcg_events(struct mem_cgroup *memcg, 712 enum vm_event_item idx, 713 unsigned long count) 714 { 715 unsigned long x; 716 717 if (mem_cgroup_disabled()) 718 return; 719 720 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]); 721 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 722 atomic_long_add(x, &memcg->events[idx]); 723 x = 0; 724 } 725 __this_cpu_write(memcg->stat_cpu->events[idx], x); 726 } 727 728 static inline void count_memcg_events(struct mem_cgroup *memcg, 729 enum vm_event_item idx, 730 unsigned long count) 731 { 732 unsigned long flags; 733 734 local_irq_save(flags); 735 __count_memcg_events(memcg, idx, count); 736 local_irq_restore(flags); 737 } 738 739 static inline void count_memcg_page_event(struct page *page, 740 enum vm_event_item idx) 741 { 742 if (page->mem_cgroup) 743 count_memcg_events(page->mem_cgroup, idx, 1); 744 } 745 746 static inline void count_memcg_event_mm(struct mm_struct *mm, 747 enum vm_event_item idx) 748 { 749 struct mem_cgroup *memcg; 750 751 if (mem_cgroup_disabled()) 752 return; 753 754 rcu_read_lock(); 755 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 756 if (likely(memcg)) 757 count_memcg_events(memcg, idx, 1); 758 rcu_read_unlock(); 759 } 760 761 static inline void memcg_memory_event(struct mem_cgroup *memcg, 762 enum memcg_memory_event event) 763 { 764 atomic_long_inc(&memcg->memory_events[event]); 765 cgroup_file_notify(&memcg->events_file); 766 } 767 768 static inline void memcg_memory_event_mm(struct mm_struct *mm, 769 enum memcg_memory_event event) 770 { 771 struct mem_cgroup *memcg; 772 773 if (mem_cgroup_disabled()) 774 return; 775 776 rcu_read_lock(); 777 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 778 if (likely(memcg)) 779 memcg_memory_event(memcg, event); 780 rcu_read_unlock(); 781 } 782 783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 784 void mem_cgroup_split_huge_fixup(struct page *head); 785 #endif 786 787 #else /* CONFIG_MEMCG */ 788 789 #define MEM_CGROUP_ID_SHIFT 0 790 #define MEM_CGROUP_ID_MAX 0 791 792 struct mem_cgroup; 793 794 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 795 { 796 return true; 797 } 798 799 static inline bool mem_cgroup_disabled(void) 800 { 801 return true; 802 } 803 804 static inline void memcg_memory_event(struct mem_cgroup *memcg, 805 enum memcg_memory_event event) 806 { 807 } 808 809 static inline void memcg_memory_event_mm(struct mm_struct *mm, 810 enum memcg_memory_event event) 811 { 812 } 813 814 static inline enum mem_cgroup_protection mem_cgroup_protected( 815 struct mem_cgroup *root, struct mem_cgroup *memcg) 816 { 817 return MEMCG_PROT_NONE; 818 } 819 820 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 821 gfp_t gfp_mask, 822 struct mem_cgroup **memcgp, 823 bool compound) 824 { 825 *memcgp = NULL; 826 return 0; 827 } 828 829 static inline int mem_cgroup_try_charge_delay(struct page *page, 830 struct mm_struct *mm, 831 gfp_t gfp_mask, 832 struct mem_cgroup **memcgp, 833 bool compound) 834 { 835 *memcgp = NULL; 836 return 0; 837 } 838 839 static inline void mem_cgroup_commit_charge(struct page *page, 840 struct mem_cgroup *memcg, 841 bool lrucare, bool compound) 842 { 843 } 844 845 static inline void mem_cgroup_cancel_charge(struct page *page, 846 struct mem_cgroup *memcg, 847 bool compound) 848 { 849 } 850 851 static inline void mem_cgroup_uncharge(struct page *page) 852 { 853 } 854 855 static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 856 { 857 } 858 859 static inline void mem_cgroup_migrate(struct page *old, struct page *new) 860 { 861 } 862 863 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 864 struct mem_cgroup *memcg) 865 { 866 return node_lruvec(pgdat); 867 } 868 869 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 870 struct pglist_data *pgdat) 871 { 872 return &pgdat->lruvec; 873 } 874 875 static inline bool mm_match_cgroup(struct mm_struct *mm, 876 struct mem_cgroup *memcg) 877 { 878 return true; 879 } 880 881 static inline bool task_in_mem_cgroup(struct task_struct *task, 882 const struct mem_cgroup *memcg) 883 { 884 return true; 885 } 886 887 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 888 { 889 return NULL; 890 } 891 892 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 893 { 894 return NULL; 895 } 896 897 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 898 { 899 } 900 901 static inline struct mem_cgroup * 902 mem_cgroup_iter(struct mem_cgroup *root, 903 struct mem_cgroup *prev, 904 struct mem_cgroup_reclaim_cookie *reclaim) 905 { 906 return NULL; 907 } 908 909 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 910 struct mem_cgroup *prev) 911 { 912 } 913 914 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 915 int (*fn)(struct task_struct *, void *), void *arg) 916 { 917 return 0; 918 } 919 920 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 921 { 922 return 0; 923 } 924 925 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 926 { 927 WARN_ON_ONCE(id); 928 /* XXX: This should always return root_mem_cgroup */ 929 return NULL; 930 } 931 932 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 933 { 934 return NULL; 935 } 936 937 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 938 { 939 return NULL; 940 } 941 942 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 943 { 944 return true; 945 } 946 947 static inline 948 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 949 enum lru_list lru, int zone_idx) 950 { 951 return 0; 952 } 953 954 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 955 { 956 return 0; 957 } 958 959 static inline void 960 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 961 { 962 } 963 964 static inline void 965 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 966 { 967 } 968 969 static inline struct mem_cgroup *lock_page_memcg(struct page *page) 970 { 971 return NULL; 972 } 973 974 static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 975 { 976 } 977 978 static inline void unlock_page_memcg(struct page *page) 979 { 980 } 981 982 static inline void mem_cgroup_handle_over_high(void) 983 { 984 } 985 986 static inline void mem_cgroup_enter_user_fault(void) 987 { 988 } 989 990 static inline void mem_cgroup_exit_user_fault(void) 991 { 992 } 993 994 static inline bool task_in_memcg_oom(struct task_struct *p) 995 { 996 return false; 997 } 998 999 static inline bool mem_cgroup_oom_synchronize(bool wait) 1000 { 1001 return false; 1002 } 1003 1004 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1005 struct task_struct *victim, struct mem_cgroup *oom_domain) 1006 { 1007 return NULL; 1008 } 1009 1010 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1011 { 1012 } 1013 1014 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 1015 int idx) 1016 { 1017 return 0; 1018 } 1019 1020 static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1021 int idx, 1022 int nr) 1023 { 1024 } 1025 1026 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1027 int idx, 1028 int nr) 1029 { 1030 } 1031 1032 static inline void __mod_memcg_page_state(struct page *page, 1033 int idx, 1034 int nr) 1035 { 1036 } 1037 1038 static inline void mod_memcg_page_state(struct page *page, 1039 int idx, 1040 int nr) 1041 { 1042 } 1043 1044 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1045 enum node_stat_item idx) 1046 { 1047 return node_page_state(lruvec_pgdat(lruvec), idx); 1048 } 1049 1050 static inline void __mod_lruvec_state(struct lruvec *lruvec, 1051 enum node_stat_item idx, int val) 1052 { 1053 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1054 } 1055 1056 static inline void mod_lruvec_state(struct lruvec *lruvec, 1057 enum node_stat_item idx, int val) 1058 { 1059 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1060 } 1061 1062 static inline void __mod_lruvec_page_state(struct page *page, 1063 enum node_stat_item idx, int val) 1064 { 1065 __mod_node_page_state(page_pgdat(page), idx, val); 1066 } 1067 1068 static inline void mod_lruvec_page_state(struct page *page, 1069 enum node_stat_item idx, int val) 1070 { 1071 mod_node_page_state(page_pgdat(page), idx, val); 1072 } 1073 1074 static inline 1075 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1076 gfp_t gfp_mask, 1077 unsigned long *total_scanned) 1078 { 1079 return 0; 1080 } 1081 1082 static inline void mem_cgroup_split_huge_fixup(struct page *head) 1083 { 1084 } 1085 1086 static inline void count_memcg_events(struct mem_cgroup *memcg, 1087 enum vm_event_item idx, 1088 unsigned long count) 1089 { 1090 } 1091 1092 static inline void __count_memcg_events(struct mem_cgroup *memcg, 1093 enum vm_event_item idx, 1094 unsigned long count) 1095 { 1096 } 1097 1098 static inline void count_memcg_page_event(struct page *page, 1099 int idx) 1100 { 1101 } 1102 1103 static inline 1104 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1105 { 1106 } 1107 #endif /* CONFIG_MEMCG */ 1108 1109 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1110 static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1111 int idx) 1112 { 1113 __mod_memcg_state(memcg, idx, 1); 1114 } 1115 1116 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1117 static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1118 int idx) 1119 { 1120 __mod_memcg_state(memcg, idx, -1); 1121 } 1122 1123 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1124 static inline void __inc_memcg_page_state(struct page *page, 1125 int idx) 1126 { 1127 __mod_memcg_page_state(page, idx, 1); 1128 } 1129 1130 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1131 static inline void __dec_memcg_page_state(struct page *page, 1132 int idx) 1133 { 1134 __mod_memcg_page_state(page, idx, -1); 1135 } 1136 1137 static inline void __inc_lruvec_state(struct lruvec *lruvec, 1138 enum node_stat_item idx) 1139 { 1140 __mod_lruvec_state(lruvec, idx, 1); 1141 } 1142 1143 static inline void __dec_lruvec_state(struct lruvec *lruvec, 1144 enum node_stat_item idx) 1145 { 1146 __mod_lruvec_state(lruvec, idx, -1); 1147 } 1148 1149 static inline void __inc_lruvec_page_state(struct page *page, 1150 enum node_stat_item idx) 1151 { 1152 __mod_lruvec_page_state(page, idx, 1); 1153 } 1154 1155 static inline void __dec_lruvec_page_state(struct page *page, 1156 enum node_stat_item idx) 1157 { 1158 __mod_lruvec_page_state(page, idx, -1); 1159 } 1160 1161 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1162 static inline void inc_memcg_state(struct mem_cgroup *memcg, 1163 int idx) 1164 { 1165 mod_memcg_state(memcg, idx, 1); 1166 } 1167 1168 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1169 static inline void dec_memcg_state(struct mem_cgroup *memcg, 1170 int idx) 1171 { 1172 mod_memcg_state(memcg, idx, -1); 1173 } 1174 1175 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1176 static inline void inc_memcg_page_state(struct page *page, 1177 int idx) 1178 { 1179 mod_memcg_page_state(page, idx, 1); 1180 } 1181 1182 /* idx can be of type enum memcg_stat_item or node_stat_item */ 1183 static inline void dec_memcg_page_state(struct page *page, 1184 int idx) 1185 { 1186 mod_memcg_page_state(page, idx, -1); 1187 } 1188 1189 static inline void inc_lruvec_state(struct lruvec *lruvec, 1190 enum node_stat_item idx) 1191 { 1192 mod_lruvec_state(lruvec, idx, 1); 1193 } 1194 1195 static inline void dec_lruvec_state(struct lruvec *lruvec, 1196 enum node_stat_item idx) 1197 { 1198 mod_lruvec_state(lruvec, idx, -1); 1199 } 1200 1201 static inline void inc_lruvec_page_state(struct page *page, 1202 enum node_stat_item idx) 1203 { 1204 mod_lruvec_page_state(page, idx, 1); 1205 } 1206 1207 static inline void dec_lruvec_page_state(struct page *page, 1208 enum node_stat_item idx) 1209 { 1210 mod_lruvec_page_state(page, idx, -1); 1211 } 1212 1213 #ifdef CONFIG_CGROUP_WRITEBACK 1214 1215 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1216 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1217 unsigned long *pheadroom, unsigned long *pdirty, 1218 unsigned long *pwriteback); 1219 1220 #else /* CONFIG_CGROUP_WRITEBACK */ 1221 1222 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1223 { 1224 return NULL; 1225 } 1226 1227 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1228 unsigned long *pfilepages, 1229 unsigned long *pheadroom, 1230 unsigned long *pdirty, 1231 unsigned long *pwriteback) 1232 { 1233 } 1234 1235 #endif /* CONFIG_CGROUP_WRITEBACK */ 1236 1237 struct sock; 1238 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1239 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1240 #ifdef CONFIG_MEMCG 1241 extern struct static_key_false memcg_sockets_enabled_key; 1242 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1243 void mem_cgroup_sk_alloc(struct sock *sk); 1244 void mem_cgroup_sk_free(struct sock *sk); 1245 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1246 { 1247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1248 return true; 1249 do { 1250 if (time_before(jiffies, memcg->socket_pressure)) 1251 return true; 1252 } while ((memcg = parent_mem_cgroup(memcg))); 1253 return false; 1254 } 1255 #else 1256 #define mem_cgroup_sockets_enabled 0 1257 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1258 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1259 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1260 { 1261 return false; 1262 } 1263 #endif 1264 1265 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1266 void memcg_kmem_put_cache(struct kmem_cache *cachep); 1267 1268 #ifdef CONFIG_MEMCG_KMEM 1269 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1270 void __memcg_kmem_uncharge(struct page *page, int order); 1271 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1272 struct mem_cgroup *memcg); 1273 1274 extern struct static_key_false memcg_kmem_enabled_key; 1275 extern struct workqueue_struct *memcg_kmem_cache_wq; 1276 1277 extern int memcg_nr_cache_ids; 1278 void memcg_get_cache_ids(void); 1279 void memcg_put_cache_ids(void); 1280 1281 /* 1282 * Helper macro to loop through all memcg-specific caches. Callers must still 1283 * check if the cache is valid (it is either valid or NULL). 1284 * the slab_mutex must be held when looping through those caches 1285 */ 1286 #define for_each_memcg_cache_index(_idx) \ 1287 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1288 1289 static inline bool memcg_kmem_enabled(void) 1290 { 1291 return static_branch_unlikely(&memcg_kmem_enabled_key); 1292 } 1293 1294 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1295 { 1296 if (memcg_kmem_enabled()) 1297 return __memcg_kmem_charge(page, gfp, order); 1298 return 0; 1299 } 1300 1301 static inline void memcg_kmem_uncharge(struct page *page, int order) 1302 { 1303 if (memcg_kmem_enabled()) 1304 __memcg_kmem_uncharge(page, order); 1305 } 1306 1307 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1308 int order, struct mem_cgroup *memcg) 1309 { 1310 if (memcg_kmem_enabled()) 1311 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1312 return 0; 1313 } 1314 /* 1315 * helper for accessing a memcg's index. It will be used as an index in the 1316 * child cache array in kmem_cache, and also to derive its name. This function 1317 * will return -1 when this is not a kmem-limited memcg. 1318 */ 1319 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1320 { 1321 return memcg ? memcg->kmemcg_id : -1; 1322 } 1323 1324 extern int memcg_expand_shrinker_maps(int new_id); 1325 1326 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1327 int nid, int shrinker_id); 1328 #else 1329 1330 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1331 { 1332 return 0; 1333 } 1334 1335 static inline void memcg_kmem_uncharge(struct page *page, int order) 1336 { 1337 } 1338 1339 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1340 { 1341 return 0; 1342 } 1343 1344 static inline void __memcg_kmem_uncharge(struct page *page, int order) 1345 { 1346 } 1347 1348 #define for_each_memcg_cache_index(_idx) \ 1349 for (; NULL; ) 1350 1351 static inline bool memcg_kmem_enabled(void) 1352 { 1353 return false; 1354 } 1355 1356 static inline int memcg_cache_id(struct mem_cgroup *memcg) 1357 { 1358 return -1; 1359 } 1360 1361 static inline void memcg_get_cache_ids(void) 1362 { 1363 } 1364 1365 static inline void memcg_put_cache_ids(void) 1366 { 1367 } 1368 1369 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1370 int nid, int shrinker_id) { } 1371 #endif /* CONFIG_MEMCG_KMEM */ 1372 1373 #endif /* _LINUX_MEMCONTROL_H */ 1374